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Problem 1 :
The following questions are about material covered in class. When asked to prove some-
thing you are only allowed to use results that we proved before that particular result.

1. Define the center of a group and prove it is a subgroup.

Solution:The center of a group G is Z(G) ∶= {g ∈ G ∶ ∀h ∈ G g ⋅ h = h ⋅ g}. Since,
for all h ∈ G, h ⋅ 1 = 1 ⋅ h, we have 1 ∈ Z(G). For all g, h ∈ Z(G) and all x ∈ G, we
have g ⋅ h ⋅ x = g ⋅ x ⋅ h = x ⋅ g ⋅ h so g ⋅ h ∈ Z(G). Moreover, x ⋅ g−1 = g−1 ⋅ g ⋅ x ⋅ g−1 =
g−1 ⋅ x ⋅ g ⋅ g−1 = g−1 ⋅ x, so g−1 ∈ Z(G) and Z(G) is a subgroup of G.

2. Prove that every infinite cyclic group is isomorphic to Z.

Solution: Let G = ⟨x⟩ be infinite. Then ∣x∣ is also infinite, otherwise ∣⟨x⟩∣ = ∣x∣
would be finite. Let f ∶ Z→ G be defined by i↦ xi. We have that f(i + j) = xi+j =
xi ⋅ xj = f(i) ⋅ f(j), so f is a group homomorphism. Since G = ⟨x⟩, f is surjective
and, for all i ⩽ j ∈ Z, if f(i) = xi = xj = f(j), then xj−i = 1 where j − i ∈ Z⩾0. By
definition of ∣x∣ = ∞, j − i = 0, so f is injective. We have proved that f is a group
isomorphism between G and Z.

Problem 2 :

1. Compute the disjoint cycle decomposition and the order of the product (0,1,2) ⋅
(2,3) ⋅ (0,1,2,3).

Solution: Let σ1 = (0,1,2), σ2 = (2,3) and σ1 = (0,1,2,3). We have σ1 ⋅σ2 ⋅σ3(0) =
σ2 ⋅σ2(1) = σ1(1) = 2, σ1 ⋅σ2 ⋅σ3(2) = σ2 ⋅σ2(3) = σ1(2) = 0, σ1 ⋅σ2 ⋅σ3(1) = σ2 ⋅σ2(2) =
σ1(3) = 3 and σ1 ⋅ σ2 ⋅ σ3(3) = σ2 ⋅ σ2(0) = σ1(0) = 1. So σ1 ⋅ σ2 ⋅ σ3 = (0,2) ⋅ (1.3).

It is a product of two disjoint 2-cycles, so it is order 2 = lcm(2,2).

2. Let τ = (0,1) ∈ Sn, for n ⩾ 2. Show that σ ∈ CSn(τ) if and only if σ({0,1}) = {0,1}.

Solution: Let us first assume that σ({0,1}) = {0,1}. If x ∉ {0,1}, then σ(x) ∉
{0,1} by injectivity and hence, τ ⋅ σ(x) = τ(σ(x)) = σ(x) = σ(τ(x)) = σ ⋅ τ(x).
If x ∈ {0,1}, then σ(0) = 0, in which case σ(1) = 1 or σ(0) = 1, in which case
σ(1) = 0. In both cases, σ(1 − x) = 1 − σ(x). Then, τ ⋅ σ(x) = 1 − σ(x) and
σ ⋅ τ(x) = σ(1 − x) = 1 − σ(x). So σ ⋅ τ = τ ⋅ σ, i.e. σ ∈ CSn(τ).

Conversely, assume that σ ∈ CSn(τ). If x ∉ {0,1} but σ(x) ∈ {0,1}, σ ⋅ τ(x) =
σ(x) = τ(σ(x)) = 1 − σ(x), a contradiction. It follows that if x ∉ {0,1}, then
σ(x) ∉ {0,1}. The function σ∣{2,...n−1} ∶ {2, . . . n − 1} → {2, . . . n − 1} is an injection
which is therefore surjective. If σ(0) ∈ {2, . . . , n − 1}, then σ(0) = σ(x) for some
x ∈ {2, . . . n − 1}, a contradiction. So σ(0) ∈ {0,1}. Similarly, σ(1) ∈ {0,1}.

The converse can also been proven using the following formula that we have not
proved in class yet but that you may have used for homework 2: if σ ∈ CSn(τ),
(0,1) = σ ⋅ (0,1) ⋅ σ = (σ(0), σ(1)), so σ({0,1}) = {0,1}.
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Problem 3 :
Let G be a group and p be some prime number.

1. Let a, b ∈ G be such that ∣a∣ = ∣b∣ = p. Show that either ⟨a⟩ = ⟨b⟩ or ⟨a⟩ ∩ ⟨b⟩ = {1}.

Solution: Since the intersection of subgroups is a subgroup, ⟨a⟩∩ ⟨b⟩ is a subgroup
of G and therefore of ⟨b⟩. Since p is prime, by Lagrange, ∣⟨a⟩ ∩ ⟨b⟩∣ is either 1 or
p. If it is 1, then ⟨a⟩ ∩ ⟨b⟩ = {1}. If it is p, then ⟨a⟩ ∩ ⟨b⟩ = ⟨b⟩ and hence ⟨b⟩ ⊆ ⟨a⟩.
Since both have order p, ⟨a⟩ = ⟨b⟩.

2. Let a and b be as above. Assume that a ∉ ⟨b⟩, show that {aibj ∶ i, j ∈ Z} has at
least p2 elements.

Solution: Since a ∉ ⟨b⟩, we cannot have ⟨a⟩ = ⟨b⟩, so, by the previous question,
⟨a⟩ ∩ ⟨b⟩ = {1}. Let us now pick 0 ⩽ i1 ⩽ i2 < p and 0 ⩽ j1 ⩽ j2 < p, if ai1bj1 = ai2bj2 ,
then ai1−i2 = bj2−j1 ∈ ⟨a⟩∩⟨b⟩ = {1}, so i1−i2 ≡ j2−j1 ≡ 0 mod p. Since −p < i1−i2 ⩽ 0
and 0 ⩽ j2 − j1 < p, it follows that i1 = i2 and j1 = j2. So the elements aibj for
0 ⩽ i, j < p are all distinct and there are p2 of them.

3. Assume that G is Abelian, ∣G∣ = p2 and that every element in G ∖ {1} is order p.
Show that G ≃ Z/pZ ×Z/pZ.

Solution: Let a ∈ G∖{1} be any element. Since ∣G∣ = p2 and ∣a∣ = p, we have ⟨a⟩ < G.
Let b ∈ G∖⟩a⟨ be any element. By the previous question, {aibj ∶ i, j ∈ Z} ⊆ G has at
least p2 elements so it is equal to G.

Let us define f ∶ G→ (Z/pZ)2 by f(aibj) = (i, j). Let us check that f is well defined.
If ai1bj1 = ai2bj2 , then, as see above, we must have i1 ≡ i2 mod p and j1 ≡ j2
mod p, so f is well defined. Let us check it is an homomorphism f(ai1bj1ai2bj2) =
f(ai1+i2bj1+j2) = (i1 + i2, j1 + j2) = (i1, j1)+(i2, j2) = f(ai1bj1)+f(ai2bj2) where the
last two + denote the operation on (Z/pZ)2, i.e. coordinatewise addition. Finally
f is injective, indeed if i1 ≡ i2 mod p and j1 ≡ j2 mod p, ai1 = ai2 and bj1 = bj2 so
ai1bj1 = ai2bj2 . Since ∣G∣ = p2 = ∣(Z/pZ)2∣, f is an isomorphism.
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