Midterm

Model theory of valued fields

February 15-19 2021

You can always use a previous question when answering a later question, even if you did not prove it.

- Let \mathfrak{L} be the language with three sorts \mathbf{K} (with the ring language), \mathbf{RV} (with the ring language) and Γ (with the ordered group language), a function $\mathrm{rv} : \mathbf{K} \to \mathbf{RV}$ and a function $\mathrm{v} : \mathbf{RV} \to \Gamma$.
- Any valued field (K, v) can be made into an \mathfrak{L} -structure by interpreting K as the ring K, Γ as vK as an ordered monoid with as the inverse on vK^{\times} and $-\infty = \infty$ and **RV** as $K/1 + \mathfrak{m}$ with its multiplicative structure, $0 = \mathrm{rv}(0)$, + is interpreted as the trace of addition when it is well-defined and 0 otherwise, and $-\mathrm{rv}(x) = \mathrm{rv}(-x)$.
- Let T denote the \mathfrak{L} -structure of algebraically closed non trivially valued fields.

Problem 1. Let $M \models T$.

- 1. Show that for every $\xi, v, \zeta \in \mathbf{RV}(M), \zeta \cdot (\xi + v) = (\zeta \cdot \xi) + (\zeta \cdot v).$
- 2. Show that for every $(\xi_i)_{i < n} \in \mathbf{RV}(M)$, $\sum_i \xi_i \in \bigoplus_i \xi_i$ and $0 \in \bigoplus_i \xi_i$ if and only if, for some permutation σ of n, $\sum_i \xi_{\sigma(i)} = 0$.
- 3. Let $\alpha \in \mathbf{RV}(M)$ and $P \in \mathbf{K}(M)[x]$ such that $0 \in \mathrm{rv}(P)(\alpha)$. Show that there exists $a \in \mathbf{K}(M)$ such that $\mathrm{rv}(a) = \alpha$ and P(a) = 0.
- 4. Let $A \leq M$, $\alpha \in \mathbf{RV}(A)$, $P \in \mathbf{K}(A)[x]$ minimal such that $0 \in \mathrm{rv}(P)(\alpha)$, $a \in \mathbf{K}(M)$ such that $\mathrm{rv}(a) = \alpha$ and P(a) = 0 and C be the structure generated by Aa. Show that $\mathbf{RV}(C) = \mathbf{RV}(A)$.
- 5. Show that T eliminates quantifiers. [Hint : You can consider a maximal \mathfrak{L} -embedding $f : C \leq M \rightarrow N$. Start by showing that $\mathbf{RV}(C) = \mathrm{rv}(\mathbf{K}(C))$.]
- **Problem 2.** Let $M \models T$ and $A \leq M$.
 - 1. Let $a, b \in \mathbf{K}(M)$ with $v(rv(a)) = v(rv(b)) \notin \mathbb{Q} \cdot v(\mathbf{RV}(A))$. Show that tp(a/A) = tp(b/A).
- Let $f : \Gamma \to \mathbf{RV}$ be $\mathcal{L}(A)$ -definable.
 - 2. Show that $v(f(\Gamma)) \subseteq \mathbb{Q} \cdot \Gamma(A)$.
 - 3. Show that $v \circ f$ has finite image.
 - 4. Show that *f* has finite image.

Problem 3. Let (K, v) be a valued field $\gamma \in vK_{\geq 0}^{\times}$ and $(\xi_i)_{i < n} \in \mathbb{RV}_{\gamma} = K/1 + \gamma \mathfrak{m}$. Show that $\{\sum_{i < n} x_i : \operatorname{rv}_{\gamma}(x_i) = \xi_i\}$ is an open ball and give its radius.