Midterm

Model theory of valued fields
February 15-19 2021

You can always use a previous question when answering a later question, even if you did not
prove it.

* Let £ be the language with three sorts K (with the ring language), RV (with the ring
language) and T' (with the ordered group language), a function rv : K - RV and a
functionv: RV - T.

* Any valued field (K, v) can be made into an £-structure by interpreting K as the ring
K, T asvK as an ordered monoid — with — as the inverse on vK* and —co = co — and
RV as K/1 + m with its multiplicative structure, 0 = rv(0), + is interpreted as the trace
of addition when it is well-defined and 0 otherwise, and —rv(z) = rv(-z).

* Let T denote the £-structure of algebraically closed non trivially valued fields.

Problem 1. Let M = T.

1. Show that forevery {,v,{ e RV(M), (- (£ +v) = ((-&) + (¢ v).

2. Show that for every (& )i<n € RV(M), ¥ &icn = &0 + Lo<icn & € D& and 0 € @; &; if
and only if, for some permutation o of n, 32, &, (;) = 0.

3. Let a € RV(M) and P € K(M)[z] such that 0 € rv(P)(«). Show that there exists
a € K(M) such thatrv(a) = aand P(a) = 0.

4. Let A< M, a € RV(A), P € K(A)[x] minimal such that 0 € rv(P)(«), a € K(M)
such thatrv(a) = a and P(a) = 0 and C be the structure generated by Aa. Show that
RV(C)=RV(A).

5. Show that T" eliminates quantifiers.

[Hint : You can consider a maximal £-embedding f : C < M — N. Start by showing that
RV(C) =rv(K(C)).]

Solution.

1.If¢ =0,wehave (- (£ +v) =0 =(C-&) + (¢-v). Solet us assume that ¢ + 0. We
have (- (@ v) = ((-&) ® ((-v). Indeed, if x,y, z are such thatrv(z) = &, rv(y) = v
and 1v(z) = ¢, thenrv(z)rv(z +y) = rv(zz + zy) € (- &) @ (- v). Conversely, if
¢ #0and z,y, z, 2" are such that rv(z) = &, 1v(y) = vand rv(z) = rv(z’) = {, we have
rv(zz + 2'y) = v(2)v(z + 272 y) e C-(E@ ) = ¢ (E@v).
It follows that, (¢-&) @ (¢-v) is well-defined if and only if ¢ - (£ @ v) s, equivalently { @ v
is. If they are all well defined, then both (- (£ +v) and (¢- &) + (¢ - v) are elements of the



same singleton and are thus equal. If none of them are well defined, then ¢- ({ +v) =0 =
(C-€)+(Cv).

2. We proceed by induction on n. For the second statement we also prove that we can choose
o such that £, (o) has minimal valuation. The case n = 2 follows from the definition. Let
us assume that the statement holds for n — 1. We have &y + Y gcicn &i € E0 ® Yo<icn &i €
§0 ® Po<icn & = DPicn &+ In particular, if for some permutation o, Y, & = 0, then
0e®icn goi =®ixn §Z
Let us now assume that 0 € @;, & = &0 ® Bocicn &i- If Boeicn & is well defined, we
have 0 € & @ Ypcicn &i- S0 Xicn & = 0and v(&p) = v(Bo<icn &) is minimal. If 0 €
Do<i<n &i» let o be such that Yo, €5 = 0 and v(&,(1y) is minimal. If v(&§o) < v(&,(1))s
v(X; &) = v(&) is an element of @; & whose valuation is the minimal valuation of the
&i, contradicting that 0 € @;&;. It follows that v(§o) > v(§51)) = V(X 1<icn &0 () and
hence, 50(1) + (60 + Li<icn 60(7,)) = Yi<i<n Ea(i) = 0.

3. Let P = ¢[1;(z—€;). Then0 € rv(P) (o) € rv(e)-@®; [Lies rv(—€; )l = rv(e) [T; rv (o
rv(—e;)). It follows that for some i,0 € a« ® rv(—e;), z.e. a = rv(e;).

4. Forevery Q = ¥; c;a" € K(A)[z] with deg(Q) < deg(P), by minimality, 0 ¢ rv(Q) ()
and hence rv(Q) () = {rv(Q(a))} = X;1v(c;)a’ € RV(A), by question 2. It follows
that rv(K(C)) =rv(K(A)[a]) € RV(A) ahd hence RV (C) = RV (A).

S. Let us consider a maximal embedding f : C' < M — N. As shown in class, it suffices to
show that C' = M. Let « e RV(C') and P € K(C)[z] minimal such that 0 € rv(P)(«).
By question 3, there exists a € M such that P(a) = 0 and rv(a) = a. By question 2, f. P
is minimal such that 0 € rv(f, P)(f(«)). By question 3, we also find b € NV such that
f«P(b) = 0and rv(b) = f(«). By minimality, P is the minimal polynomial of a over
K(A) and f, P is the minimal polynomial of b over K(f(C')). So f|k extends to a ring
morphism gl sending a to b. Let g = g|i U f. To show that it is an £-morphism, it suf-
fices to check that it commutes with rv. But for every @ = ¥, ¢;z° € K(C)[z] of degree
smaller than P, g(rv(Q(a))) = f(Tirv(e;)a’) = Tirv(f(e))rv(b) = tv(f.Q(D)) =
rv(f(Q(a))). By maximality of f, we have a € C'and hence RV (C') = rv(K(C)).
Now f|k,r naturally induces an £y p-morphism on the £ p-structure generated by
K(C) uT(C) into the £y p-structure of N. By quantifier elimination, f extends to
an elementary g : M — N*, where h : N - N* is elementary. Then the map induced
by g on K(M) uT'(M) uRV (M) is an £-morphism and, since RV (C) = rv(K(C)),
itextends f. So C' = M. O

Problem 2. Let M =T and A< M.
1. Leta,b € K(M) with v(rv(a)) = v(rv(b)) ¢ Q- v(RV(A)). Show that tp(a/A) =
tp(b/A).
Let f: T - RV be L(A)-definable.
2. Show that v(f(T')) cQ-T'(A).
3. Show that v o f has finite image.
4. Show that f has finite image.

Solution.
1. Let A < C < M be maximal such that rv(K(C)) € RV(A). For every a € RV (A), let



P ¢ K(C)[z] be minimal such that 0 € rv(P)(«). By 1.3, we find ¢ € K(M) such that
P(c) =0andrv(c) = . By 1.4, the RV part of the structure generated by Ccis RV (A).
By maximality of C, rv(K(C)) = RV (A). In particular, v(RV (A4)) = v(K(C)).

By the characterisation of ramified 1-types in ACVF, we have tpg,_ (a/K(C)uT(C)) =
tpe, . (0/K(C) uT(C)). It follows that tpe(a/C) = tpe(b/C) and hence tpe(a/A) =
tpg(b/A).

2. Fixsomey e I'(M) andlet § = v(f(v)). If 6 ¢ Q- v(I'(A)), then by question 1, for any
a € RV (M) with v(«) = 6, we have tp(a/Avd) = tp(f(v)/Avd) and hence o = f(7),
contradicting that v=1(§) is infinite.

3. If vo f(I) is infinite, then, by compactness, we find h : M — M* elementary and y €
I'(M™) such thatv(f(v)) ¢ Q- v(I'(A), contradicting question 2.

4, Fixae K(M)and X = (vo f)~!(v(a)). Itsuffices to show that f(X) is finite. Then the
function g := rv(a) ™! - f| « ¢ X €T - kis definable and since k and I" are orthogonal,
the graph of g is of the form U,, X; x {¢;} and g(X) = {¢; : i < n} is finite. It follows
that f(X) = {rv(a) - ¢; : i < n} is also finite. ]

Problem 3. Let (K,v) be a valued field v € vKj and (&;)i<n € RV, = K/1 + ym. Show that
{Yicn @i rrvy () = &} is an open ball and give its radius.

Solution. Let § := min; v(§;) and let us show that {¥;.,, z; : rvy(2;) = &} = B(Y; zi, v +6),
where rv, (z;) = &. Let y; such thatrv, (v;) = & = v (), then v(X; 2 — X yi) = v(X; 25 —
yi) > min; v(z; — ;) > min; v(z;) + v > 6 + . Conversely, let ¢ be such that v(c) > v + 4, ig
be such that v(&;, ) is minimal. Let y;, = x4, + cand y; = x; otherwise. Then rv,(y;) = & and

YilYi= 2wt [



