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Midterm
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To do a later question in a problem, you can always assume a previous question even if
you have not answered it.

Problem 1 :
Let T be a theory with infinite models in a language L with one sort. Assume that:

• T eliminates quantifiers;

• For all A ⊆M ⊧ T , acl(A) = A.

• For all L-formula ϕ(x, y), there exists k ∈ Z⩾0 such that for all M ⊧ T and a ∈My,
if ∣ϕ(M,a)∣ ⩾ k, then ϕ(M,a) is infinite. We say that T eliminates ∃∞.

LetM ⊧ T and let < be a total order onM . We say that < is generic if for allM -definable
infinite X ⊆M and a < b ∈M ∪{+∞,−∞}, X∩(a, b) ≠ ∅, where (a, b) is the open interval
between a and b.

1. Show that if T is strongly minimal and only has infinite models, then it eliminates
∃∞.

Solution:Assume T does not eliminate ∃∞. So for some formula ϕ(x, y), for all
i ∈ Z⩾0, there exists Mi ⊧ T and ai ∈My

i such that i ⩽ ∣ϕ(Mi, ai)∣ < ∞. Let us first
assume that ∣x∣ = 11. Note that since Mi is infinite, ¬ϕ(Mi, ai) is infinite.

Let U be a non-principal ultrafilter on Z⩾0, M ∶= ∏i→UMi ⊧ T and a ∶= [(ai)i]U ∈
My. Then for all i ∈ Z⩾0, since Mj ⊧ ∃⩾ix ϕ(x, aj) ∧ ∃⩾ix ¬ϕ(x, aj) for all j ⩾ i, we
have ∣ϕ(M,a)∣ ⩾ i and ∣¬ϕ(M,a)∣ ⩾ i, for all i, i.e. ϕ(M,a) is infinite and coinfinite,
contradicting strong minimality of T .

We now proceed by induction on ∣x∣. We just proved that we cannot have ∣x∣ = 1.
If x = (s, t) where ∣t∣ = 1, then, by induction, there exists k such that for all M ⊧ T ,
a ∈ My and b ∈ M t, if ∣ϕ(M,b, a)∣ ⩾ k, then it is infinite and if ∣∃sϕ(s,M,a)∣ ⩾ k,
it is infinite. If ϕ(M,a) is finite, the projection to M t is finite so size at most k.
Moreover, for all b in the projection, ϕ(M,b, a) is finite of size at most k so ϕ(M,a)
is size at most k2. But that contradicts our initial hypothesis regarding ϕ.

2. Let M ⊧ T be infinite and < be a total order on M . Show that there exists N ≽M
with a generic order extending <.

Solution: First, let us show that we can build N ≽M and an order on N extending
that of M , such that any infinite M -definable subset of some Nx has a non empty
intersection with any interval whose bounds are in M ∪ {−∞,+∞}. Let N ≽M be
(∣M ∣ + ∣L∣)+-saturated. It follows that any infinite N -definable set has cardinality
at least κ+ ∶= (∣M ∣ + ∣L∣)+. Let {(ai, bi,Xi) ∶ i ∈ κ} be an enumeration of all triples
a < b ∈ M ∪ {−∞,+∞}and infinite M -definable set X ⊆ N . We construct a total
order <i extending < and all <j for j < i, on some Ai ⊆ N with ∣Ai∣ < κ, by induction

1I was sneaky, but no one noticed... The definition I gave for elimination of ∃∞ is, a priori, more general
than the definition usually considered since I allowed arbitrary finite tuples for x. But, as we will
see, both definitions are equivalent
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on i. Assume that <j is built for all j < i. Since Xi is large enough, we can find
someci ∈ Xi ∖ ⋃j<iAj . Then <i is the order on {ci} ∪ ⋃j<iAj extending all the <j
and such that ci is just above ai. Let <κ= ⋃i<κ <i. We extend <κ to a total order
on N by choosing an order on N ∖ (⋃i<κAi) and setting all these elements above
the elements of ⋃i<κAi).
We now build an elementary chain (Ni)i∈ω, by induction on i, with N0 = M and
Ni+1 built from Ni as above. Then N = ⋃iNi ≽M and for any a < b ∈ N∪{−∞,+∞}
and infinite N -definable X ⊆ N , there exists an i such that a < b ∈ Ni ∪ {−∞,+∞}
andX is Ni-definable. But then, since Ni+1 ≽ N , X∩Ni+1 is an infinite Ni-definable
set and (a, b) ∩X ∩Ni+1 ≠ ∅ by construction. So N has the required properties.

3. Let L< be L with a new binary symbol <. Show that there exists an L<-theory T<
such that models of T< are exactly the models of T where < is generic (with respect
to the L-structure of M).

Solution: For every L-formula ϕ(x, y), where ∣x∣ = 1, let kϕ be the bound given
by elimination of ∃∞ and Ψϕ be the sentence ∀y(∃⩾kϕx ϕ(x, y) → (∀a∀b a < b →
(∃x a < x∧x < b∧ϕ(x, y))∧(∀a (∃x x < a∧ϕ(x, y))∧(∃x x > a∧ϕ(x, y)))). Then
T< = T ∪ {Ψϕ ∶ ϕ(x, y) L-formula} has the required properties. Indeed, M ⊧ T<
then M ⊧ T and for every infinite X = ϕ(M,a), where a ∈My, then ∣X ∣ ⩾ kϕ and
hence, by Ψϕ, X is dense in (M,<). Conversely, if M ⊧ T has a generic order <,
then for any formula ϕ(x, y) and a ∈My, if ∣ϕ(M,a)∣ ⩾ kϕ, then ϕ(M,a) is infinite
and hence, by genericity, intersects every open interval.

4. Show that T< eliminates quantifiers.

Solution: LetM,N ⊧ T<, A ⊆M , f ∶ A→ N be a partial embedding and assume N
is ∣A∣+-saturated. Pick any c ∈M . If c ∈ acl(A) = A, then f is already defined at a.
Otherwise, for any L-formula ϕ(x, a), where a ∈ Ay, ifM ⊧ ϕ(c, a), then ϕ(M,a) is
infinite. By quantifier elimination in T , it follows that ϕ(N,f(a)) is also infinite.
So it intersects any open interval. Then π(x) = {ϕ(x, f(a)) ∶ M ⊧ ϕ(c, a), a ∈
Ay and ϕ is an L-formula}∪{x > f(a) ∶ a ∈ A and c < a}∪{x > f(a) ∶ a ∈ A and c >
a} is finitely satisfiable. Here, we are using the fact that the intersection of L(A)-
definable sets containing c is still a L(A)-definable set containing c, that f respects
the order and that the non-empty intersection of open intervals is an open interval.
Let d realize π in N , then f can be extended by sending c to d.

5. Show that T< is complete.

Solution: Since the interpretation of any constant is in acl(∅) = ∅, it follows that
L does not have any constant. So T< is a theory that eliminates quantifiers in a
language without constants, so it is complete.

6. Let M ⊧ T< and A ⊆ M . Show that acl(A) = A (here, the algebraic closure is
understood in M as an L<-structure).

Solution:Pick any b ∈ M ∖ A, then c is not algebraic over A in M as an L-
structure, so any L-formula ϕ(x, a), with a ∈ Ay and M ⊧ ϕ(c, a), is such that
ϕ(M,a) is infinite. Assume M is ∣A∣+-saturated, let B ⊆ M be any countable set
and let π(x) = {ϕ(x, a) ∶ M ⊧ ϕ(c, a), a ∈ Ay and ϕ is an L-formula} ∪ {x > a ∶
a ∈ A and c < a} ∪ {x > a ∶ a ∈ A and c > a} ∪ {x ≠ b ∶ b ∈ B}. As in the previous
question, π is finitely satisfiable so it is satisfied in M . It follows from quantifier
elimination in T<, that any realisation of π has the same type as c over A and hence
tp(c/A) has infinitely many realizations in M , so a ∉ acl(A).
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7. Assume L is countable. Show that T< is ω-categorical if and only if T is ω-
categorical.

Solution: Let us first assume that T is ω-categorical and let M ⊧ T< be countable.
Pick any finite A ⊆ M and p ∈ SMx (A) where ∣x∣ = 1. Let a ∈ A be the maximal
element of {c ∈ A ∶ ”c < x” ∈ p} — if this set is empty, let a = −∞ —, b ∈ A be
the minimal element of {c ∈ A ∶ ”x < c” ∈ p} — if this set is empty, let b = +∞ —
and let ϕ(x) be an L(A)-formula isolating p∣L — this formula exists because T is
ω-categorical and hence so is Del(A), by counting types. If ϕ(M) is finite, then
any realization of p is in acl(A) = A and hence p contains a formula of the form
x = c; it is then obviously realized by c in M . If ϕ(M) is infinite, then, by density,
we can find c ∈ ϕ(M) ∩ (a, b). Then, c ⊧ p∣L and for all d ∈ A, d < c if and only
if ”d < x” ∈ p. By quantifier elimination, it follows that c ⊧ p. So every countable
model of T< is saturated and T< is ω-categorical.

If T < is ω-categorical, letM ⊧ T< be countable and x be a finite tuples of variables.
Then M realizes only finitely many L<-types in variables x, so M ∣L ⊧ T realizes
only finitely many L-types in variables x. It follows that T is ω-categorical.

Problem 2 :
Let T be a theory, κ > ∣L∣, M ⊧ T be κ-saturated, and X ⊆Mx be ∅-definable. Consider
the following statements.

(i) Any M -definable set Y ⊆Xn is X-definable.

(ii) For all a ∈M z, there exists C ⊆X such that ∣C ∣ < κ and for all b ∈M z, tpM(a/C) =
tpM(b/C) implies tpM(a/X) = tpM(b/X).

(iii) For all a, b ∈M z, tpM
eq(a/C) = tpM

eq(b/C) implies tpM(a/X) = tpM(b/X), where
C = dcleq(a) ∩ dcleq(X).

1. Show that (i) implies (iii).

Solution: Let a ∈M z and ϕ(t, z) be some formula, where t is a tuple of n variables
sorted like x. The a-definable set Y = ϕ(M,a) ∩ Xn is also X-definable by (i).
So ⌜Y ⌝ ⊆ dcleq(a) ∩ dcleq(X) = C and hence Y is C-definable (in M eq). It follows
that the formula ∀t (t ∈ Y ↔ ϕ(z, t) ∧ t ∈ Xn) is a formula in tpM

eq(a/C), so if
tpM

eq(b/C) = tpM
eq(a/C), ϕ(b,M) ∩Xn = Y and for all m ∈ Xn , M ⊧ ϕ(a,m)

if and only if M ⊧ ϕ(b,m). Since this holds for every formula ϕ, tpM(a/X) =
tpM(b/X).

2. Assume that (i) does not hold. Show that there exists a ∈Mx and a formula ϕ(t, y)
such that, for any C ⊆ X with ∣C ∣ < κ, there exists b1, b2 ∈ Xn with tp(b1/C) =
tp(b2/C), M ⊧ ϕ(a, b1) and M ⊧ ¬ϕ(a, b2).

Solution: If (i) does not hold, there exists ϕ(t, z) and a ∈M z, such that ϕ(M,a)∩
Xn is not X-definable. Pick any C ⊆ X with ∣C ∣ < κ and ψ(t) an Leq(C)-formula.
If for all b1, b2 ∈ Xn , M ⊧ (ψ(b1) ↔ ψ(b2)) → (ϕ(b1, a) → ϕ(b2, a)), then, since
ϕ(M,a)∩Xn is neither Xn nor ∅ that are both X-definable, ψ(M) = ϕ(M,a)∩Xn

or ¬ψ(M) = ϕ(M,a) ∩Xn, a contradiction. It follows that there exists b1, b2 ∈ Xn

such that M ⊧ (ψ(b1) ↔ ψ(b2)) ∧ ϕ(b1, a) ∧ ¬ϕ(a, b2). By compactness, there
exists b1, b2 ∈Xn such that M ⊧ ϕ(b1, a)∧¬ϕ(a, b2) and for all L(C)-formula ψ(t),
M ⊧ ψ(b1) ↔ ψ(b2) — i.e. tp(b1/C) = tp(b2/C).
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3. Show that (i), (ii) and (iii) are equivalent.

Solution:We have shown that (i) implies (iii) in question 2.1. If (i) fails, let a
and ϕ(t, z) be as in 2.2. and for any choice of C ⊆ Xn, let b1, b2 be as in 2.2.
By κ-saturation, we find a′ ∈ M z such that tp(ab1/C) = tp(a′b2/C). But then
tp(a1/C) = tp(a2/C) and M ⊧ ¬ϕ(a, b2) ∧ ϕ(a′, b2) — i.e. tp(a/X)¬tp(a′/X). So
(ii) fails.

There remains to prove that (iii) implies (ii). Let us assume (iii) holds. Pick any
a ∈ M z and let C = dcleq(a) ∩ dcleq(X). We can find D ⊆ M with ∣D∣ = ∣C ∣ and
C ⊆ dcleq(D). Indeed, any c ∈ C lives in a sort Sϕ,y for some formula ϕ(x, y)
and, by surjectivity, c = fϕ,y(d) for some d ∈ My. If tp(a/D) = tp(b/D), then
tpM

eq(a/C) = tpM
eq(b/C), and hence, by (ii) tp(a/X) = tp(b/X).

4. Assume (i). Let N ≽ M , a ∈ N z and X(N) ∶= ψ(N) for any formula ψ such
that X = ψ(M). Show that tp(a/X) is realized in M if and only if dcleq(a) ∩
dcleq(X(N)) ⊆M eq.

Solution: First, let us show that X(N) has (i) in N . Fix a formula ϕ(t, z) where
t is a tuple of n variables sorted like x and let Σ(z) = {∀s s ∈ Xm → (∃tt ∈
Xn ∧ ¬(ϕ(t, z) ↔ χ(t, s))) ∶ χ L-formula}. By (i), Σ is not satisfiable in M and
hence, by κ-saturation, it is not finitely satisfiable. So there exists χi for i ⩽ n such
that for all a ∈ M z, ϕ(M,a) ∩ ψ(M)n = χi(M,b) for some b ∈ Xm. This is a first
order statement so it also holds in N and hence (i) holds of X(N) in N .

If tp(a/X) is realized by some b ∈ M z, then for every c ∈ dcleq(b) ∩ dcleq(X),
there exists Leq-definable maps f and g and d ∈ Xn such that f(b) = g(d), but
this formula is in tp(b/X), so it also holds of a and dcleq(a) ∩ dcleq(X(N)) =
dcleq(b) ∩ dcleq(X) ⊆ M eq. Conversely, if C ∶= dcleq(a) ∩ dcleq(X(N)) ⊆ M eq, let
b ∈ M realize tp(a/C). By (iii) we have tp(b/X) = tp(a/X) which is therefore
realized in M .

5. Assume (i) and M is saturated (and ∣M ∣ > ∣L∣). Let a, b ∈ M z be such that
tp(a/X) = tp(b/X). Show that there exists σ ∈ Aut(M/X) = {σ ∈ Aut(M) ∶
σ∣X = id} such that σ(a) = b.

Solution: Let us show that the set I of partial elementary embedding from M to
M whose domain is of the form A ∪X where ∣A∣ < ∣M ∣ and whose restriction to
X is the identity, has the back and forth. It is obviously non-empty as it contains
the identity on X. Now, pick any f ∈ I, with domain A ∪ X and c ∈ M . let
p ∶= tp(c/A∪X) and let q ∶= f⋆p ∈ Sx(f(A) ∪X). Note that dcleq(f(A) ∪X) is the
image, by (the unique extension of) f (to dcleq(A∪X)), of dcleq(A∪X). Hence, for
any d ⊧ q in N ≽M , dcleq(f(A)∪d)∩dcleq(f(A)∪X(N)) ⊆ dcleq(f(A)∪X) ⊆M eq.
Applying the previous question in M as a model of Del(f(A)), we find d ⊧ q in M
and we can extend f . The other direction is symmetric.

Since tp(a/X) = tp(b/X), the map fixing X and sending a to b is an element of I.
Let {mα ∶ α ∈ ∣M ∣} =M . Using back and forth, we build, by induction, a coherent
system of partial elementary embeddings fα and gα extending f , such that mα is in
the domain of fα and in the image of gα. The union of all these partial elementary
embeddings is an isomorphism of M , fixing X pointwise and sending a to b.
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