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Solutions to homework 10
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Problem 1 :

1. Let P, = X™-1. Let u, € C be the set of roots of P, in C. The elements of u, are
called the n-th roots of the unity. Show that

P=T] X-¢

CEpn

Solution: Since each element of y, is a root of P, the polynomial []¢c,, X - ¢

divides P,. But u, = {e¥ : 0 < k < n} has size n so those two polynomials have the
same degree. It follows that there exists u € C* such that P, = u-[]¢,, X —C. But
the coefficient of X™ in both P, and []¢e,, X —Cis 1, s0 u=1and P, = []¢,, X -C.

Note that p, is in fact a cyclic subgroup of C*.

2. A ( € uy is said to be primitive if it is not a d-th root of the unity for any d < n.
Show that there are ¢(n) primitive n-th roots of the unity, where ¢(n) is Euler’s
totient function.

Solution: Pick ( = eI e tn. It is a root of Py for some d < n if and only if
2ikw n 2ikm

[:=ged(n, k) # 1 (and in that case it is a root of P%). Indeed (T =en T =e1 =1

if and only if % € Z. Since ¢(n) is, by definition, the number of 0 < k < n that are
coprime with n, we do have ¢(n) primitive n-th roots of the unity.

3. Let
d,(X)= H X-C

ey primitive

Show that P, = [1g, ®4. Conclude that ®,(X) e Z[X].

Solution: Pick any ¢ € u,, Let djn be the order of (. Then ( is a primitive d-
th root of the unity. Note also that ( is a primitive d-th root for a unique d so
fin is the disjoint union of p, g = { € py, : ¢ is a primitive d-th root} for djn. So
P (X) = Tgn Meen,, , (X =C). Note also that if dn and ¢ is a d-th root of the unity
(primitive or not), then (" =1, so all primitive d-th roots of the unity are in y, 4
and [leey, ,(X = () = @q(X) by definition. It follows that P, = [1gy, Pa-

Let us first prove that if P = UV where P, U € Q[ X ] and V € C[X], then V € Q[ X].
Indeed, let P = UV’ + R be its Euclidean division in Q[ X ], then it also a Euclidean
division in C[X]. But P = UV is also a Euclidean division in C[X] and we saw
that Euclidean division in C[X] is unique. It follows that V =V’ e Q[ X].

Because ©, [1gjn, < Pa = P € Q[ X ], we obtain, by induction on n, that ®,, ¢ Q[ X]
for all n. It now follows from Gauss’s lemma (and induction), that there exists
cg € Q" such that cy®q € Z[X] and []gy, ca®q = Pn. It follows (looking at he
coefficient of X™), that [14, ca = 1. Note also that, since the coeflicient of X lnal ip

cqa®y is ¢g, we must have that cg € Z and hence, each of the ¢4 is invertible in Z. It
follows that @, = c;'c, ®, € Z[X].



4. (Harder) Let p be a prime number. Show that ®,(X + 1) is irreducible in Z[X].
Conclude that @, is irreducible in Z[X].

Solution: We have P, = X?~1= (X -1) 2/ X' = &1 -®, s0 &, = Y7} X' = X1

P
s X-1-

_ P (P)Xxi-1 - ; . :
So @p(X +1) = (X+)1{)p 1 _ Yo ()1() - Zfzol (;F)X" Th'e dominant coefficient
is (g) = 1. The other coefficients are equal to (;*,) = m forO<i+1<p
and they are all multiples of p. Indeed, Let p appears in the prime decomposition
of p! but, since i + 1, p—i—1 < p, it does not appear in the prime decomposition

of the numerator. It follows that p is a prime factor of (ifl) (which we know is

an integer!). Moreover, the constant term is (117) = p is not a multiple of p?. It
follows that we can apply the Eisenstein criterion and that ®,(X +1) is irreducible
in Z[ X].

If &;= AB where A, B € Z[ X ], then ®4(X+1) = A(X+1)B(X+1), where A(X+1),
B(X +1) € Z[ X]. By the previous question, we may assume that A(X +1) is a
unit (in particular, it is a constant polynomial). So A = A(X +1) is also a unit.

Problem 2 :
Let K be a field. ForallneZ, let m=n-1g € K. Forall P = ¥ ,¢; X" € Z[X], let
P=y",6X" e K[X].

1. Show that, if @ € K* is order n, then ®,(a) = 0.

Solution:If a is order n, then we have a" = 1, i.e. Pp(a) = 0. If ®4(a) = 0 for
some d < n, then since ®4 divides Py, we also have Py(a) = 0 and hence a? = 1,
contradicting the fact that the order of a is n. Since P, = [ Dy, Bg(a) # 0 if
d<n, P,(a) =0 and K, being a field, is integral, we must have ®,(a) = 0.

2. Until the end of that problem, we will assume that |K| = ¢ < co. Show that there
are at most ¥ gjq-1,d<g—1 deg(Pq) elements in K™ which are not order ¢ - 1.

Solution: The group K* is order ¢ — 1. So, by Lagrange, the order of any element
in K* divides ¢ — 1. If the order of a € K* is d < ¢ — 1, then ®4(a) = 0 and since
®, can have at most deg(®y) = deg(®,) roots, it follows that there are at most
Ydlg-1,d<q-1 deg(®4) elements in K* which are not order ¢ - 1.

3. Show that K™ is cyclic.

Solution: Since Py_1 = [1gq-1 P4, we have ¢ — 1 = deg(Py-1) = ¥ g)4-1 deg(®q), so
Ydlg-1,d<q-1deg(Pq) = ¢ — 1 —deg(Py-1) < ¢—1. It follows that there must be an
element of order ¢ — 1 in K* which is therefore cyclic.

Problem 3 :
Recall that Z[i] is the subring of C consisting of elements of the form a + ib where a,
beZ. Let p € Z be prime. Recall that Z[i] is a Euclidian domain.

1. Show that Z[X]/(p, X%+ 1), Z[i]/(p) and (Z/pZ)[X]/(X? + 1) are isomorphic.

Solution: Let f : Z[X] — Z[i] be the evaluation map at i (to be precise, it is
the restriction to Z[X] of the evaluation map at i from C[X] into C). Since
Z[i] is the subring of C generated by Z and i, we do have f(Z[X]) = Z[i]. Also
let 71 be the reduction map Z[i] — Z[i]/(p) (we have m1(z) = z + (p)). Then



0 :=mof:Z[X] - Z[i]/(p) is a ring homomorphism. Since both f and m
are surjective, so is . Let us show that the kernel of 6 is (p, X? +1). We have
f(X2+1)=i%+1=0,50 (X%+1) = 0. Also 0(p) = m1(p) =050 (X2+1,p) < ker(6).

Conversely, pick any P € Z[X] such that §(P) = 0, then f(P) € ker(m) = (p).
By the same proof as in Q[X], we can show that there exist @, R € Z[X] such
that P = (X2+1)Q + R and deg(R) < 1 (note that the dominant coefficient of
X?2+11is 1 so we never have to do any division when doing the long division). Then
f(P) = R(i). If R(i) = a+1ib € (p), then a + ib = p(c +id) and thus a = pc and
b = pd. It follows that R = pS for some S € Z[X]. Since P = (X% +1)Q + pS,
we do have that P e (X2 +1,p). By the first isomorphism theorem, we have that
Z[X]/(p, X? + 1) is isomorphic to Z[i]/p.

Now, let g : Z[X] - (Z/pZ)[X] be the reduction map on the coefficients and
7y (Z[pZ)[X] - (Z/pZ)[X]/(X? + 1) be the reduction map. Then x = mp0g:
Z[X] - (Z/pZ)[X]/(X? + 1) is a surjective ring homomorphism. Once again,
X(p) =m2(g(p)) = m2(0) = 0 and x(X?+1) = ma(X?+1) =0, s0 (p, X*+1) € ker(x).
Conversely, pick some P € ker() and write P = (X? +1)Q + R where deg(R) < 1.
We have x(P) = m2(X? +1)x(Q) + m2(g(R)) = ma(g(R)) = 0. So g(R) € (X*+1).
Since deg(g(R)) < 1 <deg(Xp?+1), g(R) = 0 and every coefficient of R is divisible
by p. So R = pS for some S € Z[X] and P € (X2 +1,p). By the first isomorphism
theorem, (Z/pZ)[X]/(X? +1) is isomorphic Z[X]/(p, X2 +1).

. Assume that p # 2, show that the following are equivalent:

a) —1 is a square in (Z/pZ);

b) there is an element of order 4 in (Z/pZ)*;

c) 4lp-1.
Solution:If a> =1 mod p, then a* = 1 and since a is not order two, it is order four.
So a) implies b). Conversely, if a* = 1 then a? = 1 or —1 which are the only two

roots of X2 —1. But if a is order 4, then a? # 1 so a® = —1. We have proved that b)
implies a). Finally since (Z/pZ)* is cyclic of order p— 1, b) and c) are equivalent.

. Assume that p = zy for some z, y € Z[i]. Show that |z|? € {1,p, p?}, here |z| denotes
the complex norm.

Solution: We have |p|* = |z|?|y|?. Also, if = € Z[i], then |z|? € Z, so |z|* divides p?
in Z. Tt follows that (since it is positive) |z[* € {1,p, p*}.

. Show that the following are equivalent:

a) p=2orp=1 mod 4;

b) p is reducible in Z[i];

c) there exist a, b € Z such that p = a? + b?.

Solution: Since Z[i] is a PID, p is irreducible if and only if p is prime, if and only
if p is maximal, if and only if Z[i]/p = (Z/pZ)[X]/(X? + 1) is a field, if and only
if X2+ 1 is irreducible in (Z/pZ)[X], if and only if X2 + 1 has no root in Z/pZ. If
p=2,then 12+1=2=0 mod p. If p # 2, we saw in a previous question that —1 is
a square in Z/pZ if and only if p =1 mod 4. We have just proved that a) and b)
are equivalent.

Let us now assume that p is reducible in Z[X]. Then, p = zy where, by the
previous question, |z|* € {1,p,p?}. If |z|?> = 1, then 27 = 1 and z is invertible in



Z[i]. 1f |x> = p?, then |y|> = 1 and y is invertible in Z[i]. If both = and y are not
units in Z[:], then |z|? = a® + b% = p where z = a +4b. So b) implies c).

Finally, if p = a? + b2 for some a, b € Z, then p = (a +ib)(a —1ib) is reducible in Z[4].
So ¢) implies b).

. (Harder) Pick any x = e []; p"" € Z where € € {-1,1}, a; € Z5( and the p; are distinct
primes. Show that there exists a, b € Z such that = a® + b? if and only if for all i
such that «; is odd, p; #3 mod 4.

Solution: Let ¥ := {a®+b? : a,b e Z}. Note that (a®+b?)(c?+d?) = |a+ib|*|c+id|? =
|(a+ib)(c+id)|?> = |(ac - bd) +i(ad + bc)* = (ac - bd)? + (ad + bc)?. So ¥ is closed
under multiplication and, to answer the question, it suffices to show which prime
powers are in Y. Even prime powers are in ¥ and so is 2 and any prime p = 1
mod 4, by the previous question. So a prime power is not in Y if and only if it is
an odd power of some p=3 mod 4.



