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Problem 1 (Atomless Boolean algebras) :

I. Let a € A~ {0}. Because a is not an atom, there exists ¢ € A such that 0 < ¢ < a. Let
cp=candcy =anc’ thenciucy =cu(anc®) =(cua)n(cuc®) =anl=aand
cinca=cna(nc®)=an0=0.

2. We proceed by indcution on |w|. If |w| = 0, then we must have ¢,, = 1. Otherwise, let
us assume that |w| = n and ¢,, has been built. If ¢, na,, # 0 and ¢, N al, # 0, then
we must have €,1 = €,y N ay and €0 = €4 N aj. Let us check these two values work.
They are, by hypothesis, non zero, £,,0 N ew1 = (ewNaj) N (ew Nag) =ew n0=0and
EwoUEWL = (EwNaf)U(EwNag) = Ew A} +Ew Ak +Ew AL -Ew Ak = € (1+ag) +Ew-ak = Ex.

Finally, if one of them is zero, by question 1 we find ¢y and ¢; # 0 such that coucy = €y,
and cp necp =0, So we can set £,,9 = cg and £,,1 = ¢7.

3. Forall n < k, we prove, by induction on n - k, that €,,, () < €y, (). If 7 = k, this is
obvious. Otherwise, by construction we have both €,,1 < &y and ey < €y S0 &, (5 €
Ewn(f) S Ewy(f)> by induction.

Let us now assume that ane,, sy = 0, theforalln > k,ane,, 5y <aney, ) =0and
SO aNEy, (f) = 0.1fan Ewp(f) * 0,foralln<k,0<a NEwi(f) S Ewn(f):

4. Let us first show that one of the statements must hold. Let us assume that there exists
k € N'such thate,,, (yyna = 0, the by the previous question, foralln > k, &, (syna = 0.
If we also had €,,,(y) N a® = 0, by the same computation as above, we would have
Ewn(f) = (Ewn(f) N @) U (Ew, () Na®) =0, a contradiction. It follows that for all n > ,
Ew,(f) N a® # 0. By the previous question, the equality also holds if n < k.

Let us now show that those two cases cannot happen at the same time. Let k be such
that a = ag. Ife,, sy na # 0and e,  (r) Nna® # 0, by construction (bercause
lwi-1(f)| = k), wehavee,, | ()1 =€uw, (rynaandey,  (ryo =Ew, (r)na’ Iff(k) =1,
thene,, (s =€u, () Naande,, py na®=0.1f f(k) =0, thene,, (5) = €, ,(5) Na°
and e, (syna=0.

It follows that either one of the statements is false for some n < k or one of the state-
ments is false for n = k. Hence both cannot be true for all n.

5. Foralln e N, e, (pynl=¢y,, () #0s0o1leUysande,, ;yn0=0s00¢Uy. Letaand
be Uy, then, foralln, e, yyna # 0ande,, rynb # 0. By question 4, there exists n and
m € N such that e, sy na®=0=¢,, (5 nbS. By question 3, taking the minimal one,
we may assume that m = n. We have e, (1) n(anbd)® = (e, (1) Na®) U(ey, 5y ndc) =0
and hence, by question 4 again, foralln e N, ¢, (yn (anb) #0andanbe Uy.

Finally, let a € A. By question 4, either foralln € N, ¢, (yy Na # 0 and a € Uy or for all
neN, ey, sy na®#0and a® € Uy. So Uy is an ultrafilter.

6. Let us proceed by induction on n. As 1 = 4 € U, the case n = 0 is taken care of. Let
us assume that wy, is built. We have ¢,,, € U and €,,,0 Uy, 1 = €w, - lf €y,0 ¢ U and
Ew,1 ¢ U, theney, qeUande;, | ¢ Uandhenceey, =ey,0Ue;, 1 =€, gNey, 1 €U,

a contradiction. So ther exists i € {0, 1}, such that e, ; € U. Let wy41 = wpyi.



7. As we have seen in question s, A is indeed a map from {0, 1} - S(A). Let us show

that it is injective. Let f, g : N — {0,1} be distinct and let & be the minimal value
at which they differ. We may assume that f(n) = 1. Forall k € N, e, (s) N €u,(f) =
Cumingn iy (F) * 050 Eu(p) € Upy DU E4y (1) N Eu () = Eua (N1 0 Ewea ()0 = 050
Ewn(g) ¢ Uy. By symmetry, Ewn(g) € Ug,so0Uy ¢ Uy.
Finally, let us prove that h is surjective. Let U be an ultrafilter on A. By the previous
question there exists (wy, )nen such thate,,, € U. Let f(n) be the n+1-thletter of wy, for
k > n (this is well defined because w,, is a prefix of wy, of length n). Then w,, (f) = wp-1.
We claim that h(f) = U.

Let a € h(f), there exists n such that Ewn(fyna®=0 and hence a® ¢ U, i.e. a € U as
U is an ultrafilter. Conversely, if a € U, then ¢, sy N a € U cannot be zero and thus

a€h(f).

Problem 2 (Model theory of Z) :
I. Let ¢ be anew constant and 7" be the £(¢)-theory:
T=Th(Z)u{Izx-"n=c:neZ~{0}}.

Let M* & T, then the reduct of M* is elementarily equivalent to Z and if a = ¢™, then
ME3Jzx-n=cforalln e Zz\ {0} and hence c is divisble by all @ for n € Zz \ {0}.
So it suffices to show that T is consistant. By compactness, it suffices to show that any
finite Ty < T is consistent. Let T be such a finite theory then 7y ¢ Th(Z)u{3Jzx-7; =
c:0< i< k}. Let n = max(n;)!, then, taking ¢ = n, we make Z into a model of Tj.
That concludes the proof.

2. We proceed by contraposition. Let us assume that M = 3z - (x). Then, because M =
Z, we also have Z = 3z —p(x). In particular, there exists n € Z such that Z £ -p(n)
and hence Z = -p(n). As M = Z, we have that M &= -p(7) for some n € Z.

3. Once again, we prove the contraposition. Let ¢(x) be such that M E ¢(a) if and only
if a = M for some n € Z. By the previous question, we have M & Yz ¢(z) and hence
every a € M is equal to some 7M. Let f : Z - M be defined by f(n) = wM, itis easy to
check that f is an embedding (because M = Z) and we have just shown it is surjective.
It follows that M is isomorphic to Z.

Problem 3 (Axiomatizability of equivalence relations) :

1. Let T be the theory that contains:
e VexFEux;
e VxVyxFEy —» yFEx,
o VaVyVz(zEyAyEz) > xEz.

Then the models of Ty are exactly the £L-structures where F is an equivalence relation,
so this class is finitely axiomatizable.

2. This is not axiomatizable either. Let v, = 3z1...3z, Ajzj ~2;Ex;. Let T be an L-
theory whose models are exactly the £-structures where F is an equivalence relation
with finitely many classes. Then 7" = T u {¢,, : n € Ny} is consistent. Indeed, by
compactness, it suffices to show that any finite T; € 7" is consistent. But Ty ¢ T'u{#,, :
n < no} for some ng € Ny and that theory is clearly consistent (take any equivalence
relation with ng-classes). So 1" is consistent but a model of 7" is a model of T with
infinitely many classes, a contradiction.



3. This is not axiomatizable. Let ¢ be a new constant and ¢,, = 3z1...3z, A\;cEx; A
Nizj ~T; = x;. Letus assume T'is an L-theory whose models are exactly the £-structures
where E is an equivalence relation whose classes are finite. Then 77" = T'u {¢,, : n €
N} is consistent. Indeed, by compactness, it suffices to prove that finite Ty € 7" are
consistent, but Ty € T'U {¢,, : n < ng} for some ny € N5 and that theory clearly has a
model (take E' to have only one class of cardinality ny and ¢ to be any point in E). So
T’ is consistent, but a model of 7" is a model of T" so every class is finite and the class
of ¢ is infinite, a contradiction.

4. Let T3 o be the theory that consists of:
s Tg;
o dx13x9 ~w1Exo A (Va3 (z3FEx v zsExs));
o forall n € N, the formula 0,, := Vz3y1 ... Iy, Aj 2EyY; A Nizj Yi # Yj-

Then any model of T5 « is an equivalence relation with two equivalence classes that
are both infinite. So this class is axiomatizable.

However, it is not finitely axiomatisable. Indeed, let 77 be some finite theory whose
models are exactly the equivalence relation with two equivalence classes that are both
infinite. Taking the conjonction of the formulas in 77, we may assume 7" = {¢}. We
have T3 o = ¢ and hence, by compactness, there is a finite Ty € 75  such that T & ¢.
Let ng be the largest n such that 6,, appears in T, then any equivalence relation with
two classes of cardinality ny are models of 7Tj and hence of ¢, a contradiction.

5. Let xpn () = 3y13yn Aj 2By A Nizjyi # yj A (V2 (2Ex - V; 2z = y;)) which states
that the class of x has size exactly n. Let ¢, = 3z xn(2) A (Vy (xn(y) - yEz)) whcih

states that there is exactly one class of cardinality n. Let Tiy be the theory consisting
of:

o Tg;
e Forall n € N, G,.

Then the models of Tiy have exactly one class of each finite (non zero) cardinality, so this
class is axiomatisable. It is not finitely axiomatisable. Indeed, if there exists a formula
1 such that the models of ¢ have exactly one class of each finite (non zero) cardinality,
then Ty E v and hence there exists some finite Ty € Ty such that Ty & 1. Let ng be
the largest n such that ¢, € Ty, then equivalence relation with exactly one class of each
cardinality smaller or equal to ng is a model of Tj) and thus of 1), a contradiction.

Problem 4 (\-calculus) :

1. If Aisa propositional variable (A - A) - A is not a tautology, so no A-term can have
type (A - A) — A in the empty context.

2. Let t be a normal A-term such that+ ¢t : (A - A) - (A - A) holds. Let us discuss
what can be the last rule applied to get that statement. 1t cannot be (Ax) because the
context is empty. And it cannot be (—p) because ¢t being normal, there would exists
x € V and normal t1,...t, € Asuchthatt¢ = (...((z)t1)...)t,. But the variable x
would be free in ¢ but not in the context (which is empty), a contradiction. So the last
rule applied is (—»7),t=Af,uand f: A > A+ u: A - Aholds.

Let us now assume that u does not star with a A\. Then u = (... ((y)t1)...)t, where
y € Vandty,...t, € A are normal. Because y is free in u and the only variable that
appears in the context is f, we must have y = f and the only possible rules to prove the



statement f : A > A+ u: A - Aisn applications of (—f). So there exists A; € T
suchthat f: A—> A+ f: A; > (A2 > ... (A, > (A—> A))...) which only holds (by
the (Ax) rule)if n =0. Sot = \f f.

Let us now assume that v = Az v where v is a normal A-term. Then, {f : A - A,z :
A} + v : Aholds. Let us prove by induction on v that the only normal A-terms such
that {f: A—> A,x: A} +v: Aare the t,, where ty = z and t,,.1 = (f)t,. Let us discuss
what are the possibilities for the last rule applied to prove {f : A > A,z : A} + v : A.
Because A is not of the form B — C, it cannot be (—1). So v does not start with a
and v = (...((y)v1)...)v, for some y € V and normal A-terms v;. But then the only
possible rules to prove {f : A > A,z : A} + v : Aisn applications of (—g) and we
have types A; suchthat {f: A > Ajx: A} +y: A1 »> (A2 > ... (A, > A)...).

The only two variables in the context are = and f so y must be one of them. If y = z,
thenn =0andv =tp. Ify = f,thenn =1, 41 =Aand{f: A > Ajx: A} rv;: A
holds. By induction v; = t,, for some n and v = (f)vy = (f)tn = tns1.

So the only possibilities are t = Af f and t = Af Az t,,.

. We proceed by induction on t. If t = z, then the only subterm of ¢ is ¢ itself and the
statement is obvious. If t = Az u then the subterms of ¢ are either ¢ itself or substerms
of u. Aswehave'+t: A, A=B — CandT'u{x: B} + u: C holds. By induction, the
statement holds for any subterm of u and it clearly holds for ¢. 1If t = (u)v, then there
is some type B such thatI' + u: B - Aand I" + v : B both hold. The subterms of ¢
are t itself, subterms of u and subterms of v and in all these three cases the statement
holds (by induction in the last two cases).

. We have:
(Y)t =g (Az(t)(z)z)A (t)(z)x
=g (t)(Ax (1) (z)z) Az (1) (x)x

and
Ot —-p (1) (A (¢)(z)z) Az (t)(x)x

So these two terms are [3-equivalent.

. There is no such type and context. To prove that statemant, by (the converse of) ques-
tion 2, it suffices to prove that there is no A € 7" and a context I such that (z)x : A
holds (it is a subterm of Y).

If such a context and type exist, there also exist Bsuchthatl' -z : B - Aandy+~z: B
hold. Therefore there is a type C such that z : C e 'and B - A = C' = B (so that we
can apply the (Ax) rule). But there is no type A and B such that A = B —» A.



