Homework 3

Due September 24th

Problem 1:

I. Here is a derivation of $\vdash (X \to Y) \to ((Y \to Z) \to (X \to Z))$:

$$(Ax) \xrightarrow{Y \to Z \vdash Y \to Z} \xrightarrow{(Ax)} \frac{X \to Y \vdash X \to Y}{X \to Y \vdash X \to Y} \xrightarrow{(Ax)} \frac{X \vdash X}{X \vdash X}$$

$$(Ax) \xrightarrow{Y \to Z \vdash Y \to Z} \xrightarrow{(Ax)} \frac{X \to Y \vdash X \to Y}{\{X \to Y, X\} \vdash Z}$$

$$(Ax) \xrightarrow{X \to Y \vdash X \to Y} \xrightarrow{\{X \to Y, X\} \vdash Z}$$

$$(Ax) \xrightarrow{X \to Y \vdash X \to Y} \xrightarrow{\{X \to Y, X\} \vdash Z}$$

$$(Ax) \xrightarrow{X \to Y \vdash X \to Y} \xrightarrow{(Ax)} \xrightarrow{X \vdash X}$$

$$(Ax) \xrightarrow{X \to Y \vdash X \to Y} \xrightarrow{(Ax)} \xrightarrow{X \vdash X}$$

$$(Ax) \xrightarrow{X \to Y \vdash X \to Y} \xrightarrow{(Ax)} \xrightarrow{X \vdash X}$$

$$(Ax) \xrightarrow{X \to Y \vdash X \to Y} \xrightarrow{(Ax)} \xrightarrow{X \vdash X}$$

$$(Ax) \xrightarrow{X \to Y \vdash X \to Y} \xrightarrow{(Ax)} \xrightarrow{X \vdash X}$$

$$(Ax) \xrightarrow{X \to Y \vdash X \to Y} \xrightarrow{(Ax)} \xrightarrow{X \vdash X}$$

$$(Ax) \xrightarrow{X \to Y \vdash X \to Y} \xrightarrow{(Ax)} \xrightarrow{X \vdash X}$$

$$(Ax) \xrightarrow{X \to Y \vdash X \to Y} \xrightarrow{(Ax)} \xrightarrow{$$

2. Here is a derivation of $\{X \to Y, X \to Z\} \vdash X \to (Y \land Z)$:

$$(Ax) \xrightarrow{X \to Y \vdash X \to Y} (Ax) \xrightarrow{X \vdash X} (Ax) \xrightarrow{X \vdash Z} (Ax) \xrightarrow{X \to Z \vdash X \to Z} (Ax) \xrightarrow{X \vdash X} (Ax) \xrightarrow{X \vdash X} (Ax) \xrightarrow{X \vdash X \to Z} (Ax) \xrightarrow{X \vdash X} (Ax) \xrightarrow{X \vdash X} (Ax) \xrightarrow{X \vdash X \to Z} (Ax) \xrightarrow{X \vdash X} (Ax) \xrightarrow{X \vdash X \to Z} (Ax) \xrightarrow{X \to Z$$

3. Assuming we have a derivation of $\Gamma \cup \{A\} \vdash \neg A$, here is a derivation of $\Gamma \vdash \neg A$:

$$(\vee_{E}) \xrightarrow{\Gamma \cup \{A\} \vdash \neg A} (Ax) \xrightarrow{\neg A \vdash \neg A} (ExMid) \xrightarrow{\vdash A \vee \neg A}$$

4. Assuming we have a derivation of $\varphi \vdash \psi$, here is a derivation of $\neg \psi \vdash \neg \varphi$:

$$(\neg_E) \frac{\vdots}{\varphi \vdash \psi} (Ax) \frac{\neg \psi \vdash \neg \psi}{\neg \psi \vdash \neg \varphi} (Ax) \frac{\neg \varphi \vdash \neg \varphi}{\neg \varphi \vdash \neg \varphi} (ExMid) \frac{\neg \varphi \vdash \neg \varphi}{\neg \psi \vdash \neg \varphi}$$

5. Assuming we have a derivation of $\neg \psi \vdash \neg \varphi$, here is a derivation of $\varphi \vdash \psi$:

$$(Ax) \xrightarrow{\psi \vdash \psi} (Ax) \xrightarrow{\varphi \vdash \varphi} \xrightarrow{\neg \psi \vdash \neg \varphi} (ExMid) \xrightarrow{\vdash \psi \lor \neg \psi}$$

$$(\varphi_E) \xrightarrow{\psi \vdash \psi} (\varphi_E) \xrightarrow{\varphi \vdash \psi} (\varphi_E) (\varphi_E) \xrightarrow{\varphi \vdash \psi} (\varphi_E) (\varphi_$$

Problem 2:

- I. Applying the $(\iff I)$ rule, we get that $\Gamma \vdash \psi \iff \theta$. By the completeness theorem, $\Gamma \vDash \psi \iff \theta$. In particular, if $\delta \in \{0,1\}^P$ satisfies Γ , then $\psi_\delta = \theta_\delta$. Hence if $\varphi = \theta$, then $\varphi_{\psi/\theta} = \psi$ and we do have $\varphi_\delta = \theta_\delta = \psi_\delta = (\varphi_{\psi/\theta})_\delta$. We now prove the general case (i.e. $\varphi \neq \theta$) by induction on φ .
 - If $\varphi = X$ (and $\varphi \neq \theta$), $\varphi_{\psi/\theta} = X = \varphi$ and we do have $\varphi_{\delta} = (\varphi_{\psi/\theta})_{\delta}$.
 - If $\varphi = \neg \chi$ (and $\varphi \neq \theta$), then $\varphi_{\psi/\theta} = \neg (\chi_{\psi/\theta})$. By induction $(\chi_{\psi/\theta})_{\delta} = \chi_{\delta}$ and hence $(\varphi_{\psi/\theta})_{\delta} = f_{\neg}(\chi_{\psi/\theta})_{\delta} = f_{\neg}(\chi_{\delta}) = \varphi_{\delta}$.

- If $\varphi = [\varphi_1 \Box \varphi_2]$ (and $\varphi \neq \theta$), then $\varphi_{\psi/\theta} = [(\varphi_1)_{\psi/\theta} \Box (\varphi_2)_{\psi/\theta}]$ and by induction $((\varphi_i)_{\psi/\theta})_{\delta} = (\varphi_i)_{\delta}$ for i = 1, 2. It follows that $(\varphi_{\psi/\theta})_{\delta} = f_{\Box}(((\varphi_1)_{\psi/\theta})_{\delta}, ((\varphi_2)_{\psi/\theta})_{\delta}) = f_{\Box}((\varphi_1)_{\delta}, (\varphi_2)_{\delta}) = \varphi_{\delta}$.
- 2. If $\Gamma \vdash \varphi$, then by completeness $\Gamma \vDash \varphi$. Let δ satisfy Γ , then we have $\varphi_{\delta} = 1$ and, by the previous question, we also have $(\varphi_{\psi/\theta})_{\delta} = 1$. We have just proved that $\Gamma \vDash \varphi_{\psi/\theta}$. By completeness, we have $\Gamma \vdash \varphi_{\psi/\theta}$.

Problem 3:

- I. Assume that $\Gamma \vDash \bot$ and let $\delta \in \{0,1\}^P$ satisfy Γ . Then $\bot_{\delta} = 0$ by definition, and $\bot_{\delta} = 1$ because $\Gamma \vDash \bot$, a contradiction. It follows that Γ there are no such δ and hence $\Gamma \vDash \varphi$ for any formula φ .
- 2. a) Here is a derivation of $\vdash \bot \leftrightarrow (\varphi \land \neg \varphi)$:

$$(Ax) \xrightarrow{\bot \vdash \bot} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi \vdash \varphi} (Ax) \xrightarrow{\varphi \land \neg \varphi} (Ax) \xrightarrow{\varphi \land \neg$$

b) By the (\leftrightarrow_I) rule, we have to show that $\neg \varphi \vdash \varphi \to \bot$ and $\varphi \to \bot \vdash \neg \varphi$ hold. Here is a derivation of $\neg \varphi \vdash \varphi \to \bot$:

$$(Ax) \xrightarrow{\varphi \vdash \varphi} (Ax) \xrightarrow{\neg \varphi \vdash \neg \varphi} (-x) \xrightarrow{\neg \varphi \vdash \varphi \to \bot}$$

And here is a derivation of $\varphi \to \bot \vdash \neg \varphi$:

$$(Ax) \xrightarrow{\varphi \to \bot \vdash \varphi \to \bot} (Ax) \xrightarrow{\varphi \vdash \varphi} (Ax) \xrightarrow{\varphi \vdash \varphi} (Ax) \xrightarrow{\varphi \vdash \varphi} (Ax) \xrightarrow{\neg \varphi \vdash \neg \varphi} (ExMid) \xrightarrow{\vdash \varphi \lor \neg \varphi} (\varphi \to \bot \vdash \neg \varphi)$$