Examen

13/04-24/04

Vous pouvez toujours admettre les question précédentes quand vous répondez à une question.

Problème 1:

Soit K un corps. Montrez l'équivalence des énoncés suivants :

- 1. *K* est borné;
- 2. pour toute *K*-algèbre élémentaire *L*, res : $\mathcal{G}(L) \to \mathcal{G}(K)$ est injectif;
- 3. pour toute K-algèbre élémentaire L, res : $\mathcal{G}(L) \to \mathcal{G}(K)$ est un homéomorphisme.

Problème 2 :

Soit $K \models PSF$ et X un ensemble K-définissable.

- 1. Montrez que X(K) est fini si et seulement si $\dim(X) \leq 0$.
- 2. Si dim $(X) \le 0$, montrez que $\mu(X) = |X(K)|$.

Problème 3:

1. Montrez que pour tout corps K et tout idéal $I \subseteq K[X]$, avec |X| = n, il y a un nombre fini d'idéaux premiers minimaux (pour l'inclusion) qui contiennent I.

Soient $n, m, d \in \mathbb{Z}_{\geq 0}$.

- 2. Montrez qu'il existe $B, D, M \in \mathbb{Z}_{\geqslant 0}$ tel que pour tout corps K et tous $(f_i)_{i < m} \in K[X]$, avec |X| = n, il existe $(g_{i,j})_{i < M,j < B} \in K[X]$, de degré au plus D, tels que les idéaux $I_j := (g_{i,j} : i < M)$, pour j < B, sont exactement les idéaux premiers minimaux (pour l'inclusion) qui contiennent $(f_i : i < m)$.
- 3. Montrez qu'il existe $B, D, M \in \mathbb{Z}_{\geqslant 0}$ tel que pour tout corps K et tous $(f_i)_{i < m} \in K[X]$, avec |X| = n, il existe $(g_i)_{i < M} \in K[X]$, de degré au plus D, tels que $(g_i : i < M) = \sqrt{(f_i : i < m)} = \{h \in K[X] : h^B \in (f_i : i < m)\}.$

Problème 4:

Soit $K \models ACF$ et $F \leqslant K$ un corps.

- 1. Montrez que $dcl(F) = F^{p^{-\infty}}$.
- 2. Soit V une K-variété. Montrez que les énoncés suivants sont équivalents :
 - a) $\mathcal{I}_K(V)$ est défini sur $F^{p^{-\infty}}$;
 - b) $\mathcal{I}_K(V) = \sqrt{I \cdot K[X]}$ où $I \subseteq F[X]$.
- 3. Soit V une F-variété F-intègre. Montrez que les énoncés suivants sont équivalents :
 - a) V est K-intègre;
 - b) V est F^{s} -intègre;
 - c) $F(V) \cap F^{s} = F$.