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Problem 1 (Model theory) :

1. Let us first prove that b) implies a). Let us assume that A is an elementary sub-
structure of M and let ¢, a; and m be as in a). We have M £ 3z p(zg,a1,...,ay,)
and hence A = Jzop(x0,a1,...,a,). In particular, there exists ag € A such that
AE p(ag,ai,...,a,). But because A is an elementary substructure of M, we also
have M E p(ag,a1,...,a,).

Let us now prove a) implies b). Let A < M verify a). We prove by induction on
o that for all ay,...a, € A, AE (a1,...,a,) if and only if M = p(a1,...,a,). If @
is atomic, this is an immediate consequence of the fact that A is a substructure of
M. If ¢ = =), then A= p(ay,...,a,) if and only if A# p(ai,...,a,) (we are using
the induction), if and ounly if M ¥ (a1, ...,ay), if and only if M E p(ay,...,a,).
If o = o1 A e, then A E ¢(ai,...,a,) if and only if A £ ¢i(a,...,a,) and
A pa(al,...,ay), if and only if M ¥ ¢i(a1,...,a,) and M & pa(ay,...,a,) (we
are using the induction), if and only if M = p(aq,...,ay).

Let us now assume that ¢ = 3xg¥(zo,x1,...,2,). We have A = p(ay,...,ay) if
and only if there exists ag € A such that A = ¢(ag,a1,...,ay), if and only if there
exists ag € A such that M & ¥(ap,a,...,a,) (we are using the induction), if and

only if there exists m € M such that M = ¢ (m,az,...,a,) (we are using hypothesis
a)), if and only if M E p(ay,...,a,).

This concludes the proof as all other connectives and quantifiers can be expressed
using these three.

2. Recall that, in £L(M), we denote the constant associated to a € M by a.

Let us prove that a) implies b). Let f be as in a) and let N'* be the enrichment of
N to L(M) such that ¢ = f(a). Let p(ay,...,a,) € D (M) (where ¢ is an L-
formula). By definition M* £ ¢(a,,...,q,) and hence M & ¢(ay,...,a,). Because
f is an isosmorphism on its image, f(M) e ¢(f(a1),..., f(ay)) and because f(M)
is an elemtary substructure of N, we also have N E ¢(f(a1),..., f(a,)) and hence
NEeo(ay,...,a,).

Let now N* be as in b). We define f: M - N by f(a) =a”. Let ¢(x1,...,2z,) be
an L-formula and ay,...,a, € M. We have N = o(f(a1),..., f(an)) if and only if,
N e ¢(ay,...,a,) (by definition of f), if and only if ¢(ay,...,a,) € D*(M) (one
implication is by hypothesis b), the other by hypothesis b) applied to —), if and
only if M & ¢(ay,...,a,) if and only if f(M) = p(f(a1),..., f(a,)). We have just
proved that f(M) is an elementary substructure of N.

3. By compactness, it suffices to show that every finite Ty € D*(M) u D(N) is
consistent. Assume one of them is not. We have Ty ¢ D*'(M) u {¢i(ay,...,a,):
0 < ¢ < k} where aj € N and ¢;(ay,...,q,) € DYN). Let 1 = Aocick i, then
Y(ay,...,a,) € DYN) and DYM) U {¢(ay,...,a,)} is inconsistent and thus
DYM) + ~b(ay, ..., a,). Because the constants a; do not appear in D(M) (that

is why we had to be careful to choose distinct new constants in L(M) and L(N)), we



have DY (M) - Yy ... Va, —p(z1,...,2,) and hence M & V... Vo, =p(z1,...,2Tn).

But M =N and Vay ...V, -(x1,...,2,)is an L-sentence, so N E Vy ... Vo, (21, ..., 25),
in particular M £ —t(a1,...,ay), a contradiction with that fact that ¢(ay,...,q,) €

DYN).

Therefore, the theory D®(M) uD(N) is consistent.

4. Let us first prove that b) implies a). Let O be as in b) and ¢ be an L-sentence.
We have M E ¢ if and only if O E ¢ if and only if N = ¢ and hence M =N

Let us now prove that a) implies b). Let us assume a). By the previous question,
DYM) UDNN) is consistent. Let O = D(M) uD(N). By question 2, there
exists elementary embeddings f: M - O and g: N - O.

Problem 2 (\-calculus) :

1. Let t be a normal A-term such that -¢: A — A. The last rule to be applied in the
derivation of +¢: A — A cannot be (Ax) as the context is empty. Let us assume it
is (—g) and hence ¢ is an application. Because t is normal, there exists a variable
x € V and normal terms ti,...t, such that ¢ = (... ((x)t1)...)t,. But we saw in
class that if T + ¢, fvar(t) ¢ fvar(T"). But here I' = @ and hence ¢ cannot contain a
free variable. So the last rule cannot be (—g) and it has to be (—7).

It follows that t = Vo u and that : A+ u: A holds. Because A is not of the form
B — C, the last applied rule to prove z : A+ u: A cannot be (—7). Be cause u
is normal and does not begin with a ), it is of the form u = (... ((y)t1)...)t, for
some y € V and t; € A. So the n previous rules applied have to be (—g) and there
are types Ai,... A, such that z: A+y: A1 > (... > (4, > A)...) holds. But the
only applicable rule would be (Ax) which only applies if y =2, n=0 and v = z. So
t=)xrzx.

2. Let t be a normal A-term such that +¢: A - A. By similar considerations as above,
t=Mruand z: A+ u:A— Aholds. Let us assume that u = (... ((y)t1)...)t, for
some y € V and t; € A. As above, there are types A1,... A, such that x: A+ y:
A1 - (...> (4, > (A —> A))...) holds. But that typing statement cannot hold
because A+ A; > (... > (A, - (A— A))...) for any choice of n and A;.

It follows that the last rule applied is (=), that u = Ayv and that {x: A,y: A} +
v : A holds. The last applied rule cannot be (—;) because A is not of the form
B—-C. Sov={(...((2)t1)...)t, for some z € V and t; € A. As above, there must
exist types A; such that {x: Ajy: A} r2z: A1 > (... > (A, > (A - A))...) holds.
The only applicable rule is (Ax) and hence z = z or y and n = 0. We have proved
that t = Axdyx or t = Az Ay y.

Problem 3 (Boolean algebras) :

1. Let us first prove that a) implies b). Let X ¢ A whose lower upper bound is 1.
Then because f is complete, the lower upper bound of f(X) is f(1) = 1.

Let us now prove that b) implies a). Let X € A whose upper bound in A is a. Let
Y = Xu{a®}. Any upper bound ¢ of Y is an upper bound of X so a < ¢. Moroever,
because a® € Y, a® < ¢ and hence ¢ = 1. By hypothesis a), the lower upper bound

of F(Y) = f(X)n{f(a)} is 1.



For all all z € X, x < a and hence f(x) < f(a). It follows that f(a) is an upper
bound of X. Moreover, let ¢ € B be any upper bound of f(X), then cu f(a)€ is an
upper bound of f(Y') and hence cu f(a)® = 1. Applying De Morgan’s law, we get
that ¢°n f(a) = 0 and hence (1+¢)-f(a) = f(a)+c-f(a) =0, ie. c-f(a) = f(a) and
f(a) <e. So f(a) is an upper bound that is smaller that any other upper bound.
It is the lower upper bound of f(X).

2. Let us first prove that a) implies b). Let I be a complete ideal and f: A - A/I be
the canonical projection. Then f71(0) = I and let us show that f is complete. Let
X ¢ A whose lower upper is 1 and let f(¢) be an upper bound of f(X). For all
xeX, f(x) < f(c) and thus f(znc®) = f(x)n f(c)€=0,ie xnc®el. Moreover,
Let b be some upper bound of {x nc®:z e X} (we want to show that oc <b). For
all z € X, we have buc2 (znc®)u(znc)=xzn(z®uc) =x. So buc is an upper
bound of X and hence buc=1. It follows immediately that b > ¢®. Moreover € is
clearly an upper bound of {x n¢®:x € X}, so it is the lower upper bound.

But we proved earlier that {x nc®:x e X} c T and hence, as I is complete, c® € I,
ie. f(c)=0and f(c)=1.

Let us now prove that b) implies a). Let f be as in b) and let X < I whose lower
upper bound is a € A. By completeness of f, f(a) is the lower upper bound of
f(X)={0} and f(a)=0,ie. acl.

3. Let us first prove it is closed under addition. Let a, b € N; [;. We have a+b € I; for
all j and hence a+beN;I;. Let now a € A and be(N; I;. For all j, we have a-be I;
and hence a-b € N;I;. Moreover 1 ¢ I; for all j so 1¢N;1; and 0 € I; for all j so
0€N;I;. Finally, let X €N, I}, then the lower upper bound of X is in each of the
I; and hence in N; I;.

4. Let J = {I ¢ A: I is a complete ideal and X ¢ I'} be non empty and Iy = Nyes L.
By the previous question Iy is a complete ideal. It clearly contains X and it is
contained in any complete ideal that contains X, so it is the smallest element of J.

5. First of all N is an ideal. If @ and ¢ € N then for all b€ I, (a+b)-c = a-c+b-c = 0+0 = 0.
Ifae Aand ce N, thena-c-b=a-0=0. Moreover 0-b=0forallbel so0eN
and if 1 € N, then for all be I, b=bn1 =0, contradicting the fact that I # 0.

Let us now prove that N is complete. Let X € N whose lower upper bound in A
is a. Let b eI, we have to show that anb=0. For all x € X, x nb =0 and hence
x < b°. It follows that b€ is an upper bound of X and hence a <b,i.e. anb=0.

Let be NnlI. We have b = bnb = 0. There remains to show that there is no
(proper!) complete ideal containing I U N. Let us first show that le lower uppper
bound of TU N is 1. Let a € A be an upper bound of TU N, then for allbel, b<a
and hence bna®=0so a® € N and hence a®<a,ie. 1+a=(1+a)a=a+a=0 and
a=1.

If there existed a complete ideal J containing I u N, it would contain 1, a contra-
diction.

'Remeber that we assumed all ideal s to be proper.



