Midterm

Model theory of valued fields

February 15-19 2021

You can always use a previous question when answering a later question, even if you did not prove it.

- Let \mathfrak{L} be the language with three sorts \mathbf{K} (with the ring language), \mathbf{RV} (with the ring language) and Γ (with the ordered group language), a function $\mathrm{rv} : \mathbf{K} \to \mathbf{RV}$ and a function $\mathrm{v} : \mathbf{RV} \to \Gamma$.
- Any valued field (K, v) can be made into an £-structure by interpreting K as the ring K, Γ as vK as an ordered monoid with as the inverse on vK[×] and −∞ = ∞ and RV as K/1 + m with its multiplicative structure, 0 = rv(0), + is interpreted as the trace of addition when it is well-defined and 0 otherwise, and -rv(x) = rv(-x).
- Let T denote the \mathfrak{L} -structure of algebraically closed non trivially valued fields.

Problem 1. Let $M \models T$.

- 1. Show that for every $\xi, v, \zeta \in \mathbf{RV}(M), \zeta \cdot (\xi + v) = (\zeta \cdot \xi) + (\zeta \cdot v).$
- 2. Show that for every $(\xi_i)_{i < n} \in \mathbf{RV}(M)$, $\sum_i \xi_{i < n} \coloneqq \xi_0 + \sum_{0 < i < n} \xi_i \in \bigoplus_i \xi_i$ and $0 \in \bigoplus_i \xi_i$ if and only if, for some permutation σ of n, $\sum_i \xi_{\sigma(i)} = 0$.
- 3. Let $\alpha \in \mathbf{RV}(M)$ and $P \in \mathbf{K}(M)[x]$ such that $0 \in \mathrm{rv}(P)(\alpha)$. Show that there exists $a \in \mathbf{K}(M)$ such that $\mathrm{rv}(a) = \alpha$ and P(a) = 0.
- 4. Let $A \leq M$, $\alpha \in \mathbf{RV}(A)$, $P \in \mathbf{K}(A)[x]$ minimal such that $0 \in \mathrm{rv}(P)(\alpha)$, $a \in \mathbf{K}(M)$ such that $\mathrm{rv}(a) = \alpha$ and P(a) = 0 and C be the structure generated by Aa. Show that $\mathbf{RV}(C) = \mathbf{RV}(A)$.
- 5. Show that T eliminates quantifiers. [Hint : You can consider a maximal \mathfrak{L} -embedding $f : C \leq M \rightarrow N$. Start by showing that $\mathbf{RV}(C) = \mathrm{rv}(\mathbf{K}(C)).$]

Solution.

1. If $\zeta = 0$, we have $\zeta \cdot (\xi + v) = 0 = (\zeta \cdot \xi) + (\zeta \cdot v)$. So let us assume that $\zeta \neq 0$. We have $\zeta \cdot (\xi \oplus v) = (\zeta \cdot \xi) \oplus (\zeta \cdot v)$. Indeed, if x, y, z are such that $\operatorname{rv}(x) = \xi$, $\operatorname{rv}(y) = v$ and $\operatorname{rv}(z) = \zeta$, then $\operatorname{rv}(z)\operatorname{rv}(x + y) = \operatorname{rv}(zx + zy) \in (\zeta \cdot \xi) \oplus (\zeta \cdot v)$. Conversely, if $\zeta \neq 0$ and x, y, z, z' are such that $\operatorname{rv}(x) = \xi$, $\operatorname{rv}(y) = v$ and $\operatorname{rv}(z) = \operatorname{rv}(z') = \zeta$, we have $\operatorname{rv}(zx + z'y) = \operatorname{rv}(z)\operatorname{rv}(x + z^{-1}z'y) \in \zeta \cdot (\xi \oplus \zeta^{-1}\zeta v) = \zeta \cdot (\xi \oplus v)$.

It follows that, $(\zeta \cdot \xi) \oplus (\zeta \cdot v)$ is well-defined if and only if $\zeta \cdot (\xi \oplus v)$ is, equivalently $\xi \oplus v$ is. If they are all well defined, then both $\zeta \cdot (\xi + v)$ and $(\zeta \cdot \xi) + (\zeta \cdot v)$ are elements of the

same singleton and are thus equal. If none of them are well defined, then $\zeta \cdot (\xi + \upsilon) = 0 = (\zeta \cdot \xi) + (\zeta \cdot \upsilon)$.

2. We proceed by induction on *n*. For the second statement we also prove that we can choose σ such that $\xi_{\sigma(0)}$ has minimal valuation. The case n = 2 follows from the definition. Let us assume that the statement holds for n - 1. We have $\xi_0 + \sum_{0 < i < n} \xi_i \in \xi_0 \oplus \sum_{0 < i < n} \xi_i \in \xi_0 \oplus \sum_{0 < i < n} \xi_i \in \xi_0 \oplus \sum_{0 < i < n} \xi_i \in \xi_0 \oplus \sum_{0 < i < n} \xi_i$. In particular, if for some permutation σ , $\sum_{i < n} \xi_{\sigma i} = 0$, then $0 \in \bigoplus_{i < n} \xi_{\sigma i} = \bigoplus_{i < n} \xi_i$.

Let us now assume that $0 \in \bigoplus_{i < n} \xi_i = \xi_0 \oplus \bigoplus_{0 < i < n} \xi_i$. If $\bigoplus_{0 < i < n} \xi_i$ is well defined, we have $0 \in \xi_0 \oplus \sum_{0 < i < n} \xi_i$. So $\sum_{i < n} \xi_i = 0$ and $v(\xi_0) = v(\bigoplus_{0 < i < n} \xi_i)$ is minimal. If $0 \in \bigoplus_{0 < i < n} \xi_i$, let σ be such that $\sum_{0 < i < n} \xi_{\sigma i} = 0$ and $v(\xi_{\sigma(1)})$ is minimal. If $v(\xi_0) \le v(\xi_{\sigma(1)})$, $v(\sum_i \xi_i) = v(\xi_0)$ is an element of $\bigoplus_i \xi_i$ whose valuation is the minimal valuation of the ξ_i , contradicting that $0 \in \bigoplus_i \xi_i$. It follows that $v(\xi_0) > v(\xi_{\sigma(1)}) = v(\sum_{1 < i < n} \xi_{\sigma(i)})$ and hence, $\xi_{\sigma(1)} + (\xi_0 + \sum_{1 < i < n} \xi_{\sigma(i)}) = \sum_{1 < i < n} \xi_{\sigma(i)} = 0$.

- 3. Let $P = c \prod_i (x-e_i)$. Then $0 \in \operatorname{rv}(P)(\alpha) \subseteq \operatorname{rv}(c) \oplus_I \prod_{i \in I} \operatorname{rv}(-e_i) \alpha^{|I|} = \operatorname{rv}(c) \prod_i \operatorname{rv}(\alpha \oplus \operatorname{rv}(-e_i))$. It follows that for some $i, 0 \in \alpha \oplus \operatorname{rv}(-e_i)$, *i.e.* $\alpha = \operatorname{rv}(e_i)$.
- 4. For every $Q = \sum_i c_i x^i \in \mathbf{K}(A)[x]$ with $\deg(Q) < \deg(P)$, by minimality, $0 \notin \operatorname{rv}(Q)(\alpha)$ and hence $\operatorname{rv}(Q)(\alpha) = {\operatorname{rv}(Q(a))} = \sum_i \operatorname{rv}(c_i)\alpha^i \in \mathbf{RV}(A)$, by question 2. It follows that $\operatorname{rv}(\mathbf{K}(C)) = \operatorname{rv}(\mathbf{K}(A)[a]) \subseteq \mathbf{RV}(A)$ and hence $\mathbf{RV}(C) = \mathbf{RV}(A)$.
- 5. Let us consider a maximal embedding f : C ≤ M → N. As shown in class, it suffices to show that C = M. Let α ∈ RV(C) and P ∈ K(C)[x] minimal such that 0 ∈ rv(P)(α). By question 3, there exists a ∈ M such that P(a) = 0 and rv(a) = α. By question 2, f_{*}P is minimal such that 0 ∈ rv(f_{*}P)(f(α)). By question 3, we also find b ∈ N such that f_{*}P(b) = 0 and rv(b) = f(α). By minimality, P is the minimal polynomial of a over K(A) and f_{*}P is the minimal polynomial of b over K(f(C)). So f|_K extends to a ring morphism g|_K sending a to b. Let g = g|_K ∪ f. To show that it is an £-morphism, it suffices to check that it commutes with rv. But for every Q = ∑_i c_ixⁱ ∈ K(C)[x] of degree smaller than P, g(rv(Q(a))) = f(∑_i rv(c_i)αⁱ) = ∑_i rv(f(c_i))rv(b)ⁱ = rv(f_{*}Q(b)) = rv(f(Q(a))). By maximality of f, we have a ∈ C and hence RV(C) = rv(K(C)). Now f|_{K∪Γ} naturally induces an £_{k,Γ}-morphism on the £_{k,Γ}-structure generated by K(C) ∪ Γ(C) into the £_{k,Γ}-structure of N. By quantifier elimination, f extends to

 $\mathbf{K}(C) \cup \mathbf{\Gamma}(C)$ into the $\mathfrak{L}_{\mathbf{k},\mathbf{\Gamma}}$ -structure of N. By quantifier elimination, f extends to an elementary $g: M \to N^*$, where $h: N \to N^*$ is elementary. Then the map induced by g on $\mathbf{K}(M) \cup \mathbf{\Gamma}(M) \cup \mathbf{RV}(M)$ is an \mathfrak{L} -morphism and, since $\mathbf{RV}(C) = \mathrm{rv}(\mathbf{K}(C))$, it extends f. So C = M.

Problem 2. Let $M \models T$ and $A \leq M$.

- 1. Let $a, b \in \mathbf{K}(M)$ with $v(rv(a)) = v(rv(b)) \notin \mathbb{Q} \cdot v(\mathbf{RV}(A))$. Show that tp(a/A) = tp(b/A).
- Let $f : \Gamma \to \mathbf{RV}$ be $\mathcal{L}(A)$ -definable.
 - 2. Show that $v(f(\Gamma)) \subseteq \mathbb{Q} \cdot \Gamma(A)$.
 - 3. Show that $v \circ f$ has finite image.
 - 4. Show that f has finite image.

Solution.

1. Let $A \leq C \leq M$ be maximal such that $\operatorname{rv}(\mathbf{K}(C)) \subseteq \mathbf{RV}(A)$. For every $\alpha \in \mathbf{RV}(A)$, let

 $P \in \mathbf{K}(C)[x]$ be minimal such that $0 \in \operatorname{rv}(P)(\alpha)$. By 1.3, we find $c \in \mathbf{K}(M)$ such that P(c) = 0 and $\operatorname{rv}(c) = \alpha$. By 1.4, the **RV** part of the structure generated by Cc is **RV**(A). By maximality of C, $\operatorname{rv}(\mathbf{K}(C)) = \mathbf{RV}(A)$. In particular, $\operatorname{v}(\mathbf{RV}(A)) = \operatorname{v}(\mathbf{K}(C))$. By the characterisation of ramified 1-types in ACVF, we have $\operatorname{tp}_{\mathfrak{L}_{\mathbf{k},\Gamma}}(a/\mathbf{K}(C) \cup \Gamma(C)) = \operatorname{tp}_{\mathfrak{L}_{\mathbf{k},\Gamma}}(b/\mathbf{K}(C) \cup \Gamma(C))$. It follows that $\operatorname{tp}_{\mathfrak{L}}(a/C) = \operatorname{tp}_{\mathfrak{L}}(b/C)$ and hence $\operatorname{tp}_{\mathfrak{L}}(a/A) = \operatorname{tp}_{\mathfrak{L}}(b/A)$.

- 2. Fix some $\gamma \in \Gamma(M)$ and let $\delta = v(f(\gamma))$. If $\delta \notin \mathbb{Q} \cdot v(\Gamma(A))$, then by question 1, for any $\alpha \in \mathbf{RV}(M)$ with $v(\alpha) = \delta$, we have $\operatorname{tp}(\alpha/A\gamma\delta) = \operatorname{tp}(f(\gamma)/A\gamma\delta)$ and hence $\alpha = f(\gamma)$, contradicting that $v^{-1}(\delta)$ is infinite.
- 3. If $v \circ f(\Gamma)$ is infinite, then, by compactness, we find $h : M \to M^*$ elementary and $\gamma \in \Gamma(M^*)$ such that $v(f(\gamma)) \notin \mathbb{Q} \cdot v(\Gamma(A))$, contradicting question 2.
- 4. Fix $a \in \mathbf{K}(M)$ and $X = (\mathbf{v} \circ f)^{-1}(\mathbf{v}(a))$. It suffices to show that f(X) is finite. Then the function $g := \operatorname{rv}(a)^{-1} \cdot f|_X : X \subseteq \Gamma \to \mathbf{k}$ is definable and since \mathbf{k} and Γ are orthogonal, the graph of g is of the form $\bigcup_{i < n} X_i \times \{c_i\}$ and $g(X) = \{c_i : i < n\}$ is finite. It follows that $f(X) = \{\operatorname{rv}(a) \cdot c_i : i < n\}$ is also finite. \Box

Problem 3. Let (K, v) be a valued field $\gamma \in vK_{\geq 0}^{\times}$ and $(\xi_i)_{i < n} \in \mathbb{RV}_{\gamma} = K/1 + \gamma \mathfrak{m}$. Show that $\{\sum_{i < n} x_i : \operatorname{rv}_{\gamma}(x_i) = \xi_i\}$ is an open ball and give its radius.

Solution. Let $\delta := \min_i v(\xi_i)$ and let us show that $\{\sum_{i < n} x_i : \operatorname{rv}_{\gamma}(x_i) = \xi_i\} = \mathring{B}(\sum_i x_i, \gamma + \delta)$, where $\operatorname{rv}_{\gamma}(x_i) = \xi_i$. Let y_i such that $\operatorname{rv}_{\gamma}(y_i) = \xi_i = \operatorname{rv}_{\gamma}(x_i)$, then $v(\sum_i x_i - \sum_i y_i) = v(\sum_i x_i - y_i) \ge \min_i v(x_i - y_i) > \min_i v(x_i) + \gamma \ge \delta + \gamma$. Conversely, let c be such that $v(c) > \gamma + \delta$, i_0 be such that $v(\xi_{i_0})$ is minimal. Let $y_{i_0} = x_{i_0} + c$ and $y_i = x_i$ otherwise. Then $\operatorname{rv}_{\gamma}(y_i) = \xi_i$ and $\sum_i y_i = \sum_i x_i + c$.