Partiel

Logique mathématique

10 novembre 2023

Vous pouvez toujours utiliser une question précédente pour faire les questions suivantes, même si vous n'y avez pas répondu. Les questions avec une (*) sont considérées comme plus difficiles. La qualité de la rédaction sera prise en compte dans la notation.

Exercice 1. Soit \mathcal{L} le langage $\{R\}$, où R est un prédicat binaire. Soit T la \mathcal{L} -théorie exprimant les propriétés suivantes:

- La relation R est une relation d'équivalence,
- Pour tout entier $i \ge 1$, il existe une unique classe d'équivalence de cardinal i.
- 1. Ecrire une liste d'axiomes pour T. On pourra introduire des notations/abréviations pour améliorer la lisibilité.

Soit M_1 la \mathcal{L} -structure $(\mathbb{N}, R^{\mathbb{N}})$, où $R^{\mathbb{N}}$ est l'unique relation d'équivalence sur \mathbb{N} dont les classes sont les $\left[\frac{i(i-1)}{2}, \frac{i(i+1)}{2}\right] \cap \mathbb{N}$, pour $i \geq 1$. On note $T_1 = \operatorname{Th}(M_1)$ sa \mathcal{L} -théorie.

2. Montrer qu'il existe $N \models T_1$ tel que R^N a une infinité de classes infinies.

Soit \mathcal{L}_P le langage $\mathcal{L} \cup \{P_i, i \ge 1\}$, où les P_i sont des prédicats unaires. Soit $T_P \supseteq T$ la \mathcal{L}_P -théorie exprimant les propriétés supplémentaires suivantes:

- Le prédicat P_i est interprété comme l'unique classe de taille i.
- 3. Montrer que T_P élimine les quantificateurs.
- 4. En déduire que T_P est complète¹.
- 5. Montrer que M_1 se plonge élémentairement dans tout modèle de T.
- 6. (*) Soit $Def_1(M_1) \leq P(M_1)$ l'algèbre de Boole des sous-ensembles $\mathcal{L}(M_1)$ -définissables (i.e. définissables avec des \mathcal{L} -formules à paramètres dans M_1) de M_1 . Soit $S_1(M_1)$ l'espace des ultrafiltres sur $Def_1(M_1)$. Décrire, en justifiant, l'ensemble sous-jacent à $S_1(M_1)$.

Exercice 2. L'objectif de cet exercice est de décrire la théorie universelle des ordres totaux. Soit \mathcal{L} le langage $\{<\}$. Une formule universelle est de la forme $\forall x_1 \cdots \forall x_n \varphi$, où φ est une formule sans quantificateurs. Un énoncé universel est une formule universelle qui est un énoncé. Pour toute collection d'énoncés T, on note T_\forall la collection des énoncés universels qui sont conséquences de T. Soit T_0 la \mathcal{L} -théorie des ordres totaux infinis.

- 1. Soient M, N des modèles de T_0 . Montrer qu'il existe un plongement élémentaire $N \to N^*$ et un plongement $M \to N^*$.
- 2. En déduire que, pour tous M, N modèles de T_0 , on a $\operatorname{Th}_{\mathcal{L}}(M)_{\forall} = \operatorname{Th}_{\mathcal{L}}(N)_{\forall}$. On pourra démontrer un résultat reliant plongements et énoncés universels.

¹Une théorie T_0 dans un langage \mathcal{L}_0 est complète si, pour tout \mathcal{L}_0 -énoncé φ , on a $T_0 \vDash \varphi$ ou $T_0 \vDash \neg \varphi$.