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Problem 1 (Action of the dihedral group on the diagonals) :
Let n ⩾ 4 be an even positive integer. Let us number the vertices of the n-gon by Z/nZ
(clockwise for example). And let X = {{i, j} ∶ i and j number opposite vertices}. So X
is the set of diagonals of the n-gon. Let r ∈ D2n be the rotation sending the vertex 0 to
the vertex 1 and s be the symmetry that fixes the vertex 0.

1. Let σ ∈D2n and {i, j} ∈X, show that {σ(i), σ(j)} ∈X where the action of D2n on
the vertices is the usual one.

Solution: If i and j are opposite vertices, then j = i + n/2. We have to check
that for all σ ∈ D2n, σ(i + n/2) − σ(i) = n/2modn. Because this property is stable
under composition, it suffices to prove it for r and s. We have r(i + n/2) − r(i) =
i+1+n/2−(i+1) = n/2 and s(i+n/2)−s(i) = −(i+n/2)−(−i) = −n/2 = n/2 mod n.

You don’t really need the reduction as one can directly compute rksl(i + n/2) −
rksl(i) = (−1)l(i + n/2) + k − ((−1)ki + k) = (−1)ln/2 = n/2 mod n.

2. Show that σ ⋆ {i, j} = {σ(i), σ(j)} is an action of D2n on X.

Solution: Let σ1 and σ2 ∈D2n, we have:

(σ1 ○ σ2) ⋆ {i, j} = {σ1 ○ σ2(i), σ1 ○ σ2(j)}
= {σ1(σ2(i)), σ1(σ2(j))}
= σ1 ⋆ {σ2(i), σ2(j)}
= σ1 ⋆ (σ2 ⋆ {i, j})

and id ⋆ {i, j} = {id(i), id(j)} = {i, j}.

3. Show that this action has a unique orbit.

Solution:Pick i, k ∈D2n, then rk−i⋆{i, i+n/2} = {i+k−i, i+n/2+k−i} = {k, k+n/2},
so the two diagonals {i, i + n/2} and {k, k + n/2} are in the same orbit. Note that
here all the integer are considered modulo n although it is not specified (the same
is true in what follows).

4. Show that StabD2n({i, j}) = {1, rn/2, r2is, r2i+n/2s}.

Solution: Let σ ∈D2n, σ stabilizes {i, j} if and only if σ(i) = i or σ(i) = j = i+n/2.
We have rk(i) = i + k and i + k = i if and only if k = 0 and i + k = i + n/2 if and
only if k = n/2. Similarly, srk(i) = −i + k and −i + k = i if and only if k = 2i and
−i + k = i + n/2 if and only if k = 2i + n/2. So the stabilizer contains those for
elements.

5. Let n = 4, show that StabD8(X) = {1, r2, s, r2s}.

Solution:We have StabD8(X) = ⋂i StabD8({i, j}) = ⋂i{1, r2, r2is, r2i+2s}. But if
i = 0,2 then 2i = 0 mod 4 and 2i + 2 = 2 mod 4 and if i = 1,3, 2i = 2 mod 4 and
2i + 2 = 0 mod 4 so {1, r2, r2is, r2i+2s} = {1, r2, s, r2s} does not depend on i and
StabD8(X) = {1, r2, s, r2s}.
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6. Let n > 4, show that StabD2n(X) = {1, rn/2}.

Solution: If n > 4, then 0, 0 + n/2, 2 and 2 + n/2 are distinct (even modulo n) and
hence StabD2n(X) = ⋂i StabD2n({i, j}) = ⋂i{1, rn/2, r2is, r2i+n/2s} = {1, rn/2}.

Problem 2 :
Let K be a field. We define K[[X]] = {∑i∈Z⩾0 aiX

i ∶ ai ∈K} the set of formal power series
with coefficients in K. The main difference with polynomials is that we now allow in-
finitely many coefficients to be non zero. We define addition as follows ∑i aiX

i+∑i biX
i =

∑i(ai + bi)Xi and multiplication as follows (∑i aiX
i) ⋅ (∑i biX

i) = ∑k(∑k
i=0 aibk−i)Xk.

1. Show that (K[[X]],+, ⋅) is a commutative ring.

Solution:The computations to show that these are rings are the same that for
polynomials, but let us redo them to check that the infinite sum does not get in
the way. We have to prove that (K[[X]],+) is an Abelian group:

• Associativity: (∑i aiX
i+∑i biX

i)+∑i ciX
i = ∑i(ai+bi)Xi+∑i ciX

i = ∑i(ai+
bi + ci)Xi = ∑i aiX

i +∑i(bi + ci)Xi = ∑i aiX
i + (∑i biX

i +∑i ciX
i);

• Commutativity: ∑i aiX
i +∑i biX

i = ∑i(ai + bi)Xi = ∑i(bi + ai)Xi = ∑i biX
i +

∑i aiX
i;

• Additive identity: ∑i aiX
i +∑i 0X

i = ∑i(ai + 0)Xi = ∑i aiX
i;

• Additive inverse: ∑i aiXi +∑i(−ai)Xi = ∑i(ai − ai)Xi = ∑i 0X
i.

Actually, as a group (K[[X]],+) is just KZ⩾0 and we have seen multiple times
that coordinate wise operation on a product of groups yields a group. Now let us
consider the multiplication:

• Associativity:

((∑i aiX
i) ⋅ (∑i biX

i)) ⋅ (∑i ciX
i) = (∑k(∑k

i=0 aibk−i)Xk) ⋅ (∑i ciX
i)

= ∑l(∑l
k=0(∑k

i=0 aibk−i)cl−k)X l

= ∑l(∑l
k=0∑k

i=0 aibk−icl−k)X l

= ∑l(∑l
i=0∑l

k=i aibk−icl−k)X l

= ∑l(∑l
i=0 ai(∑l

k=i bk−icl−k))X l

= ∑l(∑l
i=0 ai(∑l−i

k=0 bkcl−i−k))X l

= (∑i aiX
i) ⋅ (∑j(∑j

k=0 bkcj−k)X
j)

= (∑i aiX
i) ⋅ ((∑i biX

i) ⋅ (∑i ciX
i))

• Distributivity:

((∑i aiX
i) + (∑i biX

i)) ⋅ (∑i ciX
i) = (∑i(ai + bi)Xi) ⋅ (∑i ciX

i)
= ∑k(∑k

i=0(ai + bi)ck−i)Xk

= ∑k(∑k
i=0(aick−i + bick−i))Xk

= ∑k(∑k
i=0(aick−i) +∑k

i=0(bick−i))Xk

= ∑k(∑k
i=0 aick−i)Xk +∑k(∑k

i=0 bick−i)Xk

= (∑i aiX
i) ⋅ (∑i ciX

i) + (∑i biX
i) ⋅ (∑i ciX

i)

• Commutativity: (∑i aiX
i)⋅(∑i biX

i) = ∑k(∑k
i=0 aibk−i)Xk = ∑k(∑k

i=0 bk−iai)Xk =
∑k(∑k

j=0 bjak−j)Xk = (∑i biX
i) ⋅ (∑i aiX

i).
• Multiplicative identity: let δi = 1 if i = 0 and 0 otherwise, we have (∑i aiX

i) ⋅
(∑i δiX

i) = ∑k(∑k
i=0 aiδk−i)Xk = ∑k(∑k−1

i=0 ai ⋅ 0 + ak ⋅ 1)Xk = ∑k akX
k;
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2. Show that S = ∑i siX
i is a unit if and only if s0 ≠ 0.

Solution:Assume that S is a unit. There exists T = ∑i tiX
i such that∑k(∑k

i=0 sitk−i)Xk =
ST = 1. The constant coefficient of the series on the left is ∑0

i=0 sitk−i = s0t0 which
must be equal to 1, so s0 is a unit in K and s0 ≠ 0.

Conversely, assume that s0 ≠ 0. We are looking for T = ∑i tiX
i such that 1 = ST =

∑k(∑k
i=0 sitk−i)Xk, i.e. s0t0 = 1 and for all k > 0, ∑k

i=0 sitk−i = 0. We define tk by
induction on k: t0 = s−10 and tk+1 = −s−10 ∑k

i=0 sk+1−iti. It is easy to check that this
(the unique) solution to the above equations.

3. Show that K[[X]]/(X) is isomorphic to K.

Solution: Let f(∑i aiX
i) = a0 ∈ K. It is easy to check that f is a ring homo-

morphism. Its kernel is the set of series whose constant coefficient is 0. One can
check that ∑i>0 aiX

i = X ⋅ ∑i ai+1X
i, so series whose constant coefficient is 0 are

all multiple of X. Conversely, X∑i aiX
i = ∑i>0 ai−1X

i so multiples of X have
constant coefficient 0. It follows that the kernel of f is exactly (X). Moreover,
f(aX0 + ∑i>0 aiX

i) = a so f is surjective. By the first isomorphism theorem, we
get that K[[X]]/(X) ≅K.

4. Show that every non zero ideal in K[[X]] is of the form (Xn) for some n ∈ Z⩾0.

Solution: Let I be an ideal. Let n ∈ Z⩾0 be the smallest integer such that Xn ∈ I.
Then (Xn) ⊆ I. Conversely, pick S = ∑i siX

i ∈ I. Let i0 be minimal such that
si ≠ 0. Then S = ∑i⩾i0 siX

i = Xi0∑i si+i0X
i. Note that si0 ≠ 0 so S⋆ = ∑i si+i0X

i

has non zero constant coefficient and therefore is a unit. So Xi0 = (S⋆)−aS ∈ I and,
by minimality i0 ⩾ n. It follows that S =XnXi0−nS⋆ ∈ (Xn) and hence I = (Xn).
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