TD de Logique 11

12 et 15 décembre 2014

Les exercices qui ne sont pas abordés en cours, seront (certainement) corrigés sur ma page personelle (voir cidessus).

Exercice I (Décidabilité des théories):

1. Montrer que pour tout p premier ou nul ACF_p est décidable et qu'ACF elle même est décidable.

Soit L un langage fini et T une L-théorie consistante et *décidable*. Dans cet exercice, on considèrera que les théories sont closes par conséquence (i.e. si $T \vdash \varphi$ alors $\varphi \in T$).

On pose $C(T) := \{T' \supseteq T : T' \text{ est une } L\text{-th\'eorie complète}\}$ et $C_d(T) := \{T' \in C(T) : T' \text{ est d\'ecidable}\}$. Montrer les propriétés suivantes :

- 2. Si C(T) est fini, alors toute complétion de T est décidable, c'est-à-dire $C_d(T) = C(T)$.
- 3. $C_d(T) \neq \emptyset$ (T admet une complétion décidable.)
- 4. $|C_d(T)| = \min(|C(T)|, \aleph_0)$.
- 5. Pour tout cardinal κ avec $1 \le \kappa \le \aleph_0$, il existe un langage L fini et une L-théorie T_{κ} consistante et décidable telle que $|C_d(T_{\kappa})| = \kappa$.

Exercice 2 (Complétions de l'arithmétique):

- I. On note $\mathcal{N} = \langle \mathbb{N}, 0, 1, S, +, \times, < \rangle$. Soit $\mathcal{N} \leq \mathcal{M}$, on dit que $X \subseteq \mathbb{N}$ est extérieurement définissable dans \mathcal{M} s'il existe une formule $\varphi[x]$ à paramètres dans M telle que $\{n \in \mathbb{N} : \mathcal{M} \models \varphi[n]\} = X$. Montrer que toute partie de \mathbb{N} est extérieurement définissable dans un modèle dénombrable.
- 2. Supposons \mathcal{M} dénombrable, montrer que $\{X \subset \mathbb{N} : X \text{ est extérieurement définissable dans } \mathcal{M}\}$ est dénombrable. En déduire que \mathcal{N} a 2^{\aleph_0} extensions élémentaires dénombrables non isomorphes au dessus de \mathcal{N} .
- 3. Soit $T \supseteq \mathcal{P}$ consistante telle que $T \setminus \mathcal{P}$ est finie, montrer que T ne peut être complète. En déduire qu'il existe 2^{\aleph_0} complétions de \mathcal{P} (i.e. théories qui contiennent \mathcal{P} , sont complètes et closes par conséquence).

Exercice 3 (Fonctions prouvablement totales dans \mathcal{P}):

Soit $f \in \mathcal{F}^p \Sigma_1$ -représentable par $F[\overline{x}, y]$. On dit que f est prouvablement totale dans \mathcal{P} si $\mathcal{P} \models \forall \overline{x} \exists y F[\overline{x}, y]$.

- 1. Montrer qu'il existe une fonction récursive (partielle) $h \in \mathcal{F}^2$ telle que
 - si $a = \#F[x_0, x_1]$ où $F[x_0, x_1]$ est Σ_1 et qu'il existe $m \in \mathbb{N}$ tel que $\mathcal{P} \models F[\underline{n}, \underline{m}]$, alors $\mathcal{P} \models F[\underline{n}, h(a, n)]$,
 - si $a = \#F[x_0, x_1]$ où $F[x_0, x_1]$ est Σ_1 et qu'il n'existe pas de $m \in \mathbb{N}$ tel que $\mathcal{P} \models F[\underline{n}, \underline{m}]$, alors h(a, n) n'est pas défini,
 - sinon h(a, n) = 0.
- 2. On définit $g \in \mathcal{F}^3$ par :
 - si $a = \#F[x_0, x_1]$ où $F[x_0, x_1]$ est Σ_1 et si b est le code d'une preuve de $\forall x_0 \exists x_1 F[x_0, x_1]$ dans \mathcal{P} alors g(a, b, n) = h(a, n),
 - sinon q(a, b, n) = 0.

Montrer que g est récursive totale.

3. Montrer qu'il existe des fonctions récursives totales qui ne soient pas prouvablement totales dans \mathcal{P} .

Exercice 4 (Preuve de Chaitin du 1er théorème d'incomplétude):

Étant donnée une machine à registres \mathcal{M} et une entrée n, on définit la complexité de (\mathcal{M},n) comme étant le nombre de lignes de programme de \mathcal{M} plus le nombre de registres utilisés plus $\log_2(n)$. La complexité d'un entier N est la complexité minimale d'un couple (\mathcal{M},n) tel que la machine \mathcal{M} termine sur l'entrée n et renvoie N en sortie. On note C(N) la complexité de N.

Soit T une théorie récursive consistante contenant \mathcal{P} .

- I. Justifier que, pour $n, N \in \mathbb{N}$, l'énoncé «C(N) < n» est représentable par une formule Σ_1 .
- 2. Montrer que si T prouve $C(N) \ge n$, alors cet énoncé est vrai dans \mathbb{N} .
- 3. Montrer qu'il existe un entier L tel qu'aucun énoncé de la forme « $C(N) \geqslant L$ » ne soit prouvable dans T. [Indication : Raisonner par l'absurde et construire une machine qui prenant L en entrée renvoie un N de complexité L.]
- 4. Conclure.

Exercice 5 (Second théorème d'incomplétude, d'après un article récent de Kritchman et Raz.) : On étend les idées de la preuve précédente pour prouver aussi le second théorème d'incomplétude. On reprend les notations et les hypothèses de l'exercice précédent.

- I. Soit x un entier de complexité inférieure à L. Montrer que T prouve $C(x) \leq L$.
- 2. Soit L un entier. Déterminer un majorant D(L) du nombre d'entiers x de complexité $\leq L$.
- 3. Supposons que T démontre $\mathrm{Coh}(T)$. Montrer par récurrence sur m que s'il existe exactement m valeurs de x entre 0 et D(L) qui ont une complexité > L, alors T prouve C(x) > L pour un certain x. (Commencer par étudier le cas m=1. On admettra que les raisonnements faits sur les théories en utilisant la théorie des ensembles peuvent se démontrer entièrement dans T.)
- 4. Conclure.

Exercice 6 (Qui sont ces charmants messieurs?):

