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So far, the only way we were able to assert that some formula is a tautology or that some
formula is a consequence of other formulas was purely semantical and was done using as-
signements. But when we do mathematics, we prove statements by formally deducing them
from others using the rules of deduction. So if we want to give a complete account of (propo-
sitional) logic, we might want to also formalize this formal deduction process.
For example, if we know thatφ andφ→ ψ are consequences ofΓ thenwewant to say thatψ is
also a consequence of Γ. Similarly, if we show thatψ is a consequence of Γ∪φ, then we know
that φ → ψ is a consequence of Γ too. Note that if, in the previous sentences, consequence
is meant is the semantic sense, then we can prove these two statements are indeed correct.
But that is not what we are looking for. What we want is to define an alternative notion of
consequence that relies solely on these deduction rules. Therefore we wish to define the set
of pairs (Γ, φ) where Γ ⊆ F and φ ∈ F such that “φ is a formal consequence of Γ”.

Definition 9.1:
Let T ⊆P(F ) × F be the smallest set such that for all Γ, Γ1, Γ2, Γ3 ⊆ F and φ, φ1, φ2, ψ ∈ F :
(i) if φ ∈ Γ, (Γ, φ) ∈ T ;

(ii) if (Γ ∪ φ,ψ) ∈ T then (Γ, φ→ ψ) ∈ T ;

(iii) if (Γ1, φ→ ψ) and (Γ2, φ) ∈ T then (Γ1 ∪ Γ2, ψ) ∈ T ;

(iv) if (Γ1, φ1) and (Γ2, φ2) ∈ T then (Γ1 ∪ Γ2, φ1 ∧ φ2) ∈ T ;

(v) if (Γ, φ1 ∧ φ2) ∈ T then (Γ, φ1) and (Γ, φ2) ∈ T ;

(vi) if (Γ, φ) ∈ T then (Γ, φ ∧ ψ) and (Γ, ψ ∧ φ) ∈ T (for any choice of ψ);

(vii) if (Γ1 ∪ {φ1}, ψ), (Γ2 ∪ {φ2}, ψ) and (Γ3, φ1 ∨ φ2) ∈ T then (Γ1 ∪ Γ2 ∪ Γ3, ψ) ∈ T ;

(viii) if (Γ1 ∪ {φ} ⊢ ψ) and (Γ2 ∪ {ψ} ⊢ φ) ∈ T then (Γ1 ∪ Γ2, φ↔ ψ) ∈ T ;

(ix) if (Γ, φ↔ ψ) ∈ T then (Γ ∪ φ,ψ) and (Γ ∪ ψ,φ) ∈ T ;

(x) if (Γ1, φ) and (Γ2,¬φ) ∈ T then (Γ1 ∪ Γ2, ψ) ∈ T (for any choice of ψ);

(xi) (Γ, φ ∨ (¬φ)) ∈ T (for any choice of φ).
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If (Γ, φ) ∈ T , we write Γ ⊢ φ and we say that φ is a syntactic consequence of Γ.

Let us now rewrite the previous rules for formal deduction in a more legible way. The con-
vention is that the bottom deduction (the conclusion) is a consequence of the deductions
above the lines (the premises), and the symbol in parenthesis next to each deduction rule is
its name. For example (→E) stands for “elimination of→” and (∨IR) stand for “introduction
of ∨ on the right”.

(Ax)
Γ ∪ {φ} ⊢ φ

Γ ∪ {φ} ⊢ ψ
(→I) Γ ⊢ φ→ ψ

Γ1 ⊢ φ→ ψ Γ2 ⊢ φ(→E) Γ1 ∪ Γ2 ⊢ ψ

Γ1 ⊢ φ1 Γ2 ⊢ φ2(∧I) Γ1 ∪ Γ2 ⊢ φ1 ∧ φ2

Γ ⊢ φ1 ∧ φ2(∧EL) Γ ⊢ φ1

Γ ⊢ φ1 ∧ φ2(∧ER) Γ ⊢ φ2

Γ ⊢ φ(∨IL) Γ ⊢ φ ∨ ψ
Γ ⊢ φ(∨IR) Γ ⊢ ψ ∨ φ

Γ1 ∪ {φ1} ⊢ ψ Γ2 ∪ {φ2} ⊢ ψ Γ3 ⊢ φ1 ∨ φ2(∨E) Γ1 ∪ Γ2 ∪ Γ3 ⊢ ψ

Γ1 ∪ {φ} ⊢ ψ Γ2 ∪ {ψ} ⊢ φ(↔I) Γ1 ∪ Γ2 ⊢ φ1 ↔ φ2

Γ ⊢ φ↔ ψ(↔EL) Γ ⊢ φ→ ψ

Γ ⊢ φ↔ ψ(↔ER) Γ ⊢ ψ → φ

Γ1 ⊢ φ Γ2 ⊢ ¬φ(¬E) Γ1 ∪ Γ2 ⊢ ψ
(ExMid)

Γ ⊢ φ ∨ ¬φ

We will allow ourselves some abusive notations. We will write ⊢ φ instead of ∅ ⊢ φ and
φ ⊢ ψ instead of {φ} ⊢ ψ.
We often call a witness that some deduction Γ ⊢ φ holds a derivation of this deduction. Let
me now give some examples of valid derivations:

(Ax)
φ ∧ ψ ⊢ φ ∧ ψ(∧ER) φ ∧ ψ ⊢ ψ

(Ax)
φ ∧ ψ ⊢ φ ∧ ψ(∧EL) φ ∧ ψ ⊢ φ(∧I) φ ∧ ψ ⊢ ψ ∧ φ

This commutativity of ∧

(Ax) φ ⊢ φ(∨IR) φ ⊢ ψ ∨ φ

(Ax)
ψ ⊢ ψ(∨IL) ψ ⊢ ψ ∨ φ (Ax)

φ ∨ ψ ⊢ φ ∨ ψ(∨E) φ ∨ ψ ⊢ ψ ∨ φ

This commutativity of ∨.
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⋮
Γ1 ∪ {¬φ} ⊢ ψ

⋮
Γ1 ∪ {¬φ} ⊢ ¬ψ(¬E)

Γ1 ∪ Γ2 ∪ {¬φ} ⊢ φ (Ax) φ ⊢ φ (ExMid) ⊢ φ ∨ ¬φ
(∨E) Γ1 ∪ Γ2 ⊢ φ

The previous derivation shows that proof by contradiction is valid in our formal setting.

Note that because of the way the relation Γ ⊢ φ was defined, we can prove results by in-
duction on how we obtained Γ ⊢ φ. What that means is that to prove some statement on
deductions it suffices to prove that for each rule, if the proposition holds for the premises
then it holds for the conclusion.
Note also that now we have two notions of truth, a syntactic one and a semantic one: Γ ⊢ φ
and Γ ⊧ φ. We wish to prove that they coincide. Let us first prove the easy direction.

Proposition 9.2 (Soundness):
Let Γ ⊆ F and φ ∈ F , then if Γ ⊢ φ then Γ ⊧ φ.

Themeaning of this proposition is that our deduction rules are not completely crazy and that
they respect the semantic, i.e. the way the logical connectives are supposed to work.

Proof . We proceed by induction on the deduction Γ ⊢ φ. Let δ ∈ {0,1}P be an assignement.

(i) If φ ∈ Γ and δ satisfies Γ, then φδ = 1 and hence Γ ⊧ φ.

(ii) Assume that δ satisfies Γ. If φδ = 1, then δ satifies Γ ∪ {φ}. By induction, we have
Γ ∪ {φ} ⊧ ψ and hence ψδ = 1. It follows that (φ → ψ)δ = 1. If φδ = 0 then whatever
the value of ψδ , (φ→ ψ)δ = 1.

(iii) Assume that δ satisfies Γ1 ∪ Γ2, then, in particular δ satifies Γ1 and δ satifies Γ2. By
induction, we get that (φ→ ψ)δ = 1 and φδ = 1. Then by the semantic of→, ψδ = 1.

(iv) Assume that δ satisfies Γ1 ∪ Γ2, then, by induction, (φ1)δ = 1 and (φ2)δ = 1 so (φ1 ∧
φ2)δ = 1.

(v) Assume that δ satisfies Γ, then, by induction, (φ1 ∧ φ2)δ = 1. It follows that (φ1)δ = 1
and (φ2)δ = 1.

(vi) Assume that δ satisfies Γ, then, by induction, φδ = 1, it follows that, by the semantic of
∨, that whatever the valued of φδ , (φ ∨ ψ)δ = (ψ ∨ φ)δ = 1.

(vii) Assume that δ satisfies Γ1 ∪ Γ2 ∪ Γ3, then, by induction, (φ1 → ψ)δ = 1, (φ2 → ψ)δ = 1
and (φ1∨φ2)δ = 1. If (φ1)δ = 1, thenψδ = 1. If (φ1)δ = 0, then wemust have (φ2)δ = 1
and so ψδ = 1. Hence, in both cases, ψδ = 1.

(viii) Assume that δ satisfies Γ1 ∪ Γ2 and φδ = 1. Then, by induction, ψδ = 1. On the other
hand, if φδ = 0, then for Γ∪ {ψ} ⊧ φ to hold, we must have ψδ = 0 too. Hence φδ = ψδ .

(ix) Assume that δ satisfies Γ, then, by induction φδ = ψδ . One can then check that in that
case (φ→ ψ)δ = (ψ → φ)δ = 1.
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(x) Let us show that Γ is not satisfiable. We proceed by contradiction. Assume that δ
satisfies Γ, then by induction, φδ = (¬φ)δ = 1 which is absurd. It follows that because
Γ is not satifiable, then Γ ⊧ φ for any formula φ.

(xi) We know thatX ∨¬X is a tautology, so by substitution, so is φ∨¬φ for all formula φ.
In particular Γ ⊧ φ ∨ ¬φ.

That concludes the proof. ∎

Before we prove the converse, we need some lemmas.

Lemma9.3:
If Γ ⊢ φ the there exists a finite Γ0 ⊆ Γ such that Γ0 ⊢ φ.

Proof . This proved by induction on the deduction Γ ⊢ φ. We are not going to prove the
eleven cases but the main idea is that the union of finite sets being finite, if the premises are
proved using only finitely many formulas from Γ, then so is the conclusion, by implying an
instance of the deduction rule where the hypotheses of the deductions have been replaced
by their finite subsets.
The only two exceptions to this global pattern are the axiom rule and the excluded middle
rule but they can easily be replaced byφ ⊢ φ and ⊢ φ∨¬φwhere the hypothesis, being either
empty or a singleton, are indeed finite. ∎

Lemma9.4:
Let Γ ⊆ Γ′ ⊆ F and φ ∈ F . If Γ ⊢ φ, then Γ′ ⊢ φ.

Proof . Let us assume that Γ′ is not empty (otherwise, Γ = Γ′ = ∅ and the lemma is quite easy
to prove). Let ψ ∈ Γ′. Then we have the following derivation:

⋮
Γ ⊢ φ

(Ax)
Γ′ ⊢ ψ(∧I)

Γ′ ⊢ φ ∧ ψ(∧EL)
Γ′ ⊢ φ

Hence Γ′ ⊢ φ also holds. ∎

Definition 9.5 (Consistence):
Let Γ ⊆ F . We say that Γ is inconsistent if there is a formula φ such that Γ ⊢ φ and Γ ⊢ ¬φ.

Lemma9.6:
Let Γ ⊆ F . If the set Γ is inconsistent, then it is not satisfiable.

Proof . This is an easy consequence of soundness. Letφ be such thatΓ ⊢ φ andΓ ⊢ ¬φ. Then
Γ ⊧ φ and Γ ⊧ ¬φ. If Γwas satisfiable, then let δ ∈ {0,1}P satisfy Γ. But then φδ = 1 = (¬φ)δ
which is absurd. ∎

Remark that if Γ is inconsistent, applying rule (¬E), we obtain that Γ ⊢ ψ for all formulas ψ.
And that is in fact an equivalence: Γ is inconsistent if and only if Γ ⊢ φ for all formulas φ.
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Lemma9.7:
Let Γ ⊆ F and φ ∈ F . If Γ ∪ {¬φ} is inconsistent, then Γ ⊢ φ.

Proof . Because Γ ∪ {¬φ}, Γ ∪ {¬φ} ⊢ φ and we have the following derivation:

⋮
Γ ∪ {¬φ} ⊢ φ

(Ax)
Γ ∪ {φ} ⊢ φ (ExMid)

Γ ⊢ φ ∨ ¬φ
(∨E) Γ ⊢ φ

So Γ ⊢ φ holds. ∎

Lemma9.8:
Let Γ ⊆ F and φ ∈ F . If Γ is consistent then Γ ∪ {φ} or Γ ∪ {¬φ} is consistent.

Proof . Let us assume that both Γ∪{φ} and Γ∪{¬φ} are inconsistent. Then by Lemma (9.7),
Γ ⊢ φ. Moreover, we have the following derivation:

⋮
Γ ∪ {φ} ⊢ ¬φ

(→I) Γ ⊢ φ→ ¬φ
⋮

Γ ⊢ φ(→E) Γ ⊢ ¬φ

So both Γ ⊢ φ and Γ ⊢ ¬φ hold, i.e. Γ is inconsistent. ∎

Definition 9.9 (Syntactic completeness):
Let Γ ⊆ F . We say that Γ is syntactically complete if for all φ ∈ F , φ ∈ Γ or ¬φ ∈ Γ.

Lemma9.10:
Let∆ ⊆ F be consistent and syntactically complete. If∆ ⊢ φ then φ ∈∆.

Proof . If φ ∉∆, because∆ is syntactically complete, we have ¬φ ∈∆ and hence using (Ax),
∆ ⊢ ¬φ. But that contradicts the consistence of∆. Hence φ ∈∆. ∎

Lemma9.11:
Let∆ ⊆ F be consistent and syntactically complete. Then:

(i) ¬φ ∈∆ if and only if φ ∉∆;

(ii) φ ∧ ψ ∈∆ if and only if φ ∈∆ and ψ ∈∆;

(iii) φ ∨ ψ ∈∆ if and only if φ ∈∆ or ψ ∈∆;

(iv) φ→ ψ ∈∆ if and only if φ ∉∆ or ψ ∈∆;

(v) φ↔ ψ ∈∆ if and only if φ ∈∆ is equivalent to ψ ∈∆;

Proof .

(i) • Assume that ¬φ ∈∆, ifφ ∈∆ too then, by the (Ax) rule∆ ⊢ φ and∆ ⊢ ¬φwhich
contradicts its consistency.
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• Assume that φ ∉∆, then because∆ is syntactically complete, we must have ¬φ ∈
∆.

(ii) • Assume that φ ∧ ψ ∈ ∆, then because of the (∧ER) and (∧EL) rules ∆ ⊢ φ and
∆ ⊢ ψ. Now apply Lemma (9.10).

• Assume thatφ andψ ∈∆, thenbecause of the (∧I) rule,∆ ⊢ φψ. ByLemma (9.10),
we have φ ∧ ψ ∈∆.

(iii) • Assume thatφ∨ψ ∈∆ andφ ∉∆. By syntactic completeness ¬φ ∈∆ and we have
the following derivation:

Ax
∆ ⊢ ¬φ Ax φ ⊢ φ(¬E)

∆ ∪ {φ} ⊢ ψ Ax
ψ ⊢ ψ Ax

∆ ⊢ φ ∨ ψ
(∨E) ∆ ⊢ ψ

So∆ ⊢ ψ and hence ψ ∈∆.

• If φ∆, by the (∨IL) rule ∆ ⊢ φ ∨ ψ and if ψ∆, by the (∨IR) rule ∆ ⊢ ψ ∨ φ. In
both cases we do get ψ ∨ φ ∈∆.

(iv) • Assume that φ → φ ∈ ∆ and φ ∈ ∆, then by the (→E) rule, ∆ ⊢ ψ and hence
ψ ∈∆.

• Ifφ ∉∆, then by syntactic completeness¬φ ∈∆ andwehave the following deriva-
tion:

Ax φ ⊢ φ Ax
∆ ⊢ ¬φ(¬E)

∆ ∪ {φ} ⊢ ψ→I
∆ ⊢ φ→ ψ

On the other hand, if ψ ∈ ∆, then ∆ ∪ {φ} ⊢ ψ and hence by the (→I) rule
∆ ⊢ φ→ ψ. In both cases, we do have φ→ ψ ∈∆.

(v) • Assume thatφ↔ ψ∆, then by the (↔EL) and (↔ER) rules, we get that∆ ⊢ φ→
ψ and∆ ⊢ ψ → φ. Let us now assume that φ ∈ ∆, then by the (→E) rule we get
that∆ ⊢ ψ. Similarly, if ψ ∈∆, then φ ∈∆.

• Assume that both φ and ψ ∈∆, then∆ ∪ {φ} ⊢ ψ and∆ ∪ {φ} ⊢ ψ and hence by
the (↔I) rule,∆ ⊢ φ↔ ψ.

On the other hand, if both¬φ and¬ψ ∈∆, thenwe have the following derivation:

Ax φ ⊢ φ Ax
∆ ⊢ ¬φ(¬E)

∆ ∪ {φ} ⊢ ψ

Ax
ψ ⊢ ψ Ax

∆ ⊢ ¬ψ(¬E)
∆ ∪ {ψ} ⊢ φ

(↔I) ∆ ⊢ φ↔ ψ

This concludes the proof. ∎

Corollary 9.12:
Let∆ ⊆ F be consistent and syntactically complete, then∆ is satisfiable.
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Proof . Let us define the assigmenent δ as follows: δ(X) = 1 ifX ∈∆ and δ(X) = 0 otherwise.
We now prove by induction on φ that φ ∈∆ is equivalent to φδ = 1.

• If φ =X , the by definition of δ,Xδ = δ(X) = 1 if and only ifX ∈∆.

• If φ = ¬ψ, then ¬ψ ∈ ∆ if and only if ψ ∉ ∆ if and only if, by induction, ψδ = 0 if and
only if (¬ψ)δ = 1.

• If φ = φ1 ∧φ2 then φ1 ∧φ2 ∈∆ if and only if φ1 and φ2 ∈∆ if and only if, by induction,
(φ1)δ = (φ2)δ = 1 if and only if (φ1 ∧ φ2)δ = 1.

• If φ = φ1 ∨ φ2 then φ1 ∨ φ2 ∈ ∆ if and only if φ1 or φ2 ∈ ∆ if and only if, by induction,
(φ1)δ = 1 or (φ2)δ = 1 if and only if (φ1 ∨ φ2)δ = 1.

• If φ = φ1 → φ2 then φ1 → φ2 ∈ ∆ if and only if φ1 ∉ ∆ or φ2 ∈ ∆ if and only if, by
induction, (φ1)δ = 0 or (φ2)δ = 1 if and only if (φ1 → φ2)δ = 1.

• If φ = φ1 ↔ φ2 then φ1 ↔ φ2 ∈∆ if and only if φ1 ∈∆ equivalent to φ2 ∈∆ if and only
if, by induction, (φ1)δ = (φ2)δ if and only if (φ1 ↔ φ2)δ = 1.

∎

Theorem9.13:
If Γ ⊆ F is consistent then Γ is statisfiable.

We will only prove this theorem when P is countable. If it is more than countable then a
slightly more complicated argument involving Zorn’s lemma works.

Proof . First, if we assumeP to be countable, then by induction on n, Fn is countable for all n
and hence so isF . So let us writeF = {φi ∶ i ∈N}. We define by induction on i the set Γi ⊆ F
as follows. Let Γ0 ∶= Γ. If Γi ∪ {φ} is consistent, let Γi+1 ∶= φi and Γi+1 ∶= ¬φi otherwise.
By Lemma (9.8) and induction, Γi is consistent. Let us show that ∆ ∶= ⋃i Γi is consistent.
Assume it is not, then there exists a formula φ ∈ F such that∆ ⊢ φ and∆ ⊢ ¬φ. But then,
by Lemma (9.3), there exists a finite ∆0 ⊆ ∆ such that ∆0 ⊢ φ and ∆0 ⊢ ¬φ. But ∆ = ⋃i Γi

and the Γi are increasing, so there exists some i0 such that∆0 ⊆ Γi0 and hence Γi0 ⊢ φ and
Γi0 ⊢ ¬φ, but that contradicts the consistency of Γi0 .
So ∆ is consistent and, by contruction, syntactically complete. So, by Corollary (9.12) ∆ is
satisfiable. As Γ ⊆∆, Γ is also satisifable. ∎

Corollary 9.14 (Completeness):
Let Γ ⊆ F and φ ∈ F then Γ ⊧ φ if and only if Γ ⊢ φ.

So our two notions of truth do coincide.

Proof . In Proposition (9.2), we proved that Γ ⊢ φ implies Γ ⊧ φ. Let us now assume that
Γ ⊧ φ. Then Γ ∪ {¬φ} is not satisfiable and by Theorem (9.13), Γ ∪ {¬φ} is inconsistent. We
conclude by Lemma (9.7). ∎

7



Remark 9.15:
Note that we just reproved the compactness theorem. Let Γ ⊆ F and φ ∈ F , then if Γ ⊧ φ
then Γ ⊢ φ and by Lemma (9.3), for some finite Γ0 ⊆ Γ, Γ0 ⊢ φ and hence Γ0 ⊧ φ.
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