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1. Valued fields 4

1.1. Definitions 5

All rings are commutative and unitary. 6

Definition 1.1.1. Let R be a ring, a valuation on R is a (surjective) map v ∶ R → Γ, where 7

(Γ,+,0,<, ) is an ordered commutative monoid(1), such that for every x, y ∈K: 8

(a) v(0) ≠ v(1) = 0; 9

(b) v(x + y) ⩾min{v(x), v(y)}; 10

(c) v(xy) = v(x) + v(y). 11

(d) v(R) ∖ {v(0)} ⊆ Γ is cancellable; i.e. for every z ∈ R, if v(x) + v(z) = v(y) + v(z) and 12

v(z) ≠ v(0), then v(x) = v(y). 13

Lemma 1.1.2. Let (R,v) be a valued ring. For every x, y ∈ R: 14

(1) v(−x) = v(x); 15

(2) if v(x) < v(y) then v(x + y) = v(x)(2); 16

(3) v(x) ⩽ v(0); 17

(4) {x ∈ R ∶ v(x) = v(0)} ⊆ R is a (proper) prime ideal. 18

Proof. (1) If 0◻v(−1), with◻ ∈ {⩽,⩾}, then v(−1)◻v(−1)+v(−1) = v((−1)2) = v(1) = 0. 19

So v(−1) = 0(3). It follows that v(−x) = v(−1) + v(x) = v(x). 20

(2) Assume v(x) < v(y). Since v(x+y) ⩾min{v(x), v(y)} = v(x) it suffices to rule out that 21

v(x+y) > v(x). If not, wewould have v(x) = v(x+y−y) ⩾min{v(x+y), v(y)} > v(x), 22

a contradiction. 23

(3) If v(x) > v(0), then v(x) = v(x + 0) = v(0), a contradiction. 24

(4) Let x, y ∈ R with v(y) = v(0), then v(xy) = v(x) + v(0) = v(x ⋅ 0) = v(0). Also, if 25

v(x) = v(0), we have v(x + y) ⩾min{v(x), v(y)} = 0 and hence v(x + y) = 0. Finally if 26

x, y ∈ R are such that v(x) + v(y) = v(xy) = v(0), then v(x) = 0 or v(y) = 0. 27

Remark 1.1.3. 1. From now on, we will write∞ ∶= v(0), which is both maximal and an- 28

nihilating. 29

1That is, < is a total order and for every x, y, z ∈ Γ:
(a) (x + y) + z = x + (y + z);
(b) x + y = y + x;
(c) x + 0 = x;
(d) if x ⩽ y then x + z ⩽ y + z.

2Equivalently, every triangle is isoceles.
3Exercise: Show that ordered monoids are torsion free.
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1. Valued fields

2. If R is a field, then (d) always holds. Indeed, v(R×) ⩽ Γ is a subgroup, but∞ = v(0) is 1

not invertible, so∞ ∉ v(R×). In fact, v(R) = v(R×) ⊍ {∞}. 2

3. Let (Γ,+,0,<,∞) = (R⩾0, ⋅,1,>,0). Then a valuation ∣.∣ ∶ K → R⩾0 is exactly a multi- 3

plicative norm onK verifying the strong triangular inequality: 4

∣x + y∣ ⩽max{∣x∣, ∣y∣} ⩽ ∣x∣ + ∣y∣ 5

for every x, y ∈K. 6

Fix (K,v) a valued field. 7

Definition 1.1.4. We define: 8

• the value group vK× ∶= v(K×) and its associated monoid vK ∶= v(K) = vK× ⊍ {∞}; 9

• the valuation ring O = Ov ∶= {x ∶ v(x) ⩾ 0} ⊆K, a local subring; 10

• its unique maximal idealm = mv ∶= {x ∶ v(x) > 0} ⊂ O; 11

• the residue fieldKv ∶= O/m and res = resv ∶ O → k the canonical projection. 12

Proof. We have v(0) = ∞ > 0 et v(1) = 0, so 0,1 ∈ O. Also, for every x, y ∈ O, v(x + y) ⩾ 13

min{v(x), v(y)} ⩾ 0 and v(xy) = v(x) + v(y) ⩾ 0 + 0 = 0. SoO ⊆K is a subring. Similarly, if 14

x, y ∈ m, v(x+y) ⩾min{v(x), v(y)} > 0 and if x ∈ O and y ∈ m, then v(xy) = v(x)+v(y) > 0 15

and hence m ⊆ O is a ideal. Note also that x ∈ O is invertible if and only if x−1 ∈ O, i.e. 16

−v(x) = v(x−1) ⩾ 0, or, equivalently, v(x) = 0. So O× = O ∖ m and m is indeed the unique 17

maximal ideal inO. 18

Proposition 1.1.5. LetR be a ring andK ⩾ R be a field. The following are equivalent: 19

(i) there exists a valuation v onK such thatR = Ov ; 20

(ii) for some prime ideal p ⊂ R, (R,p) is maximal for domination(4)inK —in particular, R 21

is local and p is its maximal ideal; 22

(iii) for all x ∈K×, either x ∈ R or x−1 ∈ R; 23

(iv) principal ideals ofR are totally ordered by inclusion andK = R(0); 24

(v) sub-R-modules ofK are totally ordered by inclusion; 25

(vi) the monoid (K/R×, ⋅,1) is totally ordered, where a ⩽ b if b ∈ R ⋅ a, and π ∶ K → K/R× is 26

a valuation. 27

We say thatR is a valuation ring if these equivalent conditions hold. 28

Proof. Note that (vi) trivially implies (i). 29

(i)⇒(ii) Let p ∶= mv = {x ∈ K ∶ v(x) > 0}. and let us assume that (R,p) is dominated by some 30

(S, q) with S ⩽ K. We want to show that S ⩽ R. Fix some s ∈ S. If v(s) < 0, then 31

s−1 ∈ p. So 1 = ss−1 ∈ S ⋅ p ⊆ q, a contradiction. It follows that v(s) ⩾ 0 and s ∈ R = Ov. 32

Since R ⩽ Rp ⩽ K and Rp ⋅ p ∩ R = p, (Rp,Rp ⋅ p) dominates (R,p). By maximality, 33

R = Rp is local and p is its maximal ideal. 34

4If R1,R2 ⩽ K are subrings and pi ⊂ Ri are prime ideals, (R2, p2) dominates (R1, p1) whenever R1 ⩽ R2 and
p2 ∩R1 = p1.
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1. Valued fields

(ii)⇒(iii) Let us first assume that p[x] ⊂ R[x] and let m ⊇ p[x] be some maximal ideal of R[x]. 1

Then m ∩ R is a ideal of R containing p but that does not contain 1. So it is equal to 2

p and (R[x],m) dominates (R,p). By maximality, we have R[x] = R and thus x ∈ R. 3

Applying this to x−1, we see that, if p[x−1] ⊂ R[x−1], then x−1 ∈ R. So we may assume 4

that 1 ∈ p[x] and 1 ∈ p[x−1] to derive a contradiction. Let m and n be minimal such 5

that ∑i⩽m aixi = 1 = ∑j⩽m bjx−j , for some ai, bj ∈ p. We may assume that m ⩽ n. 6

Since 1 − a0 ∈ R×, we have ci = ai(1 − a0)−1 ∈ p and ∑mi=1 cixi = 1 it follows that 1 = 7

∑j<n bjx−j +∑mi=1 bncix−(n−i), contradicting the minimality of n. 8

(iii)⇒(iv) It follows from (iii) thatK = R(0). Fix a, b ∈ R. If a−1b ∈ R, then (b) ⊆ (a). If not, by 9

(iii), we must have b−1a ∈ R and thus (a) ⊆ (b). 10

(iv)⇒(v) Let a,b ⩽ K be sub-R-modules and let us assume that there is some a ∈ a ∖ b. We want 11

to show that b ⊆ a. Let b ∈ b and write a = a0/a1 and b = b0/b1 with a0, a1, b0, b1 ∈ R. 12

By (iii) we either have a0b1 ∈ (b0a1), in which case a ∈ R ⋅ b ⊆ b, a contradiction, or 13

b0a1 ∈ (a0b1), in which case, b ∈ R ⋅ a ⊆ a. 14

(v)⇒(vi) The ordered set (K/R×,⩽) is isomorphic to the set of principal sub-R-modules of K 15

which is totally ordered by (v). Let us show that it is a monoid order. If b ∈ R ⋅a, then for 16

every c ∈K, bc ∈ R ⋅ ac. So a ⩽ b does indeed imply a ⋅ c ⩽ b ⋅ c. 17

Let us now check that π is a valuation. We have π(0) = 0 ≠ 1 = π(1). For every x, y ∈ K 18

we have x + y ∈ (x) ∩ (y), so π(x + y) ⩾ min{π(x), π(y)}, and, by definition, π(xy) = 19

π(x) ⋅ π(y). 20

The valuation in condition (i) is essentially unique: 21

Lemma 1.1.6. Let v be a valuation onK , f ∶K → L a field morphism andw a valuation on L. 22

The following are equivalent: 23

(i) Ov ⊆ f−1(Ow); 24

(ii) O×v ⊆ f−1(O×w) 25

(iii) there is a unique morphism g ∶ vK → wL such that: 26

K
v //

f
��

vK

g

��
L w

// wL

27

commutes. 28

Proof. 29

(i)⇒(ii) Let x ∈ O×v . Then, by (i), x−1 ∈ Ov ⊆ f−1(Ow) and hence f(x)−1 = f(x−1) ∈ Ow, in 30

other words, f(x) ∈ O×w. 31

(ii)⇒(i) Let x ∈ Ov. If x ∈ O×v , then, by (ii), x ∈ f−1(O×w) ⊆ f−1(Ow). If x ∉ O×v , then 1 + x ∈ O×v 32

and thus 1 + f(x) = f(1 + x) ∈ O×w ⊆ Ow and hence x = Ow. 33

(ii)⇒(iii) For the diagram to commute, wemust have, for every x ∈K, g(v(x)) = w(f(x)). There 34

remains to show that this defines an ordered group morphism. Let x ∈ K be such that 35

v(x) = 0, then x ∈ O×v and hence, by (ii), f(x) ∈ O×w. So w(f(x)) = 0. It follows that g 36

is well defined. Indeed let x, y ∈ K be such that v(x) = v(y). If v(x) = v(y) = ∞, then 37
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1. Valued fields

x = y = 0 and w(f(x)) = ∞ = w(f(y)). If v(x) = v(y) ≠ ∞, then v(xy−1) = 0 and 1

hencew(f(xy−1)) = 0, i.e. w(f(x)) = w(f(y)). 2

Checking that g is an ordered monoid morphism is a matter of straighforward verifica- 3

tion. For every x, y ∈K, g(v(x)+ v(y)) = g(v(xy)) = w(f(xy)) = w(f(x))+w(f(y)) 4

and v(x) ⩾ v(y) if and only if x ∈ Ov ⋅ y, which, by (i), implies that f(x) ∈ Ow ⋅ f(y), i.e. 5

w(f(x)) ⩾ w(f(y)). 6

(iii)⇒(i) Let x ∈ Ov. Then, by (iii), w(f(x)) = g(v(x)) ⩾ 0 and hence f(x) ∈ Ow. 7

If f = idK , we say that v and w are dependent. 8

Corollary 1.1.7. Let v be a valuation onK , f ∶ K → L a field morphism and w a valuation on 9

L. The following are equivalent: 10

(i) Ov = f−1(Ow); 11

(ii) O×v = f−1(O×w); 12

(iii) (Ow,mw) dominates (f(Ov), f(mw)); 13

(iv) the morphism g ∶ vK → wL of lemma 1.1.6.(iii) is injective. 14

We say that f is a valued field embedding. 15

Proof. Note that (i) and (iii) imply lemma 1.1.6.(i) and (ii) implies lemma 1.1.6.(ii), all three 16

statements imply lemma 1.1.6.(iii) and the existence of g. Now the morphism g is injective if 17

and only if, for every x ∈K 18

• v(x) ⩾ 0 if and only if w(f(x)) ⩾ 0, i.e. Ov = f−1(Ow); 19

• v(x) = 0 if and only if w(f(x)) = 0, i.e. O×v = f−1(O×w); 20

• v(x) > 0 if and only if w(f(x)) > 0, i.e. f(mv) ⊆ mw ∩ f(Ov) ⊆ mw ∩ f(K) ⊆ f(mv). 21

Since, by lemma 1.1.6.(i), we have f(Ov) ⊆ Ow, this is equivalent to the domination of 22

(f(Ov), f(mw)) by (Ow,mw). 23

Corollary 1.1.8. Let vi ∶K → Γi, for i = 1,2, be valuations. The following are equivalent: 24

(i) Ov1 = Ov2 ; 25

(ii) there is a unique isomorphism g ∶ v1K → v2K such that: 26

v1KOO

g

��
K

v1 66mmmmmm

v2 ((QQ
QQQ

Q

v2K

27

commutes. 28

We say that v1 and v2 are equivalent valuations. 29

Proof. Exercise. 30

Corollary 1.1.9. LetR be a ring, p ⊂ R be prime andK ⩾ R afield. Then there exists a valuation 31

ringO ⊆K = O(0) with maximal idealm such that (O,m) dominates (R,p). 32
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1. Valued fields

Proof. The set of pairs (S, q), where S ⩽ K and q ⊂ S is prime, ordered by domination is 1

inductive. Indeed, let (Si, qi)i be a chain and let S = ⋃i Si ⩽ K, a subring, and q = ⋃i qi = 2

⋃i S ⋅ qi ⊂ S an ideal. If, for some a, b ∈ S, ab ∈ q, let i be sufficiently large such that a, b ∈ Si 3

and ab ∈ qi. Then one of a or b is in qi ⊆ q and hence q ⊂ S is prime. Moverover, for any i, 4

by construction qi ⊆ q ∩ Si and if a ∈ q ∩ Si, then, for some j ⩾ i, a ∈ qj ∩ Si = qi, so (S, q) 5

dominates (Si, qi). 6

By Zorn’s lemma, (R,p) is contained in a maximal element (O,m). By proposition 1.1.5, 7

O is a valuation ring andm is its maximal ideal. 8

Corollary 1.1.10. Let (K,v) be a valued field and K ⩽ L be a field extension. There exists a 9

valuationw on L extending v. 10

Proof. Applying corollary 1.1.9 to (Ov,mv) in L, we find a valuation ringO ⊆ L = O(0), with 11

maximal idealm, that dominates (Ov,mv). We now conclude with corollary 1.1.7. 12

Lemma 1.1.11. The ringO is integrally closed — that is, for every P = Xd +∑i<d aixi ∈ O[x] 13

and c ∈K = O(0), if P (c) = 0, then c ∈ O. 14

Proof. Assume v(c) < 0. Then, for every i < d, v(cd) = d ⋅ v(c) < v(ai) + iv(c) and hence 15

v(P (c)) = v(cd +∑i<d aici) = d ⋅ v(c) ≠∞. 16

Theorem 1.1.12 (Weak approximation theorem). LetK be a field and (vi)i<n be valuations on 17

K that are pairwise not dependent. Then, for every ai ∈ Ovi , then exists a ∈K with vi(a−ai) > 0. 18

Proof. LetOi ∶= Ovi ,R ∶= ⋂iOi and pi ∶= mvi ∩R. 19

Claim 1.1.12.1. Oi = Rpi . 20

Proof. We obviously haveRpi ⊆ Oi. There remains to show thatOi ⊆ Rpi . Fix a ∈ Oi. Let I ∶= 21

{j ∶ a ∈ Oj}. For every j ∈ I , let fj ∈ Z[x]be amonic polynomial with fj(a) ∈ mj if it exists and 22

fj = 1 otherwise. Let also f = 1 + x∏j∈I fj . If j ∈ I and fj ≠ 1, we have vj(f(a)) = vj(1) = 0. 23

If fj = 1, by hypothesis, fj(a) ∉ mj and hence we also have vj(f(a)) = 0. If j ∉ I , then, since f 24

is monic and vj(a) < 0, vj(f(a)) = deg(f) ⋅vj(a). So vj(af(a)−1) = (1−deg(f)) ⋅vj(a) ⩾ 0. 25

Let c = f(a)−1. In both cases, we have vj(c) ⩾ 0 and vj(ac) ⩾ 0 and hence c, ac ∈ R. Also, 26

vi(c) = 0 and thus c ∉ pi. It follows that a = ac/c ∈ Rpi . ◊ 27

Claim 1.1.12.2. The pi are the maximal ideals ofR and they are distinct. 28

Proof. Let x ∈ R ∖ ⋃i pi. Then, vi(x) ⩽ 0 for every i and thus x−1 ∈ ⋂iOi = R. So R = 29

(R ∖ ⋃i pi)−1R and any proper ideal a ⊆ R is included in ⋃i pi. Let I be minimal such that 30

a ⊆ ⋃i∈I pi. If ∣I ∣ > 1, for every i ∈ I , by minimality, a ∩ pi ∖⋃i≠j∈I pj contains some ci. Pick 31

any i0 ∈ I and let a = ci0 +∏i≠i0 ci. Since pi0 is prime and non of the ci, for i ≠ i0, are in pi0 , 32

it follows that∏i≠i0 ci ∉ pi0 . Since ci0 ∈ pi0 , it follows that a ∉ pi0 . However, for every i ≠ i0, 33

∏i≠i0 ci ∈ pi and ci0 ∉ pi so a ∉ pi. This contradicts that a ∈ a ⊆ ⋃i∈I pi. So a ⊆ pi, for some i. 34

Note also that if pi ⊆ pj , then Oj = Rpj ⊆ Rpi = Oi and, by hypothesis, i = j. So the pi are 35

indeed distinct and the maximal ideals ofR. ◊ 36

By theChinese reminder theorem, thenaturalmapR →∏iR/pi ≃∏iRpi/piRpi =∏iOi/mi 37

is surjective. It follows that we can find a ∈ ⋂i ai +mi. 38
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1. Valued fields

1.2. Topology 1

Definition 1.2.1. Fix x ∈K and γ ∈ vK. We define: 2

• the closed ball B(x, γ) ∶= {y ∈K ∶ v(y − x) ⩾ γ} of radius γ around x; 3

• the open ball B̊(x, γ) ∶= {y ∈K ∶ v(y − x) > γ} of radius γ around x. 4

By convention,K is considered to be the open ball of radius−∞. Note that points are closed 5

balls of radius∞. 6

Lemma 1.2.2. Let b be a ball inK . Then Ib ∶= {x − y ∶ x, y ∈ b} ⊆ K is a sub-O-module and 7

b = x + Ib for any x ∈ b. 8

Proof. Let us first assume that b = B(c, v(d)) with c, d ∈ K, then {x − c ∶ x ∈ b} = dO is a 9

sub-O-module of K. Moreover, if x, y ∈ b, then x − y = (x − c) − (y − c) ∈ dO and hence 10

Ib ⊆ {x − c ∶ x ∈ b} = dO ⊆ Ib. Similarly, if b = B̊(c, v(d)), then Ib = dm a sub-O-module ofK. 11

By definition b = c + Ib is an additive coset of Ib and hence b = c + Ib = x + Ib for any x ∈ b. 12

Lemma 1.2.3. Let b1, b2 be balls ofK , then at least one of the following holds: 13

(i) b1 ∩ b2 = ∅; 14

(ii) b1 ⊆ b2; 15

(iii) b2 ⊆ b1. 16

Proof. Note that we either have Ib1 ⊆ Ib2 or Ib2 ⊆ Ib1 . So we may assume that b1 ∩ b2 ≠ ∅ and 17

Ib1 ⊆ Ib2 . Let x ∈ b1 ∩ b2, we then have b1 = x + Ib1 ⊆ x + Ib2 = b2. 18

Lemma 1.2.4. Open balls generate a totally disconnected(5)Hausdorff field topology. 19

In other words, the ideals γm ∶= B̊(0, γ) ⊆ O, for γ ∈ vK×⩾0, form a basis of neighbour- 20

hoods of 0 and we consider the (unique) additive group topology generated by this basis of 21

neighbourhoods of 0. 22

Proof. Let U ⊂K be open and a, b ∈K be such that a+ b ∈ U . Then there exists γ ∈ vK× such 23

that U ⊇ (a + b) + γm = (a + γm) + (b + γm), i.e. (a, b) is in the interior of +−1(U) ⊆ K2. So 24

+ is continuous. Similarly, if −a ∈ U , for some γ ∈ vK× we have U ⊇ −a + γm = −(a + γm), 25

So − is continuous. Finally, if ab ∈ U , there exists γ ∈ vK×, that we may assume larger than 26

0, with U ⊇ ab + γm ⊇ ab + a ⋅ δm + b ⋅ δm + δm ⋅ δm ⊇ (a + δm) ⋅ (b + δm), provided γ ⩽ 27

min{δ + v(a), δ + v(b), δ}. 28

Moreover, for everya ∈K×, γ ∈ vK× andx ∈ (max{v(a), γ−2⋅v(a)})m, by lemma1.1.2.(2), 29

we have v(a+x) = v(a), and thus v((a+x)−1−a−1) = v(xa−1(a+x)−1) = v(x)−2 ⋅v(a) > γ; 30

so the inverse map is indeed continuous a a. 31

The topology isHausdorff since, for every a, b ∈K distinct, B̊(a, v(a−b))∩ B̊(b, v(a−b)) = 32

∅. But since, for any γ ∈ vK× and c ∉ B̊(a, γ), B̊(a, γ)∩ B̊(c, γ) = ∅, any open ball is closed in 33

the topology and hence the topology is totally disconnected. 34

5A topology is totally disconnected if the only connected subsets are points. If it is Hausdorff, it is totally discon-
nected if and only if any two distinct points are separated by a clopen set.
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1. Valued fields

In fact, every non trivial ball is both open and closed in this topology and the topology is also 1

generated by the non trivial closed balls. 2

Definition 1.2.5. Fix F a (proper) filter(6)onK and x ∈K. 3

(1) The filter F is Cauchy if for every γ ∈ vK, there is an open ball of radius γ in F— equiv- 4

alently if there is a ball of radius γ in F. 5

(2) The filter F converges to x, and we write limF = x, if for every γ ∈ vK×, B̊(x, γ) ∈ F— 6

equivalently, if F ⊇Nx, the neighbourhood filter of x. 7

(3) The fieldK is complete if every Cauchy filter onK converges to some x ∈K. 8

Definition 1.2.6 (Leading terms). Fix γ ∈ vK×⩾0. We define the multiplicative monoid of γ- 9

leading terms RVγ = RVγ,v ∶= K/(1 + γm). Let rvγ = rvγ,v ∶ K → RVγ denote the canonical 10

projection. 11

Remark 1.2.7. 1. It is naturally a multiplicative monoid and we have the following short 12

exact sequence : 13

1→ R×γ → RV×γ → vK× → 0, 14

whereRγ = O/γm andRV×γ ∶= RVγ ∖{0}. We also denote v the natural mapRVγ → vK 15

2. There is also the trace of an additive structure onRVγ . We will describe it later. 16

3. We usually simply denoteRV0 asRV and rv0 as rv. 17

Definition 1.2.8. Let 18

K̂ = K̂v ∶= lim←Ð
γ∈vK×⩾0

RVγ 19

as multiplicative monoids, where the transition maps rvγ,δ ∶ RVγ → RVδ, for∞ > γ > δ ⩾ 0, 20

are the natural maps. We also define: 21

• v ∶ K̂ → vK by v(x) = v(xγ) for any γ ∈ vK×⩾0; 22

• + ∶ K̂2 → K̂ by (x + y)γ = rvγ(Xε), whereXε ∶= rv−1ε (xε) + rv−1ε (yε) does not contain 23

0, for sufficiently large ε ∈ vK×⩾0. If 0 ∈Xε for all ε, then define x + y = (0)γ =∶ 0. 24

Proof. Since v = v ○ rvγ,δ, v is indeed well-defined on K̂. As for +, let us fix x, y ∈ K̂. Note that 25

Xε is the open ball of radius δ = ε +min{v(x), v(y)} around any of its elements. If 0 ∉ Xε, 26

then v(Xε) is a singleton {γ} and rvδ−γ(Xε) is also a singleton. Since theXε form a chain, γ is 27

independent of ε, whereas δ increases as ε increases. So (x + y)γ−δ is well defined. 28

Proposition 1.2.9. The valued field (K̂,+, ⋅, v) is complete. 29

Proof. The fact the (K̂,+, ⋅) is a field follows more or less directly form the definitions. Let 30

us check distributivity, for example. Let x, y, z ∈ K̂. Then rv−1ε (zε)(rv−1ε (xε) + rv−1ε (yε)) = 31

rv−1ε (zε) ⋅rv−1ε (xε)+rv−1ε (zε) ⋅rv−1ε (yε). Since these sets characterise both z(x+y) and zx+zy, 32

they must be equal. 33

6That is, F ⊆ P(K) such that:
(a) K ∈ F,∅ ∉ F;
(b) for every U,V ∈ F, U ∩ V ∈ F;
(c) for every U ⊆ V ⊆K, if U ∈ F then V ⊆K;
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1. Valued fields

As for completeness, for every x ∈ K̂, and γ ∈ vK̂ = vK, B̊(x, γ) = rv−1γ−v(x)(xγ−v(x)) ⊆ K̂. 1

It follows that aCauchy filter on K̂ is generated by sets of the form rv−1γ (ζγ), for every γ ∈ vK×⩾0 2

and thus converges to ζ ∶= (ζγ)γ ∈ K̂. 3

Remark 1.2.10. We have: 4

• ι ∶K → K̂ has dense image(7); 5

• OK̂ ≃ lim←ÐO/γmK is the closure ofOK ⊆ K̂; 6

• mK̂ = OK̂ ⋅mK is the closure ofmK ⊆ K̂; 7

• vK̂ = vK; 8

• K̂v ≃Kv; 9

• K/(1 +mK) ≃ K̂/(1 +mK̂). 10

Proof. Exercise 11

Definition 1.2.11. Fix F a filter onK and x ∈K. 12

(1) The filter F is pseudo Cauchy if it is generated by balls. 13

(2) The filter F accumulates at x, if any open ball around xmeets any element of F—equiv- 14

alently, x ∈ ⋂U∈FU =∶ F. 15

(3) ThefieldK is spherically complete if every pseudoCauchyfilter onK accumulates at some 16

in x ∈K. 17

Remark 1.2.12. • Usually, the accumulation points of a pseudoCauchy filter are called its 18

pseudo limits. Since balls are closed, in that case, we have F ∶= ⋂u∈FU . 19

• The (potential) uniqueness of spherical completions is amuch harder question that we’ll 20

come back to later. 21

Definition 1.2.13. Let F be a filter on some setX and f ∶X → Y . We denote by f⋆F the filter 22

generated by {f(U) ∶ U ∈ F}— that is, the filter {V ⊆ Y ∶ f(U) ⊆ V , for some U ∈ F}. 23

Proof. Let U,V ∈ F. Note that, since U ≠ ∅, f(U) ≠ ∅. and since f(U ∩ V ) ⊆ f(U) ∩ f(V ), 24

the set {f(U) ∶ U ∈ F} has the finite intersection property and thus generates a filter. 25

1.3. Examples 26

1.3.1. Adic valuations 27

Example 1.3.1. FixK a field. 28

7In fact, K̂ is the unique, up to uniqueK-isomorphism, complete dense valued field extension ofK. It also has
the following universal properties: for every f ∶ K → L with L complete and g ∶ K → F with dense image, we
have:

K̂

∃!

��

K̂

K

::tttttt

%%KK
KK

KK K

::tttttt

%%KK
KKK

K

L F

∃!

OO
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1. Valued fields

1. The map −deg ∶K(x)→ Z ∪ {∞}(8) is a valuation. 1

2. Define v0 on K(x) by v0(∑ni=0 aixi) = min{i ∶ ai ≠ 0} ∈ Z ∪ {∞} and v0(P /Q) = 2

v0(P )− v0(Q). Then v0 ∶K(x)→ Z ∪∞ is a valuation. Note that, if f ∈K(x)×, v0(f) 3

is the unique n ∈ Z such that f = xnP /Qwhere P,Q are prime to x. 4

• We have Ov0 = {f ∈ K(x) ∶ v0(f) ⩾ 0} = {P /Q ∶ P,Q ∈ K[x] andQ ∉ (x)} = 5

K[x](x) and mv0 = {f ∈ K(x) ∶ v0(f) ⩾ v(x)} = xOv0 . It follows that Kv0 = 6

K[x](x)/x ≃ (K[x]/x)(0) ≃K. The isomorphism is induced by the map: K[x]→ 7

K sending P to P (0). 8

• For every f ∈ K(x), we have −deg(f) = v0(f(x−1)). Indeed, let P,Q ∈ K[X] ∖ 9

{0}. Then P (x−1) = x−deg(P )P1(x) where P1(x) = xdeg(P )P (x−1) ∈ K[X] ∖ 10

(X) and hence v0(P (x−1)/Q(x−1)) = v0(xdeg(Q)−deg(P )) + v0(P1(x)Q1(x)) = 11

−deg(P /Q). We say thatf ↦ f(x−1) is a valuedfield isomorphism (K(X),−deg)→ 12

(K(X), v0) 13

It follows that O−deg = {f ∈ K(x) ∶ deg(f) ⩽ 0} = {f(x−1) ∶ f ∈ Ov0}, 14

m−deg = {f ∈ K(x) ∶ deg(f) < 0} = {f(x−1) ∶ f ∈ mv0}, and K[x](−deg) ≃ 15

Kv0 ≃ K where the isomorphisme is induced by the map O−deg → K given by 16

∑ni=0 aixi/∑ni=0 bixi ↦ an/bn where bn ≠ 0. In a (very precise) sense, this is the map 17

f ↦ f(∞). 18

Definition 1.3.2. LetR be an integral domain and p ∈ R be prime. For every x ∈ R, define the 19

p-adic valuation vp(x) =max{n ∈ Z⩾0 ∶ x ∈ (p)n} ∈ Z ∪ {∞}. 20

In particular, it induces a valuation vp ∶Kp ∶= (R/⋂n(p)n)(0) → Z ∪ {∞}. 21

Proof. We have 1 ∈ (p)n if and only if n = 0— by convention p0 = 1. So vp(1) = 0. And we 22

have 0 ∈ ⋂n⩾0, so vp(0) = ∞ ≠ 0. Let x, y ∈ R. If x, y ∈ (p)n — i.e. vp(x), vp(y) ⩾ n— 23

for some n ∈ Z⩾0, then x + y ∈ (p)n and thus vp(x + y) ⩾ n. Taking n = min{vp(x), vp(y)}, 24

we see that vp(x + y) ⩾ min{vp(x), vp(y)}, as required. Finally, if x ∈ (p)m and y ∈ (p)n, for 25

somem,n ∈ Z⩾0, then xy ∈ (p)n+m. If xy ∈ (p)n+m+1, let x0, y0, z0 ∈ R be such that x = pmx0, 26

y = pny0 and pn+mx0y0 = xy = pn+m+1z0. It follows thatx0y0 ∈ (p) and thusx0 ∈ (p), inwhich 27

case x ∈ (p)n+1, or y0 ∈ (p), in which case y ∈ (p)m+1. It follows that vp(xy) = vp(x) + vp(y). 28

So vp is a valuation onR. 29

Note that if v(x) = ∞, for any y ∈ R, we have vp(y + x) = vp(y), so vp factorises through 30

the quotient by p = v−1p (∞) = ⋂n(p)n. Moreover, for any x, y ∈ R, if v(x) <∞ or v(y) <∞, 31

then v(xy) = v(x) + v(y) <∞. Thus p ⊆ R is prime andR/p is an integral domain. For every 32

x ∈ R/p and non zero y ∈ R/p, we define v(x/y) = v(x) − v(y) ∈ Z ∪ {∞}. 33

We have vp(0) = ∞ ≠ 0 = vp(1) and for every x, y, r, s ∈ R/p, with y, s non zero, we have 34

vp(x/y+r/s) = vp((xs+ry)/(ys)) = vp(xs+ry)−vp(y)−vp(s) ⩾min{vp(x)+vp(s), vp(r)+ 35

vp(y)} − vp(y) − vp(s) = min{vp(x) − vp(y), vp(r) − vp(s)} = min{vp(x/y), vp(r/s)} and 36

vp(x/y ⋅ r/s) = vp((xr)/(ys)) = vp(xr)− vp(ys) = vp(x)− vp(y)+ vp(r)− vp(s) = vp(x/y)+ 37

vp(r/s). 38

Example 1.3.3. 1. vx ∶K[x]→ Z ∪ {∞} induces v0 ∶K(X)→ Z ∪ {∞}. 39

2. For every, prime p ∈ Z and x ∈ Q×, vp(x) is the unique n ∈ Z such that x = pny/z with 40

y, z ∈ Z≠0 prime to p. 41

8By convention, deg(0) = −deg(0) =∞.
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1. Valued fields

Lemma 1.3.4. FixR an integral domain and p ∈ R be prime. ThenOK̂p
≃ lim←ÐnR/(p)

n. 1

Proof. Exercise 2

Example 1.3.5. 1. K̂v0 ≃ K((x)) ∶= {∑i⩾i0 aix
i ∶ ai ∈ K}— the Laurent series field. We 3

have: 4

• v(∑i⩾i0 aix
i) = min{i ∶ ai ≠ 0}, ∑i⩾i0 aix

i + ∑i⩾i0 cix
i = ∑i⩾i0(ai + ci)x

i and 5

(∑i⩾i0 aix
i) ⋅ (∑j⩾j0 cjx

j) = ∑k⩾i0+j0(∑i+j=k aicj)x
k. 6

• OK̂v0
≃K[[x]] ∶= {∑i⩾0 aixi ∶ ai ∈K}— the power series ring. 7

2. Qp ∶= Q̂vp and Zp ∶= OQp = lim←ÐZ/pnZ. 8

1.3.2. Hahn fields 9

Fix k a field and Γ an ordered abelian group. 10

Definition 1.3.6 (Hahn Fields). We define k((Γ)) ∶= {f ∶ Γ → k ∶ supp(f) ∶= {γ ∈ Γ ∶ f(γ) ≠ 11

0} is well ordered}. We also define, for every f, g ∈ k((Γ)) and γ ∈ Γ: 12

• (f + g)(γ) ∶= f(γ) + g(γ); 13

• (f ⋅ g)(γ) ∶= ∑ε+δ=γ f(ε)g(δ); 14

• v(f) ∶=min{γ ∈ Γ ∶ f(γ) ≠ 0} ∈ Γ ⊔ {∞}. 15

Proof. The sum in the definition of ⋅ is finite. If it is infinite, we can find an increasing sequence 16

in the set {ε ∶ f(ε) ≠ 0 and g(γ − ε) ≠ 0}. But then the sequence of γ − ε is then decreasing, 17

contradicting the fact that supp(g) is well-ordered. Also supp(f + g) ⊆ supp(f) ∪ supp(g) is 18

well ordered. 19

There remains to show that anyX ⊆ supp(f ⋅ g) has a minimum. Let Y ∶= {γ ∈ supp(f) ∶ 20

for all γ′ ∈ supp(f) and δ′ ∈ supp(g), γ′ + δ′ ∈X and γ′ + δ′ ⩽ (γ + supp(g)) ∩X ≠ ∅ implies 21

γ′ ⩾ γ}. Note that theminimal γ such that γ+supp(g)∩Z ≠ ∅ is in Y and that for every γ ∈ Y , 22

there exists δ ∈ supp(g)with γ+δ ∈X . Let δ0 beminimal such thatY +δ∩X ≠ ∅ and γ0 ∈ Y be 23

such that γ0+δ0 ∈X . IfX<γ0+δ0 ≠ ∅, let γ1 beminimal such that γ+supp(g)∩X<γ0+δ0 ≠ ∅ and 24

δ1 ∈ supp(g)beminimal such that γ1+δ ∈X<γ0+δ0 . Note that, sinceγ0 ∈ Y andγ1+δ1 < γ0+δ0, 25

we have γ0 ⩽ γ1. Also, if γ′ ∈ supp(f) and δ′ ∈ supp(g) are such that γ′ + δ′ ⩽ γ1 + δ1 < γ0 + δ0, 26

then by minimality of γ1, γ1 ⩽ γ′, i.e. γ1 ∈ Y . By minimality of δ0, we have δ0 ⩽ δ1 and hence 27

γ0 + δ0 ⩽ γ1 + δ1 < γ0 + δ0, a contradiction. SoX<γ0+δ0 = ∅ and γ0 + δ0 is minimal inX . 28

We usually write elements of k((Γ)) as formal power series∑γ∈Γ aγtγ . 29

Proposition 1.3.7. The valued field (k((Γ)),+, ⋅, v) is spherically complete. 30

Proof. One can easily compute that k((Γ)) is a ring with 0(γ) = 0, 1(0) = 1, 1(γ) = 0 and 31

(−f)(γ) = −f(γ). We do have v(1) = 0, v(0) =∞. Since supp(f+g) ⊆ supp(f)∪supp(g), we 32

have v(f + g) ⩾min{v(f), v(g)}. Finally, if γ < v(f), δ < v(g), then∑γ′+δ′=γ+δ f(γ)g(δ) = 0 33

and thus v(f ⋅ g) = v(f) + v(g). So (k((Γ)),+, ⋅, v) is a valued ring. 34

Let us now show that it is spherically complete. Note that, for every f ∈ k((Γ)) and γ ∈ Γ, 35

B̊(f, γ) ∶= {g ∈ k((Γ)) ∶ for every δ ⩽ γ, g(δ) = f(δ)}. LetB be a pseudo Cauchy filter. IfB 36

is principal, thenB ≠ ∅. So we may assume that it is not principal and therefore generated by 37
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1. Valued fields

open balls. For every γ ∈ Γ, let f(γ) = h(γ), where B̊(h, γ) ∈ B and f(γ) = 0 if no such ball 1

exists. Let I ⊆ supp(f)be non empty andpick some γ ∈ I . Then there is some B̊(h, γ) ∈B and 2

supp(f)∩ (−∞, γ] = supp(h)∩ (−∞, γ]. In particular, I ∩ (−∞, γ] ⊆ supp(h) has a minimal 3

element. So f ∈ k((Γ)) and by construction f ∈B. 4

There remains to show that k((Γ)) is a field. Fix any x ∈ k((Γ)) ∖ 0 and, for every γ ∈ Γ, let 5

bγ = {y ∈ k((Γ)) ∶ v(xy − 1) > γ + v(x)}. For every y ∈ bγ and e ∈ k((Γ)), v(x(y + e) − 1) > 6

γ + v(x) if and only if v(e) > γ. So either bγ is an open ball of radius γ or it is empty. Let 7

B be the filter generated by the non empty bγ . By spherical completeness, we find y ∈ B. If 8

v(xy − 1) = ε + v(x) < ∞, let z(ε) = x(v(x))−1(1ε+v(x)=0 −∑γ+δ=ε+v(x),δ<ε x(γ)y(δ)) and 9

z(γ) = y(γ) otherwise. Then v(xz − 1) > ε + v(x), so bε ≠ ∅. However, v(y − z) = ε, 10

contradicting that y ∈ bε. It follows that xy − 1 = 0, i.e. y = x−1. 11

Remark 1.3.8. We have: 12

• vk((Γ)) = Γ ⊍ {∞}; 13

• k((Γ))v ≃ k. The isomorphism is induced by the map x↦ x(0). 14

1.3.3. Witt vectors 15

We now wish to build mixed characterstic valued fields with prescribed (perfect) residue field. 16

Fix p a prime. 17

Definition 1.3.9 (Witt polynomials). For every n ∈ Z⩾0, let wpn(x) = ∑ni=0 pix
pn−i

i ∈ Z[x] and 18

w(x) = (wpn(x))n⩾0. 19

Note that wpn+1(x) = wpn(xp) + pn+1xn+1. 20

Lemma 1.3.10. Let P (y) ∈ Z[y] where y is a tuple. There exists unique Pn ∈ Z[z0, . . . , zn], 21

where ∣zi∣ = ∣y∣ such that for every n ∈ Z⩾0, wpn((Pi(z))i) = P (wpn(z)). 22

In other terms, w((Pi(z))i) = (P (wpi(z)))i. 23

Proof. Note thatwpn((Pi(z))i) = pnPn(z)+wn−1((Pi(z)p)i). It follows thatP0 = P and that, 24

by induction on n, there is a unique Pn ∈ Q[z]with the required properties. There remains to 25

show that Pn ∈ Z[z]. We also proceed by induction on n. 26

Claim 1.3.10.1. Let A be some ring, a ⊆ A contain p, a, b ∈ A and n ∈ Z>0 such that a ≡ b 27

mod an, then ap ≡ bp mod an+1. 28

Proof. We have (a + c)p = ap +∑p−1i=1 (
p
i
)an−ici + cp. For every 0 < i < p, we have (pi) ∈ a and 29

n + 1 ⩽ np. So if c ∈ an, we have (a + c)p − ap ≡ 0 mod an+1. ◊ 30

In particular, since, for all i < n, Pi(zp) ≡ Pi(z)p mod p, we have Pi(zp)p
n−i−1 ≡ Pi(z)p

n−i
31

mod pn−i and hence: 32

pnPn(z) = wpn((Pi(z))i) −wpn−1((Pi(z)p)i) 33

= P (wpn(z)) −wpn−1((Pi(z)p)i) 34

12



1. Valued fields

≡ P (wpn−1(zp)) − ∑
i<n−1

piPi(z)p
n−i

mod pn 1

≡ wpn−1((Pi(zp))i) − ∑
i<n−1

piPi(zp)p
n−1−i

mod pn 2

= 0 3

It follows that Pn(z) ∈ Z[x]. 4

5

Let Sn, Pn ∈ Z[x, y] be the unique polynomials such thatwpn(S(x, y)) = w(x)+w(y) and 6

w(P (x, y)) = w(x) ⋅w(y). 7

Definition 1.3.11 (Witt vectors). For n ∈ Z>0 ∪ {∞}, , we define the functorsWpn ∶ Ring → 8

Ring of length nWitt vectors, byWpn(A) ∶= (An, (Si)i<n, (Pi)i<n) andWpn(f) ∶Wpn(A)→ 9

Wpn(B) ∶= a↦ (f(ai))i<n, for every ring morphism f ∶ A→ B. 10

Furthermore, we have natural morphisms gpn ∶ Wpn(A) → An ∶= a ↦ (wpi(a))i<n and 11

respn,pm ∶Wpm(A)→Wpn(A) ∶= a↦ (ai)i<n, for every n ⩽m ∈ Z>0 ∪ {∞}. 12

The gpn are usually called the ghost component maps. We will often writeW forWp∞ . 13

Proof. Let 0 ∶= (0)i<n ∈ Wpn(A), 1 ∶= (1i=0)i<n andMi ∈ Z[x] be such that wpn(M(x)) = 14

−wpn(x). We can now check that all the required equality for Wpn(A) to be a ring hold us- 15

ing lemma 1.3.10(9). Now, if f ∶ A → B is a ring morphism. then for any a, b ∈ Wpn(A), 16

Wpn(f)(a + b) =Wpn(f)((Si(a, b))i) = (f(Si(a, b)))i = (Si(f(a), f(b)))i =Wpn(f)(a) + 17

Wpn(f)(b), and similarly for multiplication. SoWpn(f) is a ring morphism. The fact that the 18

gpn and the respn,pm are morphism is an immediate consequence of their definitions. 19

Remark 1.3.12. It seems as if, to compute in the Witt vectors, it suffices to compute ghost 20

component equalities for polynomials over Z. And indeed, the gn, being bijective over Q[x], 21

are injective onZ[x], where x is an arbitrary tuple. Since, for any ringA generated by a tuple a, 22

there is a natural surjectionZ[a]→ A, ghost component equalities translate to actual equalities 23

inWpn(Z[x])which are transported functorially to anyWpn(A). 24

For example, for everya ∈ A, let [a] = (a⋅1i=0)i<n ∈Wpn(A). InZ[x, y], wehavewpn(P ([x], [y])) =25

wpn([x]) ⋅wpn([y]) = xp
n ⋅ypn = wpn([x ⋅y]). It follows that [x] ⋅[y] = [x ⋅y] inWpn(Z[x, y]) 26

9In Z[x, y, z]:

wpn(S(S(x, y), z)) = wpn(S(x, y)) +wpn(z) = wpn(x) +wpn(y) +wpn(z)
wpn(S(x,S(y, z))) = wpn(x) +wpn(S(y, z)) = wpn(x) +wpn(y) +wpn(z)

wpn(S(x,0)) = wpn(x) +wpn(0) = wpn(x) + 0 = wpn(x)
wpn(S(x,M(x))) = wpn(x) +wpn(M(x)) = wpn(x) −wpn(x) = 0

wpn(P (P (x, y), z)) = wpn(P (x, y)) ⋅wpn(z) = wpn(x) ⋅wpn(y) ⋅wpn(z)
wpn(P (x,P (y, z))) = wpn(x) ⋅wpn(P (y, z)) = wpn(x) ⋅wpn(y) ⋅wpn(z)

wpn(P (x, y)) = wpn(x) ⋅wpn(y)
wpn(P (y, x)) = wpn(y) ⋅wpn(x) = wpn(x) ⋅wpn(y)
wpn(P (x,1)) = wpn(x) ⋅wpn(1) = wpn(x) ⋅ 1 = wpn(x)

wpn(P (S(x, y), z)) = wpn(S(x, y)) ⋅wpn(z) = (wpn(x) +wpn(y)) ⋅wpn(z)
wpn(S(P (x, z), P (y, z))) = wpn(P (x, z)) +wpn(P (y, z)) = wpn(x) ⋅wpn(z) +wpn(y) ⋅wpn(z)
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1. Valued fields

and, since, for any f ∶ Z[x, y] → A, Wpn(f)([x]) = [f(x)], the equality also holds over any 1

ring. 2

Definition 1.3.13. A p-ring is a ring A with a choice of ideal a ⩽ A such that its residue ring 3

A/a is characteristic p, ϕp ∶ A/a → A/a ∶= x ↦ xp is bijective and A is Hausdorff complete in 4

its a-adic topology— i.e. A ≃ lim←ÐnA/a
n. 5

We say that (A,a) is unramified if a = (p). 6

Example 1.3.14. Zp is an unramified p-ring. 7

For every ringR, letmn(R) ⊆Wpn(R) be the kernel of res0,n ∶Wpn(R)→W1(R) ≃ R. 8

Lemma 1.3.15. IfR is a characteristic p ring with ϕp ∶ R → R bijective, then (Wpn(R),mn(R)) 9

is an unramified p-ring with residue ringR. 10

Proof. The only non-obvious statement is thatmn(R)i = (pi). 11

Claim 1.3.15.1. For all ringR and x ∈W(R), (p ⋅x)0 ≡ 0 mod p and for every n, (p ⋅x)n+1 ≡ 12

xpn mod p. 13

Proof. Let y = p ⋅ x, zi = 1i>0x
p
i−1. We have w1(y) = p ⋅ w1(x) ≡ 0 = z0 = w1(z) mod p and 14

for all n > 0, wpn(z) = ∑i<n pi+1xp
1+n−i−1

i = p ⋅ wpn−1(xp) ≡ p ⋅ wpn(x) = wpn(y) mod pn+1. 15

It follows, by induction on n, that, if A = Z[x], we have yn = zn mod p. We conclude by 16

functoriality. ◊ 17

If R is characteristic p, it follows that, for all a ∈ Wpn(a), p ⋅ a = (0, ap0, . . . , a
p
i , . . .). Since 18

ϕp is surjective on R, it follows that any element in mn(R)i is a multiple of pi and since p = 19

(1j=1)j ∈ mn(R), thatmn(R)i = (pi). 20

Lemma 1.3.16. Let (A,a) be a p-ring. 21

1. There is a unique multiplicative section [.] ∶ A/a→ A of the projectionA→ A/a. 22

2. For every a ∈ A, we have a ∈ [A] if and only if a ∈ c = ⋂nAp
n . 23

Proof. Fix some α ∈ A/a. For every n, let Un ∶= {xp
n ∶ x/a = ϕ−np (α)}. Note that, for every 24

m ⩾ n, Um ⊆ Un. In particular, Um/a = U0/a = α and that. By claim 1.3.10.1, the Un forms a 25

Cauchy filter for the a-adic topology and let [α] = limnUn. This defines a section as sets. Note 26

that, [α] ∈ Un ⊆ Ap
n and hence [α] ∈ Ap∞ . Conversely, if a ∈ Ap∞ has residue α, let an ∈ A be 27

such that ap
n

n = a. Then ϕnp(an/a) = α and hence a ∈ Un. So a = [α]. 28

Now, for everyα,β ∈ A/a, [α]⋅[β] ∈ Ap∞ andhence [α⋅β] = [α]⋅[β]. Finally, if f ∶ A/a→ A 29

is another multiplicative section, then, for every α ∈ A, f(α) = f(ϕ−np (α)p
n) = f(ϕ−np (α))p

n
30

and hence f(α) ∈ Ap∞ . So f(A) = [A] and f = [.]. 31

Proposition 1.3.17. Let (A,a) be a p-ring and R = A/a. For every n ∈ Z>0 ∪ {∞}, there is a 32

unique ring morphism fn ∶Wpn(R)→ A/an, where a∞ = (0), such that 33

Wpn(R)
fn //

  A
AA

AA
AA

A/an

����
��
��
�

R

34
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1. Valued fields

commutes. Moreover: 1

1. fn is surjective if and only if (A,a) is unramified; 2

2. fn is bijective if and only if it is surjective and for all i ∈ Z>0, and c ∈ A, pic ∈ an implies 3

c ∈ a— i.e. when n =∞, p is not a zero divisor. 4

Proof. Let us first assume that n <∞. Let πn ∶ A → A/an be the natural projection. The map 5

πn ○wpn ∶Wpn(A) → A/an factorises throughWpn(π1) ∶Wpn(A) →Wpn(R). Indeed, since 6

p ∈ a,wn(a) ⊆ an. Lethn ∶Wpn(R)→ A/an be such thathn○Wpn(π1) = πn○wn and fn = hn○ 7

Wpn(ϕ−np ). Note that,Wpn(π1)○Wpn([.]) =Wpn(id) = id andhence,hn = πn○wn○Wpn([.]). 8

So, for every x ∈ Wpn(R), fn(x) = hn(Wpn(ϕ−np )(x)) = hn((x
p−n

i )i) = wn(([(x
p−n

i )])i) = 9

∑i pi[x
p−n

i ]
pn−i = ∑i[x

p−i

i ]p
i. In particular, fn(x)/a = [x0]/a = x0. Note also that the fn form 10

a projective system and allow us to define f∞ ∶ Wp∞(R) = lim←ÐnWpn(R) → lim←ÐnA/an ≃ A, 11

which, by construction commutes with reduction toR =W1(R). 12

If fn is surjective, then anya ∈ a is of the form fn(x)withx0 = a/a = 0. Soa = ∑i>0[xp
−i

i ]p
i ∈ 13

(p). Conversely, ifa = (p), then, by inductionon i any elementofA/ai is of the form∑i[xp
−i

i ]p
i

14

and hence f is surjective. Also, sinceWpn(R) is itself unramified, any element ofWpn(R) is of 15

the form∑i[xp
−i

i ]p
i. By lemma 1.3.16, if f ′n ∶Wpn(R)→ A/anmakes the above diagram com- 16

mute, for any x ∈ R, f ′n([x]) = [x] and hence, if n <∞, f ′n(∑i[x
p−i

i ]p
i) = ∑i[x

p−i

i ]p
i = fn(x). 17

If n =∞, then πn ○ f ′∞ = fn by uniqueness and hence f ′∞ = lim←Ðn fn = f∞. 18

Iffn is bijective, then for every c ∈ Awithpic = 0, wehave c = fn(x) andfn(0, . . . , 0, xp
i

0 , . . .) = 19

pic = 0 and hence xp
i

0 = 0 = x0, so c = fn(x) ∈ (p) = a. Conversely, for every c ∈Wpn(R), with 20

cj = 0 for all j < i < n, if 0 = fn(c) = pi(∑j⩾i[cp
−j

j ]p
j−i), then∑j⩾i[cp

−j

j ]p
j−i ∈ a. So cp

−i

i = 0 21

and hence ci = 0. It follows that c = 0. 22

Corollary 1.3.18. LetR be a characteristic p ring with bijective φp. Then (Wpn(R),mn(R)) is 23

the unique, up to unique isomorphism, unramified p-ring where p is not a zero divisor up to power 24

n— that is, for every i < n and c ∈Wpn(R) if pic = 0 then, c ∈ (p). 25

Proposition 1.3.19. Let k be a characteristic p perfect field. ThenW(k) is a complete valuation 26

ring with associated valuation v ∶W(k)→ Z ∪ {∞} defined by v(a) =min{i ∶ ai ≠ 0}. 27

Proof. Let us show that v is a valuation. We have v(0) = ∞ ≠ 0 = v(1). For every x, y ∈ 28

W(k), let n = min{v(x), v(y)}. Then respn−1(x + y) = respn−1(x) + respn−1(y) = 0 and 29

hence v(x + y) ⩾ n. Also, et x = pv(x)s and y = pv(y)t. Since s, t ∉ (p), we have s0, t0 ≠ 0 30

and hence (st)0 = s0t0 ≠ 0. Since, by claim 1.3.15.1, pi ⋅ u = (1j⩾iup
i

j−i)j , it follows that 31

v(xy) = v(x) + v(y). 32

Completeness follows the fact that the valuation induced by v is exactly the p-adic valuation. 33

It then follows that any element in 1 + (p) is invertible and hence, since k is a field, so is any 34

element of valuation 0. SoW(k) is the valuation ring associated to v. 35

Corollary 1.3.20. Let k be a characteristic p perfect field. Then W(k)(0) is the unique (up to 36

unique isomorphism) complete unramified charactersitic zero valued fieldwith residue field k and 37

value group Z. 38
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2. Algebraically closed valued fields

2. Algebraically closed valued fields 1

Definition 2.0.1. Let LRV,Γ be the three sorted language with: 2

• a sortKwith the ring language (+,−,0, ⋅,1); 3

• a sort Γwith the ordered group language (+,−,0,<) and a constant∞; 4

• a sortRV with the ring language; 5

• a map v ∶RV → Γ; 6

• a map rv ∶K→RV. 7

Any valued field (K,v) can be made into a LRV,Γ-structure by interpreting K as the field 8

K, Γ as vK —with its ordered moinoid structure, 0 = v(1),∞ = v(0) and − is interpreted as 9

the inverse on vK× and −∞ =∞—andRV asK/(1+m)—with its multiplicative structure, 10

0 = rv(0), + and − defined as the additive structure on k ⊆ RV and 0 elsewhere. The maps v 11

and rv are interpreted as the canonical projections. 12

We will usually also write v for v ○ rv ∶ K → Γ, relying on the context to avoid any con- 13

fusion. We will denote by k× (respectively k), the definable subset v−1(0) ⊆ RV (respectively 14

v−1({0,∞}) ⊆RV). 15

Definition 2.0.2. Let VF denote the LRV,Γ-theory of valued fields and ACVF denote the 16

LRV,Γ-theory of algebraically closed non trivially valued fields. 17

Remark 2.0.3. 1. For all n ∈ Z>0, ACVF ⊧ (∀x ∶ Γ)(∃y ∶ Γ) ny = x— that is, the group 18

Γ× ∶= Γ ∖ {∞} is divisible. 19

2. For every P ∈ Z[xy] where y is a tuple, ACVF ⊧ (∀y ∶ k)(∃x ∶ k) P (xy) = 0— that is, 20

the residue field k is algebraically closed. 21

3. Any M ⊧ VF embeds into N ⊧ ACVF. If M is not trivially valued, we may assume 22

K(N) =K(M)a. 23

In other words,VF ⊧ ACVF∀, the set of universal consequences ofACVF. 24

Proof. 1. Let c ∈ K be such that v(c) = x and a ∈ K such that an = c. We have nv(a) = 25

v(an) = v(c). 26

2. Let c ∈ O be such that res(c) = y and a ∈ K such that P (c, a) = 0. By lemma 1.1.11, 27

a ∈ O and we have P (res(c), res(a)) = res(P (c, a)) = 0. 28

3. IfM is trivially valued, then (K(M),v) embeds in (K(M)(x), v0) which is non triv- 29

ially valued. So we may assume M is not trivially valued. This is then an immediate 30

consequence of corollary 1.1.10. 31

2.1. Elimination of quantifiers 32

Let us start by recalling the characterisation of 1-types for the residue field (ACF) and the value 33

group (DOAG): 34

Fact 2.1.1. LetM,N ⊧ ACF, A ⩽M , f ∶ A →M an Lrg-embedding, a ∈M and P ∈ A[x] its 35

minimal polynomial overA. 36

(1) There exists b ∈ N⋆ ≽ N whose minimal polynomial over f(A) is f⋆P . 37

(2) f can be extended by sending a to b. 38

16



2. Algebraically closed valued fields

Fact 2.1.2. LetM,N ⊧ DOAG, A ⩽M , f ∶ A →M an Log-embedding, γ ∈M , n its order in 1

M/A, α ∶= nγ(10) and C ∶= {ε ∈ Q ⋅A ∶ ε < γ}. 2

(1) There exists δ ∈ N⋆ ≽ N such that nδ = f(α) and, if n =∞, for any ε ∈ Q ⋅A, f(ε) < δ if 3

and only if ε ∈ C . 4

(2) f can be extended by sending γ to δ. 5

In this section, we work in the language LRV,Γ. LetM ⊧ ACVF and A ⩽M . Assume that 6

K(A) is a field. We now describe various extensions by oneK-element. 7

Proposition 2.1.3 (Purely ramified 1-types). Fix any γ ∈ v(RV×(A)). Let n be its order in 8

Γ×(A)/v(K×(A)) and c ∈K(A) be such that nγ = v(c)—and c = 1 if n =∞. 9

(1) For everyQ = ∑i cixi ∈K(A)[x] of degree less than n and a ∈K(M) with v(a) = γ, 10

• v(Q(a)) =mini(v(ci) + iγ) and the minimum is attained in exactly once; 11

• rv(Q(a)) = rv(ci0)rv(a)i0 , where v(ci0) + i0γ is minimal. 12

(2) Assume that k(M) ⊆ k(A). There exists a ∈ K(M) with an = c(11), v(a) = γ and 13

rv(a) ∈ RV(A). Moreover, for any ξ ∈ RV(M) with ξn = rv(c), there exists such an 14

a ∈K(M) with rv(a) = ξ. 15

(3) Such an a is uniquely determined, up to LRV,Γ(A)-isomorphism, by n, c and ξ ∶= rv(a): 16

for anyN ⊧ ACVF, anyLRV,Γ-embedding f ∶ A→ N andany b ∈K(N), with bn = f(c) 17

and rv(b) = f(ξ), f can be extended by sending a to b. 18

Proof. (1) We always have v(Q(a)) = v(∑i(ciai)) ⩾ mini v(ciai) = mini(v(ci) + iγ). If 19

the inequality were strict, there would exist i < j < n such that v(ciai) = v(rjaj), i.e. 20

(j − i)v(a) = v(ci)− v(cj) ∈ v(K(A)), contradicting the minimality of n. We have also 21

proved that all the v(ciai) = v(ci) + iγ are distinct — in particular the minimum i0 is 22

unique. It follows that rv(Q(a)) = rv(ci0) + i0rv(a). 23

(2) Assume n < ∞ — otherwise the statement is trivial. For any a with an = c, we have 24

nv(a) = v(c) = nγ and hence v(a) = γ = v(ξ), for some ξ ∈ RV(A). It follows that 25

rv(a)ξ−1 ∈ k(M) ⊆ k(A), and hence rv(a) ∈ rv(A). 26

Now if we fix ξ ∈ RV(M) with ξn = rv(c), then ξn = rv(c) = rv(a)n and hence 27

ξrv(a)−1is a root of the unit in k×. Write P ∶= xn − 1 =∏i x − ei, where the ei ∈K(M) 28

are the n-th roots of the unit — they are inO since it is integrally closed. Then xn − 1 = 29

k⋆P =∏i x − k(e)i and hence, for some i, ξ = rv(a)rv(ei) and (aei)n = c. 30

(3) LetC be the structure generated byAa. By (1), the minimal polynomial of a overK(A) 31

is xn − c. So we have K(C) = K(A)[a] ≃ K(A)[x]/(xn − c). Also by (1), RV(C) = 32

RV(A) and Γ(C) = Γ(A). Applying (1) to f(γ), we see that xn − f(c) is the mini- 33

mal polynomial of b over f(K(A)) and hence f ∣K extends to an Lrg-embedding g∣K ∶ 34

K(C)→K(N) sending a to b. Let also g∣RV = f ∣RV and g∣Γ = f ∣Γ. 35

For any Q = ∑i<n cixi ∈ K(A)[x], by (1), we have g(rv(Q(a))) = f(rv(ci0ξi0)) = 36

rv(f(ci0))rv(b)i0 = rv(g(Q(a))), where v(ci0) + i0γ is minimal — and hence so is 37

v(f(ci0)) + i0f(γ). So g ∶ C → N is indeed an LRV,Γ-embedding sending a to b. 38

Definition 2.1.4. An exact lift of Q ∈ k(M)[x] is P ∈ O[x] with res⋆P = Q and deg(P ) = 39

deg(Q). 40

10By convention,∞γ = 0.
11By convention a∞ = 1.
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2. Algebraically closed valued fields

Proposition 2.1.5 (Purely residual 1-types). Fix any α ∈ k(A). Let P ∈ O(A)[x] be an exact 1

lift of its minimal polynomial(12) over res(O(A)). 2

(1) For everyQ = ∑i cixi ∈K(A)[x] of degree less than P and a ∈K(M), with res(a) = α: 3

• v(Q(a)) =mini v(ci) ≠∞; 4

• rv(Q(a)) = rv(ci0)res⋆Q0(α), where v(ci0) is minimal andQ = ci0Q0. 5

(2) There exists a ∈K(M) with res(a) = α and P (a) = 0. 6

(3) Such an a is uniquely determined, up to LRV,Γ(A)-isomorphism, by P and α: for any 7

N ⊧ ACVF, any LRV,Γ-embedding f ∶ A → N , and any b ∈ K(N), with f⋆P (b) = 0 8

and res(b) = f(α), f can be extended by sending a to b. 9

Proof. (1) Let i0 be such that v(ci0) is minimal. Let Q0 ∶= c−1i0 Q. Then res⋆Q0 ≠ 0. By 10

minimality of res⋆P , res(Q0(a)) = res⋆Q0(α) ≠ 0 and hence v(Q0(a)) = 0. It follows 11

thatv(Q(a)) = v(ci0) =mini v(ci). Also, rv(Q(a)) = rv(ci0)rv(Q0(a)) = res(Q0(a)). 12

(2) Let P = ∏j(x − ej). Since O is integrally closed, cf. lemma 1.1.11, we have ej ∈ O, for 13

all j. For any a ∈ res−1(α), res⋆P (α) = res(P (a)) = ∏j res(a) − res(ej) = 0. It follows 14

that there exists an j such that res(ej) = res(a) = α. 15

(3) Let C be the structure generated by Aa. By (1), P is the minimal polynomial of a over 16

K(A). SowehaveK(C) =K(A)[a] ≃K(A)[x]/P . Also by (1),RV(C) =RV(A) and 17

Γ(C) = Γ(A). Applying (1) to β ∶= res(b), we see that f⋆P is the minimal polynomial 18

of b over K(f(A)) and thus f ∣K extends to an Lrg-embedding g∣K ∶ K(C) → K(N) 19

sending a to b. Let also g∣RV = f ∣RV and g∣Γ = f ∣Γ. 20

For anyQ = ∑i<deg(P ) cixi ∈K(A)[x], by (1), we have: 21

g(rv(Q(a))) = rv(f(ci0))res⋆f⋆Q0(f(β)) = rv(f⋆Q(b)) = rv(g(Q(a))), 22

where v(ci0)— and hence v(f(ci0))— is minimal. So g ∶ C → N is indeed an LRV,Γ- 23

embedding sending a to b. 24

Remark 2.1.6. • For every ξ, ζ ∈RV, we define ξ⊕ζ ∶= {rv(x+y) ∶ rv(x) = ξ and rv(y) = 25

ζ}. We say that ξ ⊕ ζ is well-defined if it is a singleton, whose element we denote ξ + ζ. 26

The map ⊕ is an hypergroup law (in the sense of Kasner): is associative, commutative, 27

with neutral element 0... 28

• If P = ∑i ζixi ∈ RV[x]— this is a purely formal notation — and ξ ∈ RV, we define 29

P (ξ) ∶= ⊕i ζiξ
i = {rv(Q(a)) ∶ rv⋆Q = P and rv(a) = ξ}. We say that it is well-defined 30

whenever it is a singleton. 31

• Both previous lemmas can now be subsumed as follows: fix any ξ ∈ rv(A). Let P ∈ 32

K(A)[x] have minimal degree such that 0 ∈ rv⋆P (ξ). 33

(1) For everyQ = ∑i cixi ∈K(A)[x] and every a ∈K(M), with rv(a) = ξ, rv(Q(a)) = 34

rv⋆Q(ξ)which is well-defined. 35

(2) There exists a ∈K(M)with rv(a) = ξ and P (a) = 0. 36

(3) Such an a is uniquely determined, up to LRV,Γ(A)-isomorphism, by P and ξ: for 37

any N ⊧ ACVF, any LRV,Γ-embedding f ∶ A → N , and any b ∈ K(N), with 38

f⋆P (b) = 0 and rv(b) = f(ξ), f can be extended by sending a to b. 39

12We allow P to be 0; in which case, α is transcendental over res(O(A))

18



2. Algebraically closed valued fields

To deal with the last type of extension, the immediate ones, we will first need a technical 1

lemma on the localisation of roots of polynomials with respect to pseudo-Cauchy filters. 2

Lemma 2.1.7. LetB be a non-principal pseudo Cauchy filter onK(A) andP ∈K(A)[x]. Then 3

one (and only one) of the following holds: 4

• there is is b ∈B such that rv ○ P ∣b is constant; 5

• there is a root of P inB and, for every b ∈B, v ○ P ∣b(A) is non-constant. 6

Proof. LetP = c∏i(x−ei) and b ∈Bbe a ball ofK(A) such that {i ∶ ei ∈B} = {i ∶ ei ∈ b} =∶ I . 7

For every a1, a2 ∈ b and i ∉ I , v(a1 − a2) > v(a1 − ei) and thus a2 − ei = a1 − ei + (a2 − a1) ∈ 8

a1 − ei + (a1 − ei)m and rv(a1 − ei) = rv(a2 − ej). It follows that rv(P (a1))/rv(P (a2)) = 9

∏i∈I rv(a1 − ei)/rv(a2 − ei). In particular, if I = ∅, rv(P (a1)) = rv(P (a2)). 10

If I ≠ ∅ let b0 ⊂ b1 ⊆ b be closed balls of K(A), both in B. Let also a0 ∈ b0(A) and 11

a1 ∈ b1(A) ∖ b0 — such an a1 exists because there are elements of b1(A) whose at distence the 12

radius of b1, thus both cannot be in b0. Then, for all i ∈ I , v(a1 − ei) > rad(b0) ⩾ v(a0 − ei) 13

and hence v(P (a1)) − v(P (a2)) = ∑i∈I(v(a1 − ei) − v(a2 − ei)) > 0. 14

Proposition2.1.8 (Immediate1-types). FixapseudoCauchyfilterB onK(A). LetP ∈K(A)[x] 15

have minimal degree among those polynomials such that 0 ∈ P⋆B. 16

(1) For every Q ∈ K(A)[x] with degree smaller than P , there exists U ∈ B with rv ○Q∣U 17

constant, equal to an element of rv(K(A)). 18

(2) If P ≠ 0, there exist a ∈K(M) with a ∈B and P (a) = 0. 19

(3) Such an a is uniquely determined, up to LRV,Γ(A)-isomorphism, byB and P : for every 20

N ⊧ ACVF, embedding f ∶ A → N and b ∈K(N), with f⋆P (b) = 0 and b ∈ f⋆B, f can 21

be extended by sending a to b. 22

Proof. (1) By minimality of P , 0 ∉ Q⋆B, and thus, by lemma 2.1.7, rv ○ Q is constant on 23

some U ∈ B. Since we may assume that U is a ball of K(A), U(A) ≠ ∅ and hence 24

rv(Q(U)) ∈ rv(K(A)). 25

(2) If there is no root of P inB, then, by lemma 2.1.7, rv ○ P is eventually constant onB. 26

Since 0 ∈ P⋆B, we must have that P is eventually equal to 0 onB. If P ≠ 0,B contains 27

the finite set of roots of P ; in particular,B contains a singleton fromK(A). 28

(3) Let C be the structure generated by Aa. By (1), P is the minimal polynomial of a over 29

K(A). So we have K(C) = K(A)[a] ≃ K(A)[x]/P . Also, by (1), we have RV(C) = 30

RV(A) and Γ(C) = Γ(A). By lemma 2.1.7, f⋆P is minimal with 0 ∈ f⋆P⋆B. By (1), 31

the minimal polynomial of b overK(f(A)) is f⋆P , so f ∣K extends to a ring embedding 32

g∣K ∶K(C)→K(N) sending a to b. Let also g∣RV = f ∣RV and g∣Γ = f ∣Γ. 33

For any Q ∈ K(A)[x] with degree smaller than P , by (1), we find U ∈ B such that 34

rv ○Q∣U and rv ○ f⋆Q∣f(U) are constant equal to some rv(c), respectively rv(f(c)) for 35

any c ∈ U(A). It follows that g(rv(Q(a))) = f(rv(c)) = rv(f(c)) = rv(f⋆Q(b)) = 36

rv(g(Q(a))). So g ∶ C → N is indeed an LRV,Γ-embedding sending a to b. 37

Wewill need one last case of the embedding lemma: 38

Proposition 2.1.9. Fix any γ ∈ Γ×(A). Let n be its order in Γ×(A)/v(RV×(A)) and ζ ∈ 39

RV(A) be such that nγ = v(ζ)—and ζ = 1 if n =∞. 40
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2. Algebraically closed valued fields

(1) For every α ∈RV(A), 0 ⩽ i < n and ξ ∈RV(M) with v(ξ) = γ, v(αξi) = 0 if and only if 1

i = 0 and α ∈ k×(A). 2

(2) There exists ξ ∈RV(M) with ξn = ζ and v(ξ) = γ; 3

(3) Such a ξ is uniquely determined, up to LRV,Γ(A)-isomorphism, by γ, n and ζ : for every 4

N ⊧ ACVF, any embedding f ∶ A → N and any η ∈ K(N), with ηn = f(ζ) and 5

v(η) = f(γ), f can be extended by sending ξ to η. 6

Proof. (1) We have v(αξi) = v(α)+ iv(ξ) = 0 if and only iv(ξ) = −v(α) ∈ v(RV×(A)). By 7

minimality of n, we must have i = 0 and hence v(α) = 0. 8

(2) Let c ∈K(M) be such that rv(x) = ζ. If n <∞, let a ∈K(M) be such that an = c. Then 9

rv(a)n = ζ and nv(a) = v(ζ) = nγ and hence v(a) = γ. If n =∞ any ξ ∈ RV(M) with 10

v(ξ) = γ will work. 11

(3) By (1), ξ is ordern inRV×(M)/RV×(A). By (1), η is alsoordern inRV×(N)/RV×(f(A)).12
So f ∣RV extends to a multiplicative group embedding g∣K ∶RV(A) ⋅ ξZ →K(N) send- 13

ing ξ to η. Let C be the structure generated by Aξ. Note that, by (1) again,RV(A) ⋅ ξZ 14

is closed under + and −, soRV(C) =RV(A) ⋅ ξZ and g∣K is anLrg-embedding. Let also 15

g∣Γ = f ∣Γ and g∣K = f ∣K. Since v is multiplicative, it is preserved by g which is indeed 16

an LRV,Γ-embedding sending ξ to η. 17

Proposition 2.1.10 (ACVF embedding lemma). LetM,N ⊧ ACVF, A ⩽M and f ∶ A → N . 18

There exists an elementary map h ∶ N → N⋆ and an embedding g ∶M → N such that: 19

M
g // N⋆

A
f

// N

h

OO 20

commutes. 21

Proof. The family of pairs of embeddings (g, h), with g ∶ C → N⋆, C ⩽ M and h ∶ N → N⋆ 22

elementary, is inductive — where (g1, h1) is smaller than (g2, h2) if C1 ⩽ C2 and there exists 23

i ∶ N⋆1 → N⋆2 elementary such that 24

C2
g2 // N⋆2

C1 g1
// N⋆1

i

OO

N
h1

oo

h2
``@@@@@@@@

25

commutes — and contains (f, id). By Zorn’s lemma, it contains a maximal element (g, h) 26

larger than (f, id). There remains to show that M = C. We proceed by proving a series of 27

inclusions. 28

Γ(C) = Γ(M) For any γ ∈ k(M), by fact 2.1.1, g∣Γ extends to g0 ∶ Γ(C)γ → Γ(N⋆), for someN⋆ ≽ N . 29

Then g ∪ g0 ∶ Cγ → N⋆ is an embedding. By maximality, γ ∈ Γ(C). 30
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k(C) = k(M) For any α ∈ k(M), by fact 2.1.1, g∣k extends to g0 ∶ k(C)α → k(N⋆), for some N⋆ ≽ 1

N . We define g1 ∶ RV(C)α → RV(N⋆) by g1(ξP (α)) = g(ξ)g0(P (α)), for every 2

ξ ∈ RV(C) and P ∈ k(C)[x]. This is well defined, indeed, if ξP (α) = 1, and ξ ≠ 0 3

then ξ−1 = P (α) ≠ 0 and hence ξ ∈ k(C), so f(ξ)g0(P (α)) = g0(ξP (α)) = 1. It is 4

obviously multiplicative. Since v(ξP (α)) ∈ k if and only if v(ξ) ∈ k, it follows that it is 5

also additive. Then g ∪ g1 ∶ Cα → N⋆ is an embedding. By maximality, α ∈ k(C). 6

v(RV(C)) = Γ(M) Fix any γ ∈ Γ(M) = Γ(C) and let n be its order in Γ(C)/v(RV(C)) and ζ ∈ RV(C) 7

be such that γn = v(ζ). By proposition 2.1.9.(2), there exists ξ ∈ RV(M) such that 8

ξn = ζ and v(ξ) = γ, and ρ ∈ RV(N) such that ρn = g(ζ) and v(ρ) = g(γ). By 9

proposition 2.1.9.(3), g extends by sending ξ to ρ. By maximality, ξ ∈RV(C) and hence 10

γ = v(ξ) ∈ v(RV(C)). 11

RV(C) =RV(M) For any ξ ∈ RV×(C), v(ξ) ∈ Γ(M) = v(RV(C)) and hence there is some ζ ∈ RV(C) 12

such that v(ξ) = v(ζ). Then ξζ−1 ∈ k(M) = k(C) and hence ξ ∈ ζk(C) ⊆RV(C). 13

K(C) =K(C)(0) By the universal property of localisation, g∣K has a (unique) extension g0 toK(C)(0) ∪ 14

k(C) ∪ Γ(C). Indeed, g0 is a ring morphism on the sortsK and it is equal to g onRV 15

and Γ. For any c ∈ K(C) and non zero d ∈ K(C), g0(rv(c/d)) = g(rv(c)rv(d)−1) = 16

rv(g(c))rv(g(d))−1 = rv(g0(c/d)). So g0 is an LRV,Γ-embedding. By maximality of g, 17

K(C) is a field. 18

res(K(C)) = k(C) Pick any α ∈ k(C). Let P ∈ O(C)[x] be an exact lift of its minimal polynomial over 19

res(O(C)). By proposition 2.1.5.(2), we can also find a ∈ K(M) and b ∈ K(N⋆) such 20

that P (a) = 0 = g⋆P (b), res(a) = α and res(b) = g(α). Applying proposition 2.1.5.(3), 21

we find a pair (g0, h) larger than (g, h) with g0 defined at a. By maximality, a ∈ K(C) 22

and hence α ∈ res(K(C)). 23

v(K(C)) = Γ(C) Pick any γ ∈ Γ×(C). Let n be its order in Γ×(C)/v(K×(C)) and c ∈ K(C) such that 24

n ⋅ γ = v(c)—with c = 1 if n = ∞. By proposition 2.1.3.(2), we find a ∈ K(M) such 25

that an = c and v(a) = γ, and b ∈K(N⋆) such that bn = g(c) and v(b) = g(γ). Applying 26

proposition 2.1.3.(3), we find a pair (g0, h) larger than (g, h) with g0 defined at a. By 27

maximality, a ∈K(C) and hence α ∈ v(K(C)). 28

K(C) =K(M) Westart by proving that any pseudoCauchyfilterBoverK(C) that accumulates at some 29

a ∈ K(M) also accumulates at some c ∈ K(C). Let P ∈ K(C)[x] have minimal degree 30

such that 0 ∈ P⋆B. If P ≠ 0, by proposition 2.1.8.(2), there exists c ∈ K(M) such that 31

P (c) = 0 and c ∈ B. If P = 0, c ∶= a satisfies those same requirements. By compactness 32

(corollary B.0.13) and proposition 2.1.8.(2), we also find i ∶ N⋆ → N † and b ∈ K(N †) 33

with b ∈ g⋆B and g(P )(b) = 0— if P ≠ 0, some root of g(P ) inN⋆ works and we can 34

take i = id; if P = 0, the set of balls in g⋆B is finitely satisfiable in N since it is a filter. 35

Applying proposition 2.1.8.(3), we find a pair (g0, i○h) larger than (g, h)with g0 defined 36

at c. By maximality, c ∈K(C) and, by construction, we do have c ∈B. 37

Now fix a ∈ K(M) and let B be the maximal pseudo Cauchy filter over K(C) that 38

accumulates at a— i.e. the filter generated by the balls of K(C) containing a. By ??, 39

B accumulates at some c ∈ K(C). Let us assume that a ≠ c. By proposition 2.1.3, 40

there is some d ∈ K(C) such that v(a − c) = v(d) ∈ Γ×(M). Then (a − c)/d ∈ O 41

and, by proposition 2.1.5, there is some e ∈ O×(C) such that res((a − c)/d) = res(e); 42

equivalently (a− c)/d− e ∈ m and hence a ∈ c+de+dm =∶ b, the open ball of radius v(d) 43

around c+ de. By construction, b ∈B, but v(c+ de− c) = v(d)+ v(e) = v(d), so c ∉ b, a 44
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contradiction. It follows that a = c ∈K(C), and henceK(M) =K(C). 1

2

Theorem 2.1.11 (Robinson, 1956). The LRV,Γ-theoryACVF eliminates quantifiers. 3

Proof. By proposition B.0.15, this is an immediate consequence of proposition 2.1.10. 4

Corollary 2.1.12. The class of existentially closed models ofVF coincides withACVF. 5

Proof. By remark 2.0.3.3, anymodel ofVF embeds in a model ofACVF, so it suffices to check 6

that embeddings between models of ACVF are existentially closed. But this is an immediate 7

consequence of elimination of quantifiers, cf. theorem 2.1.11. 8

Corollary 2.1.13. The completions of ACVF are the theories ACVFp,q , with p, q prime or zero, 9

of non trivially valued algebraically closed valued of characteristic p and residue characteristic q. 10

Note that if p > 0, then q = p. 11

Proof. By proposition B.0.15, it suffices to find a common substructure to any two models of 12

ACVFp,q. If q = p > 0, the trivially valuedfieldFp embeds (uniquely) in anymodel ofACVFp,p. 13

If q = p = 0, the trivially valued field Q embeds (uniquely) in any model of ACVF0,0. Finally, 14

the fieldQwith the p-adic valuation embeds (uniquely) in every model ofACVF0,p. 15

Definition 2.1.14. LetLdiv be the languagewith a single sortKwith the ring language (+,−,0, ⋅,1)16
and a predicate ∣. 17

Any valued field (K,v) can bemade into aLdiv-structure by interpreting a∣b as v(a) ⩽ v(b). 18

Corollary 2.1.15. The Ldiv-theoryACVF eliminates quantifiers. 19

Proof. To do 20

Definition 2.1.16. Let Lk,Γ be the three sorted language with: 21

• a sortKwith the ring language (+,−,0, ⋅,1); 22

• a sort Γwith the ordered group language (+,−,0,<) and a constant∞; 23

• a sort kwith the ring language; 24

• a map v ∶RV → Γ; 25

• a map ρ ∶K2 → k. 26

Any valued field (K,v) can bemade into aLRV,Γ-structure by interpreting ρ(a, b) = k(a/b) 27

if v(a) ⩾ v(b) and 0 otherwise. 28

Corollary 2.1.17. The Lk,Γ-theoryACVF eliminates quantifiers. 29

Proof. To do 30

Corollary 2.1.18. Let (K,v) be a valued field, L be a normal extension and w1,w2 be two val- 31

uations on L extending v, then there exists σ ∈ aut(L/K) such thatw2 ○ σ is equivalent to w1. 32

Proof. Let Li be the LRV,Γ-structure associated to (L,wi). By hypothesis, the identity onK 33

is an LRV,Γ-embedding from L1 to L2. By remark 2.0.3.3, Li ⩽Mi ⊧ ACVF. By elimination 34

of quantifiers (theorem 2.1.11), there exists an LRV,Γ(K)-embedding σ ∶ L1 →M2. Since L is 35

normal, σ(L1) = L2. So we do have σ ∈ aut(L/K) and w2 ○ σ is equivalent to w1. 36
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2.2. Properties of definable sets 1

We now give a complete description of types concentrating onK over algebraically closed sub- 2

sets ofK inACVF. FixM ⊧ ACVF andA = Aa ⩽K(M). 3

Definition 2.2.1. LetB be a pseudo Cauchy filter overA. An element a ∈K(M) is said to be 4

generic inB overA if, for every ball b ofA: 5

a ∈ b if and only if b ∈B. 6

Wewrite ηB∣A for the— a priori partial — type of generics ofB overA. 7

Proposition 2.2.2. Let a ∈K(M). LetB be generated by {b ball inA ∶ a ∈ b}. Then: 8

ηB∣A ⊧ tp(a/A). 9

In particular ηB∣A is a complete type overA. 10

Proof. Note that, by construction, a ⊧ ηB∣A. Let us first assume thatB is generated by some 11

closed ball b0 = B(c,v(d)), with c, d ∈ A. If d = 0, then ηB∣A(x) ⊧ x = c which generates a 12

complete type. Otherwise, let a′ ⊧ ηB ∣A and α′ = res((a′ − c)/d). If α′ ∈ res(A)a = res(A)— 13

by proposition 2.1.5.(2)— thenwe find e ∈K(A)with res(e) = α′, i.e. v(a′−(c+de)) > v(d), 14

so a′ ∈ B̊(c + de,v(d),), a contradiction to a′ ⊧ ηB ∣A. So α′ ∉ res(A)a and, by 2.1.5.(3), 15

(a′ − c)/d ≡A (a − c)/d, and hence a′ ≡A a. 16

Let us now assume thatB is not principal — i.e. it is not generated by a single ball — and 17

thatB∩A = ∅. If the minimal P such that 0 ∈ P⋆B is not 0, by 2.1.8.(2),B∩A =B∩Aa ≠ ∅, 18

a contradiction. So P = 0 and, since any a′ ⊧ ηB ∣A is inB, by 2.1.8.(3), we have a′ ≡A a. 19

Let us now deal with the remaining case. We may therefore assume thatB is not generated 20

a single closed ball and that there exists some c ∈B ∩A. Let a′ ⊧ ηB ∣A. For every γ ∈ v(A), we 21

have v(a′ − c) ⩾ γ if and only if B(c, γ) ∈ B, which is equivalent, sinceB is not generated by 22

B(c, γ), to B̊(c, γ) ∈ B, i.e. v(a′ − c) > γ. It follows that v(a′ − c) ∉ v(A) = Q ⋅ v(A)— the 23

equality follows from proposition 2.1.3.(2) — and that, by proposition 2.1.3.(3), (a′ − c) ≡A 24

(a − c). So a′ ≡A a. 25

Remark 2.2.3. We see from the proof that there is a correspondence between the descriptions 26

of the types over A concentrating onK in algebraic terms and in terms of generics of pseudo 27

Cauchy filters: 28

• generics of closed balls correspond, up to translation and scaling, to residual extensions; 29

• generics of open balls correspond, up to translation, to ramified extensions where the cut 30

is of the form γ+; 31

• generics of non principal pseudo Cauchy filters with an accumulation point in A corre- 32

spond, up to translation, to the other ramified extensions; 33

• generics of non principal pseudo Cauchy filters without accumulation points in A cor- 34

respond to immediate extensions. 35

Proposition 2.2.2 states, among other thing that types inK are entirely determined by their 36

restriction to the Boolean algebra generated by balls. By some abstract non-sense, every defin- 37

able subset ofK is, up to equivalence, in said algebra. 38
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Definition 2.2.4. • AnA-Swiss cheese is a set of the form b ∖⋃i<n bi where b is a ball inA 1

and the bi ⊂ b are (disjoint) subballs, inA. 2

• A Swiss cheese b∖⋃i bi is nested inside some other Swiss cheese d∖⋃j dj if there exists a 3

j such that b = dj . 4

Theorem 2.2.5 (Holly, 1995). AnyLRV,Γ(A)-definable subset ofK has a unique decomposition 5

as a finite disjoint union of non-nestedA-Swiss cheeses. 6

Proof. Let∆(x) be the set of finite unions ofA-Swiss cheeses. 7

Claim 2.2.5.1. ∆(x) is stable under Boolean combinations. 8

Proof. It suffices to show that the intersection of twoA-Swiss cheeses is anA-Swiss cheese and 9

that the complement of anA-Swiss cheese is a finite union ofA-Swiss cheese. LetB = b∖⋃i bi 10

andD = d ∖⋃i di be two Swiss cheeses. We haveB ∩D = (b ∩ d) ∖ (⋃i(d ∩ bi) ∪⋃j(b ∩ dj)) 11

where some of the intersections might be empty. SimilarlyK ∖B = (K ∖ b) ∪⋃i bi. ◊ 12

Proposition 2.2.2 implies that for all p ∈ Sx(A), p∣∆ ∶= p ∩∆ ⊧ p. In other terms, for any 13

LRV,Γ(A)-formulaφ(x), a ∈ φ(M) and c ∈K(M), if c ⊧ tp∆(a), thenM ⊧ φ(c). By B.0.14, 14

any LRV,Γ(A)-definable subset ofK is equivalent to a formula in∆(x), that is a finite union 15

of A-Swiss cheeses. Since the union of two non disjoint A-Swiss cheeses is an A-Swiss cheese: 16

(b ∖⋃i bi) ∪ (d ∖⋃i di) = b ∖ (⋃i(bi ∖ d) ∪⋃i,j(bi ∩ dj)), where d ⊆ b; and the union of two 17

nested swiss cheeses is a swiss cheese : b∖⋃i bi∪(d∖⋃i di) = b∖(⋃i>0 bi∪⋃j dj), where d = b0; 18

we may assume that it is a disjoint union of non-nestedA-Swiss cheeses. 19

Uniqueness now follows from: 20

Claim 2.2.5.2. Let (Di)i<n be disjoint non nested Swiss cheeses and B be some Swiss cheese such 21

thatB ⊆ ⋃iDi, then there is some i such thatB ⊆Di. 22

Proof. Wemay assume that theDi form a minimal cover. In particular, we then have that, for 23

every i,B ∩Di ≠ ∅. If n = 1 then the claim is proved. So, let us assume that n ⩾ 2. 24

Let us first assume that the Di and B are balls. Pick ci ∈ B ∩Di. Let b be the smallest ball 25

containing all the ci. It is a closed ball of radius γ ∶= mini≠j v(ci − cj). We have b ⊆ B ⊆ ⋃iDi. 26

If b ⊆ Di, for some i, then every cj is in b ⊆ Di, contradicting that Di ∩ Dj = ∅. So we 27

must have that, for every i, Di ⊂ b. Let di ∶= B̊(ci, γ), it is the maximal strict subbal of b 28

containing ci, in particular Di ⊆ di. So b ⊆ ⋃i di. Let d be some maximal open subball of b, 29

then d intersects some di and bymaximality d = di. It follows thatRb ∶= {d ⊂ b ∶maximal open 30

subball} = {c + γm ∶ c ∈ b} is finite. However, if we choose a ∈ b and e ∈ v−1(γ), c ↦ (c − a)/e 31

is a bijection b→ O sending elements ofRb to elements of kwhich is infinite; a contradiction. 32

Let us now come back to the general caseB = b ∖⋃j bj ,Di = di ∖⋃ℓ di,ℓ, where the di,ℓ are 33

disjoint. SinceB ⊆ ⋃iDi, we have b ⊆ ⋃i di ∪⋃j bj . It might happen that the di and bj are not 34

disjoint, but a subset of them is and covers b. So, by the previous case, and since bj ⊂ b, there is 35

some i such that b ⊆ di. If b ∩ di,ℓ = ∅, for all i, we indeed haveB ⊆ Di and that concludes the 36

proof. So wemay assume that there is some ℓ such that b∩di,ℓ ≠ ∅. If b ⊆ di,ℓ, thenB∩Di = ∅; 37

a contradiction. Hence di ⊂ b. It follows that di,ℓ ∖ ⋃j ⊆ B ∩ di,ℓ ⊆ ⋃i′D′i ∩ di,ℓ ⊆ ⋃i′≠iDi′ , 38

sinceDi∩di,ℓ = ∅. In other words, di,ℓ ⊆ ⋃i′≠i di′ ∪⋃j bj . So, by the case for balls proved above, 39

24
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either di,ℓ ⊆ bj , for some j, or di,ℓ ⊆ di′ , for some i′ ≠ i. In the latter case, sinceDi ∩D′i = ∅, 1

d′i ⊆ ⋃ℓ′ di,ℓ′ and hence it is covered by one of the di,ℓ′ . Recall that the di,ℓ′ are disjoint and 2

di,ℓ ∩di′ ≠ ∅ and hence di,ℓ = di′ , contradicting that the assumption that theDi are not nested. 3

It follows that any di,ℓ that intersects b is contained in some bj , that isB ⊆Di. ◊ 4

Uniqueness of the decomposition follows from the fact that whenever a Swiss cheese is in- 5

cluded in a finite disjoint union of non-nested Swiss cheeses, then it is included in one of those 6

Swiss cheeses. 7

Wewill now describe the structure induced on the residue field and the value group. 8

Definition 2.2.6. Let T be an L-theory and D be a L-definable set. We say that D is stably 9

embedded if for everyM ⊧ T and every L(M)-definableX ⊆Dn,X is L(D(M))-definable. 10

Definition 2.2.7. Let T be an L-theory andD be some L′-structure interpretable(13)in T . We 11

say thatD is a pure L′-structure if any L-definableX ⊆Dn is L′-definable. 12

In particular, ifD is also stably embedded, any L(M)-definable subset ofDn is L′(D(M))- 13

definable. 14

FixM ⊧ ACVF andA ⩽M . 15

Proposition 2.2.8. If X ⊆ kn is LRV,Γ(A)-definable, then it is Lrg(k(A))-definable. In par- 16

ticular, the residue field k is a stably embedded pure ring. 17

Proof. By elimination of quantifiers (theorem 2.1.11), and since Lrg(k(A))-definable sets are 18

closed under Boolean combinations, it suffices to consider atomic formulas. So wemay assume 19

X is defined byR(x, ρ(P (a),Q(a)), α) = 0where x, y, z are tuples,R ∈ Z[x, y, z],P,Q ∈ Z[t] 20

are y-tuples, a ∈ K(A)t and α ∈ k(A)z is a tuple. Since ρ(P (a),Q(a)) ∈ k(A), this is indeed 21

an Lrg(k(A))-formula. 22

Proposition 2.2.9. IfX ⊆ Γn is LRV,Γ(A)-definable, then it is Log(Γ(A))-definable. In par- 23

ticular, the value group Γ is a stably embedded pure ordered monoid. 24

Proof. As above, it suffices to consider atomic formulas. So we may assume X is defined by 25

L(x,v(P (a)), γ) < 0 where L is a Z-linear function, P ∈ Z[t] is a tuple, a ∈ K(M)t and 26

γ ∈ Γ(M) is a tuple. This is indeed an Log(Γ(A))-formula. 27

Definition 2.2.10. Let T be a L-theory, two L-definable setsD1 andD2 are orthogonal if for 28

everyM ⊧ T , any L(M)-definable set X ⊆ Dn1
1 ×Dn2

2 is a finite union of boxes of the form 29

Y1 × Y2 where Yi ⊆Dni
i is L(M)-definable. 30

Proposition 2.2.11. The value group Γ and the residue field k are orthogonal. 31

13That is for every sort X of L a choice of an L-definable set XT , for every function symbol f ∶ X → Y of L,
an L-definable function fT ∶ ∏iX

T
i → Y T and for every relation symbol R ⊆ X of L, an L-definable subset of

∏iX
T
i .
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Proof. Since finite unions of boxes are closed under Boolean combinations, it suffices to con- 1

sider atomic formulas. But variables from Γ and k cannot both occur in the same atomic 2

LRV,Γ-formula. So subsets ofΓn×km definedby atomic formulas are either of the formΓn×Y2 3

for some Y2 ⊆ km or Y1 × km for some Y1 ⊆ Γn. 4

We continue by describing the algebraic closure inACVF: 5

Proposition 2.2.12. We have acl(A) =K(A)a ∪C ⋅k(C)a ∪Q ⋅Γ(A), whereC is the divisible 6

hull of the group generated byRV(A). 7

Proof. Fix γ ∈ Γ×(M) and let n be its order in Γ×(M)/Γ×(A). Then, if n ≠∞, since Γ×(M) 8

is torsion free, γ ∈ dcl(A) ⊆ acl(A). If n = ∞, by fact 2.1.2, there is an L(A)-elementary 9

embedding sending γ to any δ ∈M⋆ ≽M realising the same cut. So γ ∉ acl(A). It follows that 10

Γ(acl(A)) = Q ⋅Γ(A). 11

Note that the n-torsion subgroup of RV× is exactly the group µn(k) of n-th root of the 12

unit. It follows that C ⊆ acl(A). Fix α ∈ k(M) and let P be its minimal polynomial over 13

k(C). Then, either P ≠ 0, in which case, since P has finitely many roots, α ∈ acl(A), or 14

P = 0, in which case, by fact 2.1.1, there is an L(A)-elementary embedding sending α to any 15

β ∈M⋆ ≽M transcendental over k(A) and hence α ∉ acl(A). So k(acl(A)) = k(C)a. 16

Inparticular,C ⋅k(C)a ⊆RV(acl(A)). Conversely, if ξ ∈RV(acl(A)), thev(ξ) ∈ Γ(acl(A)) =17
Q ⋅Γ(A) = v(C), by proposition 2.1.9.(2). Then ξ ∈ ζ ⋅ k(acl(A)) ⊆ C ⋅ k(C)a, for any ζ ∈ C 18

with v(ζ) = v(ξ). 19

Now, fix a ∈ K(M). By proposition 2.2.2, tp(a/K(A)a) is the generic of some pseudo 20

Cauchy filterB. Since non trivial balls are infinite, such a generic is algebraic if and only ifB 21

contains a singleton, in which case a ∈K(A)a. So acl(K(A)) =K(A)a. 22

Claim 2.2.12.1. For every ζ ∈RV(M) ∪Γ(M),E ∶=K(acl(K(A)ζ)) ⊆K(A)a. 23

Proof. Let us first assume that ζ ∈ RV(M). Since rv−1(ζ) is infinite, there exists c ∈ M⋆ ≽ 24

M transcendental over E, with rv(c) = ζ. If ζ ∈ Γ×(M), we find such a c with v(c) = 25

ζ. In both cases, we have ζ ∈ acl(K(A)c) and hence E ⊆ K(acl(K(A)c)) = K(A)(c)a. 26

Now 1 = trdeg(K(A)(c)/K(A)) = trdeg(E(c)/K(A)) = trdeg(E/K(A)) + trdeg(c/E) = 27

trdeg(E/K(A)) + 1, soE ⊆K(A)a. ◊ 28

It follows, by induction on an enumeration ofRV(A) ∪ Γ(A), thatK(acl(A)) = K(A)a. 29

30

Corollary 2.2.13. Any LRV,Γ(M)-definable function f ∶ kn ×Γm →K has finite image. 31

Proof. LetY = f(kn×Γm). Then, for every elementaryh ∶M →M⋆,h⋆Y (M⋆) ⊆ acl(K(h(M))∪32
k(M⋆) ∪ Γ(M⋆)) = K(h(M)), by proposition 2.2.12. If Y is infinite, then, by compactness 33

(corollaryB.0.13) there exists an elementaryh ∶M →M⋆ such thath⋆Y (M⋆)∖K(h(M)) ≠ ∅. 34

It follows that Y is finite. 35

Corollary 2.2.14. Let K ⩽ L be some algebraic extension and v1, v2 valuations on L extend a 36

common valuation v ofK . Then v1 and v2 are not dependent (unless they are equivalent). 37
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Proof. If there are dependent, by lemma 1.1.6, wemay assume that there is an orderedmonoid 1

embedding g ∶ v1L → v2L. Let∆ = ker(g). It is a convex subgroup of v1L ⊆ Q ⋅ vK, that last 2

inclusion follows from proposition 2.2.12. In particular, ∆ ⊆ Q ⋅ (∆ ∩ vK). However, since 3

v1∣K = v = v2∣K ,∆ ∩ vK = {0} and hence∆ = 0 and the vi are equivalent. 4

3. Henselian fields 5

3.1. Definably closed fields 6

Let us now describe the definable closure in the field sort. LetM ⊧ ACVF andA ⩽K(M) be 7

a subfield. 8

Remark 3.1.1. Let R be any ring P = ∑i aixi ∈ R[x], then write P (x + y) = ∑i ai(x + y)i = 9

∑i ai∑j (ij) ⋅x
iyj = ∑j(∑i (ij)aix

i)yj =∶ ∑j Pj(x)yj . Note that j! ⋅Pj(x) = P (j)(x), the j-th 10

derivative of P . In particular, P1 = P ′ and, in characteristic zero, Pj = P j/j!. 11

Lemma 3.1.2. Let b a non trivial ball ofM and P ∈K(M)[x]. The following are equivalent: 12

(i) for all x, y ∈ b, rv(P (y) − P (x)) = rv(y − x)rv(P ′(x)); 13

(ii) for every x ∈ b, rv((P (x) − P (y))/(x − y)) is constant on b ∖ {x}; 14

(iii) rv((P (x) − P (y))/(x − y)) is constant for x ≠ y ∈ b; 15

(iv) rv(P ′(x)) is constant on b and if it is zero then P is constant; 16

Proof. The implication (iii)⇒(ii) is obvious. 17

(i)⇒(iv) For every x, y ∈ b, we have rv(P ′(x)) = rv((P (x) − P (y))/(x − y)) = rv(P ′(y)). If 18

rv(P ′(x)) = 0, then for every y ∈ b, rv(P (y) − P (x)) = rv(y − x)rv(P ′(x)) = 0 and 19

hence P is constant. 20

(iv)⇒(iii) Wemay assume thatP is monic non constant and hence rv(P ′(a)) ≠ 0 for any a ∈ b. Let 21

P (x)−P (a) =∏i(x− ai)with a0 = a. If ai is a multiple root of P , then P ′(ai) = 0 and 22

hence ai ∉ b. It follows that the ai ∈ b are distinct. For any x distinct from the ai, we have 23

rv(P ′(x)/(P (x)−P (a))) = rv(∑i∏j≠i(x− aj)/∏j(x− aj)) = rv(∑i(x− ai)−1). If x 24

is closest to a unique ai, rv(P ′(x)/(P (x)−P (a))) = rv(x−ai)−1 and hence rv(P (x)− 25

P (a)) = rv(x − ai)rv(P ′(x)). 26

So there only remains to show that a = a0 is the only ai ∈ b. Assume not. Let γai≠aj∈b ∶= 27

v(ai−aj) and I be such that for all i ≠ j ∈ I , v(ai−aj) = γ and for all ℓ ≠ I , v(ai−aℓ) < γ. 28

For every i ∈ I , fix ei ∈ b ∖ ai which is closest to ai than to any other aj . By the above 29

rv(P (ei) − P (a)) = rv(∏j(ei − aj)) = rv(ei − ai)rv(P ′(ei)) and hence rv(P ′(a)) = 30

rv(P ′(ei)) = ∏j≠i rv(ei − aj) = ∏j≠i rv(ai − aj). Since for every i1, i2 ∈ I and j ∉ I , 31

rv(ai1 −aj) = rv(ai2 −aj), it follows that∏j∈I∖{i} rv(ai −aj) does not depend on i ∈ I . 32

Fix i0 ∈ I and let ci = (ai−ai0)/c, where v(c) = γ. We have that the∏j∈I∖{i} rv(ci−cj) = 33

∏j∈I0∖{i} res(ci−cj) = Q
′(k(ci)) are equal, whereQ ∶=∏i∈I(x−res(ci)). SoQ′−Q′(0) 34

is a degree ∣I ∣− 1 > 0 polynomial with ∣I ∣ roots. This is a contradiction and (ii) is proved. 35

(ii)⇒(i) We have P (x + e) = P (x) + eP ′(x) + e2Q(x, e), with Q = ∑iQi(x)ei ∈ K[x, e]. For 36

any e sufficiently close to 0, v(eQ(x, e)) ⩾ mini{v(Qi(x)) + (i + 1)v(e)} > γ, for any 37

γ ∈ vK. It follows that if y is sufficiently close to x andP ′(x) ≠ 0, v((P (y)−P (x))/(y− 38

x) − P ′(x)) = v((y − x)Q(x, y − x)) is arbitrarily large. Since v(P (y) − P (x)/(y − x)) 39
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is constant, we must have P ′(x) ≠ 0 and hence, v((P (y) − P (x))/(y − x) − P ′(x)) = 1

v((y − x)Q(x, y − x)) > v(P ′(x)), i.e. rv(P (y) − P (x)/(y − x)) = rv(P ′(x)). By (ii), 2

this equality holds for any y ∈ b. 3

For any fieldK, letKs denote its separable closure— that is its maximal separable extension 4

inside Ka. Let also Kp−∞ denote its perfect hull — If the characteristic p of K is positive, 5

Kp−∞ = ⋃n>0Kp−n . otherwiseKp−∞ =K. We haveKa ≃Ks ⊗Kp−∞ . 6

Proposition 3.1.3. The following are equivalent: 7

(i) A = dcl(A) ∩As; 8

(ii) dcl(A) = Ap−∞ 9

(iii) for every a ∈ Aa, tpLrg
(a/A) ⊢ tpLRV,Γ

(a/A); 10

(iv) the valuation v∣A has a unique extension toAa (up to equivalence); 11

(v) the valuation v∣A has a unique extension toAs (up to equivalence); 12

(vi) for every P =Xd +∑i<d aiXi with ad−1 ∈ O(A)× and ai ∈ m(A), for i < d− 1, there exists 13

a (necessarily unique) c ∈ O(A)× with P (c) = 0; 14

(vii) for every P ∈ O(A)[x], with res(P )(0) = 0 and res(P ′)(0) ≠ 0, there exists a (necessarily 15

unique) c ∈ m(A) such that P (c) = 0; 16

(viii) for every P ∈ O(A)[x] and a ∈ O(A), with v(P (a)) > 2 ⋅ v(P ′(a)), there exists a (neces- 17

sarily unique) c ∈ A with v(c − a) > v(P ′(a)) and P (c) = 0; 18

(ix) for every P ∈ A[x], a ∈ A, γ ∈ v(A) such that v(P (a)) > v(P ′(a)) + γ and, for every 19

distinct x, y ∈ B̊(a, γ), rv((P (x)−P (y))/(x−y)) = rv(P ′(x)), there exists a (necessarily 20

unique) c ∈ A with v(c − a) > γ and P (c) = 0. 21

(x) for every irreducible P ∈ O(A)[x], there exists α ∈ k(A) and Q ∈ k(A)[x] irreducible 22

such that res(P ) = α or res(P ) = α ⋅Qdeg(P )/deg(Q); 23

(xi) for every P ∈ O(A)[x] and Q0,R0 ∈ k(A)[x] such that res(P ) = Q0 ⋅ R0 ≠ 0 and 24

gcd(Q0,R0) = 1, there existsQ,R ∈ O(A)[x]with P = Q ⋅R,Q is an exact lift ofQ0 and 25

res(R) = R0. 26

Proof. 27

(i)⇒(ix) Let P = c∏i(x − ei) and b ∶= B̊(a, γ). If, for every i, ei ∉ b, then v(P ′(a)/P (a)) = 28

v(∑i(a − ei)−1) ⩾ mini −v(a − ei) ⩾ −γ, i.e. v(P (a)) ⩽ v(P ′(a)) + γ. It follows that 29

some root c of P is in b. Since v(P (a)) > v(P ′(a)) + γ, rv(P ′(a)) = rv(P ′(c)) ≠ 0— 30

the second equality follows from lemma 3.1.2. So c is a simple root of P and hence of its 31

minimal polynomial overA, and c ∈ As. Moreover, if c, c′ ∈ b are distinct roots ofP , then 32

0 = rv((P (c) − P (c′))/(c − c′)) = rv(P ′(c)), a contradiction. So c ∈ dcl(A) ∩As = A. 33

(ix)⇒(viii) Since P ′(x) = P ′(a) + (x − a) ⋅ R(x, a) with R(x, y) ∈ O(A)[x, y], for every x ∈ 34

B̊(a,v(P ′(a))),v(P ′(x)−P ′(a)) = v((x−a)R(x, a)) > v(P ′(a)) andhence rv(P ′(x)) = 35

rv(P ′(a)). Note also that P (y) = P (x) + (y − x) ⋅ P ′(x) + (y − x)2 ⋅ Q(x, y), where 36

Q ∈ O(A)[x, y]. So, for every x, y ∈ B̊(a,v(P ′(a))), since v((y − x) ⋅ Q(x, y)) > 37

v(P ′(a)) = v(P ′(x)), rv((P (x) − P (y))/(x − y)) = rv(P ′(x))(14). By (ix), we find 38

a (unique) c such that P (c) = 0 and v(c − a) > v(P ′(a)). 39

14We could use lemma 3.1.2 to deduce that, but it is very much overkill.
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(viii)⇒(vii) We have v(P (0)) > 0 = 2 ⋅ v(P ′(0)), so, by (viii), there is a (unique) cwith P (c) = 0 and 1

v(c) > v(P ′(0)) = 0. 2

(vii)⇒(vi) LetQ(x) = P (x−ad−1). Then res(Q) = (x−α+α)(x−α)d−1 whereα = res(ad−1) ≠ 0. 3

So res(Q(0)) = 0 and res(Q′(0)) = res(Q)′(0) = (−α)d−1 ≠ 0. By (vii), there exists 4

c ∈ m(A) such that P (c − ad−1) = Q(c) = 0. Note that res(c − ad−1) = −α ≠ 0, so 5

c − ad−1 ∈ O(A)×. 6

(vi)⇒(v) Let A ⩽ F ⩽ As be finite Galois. It suffices to show that v∣A extends to F uniquely. 7

Let D ∶= {σ ∈ aut(As/A) ∶ v ○ σ is equivalent to v} and L ∶= FD. Note that, by the 8

conjugation theorem (corollary 2.1.18), there are at most [F ∶ A] extensions of v∣A to F , 9

up to equivalence. Let us denote them (vi)i<n where v0 = v. Note that, if vi∣L is equiv- 10

alent to v, by the conjugation theorem (corollary 2.1.18) there exists σ ∈ aut(F /L) = D 11

such that vi is equivalent to v ○ σ, which is equivalent, by definition of D to v. So no 12

vi∣L is equivalent— or dependent by corollary 2.2.14— to v. The weak approximation 13

theorem (theorem 1.1.12) now allows us to find b ∈ O(L)× such that, for every i > 0, 14

vi(b) > 0. 15

Let (bj)j<d ∈ F be the set of A-conjugates of b = b0. For every j > 0, there is some 16

σ ∈ aut(F /A) ∖ D such that σ(b) = bj . Since σ ∉ D, v ○ σ is equivalent to some vi, 17

with i > 0, and hence v(bi) = v(σ(b)) > 0. Let P = ∑i<d aixi be the minimal (monic) 18

polynomial of b over A. Then v(ad−1) = v(∑j bj) = v(b0) = 0 and, for i < d − 1, 19

v(ai) = v(∑J⊆d,∣J ∣=i∏j∈J bj) > 0. By (vi), the unique root b ofP inO× is inA. It follows 20

that there are no vi that are not equivalent to vwhich is thus the unique extension of v∣A 21

to F . 22

(v)⇒(iv) SinceAa = ⋃n(As)p−n , the valuation of any c ∈ Aa is uniquely determined by that of any 23

cp
n ∈ As. So the unique extension of v∣A toAs uniquely extends toAa. 24

(iv)⇒(iii) For every σ ∈ aut(Aa/A), v ○ σ extends v∣A and hence, by (iv), is equivalent to v. In 25

other words, σ induces anLRV,Γ-automorphism ofAa, which is elementary (fromM to 26

N ) by elimination of quantifiers, theorem 2.1.11. Since any two elements ofAa with the 27

same Lrg(A)-type have the same minimal polynomial over A and are thus aut(Aa/A)- 28

conjugate, (iii) follows. 29

(iii)⇒(ii) Since dcl(A) ⊆ acl(A) ⊆ Aa, (iii) implies that a ∈ dcl(A) if and only if a is the unique 30

solution to its minimal polynomial overA, i.e. a ∈ Ap−∞ . 31

(ii)⇒(i) We have dcl(A) ∩As = Ap−∞ ∩As = A. 32

(iii)⇒(x) It follows from (iii) that either all the roots of P = c∏i<d(x − ei) are in O or none are 33

in O. If none are in O, then, for every n < d, 0 > v(∏i ei) < v(∑I⊆d,∣I ∣=n∏i∈I ei) and 34

hence the only coefficient of P with minimal valuation is the constant one and res(P ) 35

is constant. Otherwise, letQ be the minimal polynomial of some res(ei) over k(A). By 36

(iii),Q is theminimal polynomial of any res(ei) over k(A). So res(∏(x−ei)) is a power 37

ofQ of degree d, and res(P ) = res(c)Qd/degQ. 38

(x)⇒(xi) WehaveP =∏i Piwhere thePi ∈ O(A)[x] are irreducible. By (x),Q0 ⋅R0 =∏i res(Pi) = 39

∏i αiSmi
i , where αi ∈ k(A)× and Si ∈ O(A)[x] is irreducible, or 1. Reordering, we may 40

assume there is a ℓ such that gcd(Si,Q0) ≠ 1 if and only if i ⩽ ℓ. Since gcd(Q0,R0) = 41

1, we then have Q0 = β∏i⩽ℓ Smi
i , where β ∈ k(A)×. Let Q = b∏i⩽ℓ(ai)−1Pi, where 42

res(ai) = αi and res(b) = β, and R = b−1∏i⩽ℓ ai∏i>ℓ Pi. Then Q ⋅ R = P , res(Q) = 43
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β∏i α−1i αiSi = Q0 ≠ 0 and hence res(R) = R0. Sincemi deg(Si) = deg(Pi) for every 1

i ⩽ ℓ, we also have deg(Q) = ∑i deg(Pi) = ∑imi deg(Si) = deg(Q0). 2

(xi)⇒(vi) Since k(P ) = (X + α)Xd−1 where α = res(ad−1) ≠ 0, by (xi), there exists an exact lift 3

bX − a ∈ A[x] ofX + α which divides P . So P (a/b) = 0, res(b) = 1, res(a) = −α and 4

hence a/b ∈ O×. 5

Definition 3.1.4 (Henselian fields). A valued field (K,v) is said to be henselian if it the equiv- 6

alent conditions of proposition 3.1.3 hold. 7

Proposition 3.1.5 (Hensel’s lemma). Let (K,v) be some valued field. Assume either that: 8

(a) K is spherically complete; 9

(b) vK ⩽ R andK is complete. 10

Then (K,v) is henselian. 11

Proof. Let us fix P ∈ O(K)[x] and a ∈ O(K) such that res(P (a)) = 0 and res(P ′(a)) = 0. 12

For every x ∈ a +m(K), let bx ∶= B(x, v(P (x))). Note that for every x ∈ a +m, res(P (x)) = 13

res(P (a)). Thus v(P (x)) > 0 and bx ⊆ a +m. 14

Claim 3.1.5.1. For every x, y ∈ a +m(K), bx ∩ by ≠ ∅. 15

Proof. We have P (y) = P (x) + (y − x)P ′(x) + (y − x)2Q(x, y), with Q ∈ O(K)[x, y]. So 16

v(y −x) = v((y −x)P ′(x)+ (y −x)2Q(x, y)) = v(P (y)−P (x)) ⩾min{v(P (x)), v(P (y))}. 17

If v(P (x)) ⩾ v(P (y)), then x ∈ by, otherwise y ∈ bx. ◊ 18

Claim 3.1.5.2. For every x ∈ a +m(K), there exists y ∈ K such that v(y − x) = v(P (x)) and 19

v(P (y)) ⩾ 2 ⋅ v(P (x)). 20

Proof. Take y = x − P (x)/P ′(x). Then v(y − x) = v(−P (x)) − v(P ′(x)) = v(P (x)) and 21

v(P (y)) = v((−P (x)/P ′(x))2Q(x, y)) ⩾ 2 ⋅ v(P (x)). ◊ 22

IfK is spherically complete, the pseudo Cauchy filterB generated by the bx has an accumu- 23

lation point c ∈ K. If vK ⩽ R, it follows from claim 3.1.5.2, that the bx can have arbitrarily 24

large radiuses in vK, so,B is a Cauchy filter and, ifK is complete,B converges to some c ∈K. 25

In either cases, by claim 3.1.5.2, we find e ∈ bc such that v(e − c) = v(P (c)) and v(P (e)) ⩾ 26

2 ⋅v(P (c)). By hypothesis, c ∈ be and hence v(P (c)) = v(e−c) ⩾ v(P (e)) ⩾ 2 ⋅v(P (c)). Since 27

v(P (c)) > 0, we must have P (c) = 0. 28

Definition 3.1.6. Let (K,v) be some valued field. We defineKh ∶= dcl(K)∩Ks, the henselian 29

closure ofK— inside some fixed model ofACVF containingK. 30

Remark 3.1.7. Let D ∶= {σ ∈ aut(Ks/K) ∶ v ○ σ ≃ v}, for some extension v to Ks. Then 31

Kh = (Ks)D. 32
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Proposition 3.1.8 (Universal property ofKh). Let (K,v) be a valued field, (L,w) be henselian 1

and f ∶K → L. Then there is a unique morphism g ∶Kh → L such that: 2

Kh

g

��

K

ssssss

f %%LL
LLL

LL

L

3

commutes. 4

Proof. Let Kh ⩽ M ⊧ ACVF and L ⩽ N ⊧ ACVF. By elimination of quantifiers, theo- 5

rem 2.1.11, there exists g ∶ Kh → N . SinceKh = dcl(K) ∩Ks and L = dcl(L) ∩ Ls, g(Kh) = 6

dcl(f(K)) ∩ f(K)s ⊆ L. If g′ is another such map, then g′(Kh) = dcl(f(K)) ∩ f(K)s = 7

g(Kh) and g−1 ○ g′ ∈ aut(Kh/K) ⩽ aut(dcl(K)/K) is the identity. 8

We nowwant to describe vKh andKhv. But we will first need to construct spherically com- 9

plete maximal extensions. 10

Lemma 3.1.9. LetM ⊧ ACVF andA ⩽K(M). The following are equivalent: 11

(i) A is spherically complete inM : any pseudo Cauchy filterB overK(M) with an accumu- 12

lation point inM has one inA; 13

(ii) A is maximally complete inM : any immediate intermediary extension A ⩽ F ⩽ K(M) 14

is trivial. 15

Proof. 16

(i)⇒(ii) Fix some c ∈ F and let B be maximal pseudo Cauchy filter over A that accumulates at 17

c. By (i) it accumulates at some a ∈ A. If c ≠ a, then there exists e ∈ A× such that 18

rv(e) = rv(c − a). So v(c − a − e) > v(e) and c ∈ b ∶= B̊(a + e, v(e), ∈)B. So v(e) = 19

v(a − (a + e)) > v(e), a contradiction. It follows that c = a ∈ A. 20

(ii)⇒(i) Let B be some pseudo Cauchy filter over A that accumulates at some c ∈ M and let 21

P ∈ A[x] be minimal such that 0 ∈ P⋆B. By proposition 2.1.8.(2) there exists some 22

e ∈ B ∩M such that P (e) = 0 — if P = 0, take e = c. By proposition 2.1.8.(1), the 23

extensionA ⩽ A[e] is immediate and e ∈ A. 24

Note that (i)⇒(ii) holds even whenM ⊭ ACVF. 25

Corollary 3.1.10. LetK be a valued field. The following are equivalent: 26

(i) K is spherically complete; 27

(ii) K is maximally complete: any immediate extensionK ⩽ L is trivial. 28

Proof. By compactness (theorem B.0.9) and the fact that every valued field embeds in a model 29

ofACVF,K is spherically (respectively maximally) complete if and only if it is in anymodel of 30

ACVF. 31

Corollary 3.1.11. Let (K,v) be spherically complete with algebraically closed residue field and 32

divisible valued group. ThenK is algebraically closed. 33
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3. Henselian fields

Proof. Since vKa = Q ⋅ vK = vK anKav = (Kv)a = Kv, the extensionK ⩽ Ka is immediate 1

and hence trivial. 2

Example 3.1.12. For every k ⊧ ACFp and Γ ⊧ DOAG, k((Γ)) ⊧ ACVFp,p. There are also 3

examples of maximally complete models ofACVF0,p but they are more complicated to build. 4

Proposition 3.1.13. LetM,N ⊧ ACVF, k(M) ∪ Γ(M) ⊆ A ⩽ M and f ∶ A → N . If N is 5

spherically complete, then there exists an embedding g ∶M → N such that: 6

M

g

��

A

ssssss

f %%KK
KK

KK

N

7

commutes. 8

Proof, cf. proposition 2.1.10. Let C ⩽ A and g ∶ C → N be maximal such that g extends f . 9

By proposition 2.1.5, k(M) ⩽ res(K(C)) and by proposition 2.1.3, Γ(M) ⩽ v(K(C)). So 10

K(C) ⩽ K(M) is immediate, but, by proposition 2.1.8, K(C) is spherically closed inM . It 11

follows, by lemma 3.1.9, that C =M . 12

Proposition 3.1.14. Let (K,v)be a valuedfield. There exists an embeddingf ∶ (K,v)→ (L,w) 13

with L spherically complete and f(K) ⩽ L immediate. If, moreover, vK is divisible andKv is 14

algebraically closed, it is unique up to isomorphism. 15

Proof. LetM ⊧ ACVF be ∣K ∣+-saturated of the same characteristic and residue characteristic 16

as K. By proposition 2.1.10, the embedding of the prime field of K into M extends to an 17

embedding f ∶ K → M . Let f(K) ⩽ L ⩽ K(M) be a maximal immediate extension of K. 18

Then L is spherically complete inM . However, any pseudo Cauchy filter over L is generated 19

by as set of cardinal at most ∣vL∣ = ∣vK ∣ < ∣K ∣+, so it has an accumulation point inM . So L is 20

spherically complete. 21

Now, if v trivial, then L = K is indeed unique. Otherwise, if vK is divisible and Kv is 22

algebraically closed, by corollary 3.1.11, L ⊧ ACVF and, given any g ∶ K → F with F spheri- 23

cally complete and g(K) ⩽ F immediate, by proposition 3.1.13, we find h ∶ F → L such that 24

h ○ g = f . But we have rv(L) = rv(f(K)) = rv(h ○ g(F ))and hence h ○ g(F ) ⩽ L being 25

immediate, it is trivial. 26

Corollary 3.1.15. Let (K,v) be a valued field. The extensionK ⩽Kh is immediate. 27

Proof. By proposition 3.1.14, K admits a spherically complete immediate extension L. By 28

proposition 3.1.5, L is henselian and hence, by proposition 3.1.8, Kh embeds into L. It fol- 29

lows that rv(K) ⩽ rv(Kh) ⩽ rv(L) = rv(K). 30
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3.2. Elimination of quantifiers in characteristic zero 1

Definition 3.2.1. Let LRV be the language with: 2

• a sortKwith the ring language (+,−,0, ⋅,1); 3

• for every n ∈ Z>0, a sortRVn with two constants 0,1, a binary function ⋅ and a ternary 4

predicate ⊕; 5

• for every n > 0, a map rvn ∶K→RVn; 6

• for everym,n > 0with n∣m, a map rvn,m ∶RVm →RVn. 7

Any valued field (K,v) can be made into a LRV-structure by interpreting K as the field 8

K, RVn as the multiplicative monoid K/1 + nm, the maps rvn and rvn,m as the canonical 9

projections, 0 as rvn(0) and ⊕ as the trace of the graph of addition onRVn. 10

Definition 3.2.2. Let VF denote the LRV-theory of valued fields, Hen0 that of characteristic 11

zero henselian fields andHen0,0 that of residue characteristic zero henselian fields. 12

Remark 3.2.3. LetM ⊧ VFwith residue characteristic p and n∣m be positive integers. If p = 0 13

or gcd(p,m/n) = 1, thenm/n ∈ O× and rvn,m is an isomorphism. In particular, If p = 0 all 14

the RVn are canonically isomorphic to RV = RV1. If p > 0, then every RVn is canonically 15

isomorphic toRVpvp(n) . 16

Notation 3.2.4. LetM ⊧ VF and (ζi)i<n ∈ RV(M). We denote by⊕i<n ζi = {rv(∑i xi) ∶ 17

rv(xi) = ζi}. If ⊕i<n ζi is a singleton {ξ}, we say that ⊕i<n ζi is well defined and we write 18

⊕i<n ζi = ξ. If P = ∑i aixi ∈K(M)[x] and ζ ∈RVx, we write rv(P )(ζ) =⊕i rv(ai)ζi. 19

Lemma 3.2.5. LetM ⊧ VF and (ζi)i<n ∈ RV(M) and γ = mini v(ζi). Then one (and only 20

one) of the following holds: 21

• ⊕i<n ζi = {ξ ∈RV ∶ v(ξ) > γ}; 22

• ⊕i<n ζi = ξ and v(ξ) = γ. 23

Proof. Let us first assume that there are some xi with rv(xi) = ζi and v(∑i xi) = γ. Then for 24

everymi ∈ m, v(∑i(xi(1+mi))−∑i xi) = v(∑i ximi) >mini v(xi) = γ = v(∑i xi). It follows 25

that rv(∑i(xi(1 +mi))) = rv(∑i xi) and hence⊕i ζi = rv(∑i xi). 26

On the other hand, if v(∑i xi) > γ = v(xi0), then for everym ∈ γm,n ∶= (m−∑i xi)/xi0 ∈ m 27

and∑i≠i0 xi + xi0(1 + n) =m and hence⊕i ζi = rv(γm). 28

Lemma 3.2.6. LetM ⊧ Hen0,0,P ∈K(M)[x] andα ∈RV(M). The following are equivalent: 29

(i) there exists n ∈ Z⩾0, with n ⩽ deg(P ), such that 0 ∈ rv(P (n))(α); 30

(ii) there existsn ∈ Z⩾0, withn ⩽ deg(P )anda ∈K(M) such thatP (n)(a) = 0and rv(a) = α. 31

Proof. Since rv(P (a)) ∈ rv(P )(rv(a)), (i) follows from (ii). So let us assume (i) and let a ∈ 32

K(M) such that rv(a) = α. Let n be maximal such that 0 ∈ rv(P (n))(α). Replacing P = 33

∑i cixi by P (n), we may assume that n = 0. By lemma 3.2.5 and maximality of n, v(P ′(a)) = 34

v(∑i>0 iciai−1) = mini v(iciai−1) = mini v(ci) + (i − 1)v(a). By lemma 3.2.5, we also have 35

v(P (a)) >mini{v(ci)+ iv(a)} =min{v(c0),v(P ′(a))+ v(a)}. If v(c0) < v(P ′(a))+ v(a), 36

then v(P (a)) = v(c0) = mini(v(ci) + iv(a)), a contradiction. It follows that v(P (a)) > 37

v(P ′(a))+v(a). Since, rv(P ′(x)) is constant on rv−1(α) = B̊(a,v(a)) andK(M) is henselian, 38

by lemma 3.1.2 and proposition 3.1.3.(ix), we may assume that P (a) = 0. 39
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Corollary 3.2.7. LetM ⊧ Hen0,0, P ∈ K(M)[x] and B a pseudo Cauchy filter over K(M). 1

Then one of the following holds: 2

• there exists 0 ⩽ n ⩽ deg(P ) and a root of P (n) inB— in which case 0 ∈ P (n)⋆ B; 3

• rv ○ P is eventually constant onB. 4

Proof. Let X be the set of roots of the P (n) in M . Since P (deg(P )−1) is linear, X ≠ ∅. If 5

X ∩B = ∅, then there is some b ∈B such that b ∩X = ∅. Let a ∈X be such that γ ∶= v(b − a) 6

is maximal. We may assume that b is an open ball of radius γ. Then b = rv−1(α) + a for some 7

α ∈ RV(M). Let Q = P (x − a). Since noQ(n) = P (n)(x − a) has a root in rv−1(α) ∩M , by 8

lemmas 3.2.5 and 3.2.6, rv ○Q is constant on rv−1(α). So rv(P ) is constant on b. 9

Proposition 3.2.8. LetM ⊧ Hen0,0,A ⩽M a field, α ∈RV(A) =RV(M) and P ∈K(A)[x] 10

have minimal degree such that 0 ∈ rv(P )(α). 11

(1) For every Q ∈ K(A)[x] of degree smaller than P and every a ∈ rv−1(α), rv(Q(a)) = 12

rv(Q)(α). 13

(2) There exists a ∈K(M) with rv(a) = α and P (a) = 0. 14

(3) Such an a is uniquely determined, up toLRV(A)-isomorphism, by P and α: for everyN ⊧ 15

Hen0,0, every embedding f ∶ A→ N , every a ∈K(M) and b ∈K(N), if: 16

• P (a) = 0 and rv(a) = α; 17

• f⋆P (b) = 0 and rv(b) = f(α); 18

then f can be extended by sending a to b. 19

Proof. (1) Since, by minimality, 0 ∉ rv(Q)(α), rv(Q)(α) = rv(Q(a)), for any a ∈ rv−1(α), 20

is well-defined. 21

(2) By lemma3.2.6,P (n) has a root in rv−1(α)∩K(M), for somen ⩽ deg(P ). Byminimality 22

of P , n = 0. 23

(3) By (i) applied to b, f⋆P is the minimal polynomial of b over f(A). So f ∣K extends to 24

g∣K sending a to b. Let g∣RV = f ∣RV. For every Q ∈ K(A)[x] of degree smaller than 25

P , g(rv(Q(a))) = g(rv(Q)(α)) = rv(f⋆Q)(β) = rv(f(Q(b))). The second equality 26

(and the fact that the third is well-defined) can be checked by computing the partial sums 27

using the binary ⊕. So g is an LRV-embedding extending f and sending a to b. 28

Proposition 3.2.9. LetM ⊧ Hen0,0, A ⩽ M a field, B be a pseudo Cauchy filter K(A) and 29

P ∈K(A)[x] have minimal degree such that 0 ∈ P⋆B. 30

(1) For everyQ ∈K(A)[x] of degree smaller than P , rv ○Q is eventually constant onB— in 31

particular is equal to an element of rv(K(A)); 32

(2) If P ≠ 0, there exists a ∈B with P (a) = 0; 33

(3) Such an a is uniquely determined, up to LRV(A)-isomorphism, by B and P : for every 34

N ⊧ ACVF, embedding f ∶ A→ N , a ∈K(M) and b ∈K(N), if: 35

• P (a) = 0 and a ∈B; 36

• f(P )(b) = 0 and b ∈ f⋆B; 37

then f can be extended by sending a to b. 38

Proof. (1) By minimality of P and corollary 3.2.7, rv ○Q is eventually constant onB. 39
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(2) If there is not root of P in B, since there are none of its derivatives either, by corol- 1

lary 3.2.7, rv ○ P is eventually constant — and hence equal to 0 — on B. If P ≠ 0, 2

thenB contains a singleton {a} and P = x − a. 3

(3) This follows immediately from (the proof of) proposition 2.1.8.(3). By (1) applied at b, 4

f⋆P is theminimal polynomial of b over f(A). So let g∣K extend f ∣K and send a to b. Let 5

also g∣RV = f ∣RV. For everyQ ∈K(A)[x] of degree smaller than P , let b ∈B be a ball of 6

K(A) such that rv ○Q is constant on b and rv ○f⋆Q is constant on f(b) and let c ∈ b(A). 7

Then g(rv(Q(a))) = f(rv(Q(c))) = rv(f⋆(Q)(f(c))) = rv(f⋆Q(b)) = rv(g(Q(a))). 8

So g is an LRV-embedding extending f and sending a to b. 9

Proposition 3.2.10. LetM,N ⊧ Hen0,0, RV(M) ⊆ A ⩽ M and f ∶ A → N . There exists an 10

embedding h ∶ N → N⋆, which is elementary for any choice of structure onN , and an embedding 11

g ∶M → N such that: 12

M
g // N⋆

A
f

// N

h

OO 13

commutes. IfN is spherically complete, we can choose h = id ∶ N → N . 14

Proof. Let A ⩽ C ⩽ M and g ∶ C → N⋆ and h ∶ N → N⋆ elementary (for any given choice of 15

structure onN ) be maximal (as in proposition 2.1.10). IfN is spherically complete, we restrict 16

ourselves to considering tuples with h = id. First, note that, sinceRV(M) ⩽RV(A) and rv is 17

multiplicative, g has a unique extension toK(C)(0) ∪RV(M). SoK(C) is a field. 18

Claim 3.2.10.1. RV(M) = rv(K(C)) 19

Proof. Fix some α ∈ RV(M). Let P ∈ K(C)[x] be minimal such that 0 ∈ rv(P )(α). By 20

proposition 3.2.8.(2), there exists a ∈ K(M) and b ∈ K(N⋆) such that P (a) = 0, rv(a) = 21

rv(α), g⋆P (b) = 0 and rv(b) = g(α). By proposition 3.2.8.(3), g can be extended by sending a 22

to b. By maximality, a ∈ C. ◊ 23

Claim 3.2.10.2. K(C) is spherically complete inK(M). 24

Proof. Let B be some pseudo Cauchy filter over K(C) with an accumulation point in c ∈ 25

K(M). Let P ∈ K(C)[x] be minimal such that 0 ∈ P⋆B. If P = 0, set a ∶= c and by com- 26

pactness, we can find i ∶ N⋆ → N † and b ∈ (i ○ g)⋆B. IfN is spherically complete, we can find 27

b ∈ g⋆B ∩N and we can take N † = N⋆ = N and i = id. If P ≠ 0, proposition 3.2.9.(2), there 28

exists a ∈K(M) and b ∈K(N⋆) such that P (a) = 0, a ∈B, g⋆P (b) = 0 and b ∈ g⋆B— so we 29

can also takeN † = N⋆ and i = id. In both cases, by proposition 3.2.9.(3), i ○ g can be extended 30

by sending a to b, so a ∈ C. ◊ 31

Byclaim3.2.10.1, the extensionK(C) ⩽K(M) is immediate, By claim3.2.10.2 and lemma3.1.9,32
it is trivial. So C =M and the proposition is proved. 33
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We now wish to extend that result in mixed characteristic. But first we need to introduce 1

coarsened valuations. 2

Let (K,v) be a valued field and∆ ⩽ vK× be a convex subgroup. 3

Definition 3.2.11. The coarsened valuation associated to∆ is w ∶K → vK/∆. 4

Let π ∶ vK → vK/∆ denote the canonical projection. 5

Proof. Let us check that w is a valuation. We have w(0) = π(v(0)) = {v(0)} ≠ ∆ = π(v(1)) = 6

w(1). Also for every x, y ∈ K, w(xy) = π(v(xy)) = π(v(x)) + π(v(y)) = w(x) + w(y) 7

and w(x + y) = π(v(x + y)) ⩾ min{π(v(x)), π(v(y))} = min{w(x),w(y)} since π is non 8

decreasing. 9

Remark 3.2.12. 1. We havemw = ⋂v(a)∈∆ amv ⊆ mv ⊆ Ov ⩽ ⋃v(a)∈∆ aOv = Ow. 10

2. In particular, Ov/mw ⩽ Kw is a valuation ring. We also denote by v ∶ Kw → ∆ the 11

associated valuation. Note that, if c ∈ Ow, v(c) = v(resw(c)) and that we have resv ○ 12

resw = resv onceKwv is canonically identified toKv. 13

3. If w is not trivial, equivalently∆ < vK×, the valuations v and w induce the same topol- 14

ogy. 15

Lemma 3.2.13. Let (K,v) be a valued field and∆ ⩽ vK× be a convex subgroup. 16

(1) (K,v) is henselian if and only if (K,w) and (Kw,v) are. 17

(2) If (K,v) is spherically complete if and only if (K,w) and (Kw,v) are. 18

Proof. (1) Let us first assume that (K,v) is henselian. Let P = xd +∑i<d aixi with ad−1 ∈ 19

O×w and ai ∈ mw ⊆ mv, for i < d − 1. Let Q = add−1P (x/ad−1) = add−1(x/ad−1)d + 20

∑i<d add−1ai(x/ad−1)
i = xd +xd−1 +∑i<d−1 aiad−1−id−1 xi. So wemay assume that ad−1 = 1 ∈ 21

Ov. By proposition 3.1.3.(vi), there is c ∈ O×v ⊆ O×w with P (c) = 0. 22

Let now P ∈ Ov/mw[x] such that v(P (0)) > 0 = v(P ′(0)) and letQ ∈ Ov[x] such that 23

resw(Q) = P . Wehavev(Q(0)) > 0 = v(Q′(0)) and thus, byproposition3.1.3.item (vii), 24

there is c ∈K such thatv(c) > 0 andQ(c) = 0. So resw(c) ∈Kw is such thatv(resw(c)) > 25

0 and P (resw(c)) = 0. 26

Conversely, let us assume that (K,w) and (Kw,v) are henselian and let P ∈ Ov[x] be 27

such that v(P (0)) > 0 = v(P ′(0)). Then v(resw(P )(0)) > 0 = v(resw(P )′(0)) and, by 28

proposition 3.1.3.(vii), we find c ∈ mv/mw with resw(P )(c) = 0. Let a ∈ mv be such that 29

resw(a) = c. Then resw(P (a)) = resw(P )(c) = 0 ≠ resw(P ′)(0) = resw(P ′(a)). So 30

w(P (a)) > 0 = w(P ′(a)) and, by proposition 3.1.3.(viii), we find d ∈ mv withP (d) = 0. 31

(2) Let us first assume that (K,v) is spherically complete. LetB be a non principal pseudo 32

Cauchy filter over (K,w). Since open balls in (K,w) are intersections of open balls in 33

(K,v),B is also pseudoCauchy over (K,v) and hence has an accumulation point inK. 34

IfB is a pseudo Cauchy filter over (Kw,v), then, since the preimage by resw of a ball of 35

(Kw,v) is a ball of (K,v), the set {res−1w (U) ∶ U ∈ B} generates a pseudo Cauchy filter 36

F over (K,v)which thus has an accumulation point c ∈ Ow ∈ F. Then resw(c) ∈B. 37

Conversely, let us assume that (K,w) and (Kw,v) are spherically complete and letB be 38

a non principal pseudo Cauchy filter over (F, v). Then the set of balls of (K,w) in B 39

generate a pseudo Cauchy filter F over (K,w) which accumulates at some c ∈ K. If F = 40
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B, then c ∈ B. If F ≠ B, since between any two open balls of (K,v) whose radius have 1

distinct classes modulo∆, there is a closed ball of (K,w), F is generated by some closed 2

ball b. Translating and scaling, we my assume that b = Ow. Then (resw)⋆B is a pseudo 3

Cauchy filter on (Kw,v) which accumulates at some d ∈ Kw. Since res−1w (d) ∉ F ⊆ B, 4

we haveB ⊇ res−1w (d) ≠ ∅. 5

Notation 3.2.14. Let (K,v) be a characteristic zero field. We define: 6

• ∆∞ ⩽ vK the convex subgroup generated by v(Z); 7

• v∞ ∶K → vK/∆∞ the coarsened valuation. 8

Remark 3.2.15. 1. The valuation v∞ is the least residue characteristic zero coarsening of v. 9

2. We havem∞ ∶= mv∞ = ⋂n∈Z>0 nm ⊆ m ⊆ O ⩽ O∞ ∶= Ov∞ . 10

3. There is a natural embedding f ∶ RV∞ ∶= K/(1 +m∞) → lim←Ðn>0RVn. It is an embed- 11

ding of monoids that sends 0 to 0. Moreover, for every ξ, υ, ζ ∈ RV∞, ζ ∈ ξ ⊕ υ if and 12

only if, for some x, y, z ∈ K, rv∞(z) = ζ = rv∞(x + y), rv∞(x) = ξ and rv∞(y) = υ, if 13

and only if v∞(x + y − z) > v∞(z), if and only if v(x + y − z) > v(z) + v(n), for every 14

n ∈ Z>0, if and only if rvn,∞(ζ) ∈ rvn,∞(ξ)⊕ rvn,∞(υ). 15

4. IfK is spherically complete or ℵ1-saturated then f is surjective. 16

Proposition 3.2.16. LetM,N ⊧ Hen0, ⋃nRVn(M) ⊆ A ⩽ M and f ∶ A → N . There exists 17

an embedding h ∶ N → N⋆, which is elementary (for any choice of additional structure on N ), 18

and an embedding g ∶M → N such that: 19

M
g // N⋆

A
f

// N

h

OO 20

commutes. IfN is spherically complete, we can choose h = id ∶ N → N . 21

Proof. Let L the enrichment of LRV by a copy of itself LRV∞ that shares theK sort—we will 22

be indexing the new symbols by by∞ to distinguish them from the old symbols — and new 23

symbols rvn,∞ ∶RV∞ →RVn, for every n ∈ Z>0. Note that, writing rvn as rvn,∞ ○ rv∞, this is 24

anRV∞-enrichment of LRV∞ . 25

LetM∞ denote theL-structure associated to (K(M),v∞,v). By lemma3.2.13, (M∞,v∞) ⊧ 26

Hen0,0. LetA∞ ∶= A⋃RV∞(M). Let h0 ∶ N → N⋆ be elementary withN⋆ ℵ1-saturated and 27

define f∞ ∶ A∞ → N⋆∞ by extending h0 ○ f with f∞∣RV∞
∶ RV∞(M) → lim←ÐnRVn(M) → 28

lim←ÐnRVn(N⋆) ≃RV∞(N⋆); ifN is spherically complete, we may take h = id ∶ N → N . 29

By construction, f is anLmorphism, f∞ commutes with rv∞ and rvn,∞, f∞∣RV∞
is a mul- 30

tiplicative morphism sending 0 to 0 and commuting with −. Note also that for every ξ, υ, ζ ∈ 31

RV∞, ζ ∈ ξ ⊕ υ if and only if rvn,∞(ζ) ∈ rvn,∞(ξ)⊕ rvn,∞(υ) for every n ∈ Z>0. So f∞ is an 32

L-morphism. 33

By proposition 3.2.10, there exists h1 ∶ N⋆∞ → N †
∞ which is elementary for any structure on 34

N⋆∞— in particular, its L-structure — and g∞ ∶M∞ → N †
∞ such that h1 ○ f∞ = g∞∣A∞ . IfN 35

is spherically complete, so isN⋆∞ = N∞, by lemma 3.2.13, and we can also chooseN †
∞ = N∞. 36

Let g ∶= g∞∣LRV
∶M → N † ∶= N∞∣LRV

and h = h1∣L ○ h0. Then h ○ f = g∣A. 37
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Note that there is something non trivial going on. InN †
∞, we might have ⋃n∈Z>0 nO ⊂ O∞ 1

and v∞ might not be the least residue characteristic zero coarsening of v. However, rvn,∞ fac- 2

torises through the standard map lim←ÐnRVn →RVn. 3

Let L be a language and S be a set of L-sorts. An S-enrichment of L is L′ ⊇ L such that the 4

symbols in L′ ∖L only involve the sorts in S—and potential new sorts of L′. 5

Theorem 3.2.17 (Basarab, 1990, ...). TheLRV-theoryHen0 resplendently eliminates field quan- 6

tifiers: any formula in an (RVn)n-enrichment L of LRV is equivalent (modulo Hen0) to an 7

L-formula without quantifiers on the sortK. 8

Proof. Let L be some (RVn)n-enrichment of LRV and L′ be a further enrichment by a predi- 9

cateRφ(x) for each formula φ(x)without field variables (free or quantified). Let T ∶= Hen0 ∪ 10

{∀xRφ(x)↔ φ(x)}. It suffices to prove that T eliminates quantifiers. By proposition B.0.15, 11

it suffices to show that givenM,N ⊧ T and and L′-embedding f ∶ A ⩽M → N , there exists an 12

L′-elementary h ∶ N → N⋆ and an L′-embedding g ∶M → N⋆ such that h ○ f = g∣A. 13

Let c enumerate all ofM ∖K(M) and let p = qf-tpL′(c/A). Any field quantifier free L- 14

formula φ(xa) with a ∈ K(A) is equivalent to some formula ψ(x, rvn(P (a))) where ψ(xy) 15

is an L-formula without field variables and P ∈ Z[z] is a tuple. If φ(xa) ∈ p, then M ⊧ 16

∃xψ(xrvn(P (a))) andhenceM ⊧ R∃xψ(rvn(P (a))), which impliesN ⊧ R∃xψ(rvn(P (f(a)))) 17

and thusN ⊧ ∃xφ(xf(a)). Since any quantifier free L′-formula is equivalent (modulo T ) to a 18

field quantifier freeL-formula, we have that f⋆p is finitely satisfiable inN . It is therefore realised 19

in some elementary extensionN⋆ ofN . 20

So wemay assume that⋃nRVn(M) ⊆M ∖K(M) ⊆ A. By proposition 3.2.16, there exists 21

g∣K ∶K(M)→K(N⋆)whereN⋆ is someL′-elementary extension ofN , such that h∣K○ f ∣K = 22

g∣K(A) and g∣K induces f ∣RVn
on RVn. Then g ∶= g∣K ∪ f ∶ M → N⋆ is an L′-embedding 23

since none of the new symbols involve the sortK and we indeed have h ○ f = g∣A. 24

Corollary 3.2.18. LetM,N ⊧ Hen0 and f ∶ A ⩽M → N be an LRV-embedding. Then 25

f is LRV-elementary⇔ f ∣⋃n RVn
is LRV∣⋃n RVn

-elementary. 26

In particular, 27

M ≡ N as LRV-structures⇔⋃
n
RVn(M) ≡⋃

n
RVn(M) as LRV∣⋃n RVn

-structures. 28

Proof. Exercise. 29

3.3. Angular components 30

Definition 3.3.1. Let (K,v) be a valued field. 31

• Let n ∈ Z>0. An n-th angular component is a multiplicativemorphism acn ∶K× →R×n = 32

O×/nm extending resn onO×. 33

• A system of n-th angular component maps acn ∶ K× → Rn is said to be compatible if 34

for every n∣m ∈ Z>0, acn = resn,m ○ acm, where resn,m ∶ Rm → Rn is the canonical 35

projection. 36
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Remark 3.3.2. Let (K,v) be a field. 1

• Any n-th angular component map acn factorises through rvn and gives rise to a section 2

sn ∶ rvn(x)↦ acn(x) ofR×n →RV×n. 3

• Conversely any section sn ∶ RV×n → R×n of the short exact sequence 1 → R×n → RV×n → 4

Γ× → 0 gives rise to an n-th angular component sn ○ rvn. 5

• Similarly compatible system of n-th angular component maps acn correspond to com- 6

patible system of sections sn ∶ RV×n → R×n with resn,m ○ sm = sn ○ rvn,m, for every 7

n∣m ∈ Z>0. 8

Proof. Let us first prove that given an n-th angular component map acn, the map rvn(x) ↦ 9

acn(x) is well defined. For every x ∈ K and y ∈ n ∶, acn(x(1 + y)) = acn(x) ⋅ acn(1 + y) = 10

acn(x) ⋅ resn(1 + y) = acn(x). Also, for every x ∈ O×, sn(resn(x)) = acn(x) = resn(x). So 11

sn∣R×n is the identity map. Conversely, sn ○ rvn ∶ K× → R×n is a multiplicative morphism and 12

for every x ∈ O×, sn(rvn(x)) = sn(resn(x)) = resn(x). 13

Finally, for every x ∈K× and every n∣m ∈ Z>0, 14

acn(x) = sn(rvn(x)) = sn(rvn,m(rvm(x)))
resn,m(acm(x)) = resn,m(sm(rvm(x)))

15

So acn = resn,m ○ acm if and only if resn,m ○ sm = sn ○ rvn,m. 16

Any valued field can be endowedwith a compatible systemof angular components, provided 17

we go to some elementary extension. Toprove this fact, we need to introduce pure embeddings: 18

Lemma 3.3.3. Let f ∶ A→ B be an Abelian group morphism. The following are equivalent: 19

(i) f is injective and for every a ∈ A and n ∈ Z, if f(a) ∈ n ⋅B, then a ∈ n ⋅A; 20

(ii) for every finitely generatedA ⩽ C ⩽ B, there exists r ∶ C → A with r ○ f = id; 21

(iii) for everym ∶= (mi,j)i<n,j<ℓ ∈ Z and a ∶= (ai)i<n ∈ A, ifmx = f(a) has a solution in Bℓ
22

then,mx = a has a solution inAℓ; 23

(iv) for every ℵ1-saturated Abelian group C and group morphism g ∶ A → C , there exists a 24

group morphism h ∶ B → C such that h ○ f = g; 25

(v) there exists an elementary embedding g ∶ A → A⋆ and a map h ∶ B → A⋆ such that 26

h ○ f = g; 27

Proof. 28

(i)⇒(ii) By the structure theory of finitely generated modules over principal ideal domains (e.g. 29

[A7, th. 2, §4 N○4]), C/f(A) = ⊕i<nZ ⋅ ci/f(A). If ci/f(A) is order n < ∞, then, 30

n⋅ci ∈ f(A). By (i), there existsa ∈ A such thatn⋅f(a) = n⋅ci andhencen⋅(ci−f(a)) = 0. 31

So we may assume that n ⋅ ci = 0. Then π ∶ C → C/f(A) induces an isomorphism 32

∑iZ ⋅ ci → C/f(A), and henceB = f(A)⊕ (∑iZ ⋅ ci), yielding the required retraction, 33

since f is injective. 34

(ii)⇒(iii) Let b ∈ B be such thatmb = f(a) andC be generated byAb. By (ii), we find a retraction 35

r ∶ C → A. Thenm ⋅ r(b) = r(f(a)) = a. 36

(iii)⇒(iv) By Zorn’s lemma, let h ∶ D → C be maximal such that h ○ f = g, f(A) ⩽ D ⩽ B and the 37

latter verifies (iii). 38
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Claim 3.3.3.1. For any b ∈ B, there existsD ⩽ E ⩽ B such that b ∈ E, E/D is countable 1

andE ⩽ B verifies (iii). 2

Proof. By downwards Lowenhein-Skolem, proposition B.0.7, we findD ⩽ E ⩽ B such 3

that, b/D ∈ E/D ⩽ B/D is elementary and E/D is countable. Let nowm ∈ Znℓ, e ∈ En 4

and b ∈ Bℓ such thatmb = e. So B/D ⊧ ∃x mx = e/D and hence there is some c ∈ E 5

such thatmc − e = d ∈ D. Som(b − c) = e − e − d ∈ D and by (iii) forD ⩽ B, we find 6

a ∈Dℓ withma = d and hencem(c − a) = e, where c − a ∈ E. ◊ 7

Let e enumerate a countable set of generators of E over D. Let ∆(x) be the set of all 8

formulas mx = d, where m ∈ Zb is an almost everywhere zero tuple and d ∈ D, such 9

thatme = d. Note that these formulas involve at most countably many elements of D. 10

By (iii), inD ⩽ B,∆(x) is finitely satisfiable inD and hence h⋆∆ is finitely satisfiable in 11

C. By saturation. we find c ∈ C such that C ⊧ h⋆∆(c). The natural map h0 ∶ E → C 12

extending h by e↦ c is such that h0 ○ f = g. By maximality,D = B. 13

(iv)⇒(v) Applying (iv) to an elementary embedding g ∶ A → A⋆ where A⋆ is ℵ1-saturated yields 14

(v). 15

(v)⇒(i) Since i = h ○ f , being elementary, is injective, f also is. If a ∈ A, b ∈ B and n ∈ Z are such 16

that f(a) = n ⋅ b, then i(a) = h(f(a)) = n ⋅ h(b). SoA⋆ ⊧ ∃x i(a) = n ⋅ x and hence, by 17

elementarity, a ∈ n ⋅A. 18

Definition 3.3.4. An Abelian group morphism f ∶ A → B is said to be pure when the above 19

equivalent conditions hold. 20

Corollary 3.3.5. Let f ∶ A → B be a pure Abelian group morphism definable in some structure 21

M . There exists an elementary h ∶ M → M⋆ and a retraction r ∶ B(M⋆) → A(M⋆) of f ∶ 22

A(M⋆)→ B(M⋆). 23

Note that r is not assumed to be definable — and there is no reason it should be. 24

Proof. Let h ∶ M → M⋆ be elementary withM⋆ ℵ1-saturated. Then A(M⋆) is ℵ1-saturated 25

(as a group) and, by lemma 3.3.3.(iv), we find r ∶ B(M⋆)→ A(M⋆)with r ○ f = id. 26

Corollary 3.3.6. AnyM ⊧ VF has an elementary extension which admits a compatible system 27

of n-th angular component maps for all n. 28

Proof. The inclusion O× ⩽ K× is pure. Indeed, if a ∈ O×(M) is equal to cn for some c ∈ 29

K×(M), nv(c) = v(a) = 0 and hence c ∈ O×. By corollary 3.3.5, we find an elementary 30

extension h ∶ M → M⋆ of K and r ∶ K×(M⋆) → O×(M⋆) a retraction of the inclusion 31

O×(M⋆) ⩽ K×(M⋆). For every x ∈ K×(M⋆), let acn(x) = resn(r(x)). This is a mul- 32

tiplicative map and for every x ∈ O×(M⋆), we have acn(x) = resn(r(x)) = resn(x). So 33

acn is an angular component. Moreover, for every m∣n and x ∈ K⋆(M), resm,n(acn(x)) = 34

resm,n(resn(r(x))) = resm(r(x)) = acm(x). 35

Definition 3.3.7. Let Lac be the language with: 36

• a sortKwith the ring language (+,−,0, ⋅,1); 37

• a sort Γwith the ordered group language (+,−,0,<) and a constant∞; 38
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• for every n ∈ Z>0, a sortRn with the ring language; 1

• a map v ∶K → Γ; 2

• for every n > 0, a map acn ∶K→Rn; 3

• for everym,n > 0with n∣m, a map resn,m ∶Rm →Rn; 4

• for every n ∈ Z>0, a map sn ∶ Γ→Rn. 5

Any valued field (K,v)with a (compatible) system of angular components acn can bemade 6

into aLac-structure by interpretingK as the fieldK,Γ as the orderedmonoid vK—with− the 7

inverse on vK× and −∞ =∞ = v(0)—,Rn as the ringO/nm, themap v as the valuation v, the 8

maps acn as then-th angular componentmap acn, themaps resn,m as the canonical projections 9

and the maps sn ∶ v(x)↦ resn(x) ⋅ acn(x)−1 which is well defined. Note that sn is a section of 10

the map induced by the valuation onRn. 11

Definition 3.3.8. WedenoteHenac0 theLac-theory of characteristic zero henselian valued fields 12

with a compatible system of angular components. 13

LetR ∶= ⋃nRn. 14

Proposition 3.3.9. LetM,N ⊧ Henac0 , Γ(M) ∪ R(M) ⊆ A ⩽ M and f ∶ A → N . There 15

exists an embedding h ∶ N → N⋆, which is elementary for any structure onN , and an embedding 16

g ∶M → N such that: 17

M
g // N⋆

A
f

// N

h

OO 18

commutes. IfN is spherically complete, we can choose h = id ∶ N → N . 19

Proof. Let L be the enrichment of LRV ∪ Lac by traces of the valuation v ∶ RVn → Γ and 20

v ∶ Rn → Γ, the residue map resn ∶ RVn → Rn, injections in ∶ R×n → RVn, traces of the 21

angular components acn ∶ RVn → R×n and acn ∶ Rn → R×n, and sections sn ∶ Γ → RVn. 22

Let Mrv (respectively Nrv) denote the L-structure associated to M (respectively N ), where 23

sn(v(x)) = rvn(x)acn(x)−1. This is well-defined since, for every x ∈ O×, rvn(x)acn(x)−1 = 24

resn(x)resn(x)−1 = 1. Let Arv = A ∪ ⋃nRVn(M) ⩽ Mrv and frv ∶ Arv → Nrv extend f by 25

frv(ξ) = f(acn(ξ))sn(f(v(ξ))), for every n ∈ Z>0 and ξ ∈RVn(M). 26

Claim 3.3.9.1. frv is an L-morphism. 27

Proof. By construction frv is an Lac-morphism and frv∣RV is a multiplicative morphism pre- 28

serving 0. Also, for every x ∈K(M), γ ∈ Γ(M) and ξ ∈RVn(M), we have 29

frv(rvn(x)) = f(acn(x))sn(f(v(x))) = acn(f(x))sn(v(f(x))) = rvn(frv(x))
frv(sn(γ)) = f(acn(sn(γ)))sn(f(v(sn(γ)))) = f(1)sn(f(γ)) = sn(frv(γ))
acn(frv(ξ)) = acn(f(acn(ξ)))acn(sn(f(v(ξ)))) = f(acn(ξ)) ⋅ 1 = f(acn(ξ))
v(frv(ξ)) = v(f(acn(ξ))) + v(sn(f(v(ξ)))) = 0 + f(v(ξ))
frv(−ξ) = f(acn(−ξ))sn(f(v(−ξ))) = resn(−1) ⋅ f(acn(ξ))sn(f(v(ξ))) = −frv(ξ)

frv(rvm,n(ξ)) = f(resm,n(acn(ξ)))sm(f(v(ξ))) = resm,n(acn(frv(ξ)))sm(v(frv(ξ)))
= rvm,n(acn(frv(ξ)))rvm,n(sn(v(frv(ξ)))) = rvm,n(frv(ξ))

30
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3. Henselian fields

Moreover, for every α ∈ Rn(M), acn(α) ∈ R×n and v(α) ∈ Γ are uniquely determined by 1

α = acn(α)sn(v(α)). Since f(α) = f(acn(α))sn(f(v(α))) = acn(f(α))sn(v(f(α))) and 2

f(acn(α)) ∈ R×n, we have f(v(α)) = v(f(α)) and f(acn(α)) = acn(f(α)). Also, if α ≠ 0, 3

for every ξ ∈ RVn(M), resn(ξ) = α if and only if v(ξ) = v(α) and acn(ξ) = acn(α). And 4

resn(ξ) = 0 if and only if v(ξ) > v(n). So resn(ξ) = α if and only if resn(f(ξ)) = f(α). 5

There remains to check that frv preserves ⊕. Let ξ, υ, ζ ∈RVn(M). If v(ξ) + v(n) < v(υ), 6

then ζ ∈ ξ ⊕ υ if and only if ζ = ξ, if and only if frv(ζ) = frv(ξ) if and only if frv(ζ) ∈ 7

frv(ξ) ⊕ frv(υ). So, up to permutations, we may thus assume that v(ξ) = v(υ) ⩽ v(ζ) ⩽ 8

v(ξ) + v(n). Diving by ξ, we may further assume that ξ, υ ∈ R×n. We have ζ ∈ ξ ⊕ υ if and 9

only if resn(ζ) = ξ + υ, if and only if, v(ζ) = v(ξ + υ) and acn(ζ) = acn(ξ + υ), if and 10

only if, v(f(ζ)) = f(v(ζ)) = f(v(ξ + υ)) = v(f(ξ) + f(υ)) and acn(f(ζ)) = f(acn(ζ)) = 11

f(acn(ξ + υ)) = acn(f(ξ) + f(υ)), if and only if f(ζ) ∈ ξ ⊕ f(υ). ◊ 12

By proposition 3.2.16, we find hrv ∶ Nrv → N⋆rv, which is elementary for any structure on 13

N , and grv ∶Mrv → N⋆rv such that hrv ○ frv = grv∣Arv
; and ifN is spherically complete, we can 14

choose hrv = id ∶ Nrv → Nrv. The L-morphism g∣L thus has the required properties. 15

Theorem 3.3.10. TheLac-theoryHenac0 resplendently eliminates field quantifiers : any formula 16

in aΓ∪R-enrichmentL ofLac is equivalent (moduloHenac0 ) to anL-formulawithout quantifiers 17

on the sortK. 18

Proof. We proceed as in the proof of theorem 3.2.17. It suffices, given an Γ ∪R-enrichment 19

L of LRV and T an L-theory such that every L-formula without field quantifiers is equivalent 20

to a quantifier free one,M,N ⊧ T and an L-embedding f ∶ A ⩽ M → N , to extend it to an 21

L-embedding g ∶M → N⋆ with h ○ f = g∣A, where h ∶ N → N⋆ is L-elementary. 22

Let c enumerate all ofM ∖K(M). By hypothesis, f⋆qf-tpL(c/A) is finitely satisfiable inN 23

and hence, enlargingN , we may assume that Γ(M) ∪⋃nRn(M) ⊆ A. Then we extend f by 24

proposition 3.3.9. 25

Corollary 3.3.11. LetM,N ⊧ Henac0 and f ∶ A ⩽M → N be an Lac-embedding. Then 26

f is Lac-elementary⇔ f ∣Γ∪R is Lac∣Γ∪R-elementary. 27

In particular, 28

M ≡ N as Lac-structures⇔ Γ(M) ∪R(M) ≡ Γ(M) ∪R(M) as Lac∣Γ∪R-structures. 29

Proof. This follows from theorem3.3.10 and the fact that anyLac-formulaswithout fieldquan- 30

tifiers is of the form φ(acn(P (x)),v(Q(x)), y) where x is a tuple ofK-variables, P,Q ∈ Z[x] 31

are tuples, and φ is an Lac∣Γ∪R-formula. The second statement is exactly the first statement 32

applied to f ∶ ∅ ⩽M → N —note that for every n ∈ Z≠0 andm ∈ Z>0, resm(n) = n and v(n) 33

is the unique element of Γ such that sn2(γ) ∈ nR×n2 . 34
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3.4. The Ax-Kochen-Ershov principle 1

Proposition 3.4.1. LetK and L be henselian fields of residue characteristic p. Then: 2

K ≡ L⇔ { vK ≡ vL as ordered monoids with a constant for v(p);
R(K) ≡R(L) as projective systems of rings. 3

Proof. Note that ifK ≡ L, then we must have vK× ≡ vL× andR(K) ≡R(L). So let us prove 4

the converse and assume that vK× ≡ vL× andR(K) ≡R(L). By the Keisler–Shelah theorem, 5

theoremB.0.18, and proposition B.0.19, we can findℵ1-saturatedM ≡K andN ≡ L such that 6

Γ(M) ≃ Γ(N)— and that isomorphism induces an isomorphism Γ(M)/∆∞ ≃ Γ(M)/∆∞ 7

— and R(M) ≃ R(N)— which induces an isomorphism res∞(O(M)) ≃ lim←ÐnRn(M) ≃ 8

lim←ÐnRn(N) ≃ res∞(O). It follows that (M,v∞) and (N,v∞) have isomorphic value groups 9

and residue fields — even naming res∞(O) ⩽R∞. 10

By corollary 3.3.6, (M,v∞) and (N,v∞) can be endowed with an angular component ac∞, 11

and, by lemma 3.2.13, they are both henselian. In equicharacteristic zero, the sn maps are triv- 12

ially determined: they send 0 to 1 and everything else to 0; and so are the valuation and angular 13

component on Z. So, by theorem 3.3.10, M ≡ N as Lac∞ -structure with res∞(O) ⩽ R∞ 14

named. Since O = res−1∞ (res∞(O)), K ≡ M ≡ N ≡ L as valued fields for the initial valua- 15

tion. 16

Definition 3.4.2. A valued field (K,v) is said to be: 17

• finitely ramified if, for every n ∈ Z>0, (0, v(n)) is finite — equivalently, for every prime 18

p ∈ Z, (0, v(p)) is finite; 19

• unramified if, for every prime p ∈ Z, (0, v(p)) = ∅. 20

A finitely ramified ramified valued of positive characteristic is trivially valued. 21

Theorem 3.4.3 (Ax–Kochen, 1965—Ershov, 1965, ...). Let (K,v) and (L,w) be two unram- 22

ified henselian fields with perfect residue fields. Then: 23

K ≡ L as valued fields⇔ { vK
× ≡ wL× as ordered groups;

Kv ≡ Lw as fields. 24

Proof. IfK (and henceL) has residue characteristic zero, then all theRn are isomorphic toR1 25

and this is the same statement as proposition 3.4.1. So we may assume that K (and hence L) 26

has residue characteristic p > 0. Fix some i < n ⩾ 0 and c ∈ K. If pic ∈ mn, then iv(p) + v(c) ⩾ 27

nv(p) and hence v(c) ⩾ (n − i) ⋅ v(p) > 0, so c ∈ m. It follows, by corollary 1.3.18, that 28

Rpn(K) is canonically isomorphic to Wpn(Kv); in fact R(K) is canonically isomorphic to 29

the projective system of the Wpn(Kv), which is interpretable in Kv. Since the same holds 30

of L, we have R(K) ≡ R(L) if and only if Kv ≡ Lw and the statement now follows from 31

proposition 3.4.1. 32

Corollary 3.4.4. Let U be a non principal ultrafilter on the set of primes then: 33

∏
p→U

Qp ≡ ∏
p→U

Fp((t)). 34
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Proof. We since Qp and F((t)) are complete valued fields with value group Z, and hence are 1

henselian, it follows that∏p→UQp,∏p→U Fp((t)) ⊧ Hen and thatΓ(∏p→UQp) ≡ ZΓ(∏p→U Fp((t))).2

Moreover,R1(∏p→UQp) =∏p→U Fp =R1(∏p→U Fp((t))) is a characteristic zero field. So the- 3

orem 3.4.3 applies. 4

One motivation behind Ax and Kochen’s work was to answer a conjecture of Artin: 5

Conjecture 3.4.5. Any homogenous polynomial overQp of degree d inn > d2 variables has a non 6

trivial zero inQp. 7

This conjecture is known to be false. However, it holds in Fp((t)): 8

Theorem 3.4.6 (Lang, 1952). Let (fi)i<n be homogeneous polynomials over Fp((t)) in n > 9

∑i deg(fi)2 variables. Then the fi have a non trivial common zero in Fp((t)). 10

Corollary 3.4.7. For every d ∈ Z>0, there exists a finite set A(d,n) of primes such that for every 11

p ∉ A(d,n), any (fi)i<n ∈ Qp[x] homogenous of degree at most d with ∣x∣ > nd2 have a common 12

non trivial zero inQp. 13

Proof. There is a sentenceφ in the language of rings that expresses that any family of n polyno- 14

mial of degree at most d in nd2 + 1 many variables has a common zero. We have Fp((t)) ⊧ φ 15

and hence, for any non principal U,∏p→UQp ≡∏p→U Fp((t)) ⊧ φ. IfA(d,n) ∶= {p ∶ Qp ⊭ φ} 16

is infinite, there exists a non principal U with A(d,n) ∈ U and we would have∏p→UQp ⊭ φ, a 17

contradiction. It follows thatA(d,n) is finite. 18

The result for ∣x∣ > nd2 is an immediate consequence (setting some variables to 1) of the one 19

for ∣x∣ = nd2 + 1. 20

3.5. Properties of definable sets 21

Lemma 3.5.1. LetM ⊧ Hen0, P ∈ K(M)[x] and C ∶= {c ∈ K(M) ∶ P (i)(c) = 0, for some 22

i ⩽ deg(P )}. For every c ∈ C , x ∈K(M) such that v(x− c) is maximal and n ∈ Z>0, there exists 23

anm ∈ Z>0 such that rvn,m(rvm(Pc)(rvm(x − c))) is well-defined, where Pc(x) ∶= P (x + c). 24

Proof. If 0 ∈ rv∞(Pc)(rv∞(x − c)), by lemma 3.2.6, there exists, i ∈ Z>0 and e ∈ K(M) such 25

thatP (i)(e+c) = P (i)c (e) = 0 and rv∞(e) = rv∞(x−c). So e+c ∈ C and v(x−e−c) > v(x−c), a 26

contradiction. It follows that rv∞(Pc)(rv∞(x−c)) is well-defined. By compactness, it follows 27

that, for every n ∈ Z>0, there exists an m ∈ Z>0 such that rvn,m(rvm(Pc)(rvm(x − c))) is a 28

singleton. 29

Let L be anRV-enrichment of LRV,M ⊧ Hen0 an L-structure andA ⩽M . 30

Lemma 3.5.2. If X ⊆ RVm
n is L(A)-definable, then it is L(A)∣RV-definable. In particular, 31

⋃nRVn is a pure stably embedded L∣RV-structure. 32

Proof. This is an immediate consequence of field quantifier elimination, theorem 3.2.17. 33

For any ball b and n ∈ Z>0, let b[n] ∶= {x + n−1(y − x) ∶ x, y ∈ b}. It is a ball containing b of 34

radius rad(b) − v(n), which is open if and on if b is. 35

44



3. Henselian fields

Proposition 3.5.3. Let X ⊆ K be L(A)-definable. Then there exists a finite C ⊆ K(A)a ∩M 1

and n ∈ Z>0 such that for any ball b ofM with b[n] ∩C ≠ ∅, we either have b ∩X = ∅ or b ⊆X . 2

In other words, 1x∈X factorises through rv(x −C) ∶= (rvn(x − c))c∈C . 3

Proof. By theorem 3.2.17, any L(A)-formula φ(x) is equivalent, modulo Hen0 to a formula 4

of the form ψ(rvn(P (x))), where P ∈ K(A)[x] is a tuple and ψ is an L(A)∣∣RV -formula. 5

By lemma 3.5.1, making n bigger we may assume that φ is of the form ψ(rvn(x − C)) where 6

C ⊆K(A)a ∩M is the set of roots of the non constant P (j)i . 7

Let now b be an ball ofM such that b[n] ∩ C ≠ ∅, and x, y ∈ b(M). For every c ∈ C, if 8

b is open, we have v(x − c) ⩽ rad(b) − v(n) < v(x − y) − v(n) and if b is closed, we have 9

v(x − c) < rad(b) − v(n) ⩽ v(x − y) − v(n). So, in either case, rvn(x − c) = rvn(y − c) and 10

M ⊧ φ(x) if and only ifM ⊧ φ(y). 11

Proposition 3.5.4. Assume thatK(A)a ∩M ⊆ A. Let c ∈K(M) andB be the filter generated 12

by {b v∞-ball ofK(A) ∶ c ∈ b}. 13

1. IfB∩A = ∅, then tp(c/A) =B∞—in particular, it is the intersection of v-balls ofK(A). 14

2. If a ∈B ∩A ≠ ∅, then tp(rv∞(c − a)/RV(A)) ⊧ tp(c/A); and rv(c − a) ∉ rv(K(A)). 15

Proof. For every for every e ∈ K(A) ∖ B∞ and d ∈ B, v∞(c − e) < v∞(c − d) and hence 16

rv∞(c− e) = rv∞(d− e). It follows that, ifB∩A = ∅, by lemma 3.5.1, for anyL(A)-definable 17

X , d ∈X if and only if c ∈X andhence tp(d/A) = tp(c/A). Note also thatB is not principal in 18

that case and hence it is generated by open v∞-balls that are themselves intersections of v-balls. 19

Letusnowfixa ∈B∩A ≠ ∅. Letd ∈K(N),N ≽M be such that tp(rv∞(d−a)/RV∞(A)) = 20

tp(rv∞(c − a)/RV∞(A). For every φ(x) ∈ tp(d/A) and n ∈ Z>0, ∃xφ(x) ∧ rvn(x − a) = 21

ξn is equivalent to an L(A)∣RV ψ(ξn) with ψ ∈ tp(rv∞(d − a)/RV∞(A)) = tp(rv∞(c − 22

a)/RV∞(A), soM ⊧ ∃xφ(x)∧ rvn(x−a) = rvn(c−a). By compactness, we find d′ ∈K such 23

that rv∞(d′ − a) = rv∞(c − a) and tp(d′/A) = tp(d/A). So we may assume that rv∞(d − a) = 24

rv∞(c − a). 25

For any e ∈B ∩A and d ⊧ η 26

, if v∞(c − a) > v∞(a − e), then d ∈ 27

Let us now assume thatB∩A ≠ ∅. For any e ∈B∩A, if v∞(c− e) > v∞(d− e), then for all 28

n ∈ Z>0, b⩾v(a−e)+v(n) ∈B and hence v∞(d − e) > v∞(d − e) 29

If then for any e ∈B∩A, c ∉ B(a,v∞(a−e)) and thusv∞(c−a) < v∞(a−e), i.e. rv∞(c−e) = 30

rv∞(c − a). 31

Note that if b is a v-ball of K(A) containing c, then ⋃n b[n] ∈ B and hence a ∈ b[n] for 32

some a. So v(c − a) ⩾ rad(b) − v(n). Since rvn(c − a) = rvn(c − d), it follows that v(c − d) > 33

v(c − a) + v(n) ⩾ rad(b) and d ∈ b. By symmetry, d ∈ b if and only if c ∈ b. In particular 34

the filter generated by {b v∞-ball ofK(A) ∶ d ∈ b} is alsoB. So for every e ∈ K(A), we have 35

rv∞(c − e) = rv∞(d − e) if e ∉ B and rv∞(c − e) = rv∞(c − a) = rv∞(d − a) = rv∞(d − e) 36

otherwise. As earlier, we conclude that tp(d/A) = tp(c/A). 37

Note that if rv(c − a) = rv(e) ∈ RV(A), then rv(c − (a + e)) > rv(c − a) and hence 38

a ∉ B̊(c,v(c − a)) = B̊(a + e,v(c − a)) ∈B, a contradiction. 39

Corollary 3.5.5. We have acl(A) =K(A)a ∪ acl(RV(A)). 40
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3. Henselian fields

Proof. If α ∈ RV(acl(A)), then, by lemma 3.5.2, α ∈ acl(RV(A)). Now, fix c ∈ K(acl(A)) 1

and let B be the maximal pseudo Cauchy v∞-filter over K(A)a concentrating at c. If B ∩ 2

K(A)a = ∅, then, by proposition 3.5.4,B∩N is finite for anyN ≽M and henceB contains a 3

singleton; i.e. c ∈K(A)a. If a ∈B∩K(A)a ≠ ∅, then the set of c′ ∈ N ≽M with rv∞(c′ −a) = 4

rv(c − a) is finite. So rv(c − a) = 0 and c = a ∈K(A)a. 5

Definition 3.5.6. Let Lac,fr be the language Lac without the sn functions and with a constant 6

π ∈ Γ and constants πn ∈Rn, for every n ∈ Z>0 7

Any finitely ramified field with angular components can be made into an Lac,fr-structure 8

by interpreting π has the smallest positive element of Γ if it exists and 1 otherwise and πn as 9

sn(π) = acn(x) for any x ∈Kwith v(x) = π. 10

Theorem3.5.7 (Pas, 1989). TheLac,fr-theoryHenac,fr0 of finitely ramifiedhenselian valuedfields 11

of characteristic zero resplendently eliminates fieldquantifiers : any formula inaΓ∪R-enrichment 12

L of Lac is equivalent to an L-formula without quantifiers on the sortK. 13

Proof. This follows immediately from theorem 3.3.10 and the fact that, in finitely ramified 14

fields, v(Rn) id finite and only contains multiples of π and hence sn is entirely determined (by 15

a finite disjunction on the possible values) by sn(π). It follows that any (field quantifier free) 16

formula involving sn can be rewritten as disjunction of (field quantifier free) formulas that do 17

not involve the the sn. 18

Corollary 3.5.8. LetLbe aΓ-enrichment of aR-enrichment ofLac,fr. AnyL-formulaφ(x, γ,α), 19

where x is a tuple ofK-variables, γ a tuple of Γ-variables and α a tuple ofR-variables, is equiv- 20

alent, moduloHenac,fr0 , to: 21

⋁
i

ψi(v(P (x)), γ) ∧ χi(acn(P (x)), α), 22

where ψi is an L∣Γ-formula, χi is an L∣R-formula and P ∈ Z[x] is a tuple. 23

Equivalently, for any L-structuresM,N ⊧ Henac,fr0 and Lac,fr-embedding f ∶ A ⩽ M → N , 24

we have: 25

f is L-elementary⇔ { f ∣Γ is L∣Γ-elementary
f ∣R is L∣R-elementary 26

Proof. Since there are no symbols involving both Γ and R, any atomic formula is an L∣Γ- 27

formula or an L∣R-formula (possibly applied to terms fromK). The statement follows. 28

Corollary 3.5.9. In the theory of finitely ramified characteristic zero henselian fields: 29

1. Γ is a pure stably embedded ordered monoid; 30

2. R = ⋃nRn is a pure stably embedded projective system of rings; 31

3. Γ andR are orthogonal. 32

Proof. LetM be any finitely ramified characteristic zero henselian field,X ⊆ Γn ×Rm beM - 33

definable. By corollary 3.3.6, we findM ′ ≽M that admits a compatible system of angular com- 34

ponents. Then, by corollary 3.5.8, X(M ′) = ⋁iψi(γ′,M ′) ∧ χi(α′,M ′), where γ ∈ Γ(M ′), 35
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3. Henselian fields

α ∈R(M ′),ψi are orderedmonoid formulas andχi are projective system of rings formulas. By 1

elementarity, we find γ ∈ Γ(M), α ∈ R(M) such thatX(M) = ⋁iψi(γ,M) ∧ χi(α,M). All 2

three statements follow. 3

Corollary 3.5.10. In the theory of unramified henselian fields of characteristic zero with perfect 4

residue field, everyRn, for n ∈ Z>0, is a pure stably embedded ring. 5

Proof. Any definable X ⊆ Rm
1 is, by corollary 3.5.9, of the form res1,n(Y ) where Y ⊆ Rm

n is 6

definable with parameters from Rn. But Rn is interpretable in R1 (as a ring) — by the Witt 7

vector construction, or by natural isomorphism in residue characteristic zero— and hence,X 8

is definable in the ringR1. 9

SinceRn also interprets(15) R1 — quotienting by its maximal ideal — any definable subset 10

ofRm
n is thus also definable in the ringRn. 11

3.6. Fields of p-adic numbers 12

Fix p a prime. 13

Definition 3.6.1. A valued field (K,v) is said to be p-adically closed of ramification degree e 14

and residual degree f if: 15

• it is henselian of mixed characteristic (0, p); 16

• vK× has a smallest element v(π) and v(p) = e ⋅ v(π); 17

• [vK× ∶ vK×n] = n; 18

• [Kv ∶ Fp] = f . 19

Example 3.6.2. Let Qp ⩽ F be a finite extension. Then F is p-adically closed of ramification 20

degree [vF ∶ vQp] and residual degree [Fv ∶ Fp]. 21

Lemma 3.6.3. Let (K,v) be a p-adically closed of ramification degree e and residual degree f . 22

1. Let q > 1 be prime to p. We have v(x) ⩾ 0 if and only if 1 + πxq ∈K×q ∶= {yq ∶ y ∈K×}. 23

2. Let π, c ∈ O(K) be such that v(p) = e ⋅ v(π) and Fp[res(c)] = Fpf . Then, for all n ∈ Z⩾0, 24

Rpn(K) = ∑i<e,j<f Z ⋅ resn(πicj). In particular, it is finite. 25

3. Anypn-th angular componentmap factorises throughK× →K×/K×m, wherem ∶= ∣R×pn(K)∣. 26
4. Z[π, c]→K×/K×m is surjective. In particular,K×/K×m is finite. 27

Proof. 1. If v(x) ⩽ −v(π) < 0, then v(πxq) = v(π) + q ⋅ v(x) < 0 = v(1) and v(1 + πxq) ∈ 28

v(π) + qΓ ≠ qΓ. Conversely, if v(x) ⩾ 0, then res(Xq − 1 + πxq) = Xq − 1 has a simple 29

zero at 1 = res(1 + πxq). By henselianity, 1 + πxq ∈Kq. 30

2. Weproveby induction, that any elementofRpn/(πℓ) is of the form∑i<e,j<f,k<n resn(cjπi)pk31
where cj ∈ Z[c]. The statement follows. 32

3. For any element α ∈ R×n(K), we have αm = 1 and hence, for any x ∈ K×, acn(xm) = 33

acn(x)m = 1. 34

15In fact, we are really using bi-interpretations here: each structure interprets the other one and the isomorphism
between double interpretations is definable.
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3. Henselian fields

4. Note that, by minimality of v(π), none of the v(πi), 0 < i < m are multiples ofm. So 1

there exists y ∈K×m and i such that v(x) = i ⋅v(π)+m ⋅v(y). Let z = xy−mπ−i. We have 2

v(z) = 0. Let a ∈ Z[c, π] be such that resm2(a) = resm2(a) and P (X) = Xm − za−1. 3

We have resm2(P (1)) = 0, so v(P (1)) > 2 ⋅ v(m) = 2 ⋅ v(P ′(1)). By henselianity, there 4

exists t ∈K such that tm = za−1 and hence x = zymπiaπiymtm. 5

Definition 3.6.4. Let LMac be the language with one sortK with the ring language and unary 6

predicates Pn, for all n ∈ Z>0. 7

Any fieldK can be made into an LMac-structure by interpreting the Pn asK×n. Let pCFe,f 8

denote the LMac(π, c) theory of p-adically closed fields with v(p) = e ⋅ v(π) and Fp[res(c)] = 9

Fpf . 10

Theorem 3.6.5 (Macintyre, ? — Prestel-Roquette, ?). The LMac(π, c)-theory pCFe,f elimi- 11

nates quantifiers. 12

Proof. By lemma 3.6.3, in anyM ⊧ pCFe,f , we have v(x) ⩽ v(y) if and only if v(yx−1) ⩾ 0 13

if and only if 1 + πyqx−q ∈ K×q, if and only if xq + πyq ∈ K×q. Also, acpn(x) = respn(a) 14

where a ∈ Z[π, c]—with coefficients at most pn — is such that v(a) = 0 and xa−1πi ∈ K×m, 15

uniformly defines compatible angular component maps. 16

It follows that any LMac-embedding f ∶ A ⩽M → N , whereN ⊧ pCFe,f induces an Lac,fr- 17

embedding. Note thatR(M) =R(A) =R(f(A)) =R(N) and hence f ∣R is elementary. 18

Claim 3.6.5.1. Pressburger arithmetic, the theory of ordered abelian groups G with a minimal 19

positive element and such that [G ∶ nG] = n eliminates quantifiers in the language of ordered 20

groups with predicates for n ⋅G and a constant 1 for the minimal positive element. 21

Proof. Let f ∶ A ⩽ G → H be a maximal embedding. Fix γ ∈ G and let n be its order in G/A. 22

If n < ∞, then, for every α ∈ A iγ < α if and only if inγ < nα and iγ + α ∈ mG if and only if 23

inγ + nα ∈ nmG. So the isomorphism type of γ over A is entirely determined by δ = nγ ∈ A. 24

Since δ ∈ nG, we also have f(δ) ∈ nG and we find ε ∈H such that nε = f(δ). We can extend f 25

by sending γ to ε and hence, by maximality, γ ∈ A. SoA is relatively divisible inM . 26

If n =∞, the isomorphism type of γ of overA is determined by {α ∈ A ∶ γ < α} and im ∈ Z 27

such that γ − im ∈mG. Indeed,mγ > α if and only if, sincemγ ∉ α+Z ⊆ A,mγ > α+ i =mβ, 28

for some β ∈ A, if and only if γ > β; and jγ + α ∈ mG if and only if kim + α ∈ mG. By 29

compactness, f extends by sending γ into some H⋆ ≽ H . By maximality, γ ∈ A and hence 30

A = G. ◊ 31

It follows that f ∣Γ is elementary. Note that every element in R(M) = R(N) is named by 32

a constant, so, being an isomorphism, f ∣R is elementary. So, by corollary 3.5.8, f is Lac,fr- 33

elementary— in particular, it is LMac(π, c)-elementary. 34

Corollary 3.6.6. The class pCFe,f is model complete in Lrg. 35

Proof. Let F ⩽ K both models of pCFe,f and π, c ∈ F such that v(p) = ev(π) and k(K) = 36

k(F ) = Fp[res(c)]. Note also that, as seen in the proof of lemma 3.6.3, for every n ∈ Z>0, 37

K×/K×n ≃ Rn2(K)/R×nn2 (K) × πZ/πn ≃ Rn2(F )/R×nn2 (F ) × πZ/πn ≃ F×/F×n. So F is an 38
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4. The independence property

LMac-substructure ofK and, by theorem 3.6.5, F ≽K—as LMac(π, c)-structures, and hence 1

as Lrg-structures. 2

Corollary 3.6.7. LetK be p-adically closed and F = F a ∩ dcl(F ) ⊆K . Then F ≼K (as rings). 3

Proof. SinceR∞(K) is a p-ring, by proposition 1.3.17,Qp =W(Fp) ⩽W(Fpf ) ⩽R∞(K). In 4

fact, as seen in lemma 3.6.3, this extension is finite. Let α = res∞(a) ∈R∞(K) generate it and 5

P ∈ Zp[x] itsminimal polynomial. WehaveP ′(α) ≠ 0, i.e. v(P ′(a)) < nv(p) for somen ∈ Z>0. 6

LetQ ∈ Z[x]be such that resp2n(Q) = resp2n(P ). Then resp2n(Q(a)) = resp2n(P )(α) = 0 and 7

respn(Q′(a)) = respn(P ′)(α) ≠ 0. So v(Q(a)) > 2v(Q′(a)) and, by henselianity, there exists 8

c ∈ Qa ∩ dcl(Q) ⩽ F such that respn(c) = respn(a). SoRpn(K) = Rpn(F ) and F ⊧ pCFe,f . 9

By corollary 3.6.6, F ≼K. 10

Corollary 3.6.8. Any two p-adically closed fields K,F of arbitrary ramification and residual 11

degree are elementary equivalent if and only ifK ∩Qa ≃ F ∩Qa. 12

Proof. IfK ≡ F , then, by compactness,K ∩Qa embeds in F ∩Qa which embeds inK ∩Qa, so 13

they are isomorphic. Conversely, ifK ∩Qa ≃ F ∩Qa, by corollary 3.6.7, we haveK ≡K ∩Qa ≃ 14

F ∩Qa ≡ F . 15

Remark 3.6.9. Any p-adically closed field is elementarily equivalent to a finite extension of 16

(Q, vp)h which is elementarily equivalent to its completion— a finite extension ofQp. 17

Corollary 3.6.10. LetK ⊧ pCFe,f and F ⩽K . Then dcl(F ) = acl(F ) = F a ∩K ≼K . 18

Proof. By corollary 3.6.7, F a ∩ dcl(F ) ≼ K. So dcl(F ), F a ∩K ⊆ acl(F ) ⊆ F a ∩ dcl(F ) and 19

the statement follows. 20

Corollary 3.6.11. The theorypCFe,f hasdefinable Skolemfunctions: for everyLMac(π, c)-definable21
family (Xy)y∈Y of non empty sets, there exists anLMac(π, c)-definable function f ∶ Y → ⋃y∈Y Xy 22

such that for every y ∈ Y , f(y) ∈Xy . 23

Proof. For every N ≽ M and y ∈ Y (N), by corollary 3.6.10, dcl(y) ≼ N and hence there 24

exists an LMac(π, c)-definable f such that f(y) ∈ X . By compactness, there exists LMac(π, c)- 25

definable (fi)i<n such that for every y ∈ Y , fi(y) ∈ X , for some i. The Xi = {y ∶ fi(y) ∈ 26

X ∧ fj(y) ∉X for all j < i} are disjoint and f ∶= ⋃i fi∣Xi
has the required properties. 27

4. The independence property 28

Let L be a language, T be an L-theory. 29

Definition 4.0.1. Let (I,<) be totally ordered. A sequence (ai)i∈I ∈ M some L-structure is 30

said to be L-indiscernible if for every tuple i, j ∈ I with i ≡qf< j then ai ≡L aj . 31

Lemma 4.0.2. LetM be an L-structure and for every n ∈ Z>0 and (ai)∈Z⩾0 ∈Mx. Then for any 32

total order (I,<), there existsM⋆ ≽ M and (ci)i∈I ∈ M⋆ L-indiscernible such that, if, for every 33

increasing g ∶ n→ Z⩾0,M ⊧ φ(ag(n)), then, for any increasing f ∶ n→ I ,M⋆ ⊧ φ(cf(n)) . 34
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Figure 1: The universe

Proof. Let πn be the common (partial) type of the ag(n) and let us consider the set of formulas: 1

Σ((xi)i∈I) ∶= ⋃
f ∶n→I inc.

πn(xf(n)) ∪ ⋃
f,g∶n→I inc.

φ

φ(xf(n))↔ φ(xg(n)). 2

Claim 4.0.2.1 (Ramsey). For any φ((xi)i<n) andm ∈ Z>0, there exists J ⊆ Z>0 of sizem such 3

that, for any increasing f, g ∶ n→ J ,M ⊧ φ(af(n))↔ φ(ag(n)). 4

SoΣ is finitely satisfiable and the lemma holds. 5

For every L-formula φ, we define φ1 ∶= φ and φ0 ∶= ¬φ. 6

Lemma 4.0.3. Let φ(x; y) be an L-formula. The following are equivalent: 7

(i) for every n ∈ Z>0, there existsM ⊧ T , (ai)i<n and, for every J ⊆ n, bJ ∈ My such that, 8

M ⊧ φ(ai, bJ) if and only if i ∈ J . 9

(ii) for every setsR ⊆ I × J , there existsM ⊧ T , (ai)∈I and (bj)j∈J withM ⊧ φ(ai, bj) if and 10

only if (i, j) ∈ R, for every i ∈ I and j ∈ J ; 11

(iii) there exists M ⊧ T , A ⩽ Mx infinite and, for every B ⊆ A, bB ∈ My such that, M ⊧ 12

φ(A, bB) ∶= {a ∈ A ∶M ⊧ φ(a, bB)} = B; 13

(iv) for every total order (I,<) without a largest element, there existsM ⊧ T , (ai)i∈I ∈ Mx
14

L-indiscernible and b ∈ My such that both Jℓ ∶= {i ∈ I ∶ M ⊧ φℓ(ai, b)}, for ℓ = 0,1 are 15

cofinal in I ; 16

(v) there existsM ⊧ T , (ai)i∈Z⩾0 ∈Mx L-indiscernible and b ∈My such thatM ⊧ φ(ai, b) if 17

and only if i is even. 18

(vi) altT (φ(x, y)) = ∞, where for every n ∈ Z>0, altT (φ(x, y)) ⩾ n if there existsM ⊧ T , 19

(ai)i∈I ∈Mx L-indiscernible, b ∈My and f ∶ n+1→ I increasing such thatφ(af(i), b)↔ 20

¬φ(af(i+1), b), for every i < n; 21
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4. The independence property

Proof. Note that (iv)⇒(v)⇒(vi) are immediate. 1

(i)⇒(ii) By (i), the set of formulasΣ((xi)i∈I , (yj)j∈J) ∶= {φ1(i,j)∈R(xi, yj) ∶ i ∈ I, j ∈ J} is finitely 2

satisfaible and hence, by compactness, satisfiable in some model of T . 3

(ii)⇒(iii) Consider R = {(i, I) ∈ Z⩾0 ×P(Z⩾0) ∶ i ∈ I}. Then (i) applied to R yields A ∶= {ai ∶ 4

i ⩾ 0} and, for every B = {aj ∶ j ∈ J} ⊆ A, bB ∶= bJ such that, for every a = ai ∈ A, 5

M ⊧ φ(a, bB) if and only if (i, J) ∈ R, i.e. i ∈ J . 6

(iii)⇒(iv) Let g ∶ Z⩾0 → A be some injection. By lemma 4.0.2, there existsM⋆ ≽ M and (ci)i∈I ∈ 7

(M⋆)x which isL-indiscernible and such that, for any increasing f ∶ n→ I , af(n) realises 8

the common partial type of the tuple g(h(n)), where h ∶ n → Z⩾0 is increasing. In 9

particular, for any J ⊆ n,M⋆ ⊧ ∃y⋀j<nφ1j∈J (af(j), y). By compactness. for any J ⊆ I , 10

we find b ∈M † ≽M⋆ such thatM † ⊧ φ(ai, b) if and only if i ∈ J . By induction, we can 11

build J ⊆ I cofinal such that I ∖ J is also cofinal. 12

(vi)⇒(i) Fix some n. By (v), we find (ai)i∈I ∈ Mx L-indiscernible, b ∈ My and f ∶ 2n + 1 → I 13

increasing such that φ(af(i), b) ↔ ¬φ(af(i+1), b), for every i < 2n. In particular, for 14

every J ⊆ n, there exists g ∶ n → I increasing such that M ⊧ φ(ag(i), b) if and only 15

if i ∈ J . Since (ai)i∈I is L-indiscernible, for any increasing g ∶ n → I , we have M ⊧ 16

∃x ⋃i<nφ1j∈J (ag(i), x). 17

Definition 4.0.4. Let φ(x; y) be an L-formula. We say that: 18

• φhas the independenceproperty (inT ) if it verifies the equivalent conditionsof lemma4.0.3. 19
• T does not have the independence property — is dependent, is NIP— if no L-formula 20

has the independence property in T . 21

• An L-structureM isNIP ifTh(M) is. 22

Lemma 4.0.5. If the L-formulas (φi(x, y))i<n are NIP in T , then so are any boolean combina- 23

tions. 24

Proof. For any L-formulas (φi(x, y))i<n and ψ boolean combination of the φi, altT (ψ) ⩽ 25

∑i altT (φi), where ψ is any boolean combination of the φi. Indeed if φi(a1, b) ↔ φi(a2, b), 26

for every i < n, then ψ(a1, b)↔ ψ(a2, b). 27

Lemma 4.0.6. The theory T is NIP if and only if no L-formula φ(x, y) with ∣x∣ = 1 has the 28

independence property in T . 29

Proof. Let us assume that no L-formula φ(x, y)with ∣x∣ = 1—and hence, by lemma 4.0.3, no 30

L-formula φ(x, y)with ∣y∣ = 1—has the independence property in T . 31

Claim 4.0.6.1. LetM ⊧ T and (ai)i<ω×∣T ∣+ ∈ Mx be L-indiscernible and b ∈ My with ∣y∣ = 1. 32

Then (ai)i is eventually L(b)-indiscernible. 33

Proof. Any ψ((xi)i<ω, y) is NIP in T and hence, by lemma 4.0.3, there exists iψ < ∣T ∣+ and 34

ℓ ∈ {0,1} such that, for every i ⩾ i0 M ⊧ ψℓ((aj,i)j<ω, b). Since ∣T ∣+ is regular, we may assume 35

that iψ = i0 does not depend on ψ and hence, (ai)i⩾(0,i0) is L(b)-indiscernible. ◊ 36

By induction, for any tuple b ∈ M , (ai)i is eventually L(b)-indiscernible — i.e. (aib)i is L- 37

indiscernible. Indeed, for every c ∈M1, by claim 4.0.6.1, (aib)i is eventuallyL(c)-indiscernible 38
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4. The independence property

— i.e. (ai)i⩾i1 is L(bc)-indiscernible. So for any L-formula φ(x, y), the truth value of φ(ai, b) 1

is eventually constant. So the negation of lemma 4.0.3.(iv) holds. 2

Example 4.0.7. • Any stable theory is NIP : a formula φ(x, y) is unstable if there exists 3

(ai)i∈ω, (bj)j∈ω such that ⊧ φ(ai, bj) if and only if i < j. This is a particular case of 4

lemma 4.0.3.(ii). 5

• In any order, the formula x < y is NIP. Indeed you cannot have a1 < b{1} ⩽ a2 < b{2} ⩽ 6

a1. In fact, any o-minimal theory isNIP. 7

Theorem 4.0.8 (Gurevitch-Schmidt, ?). The Log-theory of ordered abelian groups isNIP. 8

Theorem 4.0.9. The theoryACVF isNIP 9

Proof. By lemma4.0.6 and theorem2.2.5, it suffices toprove thatφ(x, yz) ∶= v(x−y) > v(y−z) 10

and ψ(x, yz) ∶= v(x− y) ⩾ v(y − z) areNIP. But since these sets define balls, this follows from 11

the following observation: given three points (ai)i<3, if a0, a1 are in some ball b not containing 12

a2, then any ball containing a1 and a2 also contains a0. 13

Theorem 4.0.10. LetM be a finitely ramified henselian field. Then 14

M isNIP⇔R(M) isNIP. 15

Proof. Let us assume thatR(M) (and Γ(M)) isNIP. Let (ai)i∈I ∈Mx be indiscernible. 16

Claim 4.0.10.1. Increasing ai, we may assume that each ai enumerates an elementary substruc- 17

ture ofM . 18

Proof. Let ai ∈ Mi ≼ M and bi enumerateMi. By lemma 4.0.2, We find (b′i)i indiscernible 19

realising the common type of the bi (in some elementary extension). In particular, (a′i)i ≡ (ai)i, 20

where a′i ⊆ b′i corresponds to ai ⊆ bi. By compactness, we can assume that b′i contains ai. ◊ 21

LetD be ∅-definable, stably embedded, with anNIP induced structure. 22

Claim 4.0.10.2. For any tuple d ∈ D(M) the truth value of any formula φ(xd) is eventually 23

constant on (ai)i. 24

Proof. If not, let φ(xd) alternate along (ai)i. Since D is stably embedded, there exists ci ∈ 25

D(M)z and a formulaψ(zy) such thatφ(aiM) = ψ(ciM). Since ai enumerates an elementary 26

substructure ofM , we can assume that ci ⊆ ai. In particular, (ci)i∈I is indiscernible and ψ(zd) 27

alternates along this sequence. This contradicts that the induced structure onD isNIP. ◊ 28

If ∣I ∣ > ℵ0 is regular and theai andd are atmost countable, then it follows formclaim4.0.10.2 29

that tp(ai/d) is eventually constant. Let us now assume that I = ω and, by contradiction, let 30

c ∈M and φ be a formula such thatM ⊧ φ(aic) if and only if i is even. 31

Claim 4.0.10.3. For every i ∈ ω, let d2i ∈ D(M) be such that (a2id2i)i∈ω and (a2ia2i+1)i∈ω are 32

c-indiscernible. Then, we can find d′i and a′i such that a′2id′2i = a2id2i, (a′2i+1)i<ω ≡c (a2i+1)i<ω , 33

the sequence (a′2ia′2i+1)i is c-indiscernible and the sequence (a′idi)i is indiscernible. 34
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Proof. Applying lemma 4.0.2, we find (a′2j,ia′2j+1,id′2j,i)(j,i)∈ℵ1×ω which is c-indiscernible and 1

realises the common type of (a2ia2i+1d2i)i over c. In particular, (a′j)j∈ℵ1×ω is indiscernible, 2

(a′2j,ia′2j+1,i)(j,i) ≡c (a2ia2i+1)i and (a′2j,id′2j,i)(j,i) ≡c (a2id2i)i. By compactness, we can as- 3

sume that a′0,id′0,i = a2id2i, for all i < ω. Let a2ω ∶= (a2i)i<ω and d2ω ∶= (d2i)i<ω and con- 4

sider bj ∶= (a′j+1,i)i<ω. Then (bj)j is L(a2ω)-indiscernible, i.e (bja2ω)j is L-indiscernible. By 5

claim4.0.10.2, tp(bja2ω/d2ω) is eventually constant so there exists j0 such that (a′2j0,i)i ≡a2ωd2ω 6

a′2j0+1,i. By compactness, we find d′2i+1 such that (a2j0,id2j0,i)i ≡a2ωd2ω (a2j0+1,id′2i+1)i. If we 7

set a′2i+1 = a′2j0+1,i, we have (a2id2ia
′
2i+1d

′
2i+1)i<ω ≡ (a′0,id′0,ia′2j0,id

′
2j0,i
)i<ω and hence (a′id′i)i 8

is indiscernible. ◊ 9

By lemma 4.0.2, we may assume that (a2ia2i+1)i<ω is c-indiscernible. For every i < ω, let b2i 10

enumerateΓ(dcl(a2ic)) andd2i enumerateR(dcl(aic)). By the claim4.0.10.3, changinga2i+1 11

but preserving the alternation, we find b2i+1 and d2i+1 such that (aibidi)i<ω is indiscernible. By 12

section 4, we find (a1i )i indiscernible that each enumerate an elementary substructures con- 13

taining aibidi. Iterating this construction, we find (aωi )i<ω indiscernible that each enumerates 14

a countable elementary substructuresNi containing ai and such thatN2i ⩽ N2i(c) is immedi- 15

ate. Again, we can extend this sequence (preserving the alternation) to be indexed by ℵ1. 16

Let b0 be a ball inN0 and bi be the corresponding ball inNi. Three cases are possible. Either 17

all the bi are disjoint and c can only be in one of them. Or they form an increasing sequence 18

and if c is in one of them, it is in all the later ones. Or they form a decreasing sequence and if c 19

is not in one of them it is not in any of the later ones. In all three cases, c is either eventually in 20

bi or outside of bi. It follows, that the maximal pseudo Cauchy filters over eachNi accumulat- 21

ing at c eventually correspond via the isomorphism aωi ↦ aωj and hence, by proposition 3.5.4, 22

eventually aic ≡ ai+1c, contradicting the alternation. 23

Corollary 4.0.11 (Delon, ...). LetM be an unramified henselian field with perfect residue field. 24

Then 25

M isNIP⇔ k(M) isNIP. 26

Proof. This follows from theorem 4.0.10 and the fact thatR is interpretable in k. 27

Example 4.0.12. • p-adically closed fields areNIP. 28

• C((t)) andR((t)) areNIP. 29

• ∏p→UQp is not NIP, where U is a non principal ultrafilter on the set of primes. 30

5. Perspectives 31

5.1. Imaginaries 32

Wewish to consider three related questions: 33

• What do quotients by definable equivalence relations look like? 34

• Do definable families admit moduli spaces — i.e. a definable set whose points are in de- 35

finable bijection with the definable sets that appear in the family? 36

• Do definable set have a smallest set of definition? 37
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But first, let us set up some background. Let L be some language,M be an L-structure and 1

X ⊆Mx be L(M)-definable. 2

Proposition 5.1.1 (Poizat, 1983). Let T be a theory such that for every finite tuples of sortsX and 3

Y , there exists a finite tuple of sortsZ andL-definable injectivemaps ιX ∶X → Z and ιY ∶ Y → Z 4

with disjoint images(16). The following are equivalent: 5

(i) T eliminates imaginaries: for everyM ⊧ T and L(M)-definable X set X ⊆ Mx, there 6

exists anL-formulaψ(xy) and a ∈My such that, for all c ∈My ,ψ(M,c) =X if and only 7

if c = a—we say that a is a canonical parameter ofX via ψ; 8

(ii) T uniformly eliminates imaginaries : for every L-definable V ⊆ X × Y , there exists an 9

L-definableW ⊆ X × Z such that for everyM ⊧ T and a ∈ Y (M), there exists a unique 10

c ∈ Z(M) such that Va ∶= {x ∈X ∶ xa ∈ V } =Wc. 11

(iii) Any interpretable set is represented, in T , by a definable set: for everyM ⊧ T , A ⩽M and 12

L(A)-definable equivalence relation E ⊆ X × X , there exists and L(A)-definable map 13

f ∶X → Z such that for all x1, x2 ∈X , x1Ex2 if and only if f(x1) = f(x2). 14

Sketch of proof. 15

(i)⇒(ii) This follows form compactness. 16

(ii)⇒(iii) Applying (ii) toE ⊆X ×X , we define f(x) to be the unique z such thatEx =Wz . 17

(iii)⇒(i) Applying (iii) to the equivalence relation y1Ey2 defined by∀x,φ(x, y1)⇔ φ(x, y2), we 18

define ψ(x, z) ∶= ∃y f(y) = z ∧φ(x, y). 19

Note that if a is a canonical parameter ofX , via someφ, then dcl(a) does not depend on the 20

choice of φ and is the smallest dcl-closed set of definition ofX . 21

Theorem 5.1.2 (Poizat, 1983). The Lrg-theoryACF (uniformly) eliminates imaginaries. 22

Sketch of proof. LetK ⊧ ACF andX ⊆ Kn be Lrg(K)-definable. Let p be the generic type of 23

an irreducible components of the Zariski closureXz ⊆ Kn. The type p is entirely determined 24

by I(p) ∶= {P ∈ K[x] ∶ p ⊧ P = 0} = ⋃d Vd(p), where Vd(p) ∶= {P ∈ K[x] ∶ p ⊧ P = 25

0 and deg(P ) ⩽ d} ⩽ Kmd is a sub-K-vector space of dimension rd. Note that ⋀rdVd(p) ⩽ 26

⋀rdKmd ≃ Knd is dimension 1 — it is therefore an element ad ∈ P(Knd) which can be L- 27

definably identified with a subset ofKnd+1. 28

Note that sinceX is consistent with p, by quantifier elimination, p ⊧ X and, ifX is a class 29

of an L-definable equivalence relation, it is L(ad)-definable for a sufficiently large d. Note that 30

the orbit of p under autX(M) ∶= {σ ∈ aut(M) ∶ σ(X) = X} is contained in the set of generic 31

types of irreducible components of the Zariski closureXz ⊆Kn, which is finite. Thus so is the 32

orbit C ∶= {ci ∶ i < n} of ad. Note thatX is L(ci)-definable for any choice of i. 33

Let P (x, y) = ∏i(x − ∑j cijY j) and d be the tuple of its coefficients. Then C is L(d)- 34

definable, and d is fixed by autX(M)— i.e. d is a canonical parameter ofX . 35

Definition 5.1.3. Let LG be the language with: 36

• a sortKwith the ring language; 37

• sorts Sn, for all n ∈ Z>0; 38

16In other words, the category of definable sets has finite coproducts.
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• a map sn ∶Kn2 → Sn; 1

• sortsTn, for all n ∈ Z>0; 2

• a map tn ∶Kn2 → Tn. 3

Any valued field can be made into an LG -structure by interpreting K as the field, Sn as 4

GLn(K)/GLn(O), which is the moduli space of rank n free sub-O-modules ofKn, sn as the 5

canonical projection,Tn as⊔s∈Sn s/ms and tn as themap sending amatrixm ∈ GLn(K) to the 6

coset of sn(m)/msn(m) given by the first vector. 7

Theorem 5.1.4 (Haskell–Hrushovksi–Macpherson, 2006). The LG -theory ACVF eliminates 8

imaginaries. 9

Sketch of proof. Let K ⊧ ACVF and X ⊆ Kn be L(K)-definable. A type p ∈ Sx(K) is said 10

to be L(K)-definable if, for every formula φ(xy), there exists θ(y) such that, for all a ∈ K, 11

p ⊧ φ(x, a) if and only ifK ⊧ θ(a). 12

Claim 5.1.4.1. There exists an LG(K)-definable type p ∈ SX(K) with a finite autX(K)-orbit. 13

Proof. Assume first that X ⊆ K. Then, by theorem 2.2.5, X has a unique decomposition 14

⋃i<n bi ∖ bi,j of disjoint non nested Swiss cheeses. Then p ∶= ηb0 has the required properties. If 15

X ⊆ Kn+1, by induction, we find an LG(K)-definable q ∈ Sπ(X)(K) with a finite autX(K)- 16

orbit, where π ∶ Kn+1 → Kn is the projection on the first n coordinates. Let a ∈ K⋆ ≽ K 17

realise q. By the dimension 1 case, we find an LG(K)-definable ra ∈ SXa(K⋆) with a finite 18

autXa(K⋆)-orbit. Let c ⊧ ra, then tp(ac/K) has the required properties. ◊ 19

Let V be aK-vector space. A valuation on V is a map v ∶ V → Σ, where (Σ,<) is ordered 20

and vK acts (increasingly) on Σ and such that v(0) is maximal, for all x, y ∈ V , v(x + y) ⩾ 21

min{v(x), v(y)} and for all a ∈ K, v(ax) = v(a) + v(x). We say that a valuation v onKn is 22

definable if v(x) ⩽ v(y) is. For very d ∈ Z⩾0, let vd be the (definable) valuation onKmd such 23

that vd(P ) ⩽ vd(Q) if and only if p(x) ⊧ v(P (x)) ⩽ v(Q(x)). By quantifier elimination, the 24

vd characterise p. 25

Claim 5.1.4.2. There exists a basis (Pi)i<md
of Kmd such that for all ai ∈ K , v(∑i aiPi) = 26

mini v(ai)+ v(Pi). Moreover, the Pi can be chosen such that v(Pi) is fixed by aut(K/p) and for 27

all i, j, if there exists a ∈ vK×>0 such that v(Pi) + v(a) < v(Pj) then v(Pi) + vK× < v(Pj). 28

Fix some i. LetWi,d be theK-vector subspace generated by thePj with v(Pj) > v(Pi)+vK× 29

and Sd,i be the free O-submodule generated by the Pj with v(Pj) ⩾ v(Pi) = v(a) for some 30

a ∈K×. Note that theRd,i ∶= {a ∈Kmd ∶ v(∑j ajPj) ⩾ v(Pi)} = Sd,i+Wd,i characterise vd and 31

thatRdi ∩Sd,i is the preimage ofRdi ∩Sd,i/mSd,i. Using external powers and projective spaces 32

we can then associate a tuple ofK-points toWd,i and a tuple ofTn-points toRdi ∩Sd,i/mSd,i. 33

It then remains to show that finite sets of tuples in the geometric sorts have canonical param- 34

eters — which is far from trivial. 35
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5.2. A classification of NIP fields 1

Conjecture 5.2.1. Every infiniteNIP field either: 2

• is separably closed; 3

• is real closed; 4

• admits a non trivial henselian valuation. 5

Remark 5.2.2. 1. In other terms every NIP field is elementarily equivalent (as a field) to a 6

non trivially valued henselian field. 7

2. The henselian valuation (when it exists) can be assumed to be definable. 8

3. This conjecture implies the stable fields conjecture : every stable is separably closed. 9

A. The localisation of a ring 10

Definition A.0.1. FixR a ring and S ⊆ R. 11

(1) The subset S is multiplicative if 1 ∈ S and for every x, y ∈ S, xy ∈ S. 12

(2) We then define the equivalence relation (x, s) ∼S (y, t) on R × S to hold if there exists 13

z ∈ R such that zxt = zys. 14

(3) We also define the ring S−1R ∶= R × S/∼S , localised at S, where: 15

• (x, s) + (y, t) = (xt + ys, st); 16

• (x, s) ⋅ (y, t) = (xy, st). 17

(4) Let also i ∶ R → S−1R be the ring morphism x↦ (x,1). 18

Definition A.0.2. IfR is a ring and p is a prime ideal, we define the localisation ofR at p to be 19

(R ∖ p)−1R. It is usually denoted byRp. 20

PropositionA.0.3. LetR be a ringandS ⊆ R bemultiplicative. The ringS−1Rhas the following 21

universal property: given and ring A and ring morphism f ∶ R → A such that for every s ∈ S, 22

f(s) ∈ A×, there exists a unique g ∶ S−1R → A such that: 23

S−1R

g

��

R

i
88qqqqqqq

f &&NN
NNN

NNN

A

24

commutes. 25

Proposition A.0.4. Let R be a ring and S ⊆ R be multiplicative. The map q ↦ S−1R ⋅ q is a 26

bijection between prime ideals q ⊆ R with q ∩ S = ∅ and prime ideals of S−1R. 27

In particular, if p ⊆ R is prime, the ringRp is local and its maximal ideal isRp ⋅ p. 28

RemarkA.0.5. IfR is an integral ring,R(0) is its fraction field and i is injective. It is the smallest 29

field (up to uniqueR-isomorphism) containingR. 30
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B. A multi-sorted model theory primer 1

Definition B.0.1. A language L is: 2

• a setX— sorts of L; 3

• for every tuple of sortsX = (Xi)i<n, a setR(X)—predicates on∏iXi; 4

• for every tuple of sortsX = (Xi)i<n and sort Y , a set f(X,Y )— functions∏iXi → Y ; 5

Let us fix a language L and disjoint setsV(X), for every sortX— the variables of sortX . 6

Definition B.0.2. Let x = (xi)i<n be a tuple of variables and Y be a sort. We define by induc- 7

tion: 8

• the set t(x,Y )— terms in variables x to the sort Y : 9

– if xi ∈V(Xi), xi ∈ t(x,Xi); 10

– If tj ∈ t(x,Zj), for j <m, and f ∈ f(Z,Y ), then f(t) ∈ t(x,Y ); 11

• the set F(x)— formulas in variables x: 12

– � ∈ F(x); 13

– if φ,ψ ∈ F(x), φ→ ψ ∈ F(x); 14

– if t1, t2 ∈ t(x,Z), t1 = t2 ∈ F(x); 15

– If tj ∈ t(x,Zj), for j <m, andR ∈R(Z), thenR(t) ∈ F(x); 16

– If φ ∈ F(yx), where y is a single variable, ∃yφ ∈ F(x). 17

Definition B.0.3. An L-structureM is: 18

• for every sortX , a setX(M); 19

• for every f ∈ f(X,Y ), a function fM ∶X(M) ∶=∏iXi(M)→ Y (M); 20

• for everyR ∈R(X), a subsetR(M) ⊆X(M). 21

Definition B.0.4. LetM be anL-structure, x be a tuple variables of sortX—that is, xi ∈VXi . 22

We define by induction: 23

• for every t ∈ t(x,Y ), tM ∶X(M)→ Y (M): 24

– (xi)M ∶ a↦ ai; 25

– f(t)M ∶ a↦ fM((tMj (a))j); 26

• for every φ ∈ F(x), φ(M) ⊆X(M): 27

– �(M) = ∅; 28

– (φ → ψ)M ∶= {a ∈ X(M) ∶ a ∈ φ(M) implies a ∈ ψ(M)} = (X(M) ∖ φ(M)) ∪ 29

ψ(M); 30

– R(t)(M) ∶= {a ∈X(M) ∶ tM(a) ∈ R(M)}; 31

– (∃yφ)(M) the projection of φ(M) intoX(M). 32

If a ∈ φ(M), we usually writeM ⊧ φ(a). More generally, if Φ ⊆ F(x), we writeM ⊧ Φ(a) 33

if a ∈ ⋂φ∈Φφ(M). 34

Definition B.0.5 (Morphisms). LetM andN be L-structures,A ⊆M and f ∶ A → N — that 35

is, for every sortX , we haveX(A) ⊆X(M) and f ∶X(A)→X(N). 36

(1) A is anL-substructure ofM , andwewriteA ⩽M , if for every function symbol t ∶X → Y 37

and a ∈X(A) ∶=∏iXi(A), tM(a) ∈ Y (A). 38

(2) f is an L-embedding if for every quantifier free formula φ(x) and a ∈ Ax, ifM ⊧ φ(a) 39

thenN ⊧ φ(f(a)). 40
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(3) f is anL-existentially closed embedding if for every existential formulaφ(x) = ∃yψ(xy), 1

where ψ is quantifier free and y is a tuple, and a ∈ Ax, ifN ⊧ φ(f(a)) thenM ⊧ φ(a). 2

(4) f is an L-elementary embedding if for every formula φ(x) and a ∈ Ax, ifM ⊧ φ(a) then 3

N ⊧ φ(f(a)). 4

Note that the implication in (2) and (4) are, in fact, equivalences. Also, any (respectively 5

existentially closed, elementary) embedding f ∶ A → N uniquely extends to an (respectively 6

existentially closed, elementary) embedding of the structure generated byA. 7

It is often useful to specify not only the domain of definitionA of the embedding f but also 8

its domain of interpretationM . We will denote that situation by f ∶ A ⊆M → N . 9

Remark B.0.6. IfA ⩽M , for f ∶ A→ N to be an embedding it suffices that: 10

(a) f is injective; 11

(b) for every function symbol t ∶X → Y and a ∈X(A), f(t(a)) = t(f(a)); 12

(c) for every relation symboleR ⊆X and a ∈X(A),M ⊧ R(a) if and only ifN ⊧ R(A). 13

Proposition B.0.7 (Lowenheim-Skolem, ?). LetM be some L-structure and κ ⩾ ∣L∣ some cardi- 14

nal. 15

1. IfA ⊆M and ∣A∣ ⩽ κ ⩽ ∣M ∣, there existsA ⊆ N ≼M with ∣N ∣ = κ. 16

2. If ∣M ∣ ⩽ κ, there existsN ≽M with ∣N ∣ = κ. 17

Let ∆(x) ⊆ F(x) be closed under finite conjonctions and disjonctions. For every Φ,Ψ ⊆ 18

F(x), wewriteΦ ⊧ Ψ if for everyL-structureM ,Φ(M) ∶= ⋂φ∈Φφ(M) ⊆ Ψ(M) = ⋂ψ∈Ψψ(M). 19

Definition B.0.8 (Types). (1) A partial∆-typeπ(x) is a filter on the semi-lattice (∆,⊧,∧,�)(17).20
(2) A partial ∆-type π is complete if there exists c ∈ M some L-structure such that π = 21

tpM∆ (c) ∶= {φ ∈∆(x) ∶M ⊧ φ(c)}. 22

When∆(x) = F(x), we usually talk about partial types and complete types in x. A complete 23

(∆-)type is often referred to simply as a (∆-)type. Partial F(⋆)-types, i.e. partial types without 24

variables, are usually called theories and complete F(⋆)-types are usually called complete theo- 25

ries. 26

Theorem B.0.9 (Compactness). (1) Every partial ∆-type is contained in a complete ∆-type; 27

equivalently, for every partial type π(x), there exists an L-structureM and a ∈ Mx such 28

thatM ⊧ π(a)— that is, for every φ ∈ π,M ⊧ φ(a). 29

(2) For everyΦ ⊆ F(x) andψ ∈ F(x)withΦ ⊧ ψ, there exists a finiteΦ0 ⊆ Φ such thatΦ0 ⊧ ψ. 30

(3) The topological space S∆ —whose points are complete∆-types and whose closed sets are gen- 31

erated by the JφK ∶= {p ∈ S∆ ∶ φ ∈ p}, for φ ∈∆— is compact. 32

The spaceS∆ is, in fact, spectral(18). If∆ is closed under negation, it isHausdorff and totally 33

disconnected. 34

17That is, π ⊆∆ such that:
(a) � ∉ π;
(b) for every φ,ψ ∈ F, φ ∧ψ ∈ π;
(c) for every φ ∈ π and ψ ∈∆, if φ ⊧ ψ then ψ ∈ π.

18It is compact, Kolmogorov, sober — closed irreducible subsets are the closure of a single point — and compact
open subsets are closed under finite intersection and generated the open sets; equivalently it is homeomorphic to
the spectrum of a ring
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Corollary B.0.10. Let π be a partial∆-type. The following are equivalent: 1

(i) π is complete; 2

(ii) for every φ,ψ ∈∆ such that φ ∨ ψ ∈ π, we have φ ∈ π or ψ ∈ π. 3

Proof. Exercise. 4

Notation B.0.11 (Theories and diagrams). LetM be an L-structure, a ∈ Mx, A ⊆ M . We 5

define: 6

• the set of quantifier free formulas Fqf(x) ⊆ F(x); 7

• the quantifier free type of a inM , qf-tp(a) ∶= tpFqf(x)(a); 8

• the theory ofM ThL(M) ∶= tpML (⋆) = {φ ∈ F(⋆) ∶M ⊧ φ}; 9

• the quantifier free theory ofM qf-ThL(M) ∶= qf-tpML (⋆) = {φ ∈ F
qf(⋆) ∶M ⊧ φ}; 10

• the language L(A)which is Lwith a new constant ca ∶ X , for every a ∈ X(A)—M has 11

a natural L(A)-structure by setting cMa ∶= a; 12

• the diagram ofA inM ,DM
L (A) ∶= qf-ThL(A)(M); 13

• the elementary diagram ofA inM , el-DM
L (A) ∶= ThL(A)(M). 14

Lemma B.0.12. LetM,N be L-structures andA ⊆M . We have: 15

• N ⊧ Th(M) if and only if f ∶ ∅ ⊆M → N is an elementary embedding; 16

• N ⊧ qf-Th(M) if and only if f ∶ ∅ ⊆M → N is an embedding. 17

IfN is enriched to an L(A)-structure: 18

• N ⊧D(A) if and only if a↦ cNa is an embedding f ∶ A ⊆M → N ; 19

• N ⊧ el-D(A) if and only if a↦ cNa is an elementary embedding f ∶ A ⊆M → N . 20

CorollaryB.0.13. LetM be anL-structure andπ(x)be afinitely satisfiable set ofL(M)-formulas 21

in variables x— that is, for every (φi)i<n ∈ π, there exists a ∈ Mx such thatM ⊧ ⋀i<nφi(a). 22

Then, there exists an L-elementary embedding f ∶M → N and a ∈ Nx such thatN ⊧ π(a). 23

Proposition B.0.14. Fix T an L-theory and ∆(x) a set of formulas in the tuple of variables x, 24

closed under conjonction and disjonction — up to equivalence in T — and φ(x) an L-formula. 25

The following are equivalent: 26

1. there exists ψ ∈∆ such that T ⊧ ∀x φ(x)↔ ψ(x); 27

2. for everyM,N ⊧ T , a ∈ φ(M) and b ∈ Nx such that tp∆(a) ⊆ tp∆(b), thenN ⊧ φ(b). 28

This is a translation of the fact that ifX is a quasi compact subset of some topological space, 29

the closure ofX is the closure of its points: X = ⋃p∈X p. 30

Proposition B.0.15 (Criterion for elimination of quantifiers). Let T be an L-theory. The fol- 31

lowing are equivalent: 32

(i) Any formula φ ∈ F(x) is equivalent, modulo T , to a quantifier free formula ψ ∈ F(x); 33

(ii) for everyM,N ⊧ T , any L-embedding f ∶ A ⊆M → N is existentially closed; 34

(iii) for every M,N ⊧ T , any L-embedding f ∶ A ⊆ M → N and b ∈ M , there exists an 35

L-elementary embedding h ∶ N → N⋆ and an L-embedding g ∶ Ab ⊆ M → N⋆ with 36

h ○ f = g∣A; 37

(iv) for everyM,N ⊧ T and any L-embedding f ∶ A ⊆M → N , there exists an L-elementary 38

embedding h ∶ N → N⋆ and an L-embedding g ∶M → N⋆ with h ○ f = g∣A; 39
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(v) for everyM,N ⊧ T , any L-embedding f ∶ A ⊆M → N is L-elementary; 1

(vi) for everyM ⊧ T andA ⊆M , the theory generated by T ∪D(A) is complete. 2

We say that T eliminates quantifiers when these equivalent conditions hold. 3

Lemma B.0.16. LetM be some L-structureA ⊆M , a ∈M and p ∶= tp(a/A). The following are 4

equivalent: 5

(i) there exists an L(A)-formula φ(x) such that φ(M) is finite andM ⊧ φ(a); 6

(ii) for everyM⋆ ≽M , p(M⋆) ⊆M ; 7

(iii) for everyM⋆ ≽M , p(M⋆) is finite; 8

(iv) for everyM⋆ ≽M , aut(M⋆/A) ⋅ a is finite; 9

We say that a is algebraic overA, and we write a ∈ acl(A). 10

Lemma B.0.17. LetM be some L-structureA ⊆M , a ∈M and p ∶= tp(a/A). The following are 11

equivalent: 12

(i) there exists an L(A)-formula φ(x) such that φ(M) = {a}; 13

(ii) there exists L-definable function on someX and c ∈X(A) such that a = f(c); 14

(iii) for everyM⋆ ≽M , p(M⋆) = {a}; 15

(iv) for everyM⋆ ≽M , aut(M⋆/A) ⋅ a = {a}; 16

We say that a is definable overA, and we write a ∈ dcl(A). 17

Theorem B.0.18 (Keisler-Shelah,?). For any cardinal κ, there exists an ultrafilter U (on some set 18

X) such that for any languageL of cardinality atmost κ and anyL-structuresM andN ,M ≡ N 19

if and only ifMU ≃ NU. 20

Proposition B.0.19. Let U be some non principal ultrafilter (on some set X) andM be an L- 21

structure. ThenMU is ℵ1-saturated. 22

C. Projective and inductive limits 23

Fix L some language. 24

Definition C.0.1. Let (I,<) be a preorder, and for every i < j ∈ I , a homomorphism(19) of L- 25

structures fi,j ∶Mj →Mi such that, if i < j < k ∈ I , fi,k = fi,j ○ fj,k. We define the L-structure 26

M ∶= lim←ÐiMi byX(M) = {a ∈ ∏iX(Mi) ∶ for all i < j, fi,j(aj) = ai}. Any function symbol 27

t ∶ X → Y is interpreted by t(a) = (t(ai))i, where a ∈ X(M), and for any function symbol 28

R ⊆ X ,M ⊧ R(a) if and only if, for all i,M ⊧ R(ai). We also define the L-homomorphism 29

fi ∶M →Mi by a↦ ai. 30

For every i < j ∈ I , we have fi,j ○ fj = fi. 31

19f ∶M → N is said to be an L-homomorphism if for every function symbol t ∶ X → Y and a ∈ X(M), f(t(a)) =
t(f(a)) and, for every predicate symbolR ⊆ A, ifM ⊧ R(a) thenN ⊧ R(f(a)).
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Proposition C.0.2. The L-structure lim←ÐiMi has the following universal property: givenN and 1

gi ∶ N →Mi with fi,j ○ gj = gi, for all i < j ∈ I , there exists a unique h ∶ N → lim←ÐiMi such that 2

lim←ÐiMi
fi

&&MM
MMM

M

Mi

N

h

OO

gi

77oooooooo

3

commutes, for all i ∈ I . 4
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