TD de Logique I

Les exercices qui ne sont pas abordés en cours, seront (certainement) corrigés sur ma page personelle (voir cidessus).

Exercice I (Bons ordres et chaînes descendantes):

Soit (X, <) un ensemble ordonné. Montrer les propriétés suivantes :

- I. (X, <) est bien-fondé si et seulement s'il n'existe pas de suite infinie strictement décroissante d'éléments de
- 2. (X, <) est un bon ordre si et seulement si toute partie non vide de X contient un plus petit élément.

Exercice 2 (Calculs de cardinalités):

- I. Déterminer si les ensembles suivants sont dénombrables (c'est à dire en bijection avec ℕ) ou indénombrables.
 - a) L'ensemble \mathbb{N}^2 ,
 - b) l'ensemble $\mathbb{N}^{\mathbb{N}}$ des suites d'entiers,
 - c) l'ensemble des suites de rationnels qui convergent vers 0 (on pourra utiliser des suites de la forme $(\epsilon_n 2^{-n})_{n \in \mathbb{N}}$, avec $\epsilon_n = 0$ ou 1 pour tout n),
 - d) l'ensemble des suites de rationnels qui sont constantes à partir d'un certain rang.
- 2. Montrer que \mathbb{R} et $\mathcal{P}(\mathbb{N})$ sont équipotents.

Exercice 3 (Bons ordres et anti-bons ordres):

On suppose que (X, <) est un bon ordre et que (X, >) est également un bon ordre. Montrer que X est fini.

Exercice 4 (Plongements de bons ordres):

Un plongement d'un ensemble ordonné (X,<) dans un autre (Y,<) est une application (injective) $f:X\to Y$ telle que f(x) < f(x') ssi x < x' pour tout $x, x' \in X$.

- I. Montrer que tout bon ordre dénombrable ou fini se plonge dans $(\mathbb{Q},<)$.
- 2. Quels sont les bons ordres qui admettent un plongement dans $(\mathbb{R},<)$?

Exercice 5 (Axiomes du choix):

On considère les trois énoncés suivants :

- (AC): tout produit d'ensembles non vides est non vide
- (ACD): si \mathcal{R} est une partie de $X \times X$ telle que, pour tout $x \in X$, il existe $y \in X$ tel que $(x,y) \in \mathcal{R}$, alors il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de X vérifiant $(x_n,x_{n+1})\in\mathcal{R}$ pour tout $n\in\mathbb{N}$ dont on peut choisir le premier élément.
- (ACden): tout produit dénombrable d'ensembles non vides est non vide
 - (AC) est appelé axiome du choix, (ACD) est appelé axiome des choix dépendants et (ACden) est appelé axiome du choix dénombrable.

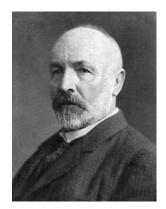
- I. Montrer que (ACD) implique (ACden).
- 2. Une fonction de choix pour un ensemble X est une fonction $f:\mathfrak{P}(X)\setminus\{\varnothing\}\to X$ telle que pour tout $x\in\mathfrak{P}(X)\setminus\{\varnothing\}, f(x)\in x$. Montrer que (AC) est équivalent à l'assertion que tout ensemble admet une fonction de choix.
- 3. Montrer que (AC) est équivalent au fait que toute surjection admet une section, i.e. pour toute surjection $g: X \to Y$ il existe $h: Y \to X$ telle que $g \circ h$ est l'identité sur Y.
- 4. Montrer que (AC) implique (ACD).
- 5. Montrer que toute réunion dénombrable d'ensembles dénombrables est dénombrable.

Exercice 6 (Finitude de Dedekind):

Sauf dans les dernières questions, tous ces résultats se démontrent sans axiome du choix.

- I. Soit X un ensemble, montrer que les propriétés suivantes sont équivalentes :
 - a) X contient un sous-ensemble dénombrable.
 - b) Pour tout ensemble Y au plus dénombrable, $X \cup Y$ est équipotent à X.
 - c) X est en bijection avec une partie propre de X (on parle dit alors que X est infini au sens de Dedkind, ou D-infini).
- 2. Montrer que tout ensemble fini est D-fini (i.e. n'est pas D-infini).
- 3. Montrer que l'union et le produit de deux ensembles D-finis sont D-finis.
- 4. Montrer que la réunion disjointe d'une famille D-finie d'ensemble D-finis est D-finie.
- 5. Montrer pour tout ensemble infini X, $\mathcal{P}(\mathcal{P}(X))$ est D-infini.
- 6. Montrer, en utilisant (ACden) que pour tout ensemble X, \mathbb{N} est subpotent à X si et seulement si tout ensemble fini est subpotent à X.
- 7. En déduire que si on admet (ACden), un ensemble est infini si et seulement si il est D-infini.

Exercice 7 (Qui sont ces charmants messieurs?¹):



¹Je remercie N. Curien pour cette excellente idée.