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Homework 3
Due September 24th

Problem1:

1. Hereis a derivationof - (X - Y) - (Y - Z2) - (X - 2)):
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2. Hereisaderivationof {X - Y, X > Z} - X - (Y A Z):
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3. Assuming we have a derivation of ' U { A} + — A, here is a derivation of ' + - A:
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4. Assuming we have a derivation of ¢ + 1, here is a derivation of —=¢) + —:
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5. Assuming we have a derivation of =) - -, here is a derivation of ¢ + 9:
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Problem 2 :

1. Applying the ( < ) rule, we get that ' + ¢y <= 6. By the completeness theorem, I £ 9 < 6. In
particular, if 6 € {0,1}% satisfies I, then 95 = 65. Hence if = 6, then ©y9 = ¥ and we do have p;5 = 05 =
¥s = (wy/0)s- We now prove the general case (i.e. ¢ # 6) by induction on .

e If o =X (and ¢ # 0), py/0 = X = p and we do have @5 = (py/6)s.

e If o = =x (and ¢ # 0), then vy = =(Xxy/9). By induction (xy/9)s = Xxs and hence (¢y9)s =
J-((xyr0)s) = F-(xs) = 5.



o If o =[p10p2](and ¢ # ), then vy 9 = [(©1)y/0 O (p2)y/0] and by induction ((pi)yo)s = (wi)s for
i =1,2. It follows that (y/9)s = fa(((01)y0)s, ((02)y0)s) = fo((©1)s, (¥2)s5) = s-

2. If ' + o, then by completeness I' = ¢. Let J satisfy I', then we have 5 = 1 and, by the previous question, we
also have (y,/9)5 = 1. We have just proved that I' & /9. By completeness, we have I' - ¢, .

Problem 3 :

1. Assume that I &= 1 and let 6 € {0,1}% satisfy I. Then 15 = 0 by definition, and 15 = 1 because I' = 1, a
contradiction. It follows that I" there are no such § and hence I' = ¢ for any formula .

2. a) Hereisaderivation of - 1 < (¢ A —p):
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b) By the (<) rule, we have to show that - + ¢ - L and ¢ — 1 + —¢ hold. Here is a derivation of
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And here is a derivation of p — L + —p:
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