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Solutions to homework 2
Due September 11th

Problem 1 (Order) :

1. Find the order of every element in �Z~18Z,�� and of every element of ��Z~18Z��, ��.
(You should start by giving a list of the elements of Z~18Z that have a multiplicative
inverse; there are six of them).

Solution: In �Z~18Z,��:

• The order of 0 is 1.

• The order of 1, 5, 7, 11, 13 and 17 is 18 as they are prime with 18.

• The order of 2, 4, 8, 10, 14 and 16 is 9 as their gcd with 18 is 2.

• The order of 3 and 15 is 6 as their gcd with 18 is 3.

• The order of 6 and 12 is 3 as their gcd with 18 is 6.

• The order of 9 is 2 as its gcd with 18 is 9.

The six elements of ��Z~18Z�� are 1, 5, 7, 11, 13 and 17 (indeed n is prime with 18 if
and only if there exists k and l > Z such that nk � 18l � 1 i.e. nk � 1 mod 18).

• 1 has order 1

• 17 has order 2 since 172 � ��1�2 � 1 mod 18.

• 7 and 13 have order 3 since 73 � 49 � 7 � �5 � 7 � �35 � 1 mod 18 and 132 �

��5�3 � 25 � ��5� � �7 � 5 � 1 mod 18 but 72 � 49 � 13 y 1 mod 18 and 132 �

��5�2 � 25 � 7 y 1 mod 18.

• Finally, we have 52 � 25 � 7 mod 18, 112 �� ��7�2 � 49 � 13 mod 18 and 7
and 13 have order 3. Moreover 53 � ��13�3 � ��13�3 � �1 mod 18, 54 � 252 �

�7�2 � 13 mod 18, 55 � ��13�5 � �13 � �132�2 � 5 � 72 � 5 � ��5� � �25 � 11
mod 18, 113 � ��7�3 � ��7�3 � �1 mod 18, 114 � 492 � ��5�2 � 7 mod 18,
115 � ��7�5 � �7 � �72�2 � �7 � 132 � �7 � 7 � �49 � 5 mod 18. So 5 and 11 have
order 6.

2. LetG be a group, a, b > G. Show that the order of ab is equal to the order of ba.

Solution:Let n be the order of ab. We have �ab�n � 1 and hence �ba�n � b�ab�nb�1 �

bb�1 � 1. It follows that the order of ba is smaller than n, Symmetrically , the order of
ab is smaller than the order of ba so they must be equal.

3. Let G be a group such that every (non identity) element has order 2. Show that G is
abelian.

Solution: For all x > G, we have x2 � 1 and hence x � x�1. It follows that for all a, b > G,
ab � �ab��1 � b�1a�1 � ba and henceG is Abelian.

Problem 2 (Permutations) :
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1. Let γ > Sn be an k-cycle. What are the i > Z such that γi is a k-cycle.

Solution:Let γ � �a0a1 . . . ak�1� then γi�aj� � ai�j (the indices are taken to be in
Z~kZ). Let us prove that if γi is a k-cycle, then gcd�i, n� � 1. If γi is a k-cycle then it has
order k in `γe which has size k and hence �k, i� � 1. Conversely, assume gcd�i, k� � 1,
and for all j > Z~kZ, let bj � aij (this is well defined because if j2 � j1 � kd, then
aij2 � aij1�kid � aij1 ). Then γi�bj� � bj�1 and if x ¶ �ai � i > Z~kZ�, γ�x� � x and
hence γi�x�. To show that γi is a k-cycle, it suffices to show that the bj are distinct. If
bj1 � bj2 , then aij1 � aij2 and hence ij1 � ij2 mod k, i.e. kSi�j1 � j2�. As �k, i� � 1, it
follows that kS�j1 � j2� and hence j1 � j2 mod k. That concludes the proof.

2. Show that every element of Sn can be written as an arbitrary product of the elements
�01� and �01 . . . n � 1� (we say that �01� and �01 . . . n � 1� generate Sn).

Solution:Let us first prove the following very useful fact. Let γ � �a0a1 . . . ak�1� be a k-
cycle and σ > Sn, then γσ �� σXγXσ�1 � �σ�a0�σ�a1� . . . σ�ak�1��. Indeed γσ�σ�ai�� �
σ X γ X σ�1�σ�ai�� � σ X γ�ai� � σ�ai�1� and hence (because σ is a permutation, the
σ�ai� are distinct), γσ is indeed the k-cycle sending σ�ai� to σ�ai�1�.

Let τ � �01� and γ � �01 . . . n � 1�. By the previous paragraph, γiτγ�i � �i�i � 1��
and �12�τ�12� � �02� and in general �i�i � 1���0i��i�i � 1�� � �0�i � 1��. Finally
�0j��0i��0j� � �ji� (provided i x j). Every transposition can, therefore, be written as
a product of τ and γ and hence so does every element of Sn.

3. (Harder) Let τ � �0i� for 0 D i @ n and γ � �01 . . . n�1�. Find a necessary and sufficient
condition on i so that τ and γ generate Sn.

Solution:Let us prove that τ and γ generate Sn if and only if gcd�i, n� � 1. Let us first
assume that gcd�i, n� � 1. Then i generates Z~nZ and hence the ij for 0 D j @ n are all
distinct. Let σ > §n be the permutation sending j to ij and let f � Sn � Sn be the map
x ( σ�1xσ. Then f is a group homomorphism : f�xy� � σ�1xyσ � σ�1xσσ�1yσ �

f�x�f�y�. Moreover f is injective as f�x� � σ�1xσ � 1 implies x � σσ�1 � 1 and hence
f is a bijection (it is an injective function of a finite set into itselĔ). So f is a group
automorphism. Moreover f�τ� � �σ�1�0�σ�1�i�� � �01� and f�γi��j� � σ�1γiσ�j� �
σ�1�γi�ij�� � σ�1�i�j � 1�� � j � 1. It follows that f�γi� � γ. In the previous question
we showed that f�τ� and f�γi� generatesSn. Because f is an automorphism, it follows
that γi and τ generate Sn and hence so do τ and γ.

The converse is more complicated. Let us assume that gcd�i, n� � d x 1. The idea is to
show that there is a property of γ and τ that is preserved under composition andwhich
does not hold of all permutations. The property is the following. Let σ be either γ or
τ . If x � y mod d, then σ�x� � σ�y� mod d. If σ � γ this is obvious as γ�x� � x � 1
and dSx � y implies dS�x � 1� � �y � 1� � x � y. For σ � τ we can check all cases. If x
and y ¶ �0, i�, then τ�x� � x and τ�y� � y and that is obvious. If x � 0 and y � i, then
dSx � y � i and dSσ�x� � σ�y� � �i. If x � 0 and y x i then if dSx � y � �y we also have
that dSσ�x� � σ�y� � i � y. The remaining cases are proved similarly.

Let us now prove that this property is preserved under composition. If σ1 and σ2 are
such that if dSx�y then dSσk�x��σk�y� for k � 1,2, then if dSx�y, then dSσ1�x��σ1�y�
and thusdSσ2�σ1�x���σ2�σ1�y��. So if τ and γ generatedSn, it would follow that every
element in Sn have this property. But σ � �01� does not have this property as dSi � 0
but d does not divide σ�i� � σ�0� � i � 1 (as d x 1). Therefore γ and τ do not generate
Sn.

4. Show that if Ω is an infinite set then SΩ is infinite.
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Solution:BecauseΩ is infinite, there are elements ai > Ω for all i > ZD0 such that ai � aj
if and only if i � j (i.e. ZD0 can be embedded in Ω). Then the transpositions �a0ai� for
i > ZA0 are all distinct elements of SΩ and hence SΩ is infinite.

5. (Harder) Assume that Ω is countable, show that SΩ has cardinality continuum (i.e. is
in bijection with 2Ω).

Solution:We know that SΩ (being a subset of ΩΩ) has cardinality at most continuum.
To show that it is exactly continuum, we have to show that 2Ω can be injected into SΩ.
Because Ω is countable, let us assume that Ω � Z. For every f > 2Z, let σf�2i� � 2i and
σf�2i � 1� � 2i � 1 if f�i� � 0 and σf�2i� � 2i � 1 and σf�2i � 1� � 2i otherwise. Then
σf > SΩ and σf � σg implies that f � g. It follows that f is an injection from 2Ω into
SΩ.

Problem 3 :
LetG be a group whose cardinal is even.

1. LetX � �g > G � g x g�1�. Show that SX S is even.

Solution:The general idea is that every element g > X comes with its inverse so there
must be an even number of elements in X . Let us now do an actual proof (there are
many ways to see this, this is but one approach).

LetE bX be the equivalence relation xEy if x � y�1 or x � y (one can easily check that
this is an equivalence relation). The classes of E have exactly two elements (because
no element of X is its own inverse) and X is partitioned into k E-classes. If follows
that SX S � 2k.

2. Show that there is a element of order 2 inG.

Solution:G is the disjoint union of X and Y � �x > g � x�1 � x�. Because SGS and X
are even and SGS � SX S � SY S, it follows that SY S is even. But 1 > Y so Y has to contain
an element x x 1 such that x � x�1, i.e. x2 � 1.

Problem 4 :
Let �G, �� and �H,�� be to groups. We define �g1, h1� X �g2, h2� �� �g1 � g2, h1 � h2�.

1. Show that �G �H, X� is a group.

Solution: First X is indeed amap from �G�H�2 toG�H . Let us now check associativity.
Pick any g1, g2, g3 > G and h1, h2, h3 >H . We have:

��g1, h1� X �g2, h2�� X �g3, h3� � �g1 � g2, h1 � h2� X �g3, h3�
� ��g1 � g2� � g3, �h1 � h2� � h3�
� �g1 � �g2 � g3�, h1 � �h2 � h3��
� �g1, h1� X �g2 � g3, h2 � h3�
� �g1, h1� X ��g2, h2� X �g3, h3��

Let us now show that �1G,1H� > G � H is the identity. Pick g > G and h > H , then
�g, h�X�1G,1H� � �g �1G, h�1H� � �g, h� � �1GXg,1H �h� � �1G,1H�X�g, h�. Finally,
let g > G and h > H and let us show that �g�1, h�1� > G � H is its inverse. We have
�g, h�X�g�1, h�1� � �g �g�1, h�h�1� � �1G,1H� � �g�1 �g, h�1�h� � �g�1, h�1�X�g, h�.

3



2. Show thatG �H is Abelian if and only ifG andH are.

Solution:AssumeG �H is Abelian and pick g1, g2 > G. Then �g1 � g2,1H� � �g1,1H� X
�g2,1H� � �g2,1H� X �g1,1H� � �g2 � g1,1H�.It follows that g1 � g2 � g2 � g1 and henceG
is Abelian. By a symmetric argument,H is Abelian.

Let us now assume thatG andH are Abelian and pick g1, g2 > G and h1, h2 >H . Then
�g1, h1� X �g2, h2� � �g1 � g2, h1 � h2� � �g2 � g1, h2 � h1� � �g2, h2� X �g1, h1�. SoG �H is
Abelian.

3. (Harder) Let �Gi�i>I be a collection of groups. Show thatLi>I Gi with the coordinate-
wise operation, i.e. �gi�i>I � �hi�i>I � �gi � hi�i>I , is a group.

Solution: First of all, if gi and hi > Gi for all i, then �gi �hi�i>I >LiGi so the coordinate-
wise operation is indeed a binary operation. Let us now prove it is associative. Pick any
gi, hi and ti > Gi for all i:

��gi�i>I � �hi�i>I� � �ti�i>I � �gi � hi�i>I � �ti�i>I
� ��gi � hi� � ti�i>I
� �gi � �hi � ti��i>I
� �gi�i>I � �hi � ti�i>I
� �gi�i>I � ��hi�i>I � �ti�i>I�

Let us now show that �1Gi�i>I is the identity. Pick gi > Gi for all i, then �gi�i>I �

�1Gi�i>I � �gi �1Gi�i>I � �gi�i>I � �1Gi �gi�i>I � �1Gi�i>I ��gi�i>I . Finally, pick gi > Gi, for
all i, and let us show that �g�1i �i>I is its inverse. Wehave �gi�i>IX�g�1i �i>I � �gi �g

�1
i �i>I �

�1Gi�i>I � �g�1i � gi�i>I � �g�1i �i>I X �gi�i>I .
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