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Solutions to homework 4

Problem 1 :
Let L, be the language with one sort and n binary predicates (F;)oci<n-

1. Give an Ly,-theory T, such that in models of T}, for all ¢, the E; are equivalence
relations, F;i1 is finer than E; (i.e. every Ej,i-class is included in an Fj-class), Ey
has infinitely many classes, every E; class is covered by infinitely many F;,1-classes
and the classes of F,,_1 are infinite.

Solution: We define:
T, = {VaxzExz:0<i<n}
u{VaVyzEy - yFx:0<i<n}
u{VaVyVz (zE;y AyE;z) > 2E;z: 0<i<n}
u{VaVyzE; 1y » 2Ey:0<i<n-1}
u{Va3yr ... 3y AzEiy; A )\ —yj, Bir1yj, :0<i<n—1and k >0}
J

Ji1#J2
U{3y1 .- 3y A\ -y Eoyy, 1k >0}
Ji1#J2
u{Va3y ... Jyxs AzEn1y; A /\ —Yj =Yj, 2 k> 0}
J J1#j2

2. How many countable models does T}, have, up to isomorphism?

Solution: There is only one countable model of T;, up to isomorphism. Indeed, let
M, N e T, be coutable. Since Ey has infinitely many classes, there must be Xg
many of them. Let us fix a bijection fy between M/Ey and N/Ey. Fix an Ey class
2 in M. Then both x and fy(x) are convered by infinitely many, hence countably
many, Ej-classe. So one can fix a bijection fi, between x/E; and f(x)/E;. Let
f1 = Ugem/E, f1,2- Then fi is a bijection between M/FE; and N/Ey. If 71 is the
projection S/E; — S/Ey where S is the unique sort of £, then 71 go fi = foom .
Similarly, we build by induction maps f; for all i < n where E,, denotes the equality.
The map f, is a bijection between M and N such that for all ¢ < n, m, ;0 f, = fiomn,
S0 fn is an Ly-isomorphism.

3. Let M, N=T,, Ac M finite, f: A — N be a partial embedding and a € M. Show
that f can be extended to a.

Solution: Let E_; denote the trivial equivalence relation and E,, denote the equal-
ity. If A is empty, pick any point in ¢ € N, then sending a to cis a partial embedding.
Otherwise, let a* denote the Ej-class of a and g be maximal such that there exists
be Ana®. Let by € A be such that aF;yby. If ig = n then a = by € A and we do not
have to extend f. Otherwise, pick ¢ € N such that cE;, f(bo) and —cFE; .1 f(b) for
any b e A. We can always find such a c since every Ej, is covered by infinitely many
E;,+1-classes. Note that i is also maximal such that there exists d e f(A)n &,

Define g : Au{a} — N extending f by sending a to c¢. Since Au{a} is a substructure
of M and f is an partial embedding, we only have to check that for all b€ A and all
i <n, al;b if and only if cE; f(b). Assume aF;b for some i and b. By maximality
of ig we have i < ig and therefore bE;aE;by, so f(b)E;f(by)E;c. The converse is
symmetric.



4. Show that any f as in the previous question is a partial elementary embedding

from M into N.

Solution: We show, by induction on ¢(z), that for any g € f with finite domain
and a € dom(g)®, M k= ¢(a) if and only if N & ¢(g(a)). If ¢ is atomic, this is
immediate because g is a partial embedding. The induction goes through easily for
Boolean combinations so the only case we are left to prove is when ¢ = 3y (y, x).

If M =3yyY(y,a), then we can find ¢ € M such that M & ¢(¢,a). By the previous
question we can find h extendending g, such that h has a finite domain and h is de-
fined at c. By induction we have N = ¢ (h(c), h(a), in particular, N & Jy ¢ (y, h(a)).
Note that M and N play symmetric roles, so the converse is also true.

If we apply what we just proved to f itself, we see that f is elementary.

5. Show that f is also elementary even when A is not finite.

Solution: Let p(x) be an L-formula and a € A®. By the previous question f|, is
elementary and thus M & ¢(a) if and only if N = ¢(f(a)).

6. Let M & T,, A c M non empty and p € SM(A) where |z| = 1. To simplify
notations, let E,, be the equality and F_q be the trivial equivalence relation with
just one equivalence class. Show that one (and only one) of the following holds:

e there exists a € A such that p is the unique type containing x = a;

e there exists i € {-1,0,...,n} and a € A such that p is the unique type con-
taining xF;a and, for all c€ A, —xFE; 1c.

Solution: Let iy be maximal such that there is a formula of the form xE; a in p.
If i = n, then p contains z = a for some a € A. If ¢ € SM(A) also contains = = a,
then the only possible realisation of ¢ in any elementary extension of M is a. Since
q is realized in some elementary extension of M, then a must be a realization of q.
Similarly, a realizes p. So ¢ =tp(a/A) = p.

If ig < n, let a € A be such that p contains zE;,a. By maximality of ip, p contains
—~yE;,1cfor all ce A. Let ¢ € SM(A) have the same property. Changing M for an
elementary extension, we may assume that M is |A|"-saturated. Let d (resp. e) be
a realisation of p (resp. ¢) in M. Then the map f: Au{d} - Au{e} is a partial
embedding (cf. Question3). By Questionb, f is a partial elementary embedding
and so p =tp(d/A) =tp(e/A) =q.

7. Show that T,, is x-stable for all k > Rg.

Solution: Let A € M £ T have cardinality x > Rg. In the previous question, we
have described all types over A. There are || of the first kind and at most n|A| of
the second. Tt follows that |[SM(A)| = .

8. Show that T}, has a saturated model of cardinality x for all xk > Rg.

Solution: Let M = k™ and FE; be defined by “the first ¢ + 1 coordinates are equal”.
Then M & Ty,. Let A M be such that |A| < k. Pick any p e SM(A). If p contains
Z = a, then, as seen above, it is realized by a. If not there is a € A and ig < n such
that p contains zEj a and -z E;,.1c for all ¢ € A. The Ej -class of a is covered by
k many Ej,+1-classe and, since |A| < K, not all of them contain a point from A. So
we can find d € G \ (Ugeq ¢°*1). By uniqueness of p, we must have M & p(d).



9.

10.

11.

Let Lo :=U, L, and Tw := U, T5,. Show that T is a satisfiable L..-theory.

Solution: Since each T,, is satisfiable, Tt is finitely consistent and hence, by com-
pactness consistent. One can also construct a model of T, by taking M = x“ for
any cardinal x and define F,, to hold if “the first n + 1 coordinates are equal”.

Let M & T and p € SM(M) where |z| = 1. Let E_; be the trivial equivalence
relation with just one equivalence class. Show that one (and only one) of the
following holds:

e there exists a € M such that p is the unique type containing x = a;

e there exists a € M such that p is the unique type containing —x = a and xE;a
for all i € Zyo;

e there exists i € Zsg and a € M such that p is the unique type containing xF;a
and, for all ce M, —yFE;,1¢;

e there is no a € M such that p contains xF;a, for all i € Zy(, and there exists
a; € M such that for all ¢ € Zyg, p is the unique type containing xF;a; and
—.mEHlai, for all i € Z;[}-

Solution: Note that these four cases are clearly mutually exclusive.

If p contains x = a for some a € M, then, as seen before p is the unique such
type. Let us now assume that p contains = # a for all a € M. Let I = {i € Zsg :
Ja € M p contains xE;a}. Let us first assume that I c Zsg. Let igp be its maximal
element and a € M be such that p contains zF;,a. Then p is of the third kind. Note
that for all n > g, p|£n contains xE;,a and -~xE; ¢ for all ce M. If g ee Sé\/[(M)
id another type containing xE; a and -z E;,,1c for all c € M, then, by Question6,
for all n > o, pl, =4ql; ,s0p=q.

Now let us assume that I = Zyq. If there is an a € M such that zF;a for all ¢, then
we are in the second case. Note that p|£n contains ¢F,,_1a and x # c for all ce M,
so, by Question 6, p is unique.

Finally, there remains the case where for all a € M, there is a maximal ¢ such that
rFE;a is in p. Pick some i € Zsg. Then there is an a € M such that zF;a is in
p. If p contains -z FE;,1a, take a; = a. Otherwise, because M £ T, we can find
a; € M such that a;F;a and -a;FE;,1a. Then p contains xF;a; and -z F;,1a;. Note
that there is no a € M such that aF;a; for all ¢ € Zyg. Indeed, if such an a existed
then p would contain zE;a for all i € Zsg. Let g ee SM (M) also contain zF;a; and
-z F;1a;, for all i € Zso. For all a € M, there is an 7 such that aF;a; does not hold,
it follows that ¢ contains ~xF;a and hence = # a. So both p|, and g|, contains
rE; 1a,-1 and x # a for all a € M. By Question6, p|, =gq|, and hence p=gq.

Let M & To, A S M be infinite and z a tuple of variables. Show that [SM(A)| <
|A]®0 and that this bound is sharp.

Solution: Let us first assume that |z| = 1. By downwards Lowenheim-Skolem, we
can find My < M containing A and such that |[My| = |A|. There is a surjection
SM(My) - SM(A). If [SM(Mp)| < |Mp|*0, then |[SM(A)| < |Mp[¥ = |A[*. So we
may assume that A= M.

The previous question gives us a complete description of SM(M). There are |M|
types of the first kind, | M| types of the second kind, |[M|Rg = | M| types of the third
kind and at most |[M|[X° types of the fourth kind (they only depend on the choice
of the a;). Tt follows that [SM (M)| < |M|*°.



Now assume |zy| = n+ 1 where |y| = 1. To any p « S%(A), we can associate
q € SM(A) its restriction to the first n variables and 7 € Séw "(Aa) where a realizes

q in some M™* > M. Moreover, knowing ¢ are r completely determines p and
|Aa| = |A|. By induction and the dimension 1 case, [Sh1(A)| < (JA[*)? = |A*.

Let us now show that the bound is sharp. Let M := k“ and let E; be defined by “the
first 7 + 1 coordinates are equal”. Let A := {e € k¥ : FipVi > ige(i) = 0}. We have
|A| = k. Pick any e, n € M. There exists an i such that (i) # n(i). Let v € A be
defined by v(j) =e(j) for all j <i and v(j) =0 for all j >i. Then eF;v and -nE;v.
It follows that tp(e/A) # tp(n/A) and hence, if |z = 1, |[SM(A)| > & = |A[Ro. As

above, an easy induction shows that this also holds if |z| > 1.



