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Problem 1 (Atomless Boolean algebras) :

1. Let a > A � �0�. Because a is not an atom, there exists c > A such that 0 @ c @ a. Let
c1 � c and c2 � a 9 cc, then c1 8 c2 � c 8 �a 9 cc� � �c 8 a� 9 �c 8 cc� � a 9 1 � a and
c1 9 c2 � c 9 a�9c

c� � a 9 0 � 0.

2. We proceed by indcution on SwS. If SwS � 0, then we must have εw � 1. Otherwise, let
us assume that SwS � n and εw has been built. If εw 9 an x 0 and εw 9 acn x 0, then
we must have εw1 � εw 9 ak and εw0 � εw 9 ack. Let us check these two values work.
They are, by hypothesis, non zero, εw0 9 εw1 � �εw 9 a

c
k� 9 �εw 9 ak� � εW 9 0 � 0 and

εw08εw1 � �εw9a
c
k�8�εw9ak� � εw �a

c
k�εw �ak�εw �a

c
k �εw �ak � εw ��1�ak��εw �ak � εw.

Finally, if one of them is zero, by question 1we find c0 and c1 x 0 such that c0 8 c1 � εw
and c0 9 c1 � 0, So we can set εw0 � c0 and εw1 � c1.

3. For all n D k, we prove, by induction on n � k, that εwk�f� D εwn�f�. If n � k, this is
obvious. Otherwise, by construction we have both εw1 D εw and εw0 D εw so εwn�1�f� D

εwn�f� D εwk�f�, by induction.

Let us now assume that a 9 εwk�f� � 0, the for all n E k, a9 εwn�f� D a 9 εwk�f� � 0 and
so a 9 εwn�f� � 0. If a 9 εwk�f� x 0, for all n D k, 0 @ a 9 εwk�f� D εwn�f�.

4. Let us first show that one of the statements must hold. Let us assume that there exists
k >N such that εwk�f�9a � 0, the by the previous question, for all n E k, εwn�f�9a � 0.
If we also had εwn�f� 9 a

c � 0, by the same computation as above, we would have
εwn�f� � �εwn�f� 9 a� 8 �εwn�f� 9 a

c� � 0, a contradiction. It follows that for all n E k,
εwn�f� 9 a

c x 0. By the previous question, the equality also holds if n D k.

Let us now show that those two cases cannot happen at the same time. Let k be such
that a � ak. If εwk�1�f� 9 a x 0 and εwk�1�f� 9 a

c x 0, by construction (bercause
Swk�1�f�S � k), we have εwk�1�f�1 � εwk�1�f�9a and εwk�1�f�0 � εwk�1�f�9a

c. If f�k� � 1,
then εwk�f� � εwk�1�f� 9 a and εwk�f� 9 a

c � 0. If f�k� � 0, then εwk�f� � εwk�1�f� 9 a
c

and εwk�f� 9 a � 0.

It follows that either one of the statements is false for some n @ k or one of the state-
ments is false for n � k. Hence both cannot be true for all n.

5. For all n > N, εwn�f� 9 1 � εwn�f� x 0 so 1 > Uf , and εwn�f� 9 0 � 0 so 0 ¶ Uf . Let a and
b > Uf , then, for all n, εwn�f�9a x 0 and εwn�f�9b x 0. By question 4, there exists n and
m > N such that εwn�f� 9 a

c � 0 � εwm�f� 9 b
c. By question 3, taking the minimal one,

wemay assume thatm � n. We have εwn�f�9�a9b�c � �εwn�f�9a
c�8�εwn�f�9b

c� � 0
and hence, by question 4 again, for all n >N, εwn�f� 9 �a 9 b� x 0 and a 9 b > Uf .

Finally, let a > A. By question 4, either for all n >N, εwk�f� 9 a x 0 and a > Uf or for all
n >N, εwk�f� 9 a

c x 0 and ac > Uf . So Uf is an ultrafilter.

6. Let us proceed by induction on n. As 1 � εg > U , the case n � 0 is taken care of. Let
us assume that wn is built. We have εwn > U and εwn0 8 εwn1 � εwn . If εwn0 ¶ U and
εwn1 ¶ U , then ε

c
wn0 > U and εcwn1 ¶ U and hence εcwn

� εwn0 8 ε
c
wn1 � ε

c
wn0 9 ε

c
wn1 > U ,

a contradiction. So ther exists i > �0,1�, such that εwni > U . Let wn�1 � wni.
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7. As we have seen in question 5, h is indeed a map from �0,1�N � S�A�. Let us show
that it is injective. Let f , g � N � �0,1� be distinct and let k be the minimal value
at which they differ. We may assume that f�n� � 1. For all k > N, εwn�f� 9 εwk�f� �

εwmin�n,k��f�
x 0 so εwn�f� > Uf , but εwn�f� 9 εwn�g� � εwn�1�f�1 9 εwn�1�f�0 � 0 so

εwn�g� ¶ Uf . By symmetry, εwn�g� > Ug , so Uf ¶ Ug .

Finally, let us prove that h is surjective. Let U be an ultrafilter on A. By the previous
question there exists �wn�n>N such that εwn > U . Let f�n� be then�1-th letter ofwk for
k A n (this is well defined becausewn is a prefix ofwk of length n). Thenwn�f� � wn�1.
We claim that h�f� � U .

Let a > h�f�, there exists n such that εwn�f� 9 a
c � 0 and hence ac ¶ U , i.e. a > U as

U is an ultrafilter. Conversely, if a > U , then εwn�f� 9 a > U cannot be zero and thus
a > h�f�.

Problem 2 (Model theory of Z) :

1. Let c be a new constant and T be the L�c�-theory:

T � Th�Z� 8 �§xx � n � c � n > Z � �0��.

LetM�
à T , then the reduct ofM� is elementarily equivalent toZ and if a � cM, then

M à §xx � n � c for all n > Zz � �0� and hence c is divisble by all n for n > Zz � �0�.
So it suffices to show that T is consistant. By compactness, it suffices to show that any
finite T0 b T is consistent. Let T0 be such a finite theory then T0 b Th�Z�8�§xx �ni �
c � 0 @ i @ k�. Let n � max�ni�!, then, taking c � n, we make Z into a model of T0.
That concludes the proof.

2. We proceed by contraposition. Let us assume thatM à §x ϕ�x�. Then, becauseM �

Z , we also have Z à §x ϕ�x�. In particular, there exists n > Z such that Z à  ϕ�n�
and hence Z à  ϕ�n�. AsM � Z , we have thatM à  ϕ�n� for some n > Z.

3. Once again, we prove the contraposition. Let ϕ�x� be such thatM à ϕ�a� if and only
if a � nM for some n > Z. By the previous question, we haveM à ¦xϕ�x� and hence
every a >M is equal to some nM. Let f � Z �M be defined by f�n� � nM, it is easy to
check that f is an embedding (becauseM � Z) and we have just shown it is surjective.
It follows thatM is isomorphic to Z .

Problem 3 (Axiomatizability of equivalence relations) :

1. Let TE be the theory that contains:

• ¦xxEx;

• ¦x¦y xEy � yEx;

• ¦x¦y¦z �xEy , yEz�� xEz.

Then themodels of TE are exactly theL-structures whereE is an equivalence relation,
so this class is finitely axiomatizable.

2. This is not axiomatizable either. Let ψn � §x1 . . .§xn �ixj  xiExj . Let T be an L-
theory whose models are exactly the L-structures where E is an equivalence relation
with finitely many classes. Then T � � T 8 �ψn � n > NA0� is consistent. Indeed, by
compactness, it suffices to show that any finite T0 b T � is consistent. But T0 b T 8�ψn �

n D n0� for some n0 > NA0 and that theory is clearly consistent (take any equivalence
relation with n0-classes). So T � is consistent but a model of T � is a model of T with
infinitely many classes, a contradiction.
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3. This is not axiomatizable. Let c be a new constant and ϕn � §x1 . . .§xn �i cExi ,

�ixj  xi � xj . Let us assumeT is anL-theorywhosemodels are exactly theL-structures
where E is an equivalence relation whose classes are finite. Then T � � T 8 �ϕn � n >

NA0� is consistent. Indeed, by compactness, it suffices to prove that finite T0 b T � are
consistent, but T0 b T 8 �ϕn � n D n0� for some n0 > NA0 and that theory clearly has a
model (take E to have only one class of cardinality n0 and c to be any point in E). So
T � is consistent, but a model of T � is a model of T so every class is finite and the class
of c is infinite, a contradiction.

4. Let T2,ª be the theory that consists of:

• TE ;

• §x1§x2  x1Ex2 , �¦x3 �x3Ex1 - x3Ex2��;

• for all n >NA0, the formula θn �� ¦x§y1 . . .§yn �j xEyj ,�ixj yi x yj .

Then any model of T2,ª is an equivalence relation with two equivalence classes that
are both infinite. So this class is axiomatizable.

However, it is not finitely axiomatisable. Indeed, let T � be some finite theory whose
models are exactly the equivalence relation with two equivalence classes that are both
infinite. Taking the conjonction of the formulas in T �, we may assume T � � �ϕ�. We
have T2,ª à ϕ and hence, by compactness, there is a finite T0 b T2,ª such that T0 à ϕ.
Let n0 be the largest n such that θn appears in T0, then any equivalence relation with
two classes of cardinality n0 are models of T0 and hence of ϕ, a contradiction.

5. Let χn�x� �� §y1§yn �j xEyi , �ixj yi x yj , �¦z �zEx � �j z � yj�� which states
that the class of x has size exactly n. Let ζn � §xχn�x� , �¦y �χn�y� � yEx�� whcih
states that there is exactly one class of cardinality n. Let TN be the theory consisting
of:

• TE ;

• For all n >NA0, ζn.

Then themodels ofTN have exactly one class of eachfinite (non zero) cardinality, so this
class is axiomatisable. It is not finitely axiomatisable. Indeed, if there exists a formula
ψ such that the models of ψ have exactly one class of each finite (non zero) cardinality,
then TN à ψ and hence there exists some finite T0 b TN such that T0 à ψ. Let n0 be
the largest n such that ζn > T0, then equivalence relation with exactly one class of each
cardinality smaller or equal to n0 is a model of T0 and thus of ψ, a contradiction.

Problem 4 (λ-calculus) :

1. IfA is a propositional variable �A� A�� A is not a tautology, so no λ-term can have
type �A� A�� A in the empty context.

2. Let t be a normal λ-term such that Ø t � �A � A� � �A � A� holds. Let us discuss
what can be the last rule applied to get that statement. It cannot be �Ax� because the
context is empty. And it cannot be ��E� because t being normal, there would exists
x > V and normal t1, . . . tn > Λ such that t � �. . . ��x�t1� . . .�tn. But the variable x
would be free in t but not in the context (which is empty), a contradiction. So the last
rule applied is ��I�, t � λf, u and f � A� A Ø u � A� A holds.

Let us now assume that u does not star with a λ. Then u � �. . . ��y�t1� . . .�tn where
y > V and t1, . . . tn > Λ are normal. Because y is free in u and the only variable that
appears in the context is f , we must have y � f and the only possible rules to prove the
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statement f � A � A Ø u � A � A is n applications of ��E�. So there exists Ai > T
such that f � A � A Ø f � A1 � �A2 � . . . �An � �A � A�� . . .� which only holds (by
the �Ax� rule) if n � 0. So t � λf f .

Let us now assume that u � λxv where v is a normal λ-term. Then, �f � A � A,x �
A� Ø v � A holds. Let us prove by induction on v that the only normal λ-terms such
that �f � A� A,x � A� Ø v � A are the tn where t0 � x and tn�1 � �f�tn. Let us discuss
what are the possibilities for the last rule applied to prove �f � A � A,x � A� Ø v � A.
Because A is not of the form B � C , it cannot be ��I�. So v does not start with a λ
and v � �. . . ��y�v1� . . .�vn for some y > V and normal λ-terms vi. But then the only
possible rules to prove �f � A � A,x � A� Ø v � A is n applications of ��E� and we
have types Ai such that �f � A� A,x � A� Ø y � A1 � �A2 � . . . �An � A� . . .�.

The only two variables in the context are x and f so y must be one of them. If y � x,
then n � 0 and v � t0. If y � f , then n � 1, A1 � A and �f � A � A,x � A� Ø vi � A
holds. By induction v1 � tn for some n and v � �f�v1 � �f�tn � tn�1.

So the only possibilities are t � λf f and t � λfλx tn.

3. We proceed by induction on t. If t � x, then the only subterm of t is t itself and the
statement is obvious. If t � λxu then the subterms of t are either t itself or substerms
of u. As we have Γ Ø t � A,A � B � C and Γ8 �x � B� Ø u � C holds. By induction, the
statement holds for any subterm of u and it clearly holds for t. If t � �u�v, then there
is some type B such that Γ Ø u � B � A and Γ Ø v � B both hold. The subterms of t
are t itself, subterms of u and subterms of v and in all these three cases the statement
holds (by induction in the last two cases).

4. We have:
�Y �t �β �λx �t��x�x�λx �t��x�x

�β �t��λx �t��x�x�λx �t��x�x

and
�t��Y �t �β �t��λx �t��x�x�λx �t��x�x

So these two terms are β-equivalent.

5. There is no such type and context. To prove that statemant, by (the converse oĔ) ques-
tion 2, it suffices to prove that there is no A > T and a context Γ such that �x�x � A
holds (it is a subterm of Y ).

If such a context and type exist, there also existB such thatΓ Ø x � B � A and γ Ø x � B
hold. Therefore there is a type C such that x � C > Γ and B � A � C � B (so that we
can apply the �Ax� rule). But there is no type A andB such that A � B � A.

4


