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CHAPTER 1

Flows on surfaces

In this chapter we make the standing assumption that all vector fields we consider have
isolated critical points.

1. Flows on the sphere are tame

In this paragraph we consider the dynamics of flows on the sphere S2. For this entire
section, ~X is a vector field of class C1 on the sphere S2 i.e. a section of TS2. We are interested
in the differential equation

(1)
df

dt
(x) = ~X(x)

Because ~X is of class C1, local solutions to this equation given an initial condition exist and
are unique, by Cauchy-Lipschitz. Because the sphere is compact, such solutions are defined
for all time; such a vector field ~X therefore defines a flow

(2) φX : S2 × R −→ S2.

We are going to discuss the following question

Question 1. What is the topological dynamics of φX? In other words, given x0 ∈ S2, can
we describe its ω and α-limits?

1.1. Flow boxes. We start by discussing the local structure of a flow on a surface at a
point where ~X 6= ~0. We have the following fundamental lemma

Lemma 2 (Flow box). Let X be a C1 vector field on a smooth manifold M of dimension
n. Consider a point x ∈ X such that ~X(x) 6= 0. Then there exists a neighbourhood U of x
and a chart ϕ : U →]− 1, 1[×Bn−1 such that

ϕ∗( ~X) = ∂x1

where x1 is the coordinate on the factor ]− 1, 1[ in the product ]− 1, 1[×Bn−1. In particular,
ϕ maps integral curves of the flow of ~X onto straight lines of the form {p}×] − 1, 1[ with
p ∈ Bn−1.

Proof. Exercise.
�
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4 1. FLOWS ON SURFACES

1.2. Examples. We give here a few examples of flows on S2.
Example 1 : Flow with a parabolic fixed point. Consider a vector field ~X that

vanishes at a point p. Up to a choice of coordinate, we can assume that p = 0 ∈ R2. The flow
of ~X fixes the point p = 0. We say that this fixed point is parabolic if ~X is locally of the form

~X(x, y) = (x2 − y2)∂x+ (xy)∂y.

In complex coordinates z = x+ iy, X is just z 7→ z2. The figure below describes a flow on
the sphere with a unique parabolic fixed point.

Figure 1. A flow with a parabolic fixed point

Example 2 : North-South dynamics (not spiraling). A North-South flow is a flow
satisfying the following conditions.

• It has exactly two critical points S and N which are respectively (locally) of the form
~X(x, y) = x∂x+ y∂y and the second ~X(x, y) = −x∂x− y∂y.

• For every regular point p, ω(p) = N and α(p) = S.

Figure 2. A North-South flow

We leave it to the reader to check as an exercise that the flow defined on R2 by the equation
~X = (x, y) extends to S2 = R2 ∪ {∞} to a North-South flow.

Example 3 : Completely periodic flow. Consider R2 with polar coordinates (r, θ).
We consider the flow

~X(r, θ) = r∂θ.

One easily checks the following properties:
• ~X extends to S2 to a smooth vector field;
• ~X has exactly two critical points 0 and ∞;
• integral curves of ~X are exactly circle centred at 0.
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Thus every trajectory of ~X is periodic.

1.3. Poincaré-Bendixson theorem. We introduce some terminology in order to be
able to state the main theorem of this chapter.

• A singular (or critical) point is a point x at which ~X(x) = ~0.
• A connection is a trajectory whose α-limit is a singular point and whose ω-limit is
also a singular point. In particular, the closure of a connection is equal to itself union
the two limiting singular point. Note that these limiting points can be equal.
• A cycle is a connected and closed union of singular points and connections.

Theorem 3 (Poincaré-Bendixson). Let ~X be a vector field of class C1 on the 2-dimensional
sphere S2 and consider x0 ∈ S2. Then the ω-limit or α-limit of x0 for the flow of ~X is either

(1) a closed orbit;
(2) a singular point;
(3) a cycle.

1.4. Jordan curve. The key fact, very specific to the sphere and the dimension 2, is
the Jordan curve theorem. That is the main ingredient of the proof of Poincaré-Bendixson
theorem. In its most general version (continuous embeddings of the circle), it is a difficult
theorem. We will only need the piecewise C1 version which is much easier.

Theorem 4 (Piecewise C1 Jordan curve). Let γ : S1 −→ S2 a piecewise C1-embedding.
Then γ(S1) separates S2 into two connected components both homeomorphic to a disc.

We do not give a proof here.

1.5. Proof of Theorem 3. The main idea is the following: consider any forward
trajectory starting off at a point x. Because S2 is compact, it is going to accumulate
somewhere. Consider a regular accumulation point p ∈ S2 and a small arc γ at p that is
transverse to the flow. Because p is an accumulation point of the forward orbit of x the latter
is going to intersect γ infinitely many times. The main point is that a given trajectory can
only intersect such a transverse arc following a simple combinatorial pattern: consecutive
intersections come in increasing (or decreasing) order on γ. Indeed a very long trajectory
that comes back close to p can be closed using a small segment on γ. By the Jordan curve
theorem (Theorem 4), this closed curve bounds a topological disc in S2 (which we call D)
that the trajectory enters after its second intersection with γ (see Figure 3 below).

Figure 3. A trajectory coming back close to its initial point

We notice that from that moment onwards, the trajectory is trapped within this disc as its
boundary is the union of a bit of a trajectory and a transverse segment at which the vector
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field ~X is pointing inwards. It therefore cannot cross the small arc γ on the side of p that is
outside D (the left side on Figure 3).

This proves that future intersections of the trajectory with γ come in increasing or decreasing
order. Altogether this discussion proves the

Lemma 5. Let x ∈ S2 and let γ a smooth arc transverse to the flow (an arc is transverse
to the flow if at any point of γ, ~X is not is the direction of the tangent vector at γ). Then
ω(x) ∩ γ consists of at most one point.

This was the key step, and we can now use this lemma to conclude. We will make use of
the fact that the ω-limit of a point x is always connected (see Exercise 6).

Case 1. The ω-limit of x contains no regular point. Since it is connected, non-empty and
that the set of critical point is discrete, it must be a single singular point.

Case 2. The ω-limit of x contains no regular point. Since it is non-empty, we consider a
point p ∈ ω(x) and γ a small transverse arc at p. By Lemma 5, γ ∩ ω(x) = p. We want to
show that the orbit of p is periodic. Because p ∈ ω(x), O+(p) ⊂ ω(x) and in particular does
not contain any singular point. Take an accumulation point p′ of the forward orbit of p, it is
regular. But because the forward orbit of p is contained in the ω-limit of x, it intersects a
transverse arc at p′ only in p′. Because p′ is an accumulation point, we have that p′ ∈ O+(p)
and that p′ (and thus p) is periodic. We have obtained that in that case the ω-limit of x is a
union of isolated periodic orbit. By connectedness, it is a unique periodic orbit.

Case 3. The ω-limit of x contains both regular and singular point. Consider p a regular
point in ω(x). Its forward orbit cannot be periodic because otherwise the whole ω-limit would
be this periodic orbit. We claim that the forward orbit of x accumulates to a critical point.
If it were not the case, since it is not periodic, it would accumulate to a regular point that
is not on its orbit, contradicting Lemma 5. Same applies with the forward orbit. We have
thus proved that the ω-limit is a connected union of singular points and connections, which
concludes.

1.6. In higher dimensions. Poincaré-Bendixson theorem does not generalise.
(1) It does not generalise to higher dimensions : there exist flows on the 3-sphere which

have complicated dynamics. The most famous example is given by the Lorenz
equations which give birth to the Lorenz attractor.

(2) It does not generalise to higher genus surfaces. We treat the case of the torus in
the next section and provide simple examples which do not satisfy the conclusion of
Poincaré-Bendixson theorem.

(3) It does not generalise to singular foliations on the sphere.

2. Flows on the torus

In this section we discuss flows on the torus without singular points i.e. for all x ∈ T2,
~X(x) 6= 0.

2.1. Examples.
Linear flows. Let T2 = R2/Z2 be the 2-torus. We consider the vector field

~Xθ = (cos θ) · ∂x+ (sin θ) · ∂y.
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Proposition 6. • If tan(θ) is rational, ~X is completely periodic (i.e. every single
orbit is periodic).
• If tan(θ) is irrational, ~X is minimal.

Proof. Exercise. �

Hopf torus. Consider R2 \ {0} and the vector field

~X(x, y) = (x2 + y2)∂x.

This vector field is invariant by the action of (x, y) 7→ 2(x, y) and thus defines a smooth vector
field on

R2 \ {0}/
(
(x, y) ∼ (2x, 2y)

)
' T2.

Proposition 7. • ~X has exactly two periodic orbits.
• One of the two periodic orbit is the ω-limit of every non-periodic point and the other
is the α-limit of every non-periodic point.

Proof. Exercise.
�

2.2. Flows with a periodic orbit. In this paragraph, we deal with flows having at
least one periodic orbit.

Proposition 8. Assume that ~X has one periodic orbit. Then the ω-limit or α-limit of
every point is a periodic orbit.

Proof. This Proposition is a corollary of Poincaré-Bendixson theorem. We assume ~X
has a periodic orbit. This periodic orbit is not trivial in homology otherwise there would be a
critical point in the interior of the disc it would bound (see Exercise 3). This is impossible
since we have assume that ~X vanishes nowhere. The complement of this periodic orbit is a
cylinder which is invariant by the flow.

We can thus cut along this periodic orbit to get a flow on a cylinder such that its two boundary
components are periodic orbits. We embed this cylinder in a sphere in such a way that the
complement of the two boundary components of the cylinder is the union of the interior of
the cylinder and two discs. We extend the flow to those two discs to a completely periodic
flow restricted to those discs (for instance take the flow r · ∂θ on the disc of radius in 1 in R2

with (r, θ) standard polar coordinates). There is a slight difficulty at this point: one has to
show that ~X can be extended to be C1 on the whole of S2 (which is not obvious along the
two periodic orbits where we do the gluing). We leave it as an exercise to show that this can
actually be done, using standard bump functions in coordinates.

It remains to apply Poincaré-Bendixson to this flow. Take any point within the cylinder, by
Poincaré-Bendixson its ω-limit (or α-limit) is either a cycle or a periodic orbit. Because the
cylinder is invariant under the flow, the α-limit is contained in the (closed cylinder) and thus
does not contain any singular point. Therefore it is a periodic orbit. Since the dynamics of the
extended flow restricted to the invariant cylinder is the same as the initial one, it concludes.

�
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2.3. Flows without periodic orbits. Finally, we show how we can reduce the study
of the dynamics of a flow without a periodic orbit to that of a circle diffeomorphism.

Proposition 9. If ~X does not have a periodic orbit, then there exists a smooth, simple
closed curve γ that is everywhere transverse to the flow.

Proof. Consider any point x such that x ∈ ω(x) (see Exercise 4). The proof is essentially
contained in the Figure below. Because ~X does not have critical point, x is regular. Consider
an arc γ at x. We consider a strip that is a union of trajectories issued from γ. Because x is
recurrent we eventually get (up to possibly inverting left and right) the following configuration:

Figure 4. The violet curve is transverse to the flow

The closed curve in violet is the transverse curve we are seeking.
�

Reduction to a circle diffeomorphism.

Proposition 10. A flow on a torus with no periodic orbit is the suspension of a circle
diffeomorphism which is as regular as the flow is.

Proof. We have proved that there exists a curve that is transverse to the flow. What we
want to show is that the first return map on this curve realises this suspension. We split the
proof into three steps.

Step 1 A transverse curve does not bound a disc. Otherwise such a disc could be cut out
and extended to a flow on the sphere with the following extra property that any trajectory
entering the disc never leaves. The ω-limit of any point in the disc must be a periodic orbit
(because ~X does not have critical point). But by Exercise 3, the interior of the disc bounded
by this periodic orbit should contain a critical point, which is a contradiction.

Step 2 This transverse curve is therefore essential and its complement in T2 is a cylinder.
We can cut along this curve to get a flow with two boundary components. At one boundary
component the flow is pointing inwards and at the other it is pointing outwards. What we
want to show is that any trajectory issued from the boundary component where the flow is
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pointing inwards eventually intersects the other boundary component. To prove it, we extend
in an arbitrary fashion the flow to a flow on the sphere by adjoining to the two boundary
components two discs. The ω-limit of a point x on the boundary component where the flow is
pointing inwards is either a cycle or a periodic orbit. Since we have assumed that the initial
flow has neither periodic orbits nor critical points, then the ω-limit of this point is not fully
contained within the cylinder. It cannot intersect the disc that caps the boundary component
where the flow is pointing inwards, thus it intersect the other disc. Which implies that the
trajectory of x must intersect the other boundary component.

Step 3 Going back to the initial flow on the torus, this discussion implies that the first return
map

T : γ ' S1 −→ γ

is well-defined. Because we know that through a point passes only one trajectory it is injective.
The same argument applied to − ~X shows that T is surjective and that its differential is
invertible at any point (this is because the flow of a differential equation at a given time is a
diffeomorphism). T is as regular as the flow of ~X which itself is as regular as ~X. We have
thus realised the flow of ~X as the suspension of a circle diffeomorphism.

�

2.4. Higher genus surfaces. Flows on surfaces of higher genus always have critical
points. An similar analysis can be carried out, but it is combinatorially much more complicated.

3. Exercises

Exercise 1. Prove the flow box lemma (Lemma 2).
(Hint : work in coordinates, and use the flow map to construct the inverse of the flow box
chart.)

Exercise 2. Show that any solution to a differential equation

df

dt
(x) = ~X(x)

on the sphere S2, with ~X of class C1 can be extended to a solution defined for all t ∈ R.
Exercise 3.

Let Σ be a compact surface and let ~X be a smooth flow on this surface. Assume Γ is a
non-trivial periodic orbit of ~X which bounds a topological disk D.

(1) Show that the interior of D contains a periodic orbit or a critical point.
(2) Using Zorn’s lemma, show that there is a critical point in D.

(Hint: proceed by contradiction and consider concentric periodic orbits.)
(3) Show that any smooth vector field on S2 has a critical point.

Exercise 4. Show that any vector field on a compact manifold has at least one recurrent
point (i.e. a point x such that x ∈ ω(x)).

Exercise 5. Show that there is no simple closed curve that is transverse to the flow on
the Hopf torus defined in 2.1.

Exercise 6. Show that there ω-limit of a point under the action of a smooth flow on a
compact surface is always connected.





CHAPTER 2

Circle homeomorphisms and diffeomorphisms

1. The circle

1.1. Definition.

Definition 1. The circle S1 is the topological space R/Z which is formally the quotient
of R by the action of x 7→ x+ 1.

We collect below basic properties on the circle.
(1) S1 is homeomorphic to the Euclidean circle of radius 1 in R2.
(2) It is naturally endowed with a structure of analytic manifold.
(3) The metric dx2 on R is invariant by the translation x 7→ x+ 1 and therefore passes

to the quotient R/Z.
The following theorem somewhat justifies the central place of the circle in one-dimensional
dynamics.

Theorem 11. The circle is the only connected closed topological 1-manifold. Moreover, it
carries a unique (up to homeomorphism) structure of analytic manifold.

1.2. Intervals and cyclic order. The circle is an orientable manifold, by default we
will work with the counter-clockwise orientation. This orientation allows us to define intervals
on S1. Given two points a and b, the complement in S1 of their union consists of two intervals.
We will denote these two intervals (a, b) and (b, a). (a, b) is the interval for which a is on the
left with respect to the counter-clockwise orientation and (b, a) the other. Closed intervals
will be denoted by [a, b].

A sequence of point p1, · · · , pn with n ≥ 3 is said to be cyclically ordered if p2, · · · , pn−1 belong
to the interval [p1, pn] and if on this interval p2 ≤ p3 ≤ · · · ≤ pn−1. This relation defines on
S1 what is called a cyclic order.

2. Circle homeomorphisms

Definition 2. A circle homeomorphism is an homeomorphism of the topological space
S1.

2.1. Lift. Let T : S1 → S1 be a circle homeomorphism. Because R is the universal cover
of S1, there exists a map T̃ : R −→ R such that

T ◦ π = π ◦ T̃
where π : R −→ S1 is the natural projection. We call T̃ the lift of T to R. We make the
following comments:

11



12 2. CIRCLE HOMEOMORPHISMS AND DIFFEOMORPHISMS

(1) T̃ is a homeomorphism of R and in particular it is strictly monotone. More precisely,
if T preserve the orientation of S1, then T̃ will be increasing whereas if T reverses
the orientation of S1, T̃ will be decreasing.

(2) Because T̃ is the lift of a circle homeomorphism, it satifies the following equation if

∀x ∈ R, T̃ (x+ 1) = T̃ (x) + 1

(3) Such a lift T̃ is not unique. Two different lifts differ by a translation by an element
of Z.

Exercise 7. Give formal proofs of the above statements.

Proposition 12. The set of all circle homeomorphisms is a topological space when
endowed with the topology of the uniform convergence.

2.2. Rotations. A fundamental class of examples of circle diffeomorphisms is the set of
rotation. Let α ∈ [0, 1[; the rotation of angle α is the map

rα := R/Z −→ R/Z
x 7−→ x+ α

Proposition 13. (1) If α is rational, i.e. α = p
q
with p and q co-prime integers,

then rα is periodic of period q.
(2) If α is irrational, then rα is minimal.

Proof. Exercise. �

We will see that rotations play a central role in the theory. An important fact is that rotations
altogether form a group with respect to the composition; and it is equal to the group of
orientation-preserving isometries of the flat metric of S1.

2.3. Blow-up of a rotation. We describe in this paragraph a general construction
of circle homeomorphisms displaying an interesting dynamical behaviour. Consider rα the
rotation of angle α and choose α irrational. Consider an arbitrary x0 and define xn = rnα(x0)
for all n ∈ Z. Because we have assumed α irrational the sequence (xn) is dense in S1.

• The first thing we do is that we "blow-up" the orbit at x0. This means that we
construct a new topological space by deleting each xn and replacing it by an entire
closed interval In. We get this way a new topological space S which is still a
topological circle and a degree 1 map ϕ : S −→ S1 which maps each In to xn and
all other points in S to their initial position. This map ϕ is locally increasing and
constant on the intervals In.
• The rotation rα straightforwardly extends to the complement in S of the union of the
Ins to a map T . By choosing orientation-preserving homeomorphisms In −→ In+1, it
is possible to extend T to a homeomorphism

T : S −→ S.
• By construction, T satisfies the following

ϕ ◦ T = Rα ◦ ϕ.
One says that ϕ is a semi-conjugation between T and rα.
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.

Proposition 14. Let T , (xn) and (In) be as above.
(1) J0, the interior or I0 is a wandering interval, meaning that its iterated images T n(J0)

for n ∈ Z are pairwise disjoint.
(2) The complement of

⋃
T n(J0), which we denote by C, is a Cantor set.

(3) T restricted to C is minimal.

Proof. (1) The first point is true by construction.
(2) C is closed because it is the complement of an open set. A point in C is either a point

that was initially in the complement of the orbit of x0 or an end point of on the In.
At any rate it is accumulated by points that are in S1 \ O(x0) thus C has no isolated
points. Moreover, the orbit of x0 in S1 was dense so any point in S1 is accumulated
by elements of O(x0) which implies that any point in C is accumulated by intervals
In; this in turn implies that C has empty interior. C is therefore a Cantor set.

(3) T is minimal restricted to C by construction, as Rα is minimal.
�

3. Groups of circle homeomorphisms

3.1. Regularity. We have endowed S1 with the structure of an oriented analytic Rie-
mannian manifold (meaning that S1 is endowed with a structure of analytic manifold together
with an analytic Riemannian metric). For any function f : S1 −→ S1 it therefore make sense
to say that

(1) f is differentiable;
(2) f is of class Cr for any r ∈ N;
(3) f is a local diffeomorphism;
(4) f is a global diffeomorphism;
(5) f is an orientation preserving homeomorphism;
(6) f is α-Hölder for any α > 0;
(7) f is Lipschitz.

Definition 3. A homeomorphism of a C1-manifold M of finite dimension is a diffeomor-
phism of M satisfying the following

(1) it is of class C1;
(2) at any point its derivative is invertible.

Note that an homeomorphism of class C1 is not necessarily a diffeomorphism. The basic
example is

x 7−→ x3

which is a homeomorphism of R but it is not a diffeomorphism since its derivative at 0
vanishes.

The derivative of a circle diffeomorphism. Formally, the derivative of a diffeomor-
phism T : S1 −→ S1 at a point p ∈ S1 is a linear map

DT (p) : TpS
1 −→ TT (p)S

1.
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But thanks to the Riemannian metric on S1 and the orientation on S1, each tangent space
TpS

1 identifies in a unique way to R. With these identifications, DT (p) is the multiplication
by a number T ′(p). This way the derivative of can be thought of as a map

T ′ : S1 −→ R.

Definition 4. For r ≥ 2, a homeomorphism is said to be a Cr-diffeomorphism if it is a
diffeomorphism and that its derivative is of class Cr−1.

3.2. Groups. Finally, we define the following subsets :
(1) Homeo(S1) = {circle homeomorphisms};
(2) Homeo+(S1) = {orientation-preserving circle homeomorphisms};
(3) Diffr(S

1) = {Cr − circle diffeomorphisms};
(4) Diff+

r (S1) = {orientation-preserving Cr − circle diffeomorphisms}.
We leave it to the reader to verify that this sets together with the composition law are

topological groups. The topology on Homeo(S1) is that of the uniform convergence (as S1 is a
metric space) whereas that on Diffr(S

1) is that of the uniform convergence of all consecutive
derivatives up to rank r.

Exercises

Exercise 8. Show that a Möbius transformation with a periodic orbit of order larger or
equal to 2 is conjugate in PSL(2,R) to a rotation of finite order.

Exercise 9. Let g1 and g2 be two Riemannian metric on S1. Show that g1 and g2 are
isometric if and only if Vol(g1) = Vol(g2).

Exercise 10. Prove Proposition 22.



CHAPTER 3

The rotation number

1. Continued fractions

In this paragraph we discuss rational approximations of real numbers. The connection
with circle dynamics is the following: if α is an irrational number, times q such that rqα is very
close to the identity correspond to rational numbers p

q
such that |α− p

q
| is very small. Unless

explicitly mentioned, we will always assume that rational numbers are written in reduced
form, i.e. p

q
with p and q coprime.

1.1. Rational approximations.

Definition 5. A rational approximation of a number α is a rational p
q
such that

|α− p

q
| < 1

q2
.

We have the following Proposition

Proposition 15. Any irrational number α has infinitely many rational approximations.

Proof. Consider an integer n ≥ 1 and subdivide the interval [0, 1] into n subintervals
[ k
n
, k+1

n
]. Consider the sequence {jα}. By Dirichlet principle, there are two distinct integers

q1 and q2 such that {q1α} and {q2α} belong to the same interval [ k
n
, k+1

n
]. In particular there

exists p ∈ N such that

|(q1 − q2)α− p| ≤ 1

n
.

Set q = q1 − q2 and one gets that |α− p
q
| ≤ 1

qn
. In particular since q ≤ n we get

|α− p

q
| ≤ 1

q2
.

The last thing we need to show is that we get by this mean infinitely many such p
q
. Since α is

irrational |α− p
q
| 6= 0. As n gets larger, since |α− p

q
| ≤ 1

qn
the quantity |α− p

q
| tends to zero

which implies that this process produces infinitely many rational approximations.
�

1.2. Continued fractions. We describe hereafter the continued fraction algorithm which
is a powerful tool to construct rational approximations. We define the Gauss map by

G := x 7−→ {1

x
} =

1

x
− [

1

x
].

Let a := x 7→ [ 1
x
]. For any irrational number α we define the sequence a0 = [α] and

ai+1 = a(Gi({α})) for i ≥ 1. We could have tried to define the sequence (ai) for α rational
15
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but for some n we would have had Gn(α) = 0 and been unable to continue the construction
of the ai beyond the step n.

Definition 6. Let α be a real number. When well-defined, the partial quotient of
order n of α is

pn
qn

= [a0, a1, · · · , an] = a0 +
1

a1 + 1
a2+ 1

···+ 1
an

.

We have the following important identities

Proposition 16. • ∀n ≥ 2, pn = anpn−1 + pn−2 with p0 = a0 and p1 = a0a1 + 1;
• ∀n ≥ 2, qn = anqn−1 + qn−2 with q0 = 1 and q1 = a1;
• qnpn−1 − pnqn−1 = (−1)n.

Proof. Exercise. Proceed by induction on n for general partial quotients where the ais
are allowed to be real.

�

One of the reason why we care so much about partial quotients is the following

Proposition 17. Let α be an irrational number. Then its partial quotients pn
qn

=

[a0, a1, · · · , an] are rational approximations of α.

Proof. Note that for any α,

α = [a0, a1, · · · , an +Gn({α})].
Recall that pn

qn
= [a0, a1, · · · , an]. By induction we have

α =
pn +Gn({α})pn−1

qn +Gn({α})qn−1

.

Thus we obtain

α− pn
qn
≤ (−1)n

qn( 1
Gn({α})qn + qn−1)

.

By definition we have an+1 ≤ 1
Gn({α}) thus we get

|α− pn
qn
| ≤ 1

qnqn+1

≤ 1

q2
n

.

�

We make one short comment about the last line of the proof. A slightly more careful
computation would have given

|α− pn
qn
| ≤ 1

qnqn+1

≤ 1

an+1q2
n

.

This shows us that effectively, how good an approximation of α the partial quotient pn
qn

is is
controlled by the value of an+1. The bigger an+1 the better the approximation is.
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2. Continued fractions, dynamical viewpoint

In this section we explain another way to think of continued fractions. It is the good point
of view in view of generalising this construction to circle homeomorphisms. For the rest of
the paragraph, α is a number in ]0, 1[. Consider the rotation of angle α

rα := x 7→ x+ α.

Consider any point x ∈ S1. The algorithm outputs a sequence of positive integers a1, a2, · · · , an, · · ·
which is linked to special times qks such that rkα is very close to the identity. In more arithmetic
term, integers qk such that d(qk · α,N) is very small.

• Step 1 We look at the sequence x, rα(x), r2
α(x), ·, rkα(x), · · · . Let a1 be largest integer

such that x, rα(x), r2
α(x), ·, ra1α (x) are cyclically ordered on S1.

1
a1

should be thought of a first order rational approximation of α. At the dynamical
level, it is characterised by the property that for any y, it is the largest integer such
that y, rα(y), r2

α(y), ·, ra1α (y); and by the fact that ra1α is close to the identity. We
now want to understand what happens at the second order. We have the following
configuration

Figure 1. Combinatorial configuration of the orbit

• Step 2 We are seeking to construct the "second order" rational, dynamical approxi-
mation of α. We already know the structure of orbits up to time q1 = a1, we are thus
going to speed up the process by considering rq1α . If one were to start with y = rα(x),
by definition of a1 we would have that

rq1α
(
y = rα(x)

)
∈ [x, rα(x)].
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By iterating the process, we obtain a sequence y, rq1α (y), r2q1
α (y), · · · , ra2·q1α (y) coming in

decreasing order; with a2 defined as the largest integer such that ra2·q1α (y) ∈ [x, rα(x)],
see Figure below.

Figure 2. Combinatorial configuration of the orbit, step 2

Thus ra2·q1α (y) = ra2·q1+1
α (x) has come very close to x.1 We set q2 = a2 · q1 + 1.

• Step 3 (the inductive step) We are now ready to defined the sequences (an)n∈N∗
and (qn)n∈N. Set q0 = 1, q1 = a1 and q2 = a1 · q1 + q0.
– The qns will satisfy the following property rqnα is closer to the identity than any

other rkα with k ≤ n.
– an is a measure of how good the approximation of the identity by rqn−1

α is. The
larger an, the better the approximation.

We have initiated the induction. Assume that an−1 and qn−1 have been defined and
that at step n we have the following configuration if n is even

and a similar one (where the ordering has been reverted) if n is odd. We assume,
without loss of generality, that n is even. We consider the interval [x, rqn−1

α (x)].
rqnα is a rotation by a small negative angle. We start iterating rqnα starting from
y = rqn−1

α (x). We get a decreasing sequence y, rqnα (y), r2·qn
α (y), · · · , ran+1·qn

α (y) of points
of the interval [x, rqn−1

α (x)]. rqnα , where an+1 is defined to be the largest integer such
that ran+1·qn

α (y) belongs to [x, rqn−1
α (x)]. rqnα . We see that an+1 is large if the angle of

rqnα is small compared to the angle of rqn−1
α . Because

ran+1·qn
α (y) = ran+1·qn+qn−1

α (x)

we define qn+1 = an+1qn + qn−1.
One easily checks that the iterated rqn(x) define configurations described by Figure
1.

To sum up, we have defined sequences (an)n∈N∗ and (qn)n∈N having the following properties.

1Actually, one can prove that a2 · q1 + 1 can be defined by the property that ra2·q1+1
α is closer to the

identity than any other rkα for k ≤ a2 · q1 + 1.
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Figure 3. Combinatorial configuration of the orbit, step n

(1) rqnα is a "best" approximation of the identity, in the sense that it is closer to the
identity that any shorter iterate of rα.

(2) an+1 quantifies how good the n-th approximation is compared to the (n− 1)-th.
(3) The sequence (qn) is completely determined by (an).
(4) One can completely reconstructs the combinatorics of an orbit of rα from the ans.

By combinatorics of an orbit we mean the way it distributes itself on the circle with
respect to the cyclic order of S1.

The rational case. In the discussion above we have implicitly ignored the case where
α is rational; α = p

q
. This case causes the algorithm to stop. What happens is that there

exists n such that qn = q and therefore rqn(x) = x which makes it impossible to continue the
algorithm.

Proposition 18. The sequence (an) and (qn) defined dynamically for rα are the same as
those defined by the continued fraction algorithm for α.

Proof. Exercise. �

3. Periodic orbits

From now onwards all circle homeomorphisms will be assumed to be orientating preserving
(unless explicitely mentioned).

Proposition 19. Assume that T has a periodic whose combinatorics is that of the rational
number p

q
. Then

• all periodic orbits are of type p
q
;

• the ω-limit of any point is a periodic orbit;
• the α-limit of any point is a periodic orbit.
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Proof. We start with the case p
q

= 1, in other words T has a fixed point. T therefore
induces an homeomorphism of [0, 1] fixing both 0 and 1. We show now that for any such
homeomorphism f , the ω/α-limit of a point is a fixed point. Consider x which is not a fixed
point of x. Consider the largest open interval (a, b) containing x such that f(y) 6= y on
(a, b). By continuity of f , we have that f(a) = a and f(b) = b. Thus f

(
(a, b)

)
= (a, b). By

definition of f , f(y) − y is of constant sign on (a, b) and thus the sequence fn(x) is either
strictly increasing or decreasing. It therefore has a limit which is a fixed point, which proves
that the ω/α-limit of x must consist of a single fixed point.

In the general case, we apply the above discussion to T q whose every orbit has for ω/α-limit
a single fixed point. This implies that the ω/α-limit of any point for T is a periodic orbit of
order at most q. But it cannot be the case that T has a periodic orbit of order less than q,
otherwise every single periodic orbit would be of order at most this number (by the same
reasoning) and thus negating the existence of a periodic orbit of period q. Finally, the fact
that these periodic orbits have same combinatorics (meaning that the cyclic order induced on
{0, 1, · · · q − 1} by that of the circle on the orbit) is the same is easily deduced from the fact
that T is order-preserving.

�

4. Rotation number

4.1. Definition. We are now going to define a quantity attached to any (orientation-
preserving) circle homeomorphism called the rotation number. We consider T : S1 −→ S1

a circle homeomorphism. For any point x whose orbit under T is not periodic, the cyclic
ordering of S1 induces a cyclic ordering on Z defined by

n1 ≤ n2 ≤ n3 ≤ n1 ⇔ T n1(x) ≤ T n2(x) ≤ T n3(x) ≤ T n1(x).

Lemma 20. Assume that T does not have a periodic orbit. Then the cyclic ordering on Z
induced by the action of T on orbits does not depend on the choice of an initial point.

Proof. Assume it is not the case, i.e. there are two points x and y and two different
integers k and l such that the triples (x, T k(x), T l(x)) and (y, T k(y), T l(y)) do not induce
the same cyclic ordering. We claim that this is equivalent to the fact that among the three
intervals [x, y], [T k(x), T k(y], [T l(x), T l(y)], one is contained within one of the two others.
But this implies the existence of a periodic orbit for T (because any map of an interval to
itself has a fixed point).

�

Case where T has a periodic orbit. We suppose that T has a periodic orbit, of order
q. Let x be a periodic point for this periodic point. Define p to be the number of times
x, T (x), T 2(x), · · · , T q(x) = x goes around S1. We define the rotation of ρ(T ) to be

ρ(T ) :=
p

q
.

Proposition 19 implies that
• ρ(T ) is well-defined i.e. the ratio p

q
does not depend on the choice of a periodic orbit.

• p and q given by this construction are necessarily co-prime.
• ρ(r p

q
) = p

q
(recall that r p

q
is the rotation of angle p

q
).
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Case where T does not have a periodic orbit. In that case we define the rotation
number using the algorithm that we used to define continued fractions from the dynamical
viewpoint. Consider an arbitrary x ∈ S1. We can run the same algorithm that we used with
rotation to define a sequence a1, · · · , an, · · · . The are two things that we need to check

(1) The algorithm does not stop.
(2) Each step of the algorithm (which consist in iterating an iterate of T until a certain

orbit gets past a certain point) can be carried out.
The algorithm stop if and only if there exists n ∈ N∗ such that T qn(x) = x. We have assumed
that T does not have periodic orbits so this case can be ruled out.
We now show that there is no problem carrying out a step of the algorithm. Assume that
we have constructed the ais and qis up to i = n. To construct an+1, we iterate T qn starting
from y = T qn−1(x) until it gets past x. For an+1 not to be defined, we should have that
all the iterates ty, T qn(y), T 2qn(y), · · · , T kqn(y), · · · remain within the interval [x, y]. Because
this sequence is increasing (or decreasing depending on the parity of n), it would have an
accumulation point z which would satisfy T qn(z) = z thus contradicting the fact that T does
not have a periodic orbit.

We define the rotation number of T to be the sole irrational number with the continued
fraction expansion [a1, · · · , an, · · · ]

ρ(T ) :=
1

a1 + 1
a2+ 1

a3+···

Remark 21. We could also have defined rational rotation number using the continued
fraction algorithm. As explained above, the only thing that can cause the algorithm to stop
is a periodic orbit of combinatorics corresponding to the rational number defined by the finite
number of ais defined up to the moment where the algorithm stops.

The rotation number thus defined is a number in [0, 1[. It will also be convenient to think
of it as an element of S1 = R/Z.

4.2. Semi-conjugacy and conjugacy. We introduce in this paragraph a notion which
weakens slightly that of conjugacy.

Definition 7. Let T1 and T2 two circle homeomorphisms. A map ϕ : S1 −→ S1 is called
a (continuous) semi-conjugacy between T1 and T2 if

(1) any lift of ϕ to R is (not necessarily strictly) increasing and continuous;
(2) we have T1 ◦ ϕ = ϕ ◦ T2.

We will only consider continuous semi-conjugacies and conjugacies; we will therefore omit
the adjective in the sequel.
Note that semi-conjugacy does not definition an equivalence relation on circle homeomorphisms
for a lack of reflexivity. We therefore do not say that T1 and T2 are semi-conjugate but that
T1 is semi-conjugate to T2.
A instance of non-trivial semi-conjugacy is one between an irrational rotation and a blow-up
of it (see 2.3). One can check that the map (which can thought of as an inverse to the blow-
up) which maps every blown-up interval to the initial point of S1 that had been blown-up
initially is a semi-conjugacy between the blow-up and the initial rotation. In this case, the
semi-conjugacy is locally constant on the union of the interiors of the blown-up intervals; the
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only points at which it is strictly increasing is the Cantor set which is the complement of the
union of the interiors of the blown-up intervals.

The particular case of semi-conjugation to an irrational rotation. Assume that
T is (strictly) semi-conjugate to a rotation. We describe here more precisely the dynamics of
such a map T . There exists an irrational α and ϕ : S1 −→ S1 increasing such that

ϕ ◦ T = rα ◦ ϕ.
Because ϕ is a strict semi-conjugation there exists x ∈ S1 such that ϕ−1({x}) is a closed
connected interval, we denote by I its interior. α is irrational; this implies that the iterates of
x under rα are disjoint which in turns implies that the iterates of I under T for a collection
of disjoint intervals. In other words, I is a wandering interval. By definition, a wandering
interval I is a connected open interval such that its iterates under T are disjoint and which is
maximal for these properties.

Proposition 22. Let α ∈ [0, 1[ be an irrational number and T be a strictly semi-conjugate
to rα. Let C ⊂ S1 be the complement of all wandering intervals. The following hold

(1) C is T -invariant;
(2) C is a Cantor set;
(3) The ω-limit and α-limit of any point under T is equal to C.

Proof. Exercise. �

This Proposition tells us that a circle homeomorphism semi-conjugate to an irrational rotation
is obtained (up to actual conjugation) by blowing-ups orbits of the irrational rotation.

4.3. Poincaré’s Theorem. In this section we prove the following Theorem

Theorem 23 (Poincaré). There exists a function ρ : Homeo(S1) −→ S1 satisfying the
following properties:

(1) If ρ(T ) = 0 then T has a fixed point.
(2) If ρ(T ) = p

q
with p and q co-prime then T has a periodic of order q.

(3) If ρ(T ) = α, then T is semi-conjugate to the rotation of angle α.
(4) For any T ∈ Homeo(S1) and n ∈ Z, ρ(T n) = nρ(T ).

Proof. (1) and (2) are given by definition of the rotation number. We prove (3).

Consider any point x ∈ S1. By definition of the rotation number, the orbit of x under T
induces the cyclic ordering on Z than that induced by the rotation of angle α = ρ(T ) on the
orbit of 0 ∈ S1. A semi-conjugacy ϕ mapping x to 0 will have to satisfy

∀k ∈ Z, ϕ(T k(x)) = rkα(x) = {k × α}.
A map ϕ defined using the above formula comes close to defining a semi-conjugation:
• it respects the cyclic ordering i.e. it is increasing;
• its image is dense in S1.

Because ϕ is increasing, it extends to a continuous increasing map

ϕ : OT (x) −→ S1 = Orα(0)

satisfying ϕ ◦ T = rα ◦ ϕ on OT (x). Now, it might happen that OT (x) is not the entire circle.
It is typically the case when one takes x in the invariant Cantor set of a blow-up example.
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What we actually expect is that OT (x) only misses most of the wandering intervals (except
maybe countably many points within one, if x had been chosen to belong to one). S1 \OT (x)
is a union of disjoint open connected intervals. Consider I such an interval. The only way
we can extend ϕ to an increasing map to I is if ϕ takes the same value on both ends of the
intervals. It is indeed the case as ϕ is increasing and has dense image: if the images at the
ends of I were different, the image of ϕ would miss the entire interval between these two
values. ϕ thus extends to each interval of S1 \ OT (x) by making it constant equal to its value
on the boundary of I.

�

5. The more classical definition of the rotation number

In the literature one will often find a different definition of the rotation number than that
that was first given in these notes. This other definition, that we give in this paragraph, is
somewhat more compact, does not require the introduction of the continued fraction algorithm
or any form of combinatorial analysis of the orbital structure of circle homeomorphism. One
the other hand, one could argue that it is more cryptic, and does not give any hint at why
the produced number should be a complete combinatorial invariant. It will nonetheless prove
to be quite useful to give quick proof of certain statements later on.

Consider T a circle homeomorphism and let T̃ : R −→ R be any lift of T .

Definition 8. The rotation number of T is by definition the following limit

lim
n→+∞

T̃ n(x)

n
mod 1

for any x ∈ R.

This definition hides the following two non-trivial statements:
• the limit in the definition exists;
• it does not depend of the choice of a point x.

The notion of rotation thus defined agrees with that of paragraph 4. As a historical note, it
was this definition of the rotation number that was initially given by Poincaré.

Exercise 11. Prove that the notions of rotation number defined here and in Section 4
are actually the same.

6. Consequences for flows on the torus

Recall that we had proven that a flow ~X on the torus T2 without critical points satisfies
the following dichotomy

• either it has a periodic orbit and in which case the ω/α-limit of any point is a periodic
orbit;
• or it can be realised as the suspension of a circle diffeomorphism.

We focus on the later case. The ω/α-limit of a point for ~X is exactly the union of the orbits of
the corresponding ω/α-limit on the circle. As a consequence of Theorem 23 and Proposition
22 we get the following

Theorem 24. Let ~X be a C1 vector field on T2 without critical point. The one of the
following, mutually exclusive, three statements holds true.
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(1) The ω/α-limit of any point is a periodic orbit.
(2) There exists a minimal set C, which is locally the product of a Cantor set with an

interval, which is the ω/α-limit of any point.
(3) ~X is minimal.

Exercises

Exercise 12. Prove Proposition 16.

Exercise 13. Prove Proposition 22.



CHAPTER 4

Parametrised families

An important question in the theory of dynamical systems is the following:

Question. LetM be a family of dynamical systems of the same type (say circle diffeo-
morphisms of class C26 for instance). By family we mean a topological spaceM (possibly with
extra structure: it can be a smooth finite dimensional manifold, maybe with a nice measure)
and a map

ψ :M−→ Diff26(S1).

M is the space of parameters. The question we ask is the following: what is the "typical"
dynamical behaviour of an element in M? Typical in this context can traditionally
mean two things:

• a property is typical if it holds true for a dense Gδ subset ofM;
• or a property is typical if it holds true for a full measure set of parameters inM.

Poincaré-Bendixson theorem is an answer to this meta-question in the case of flows on the
sphere. In that case, every single dynamical system of the considered class displays a simple
behaviour; every orbit is attracted to a periodic orbit or a closed cycle.

1. The function rotation number

Proposition 25. The map

ρ : Homeo(S1) −→ S1

which associates to a circle homeomorphism its rotation number is continuous.

To prove this Proposition, we need the following lemma:

Lemma 26. Let T be a circle homeomorphism and let T̃ be a lift of T . Assume that
T̃ n(0) ∈ [p, p+ 1]. Then the rotation number ρ(T ) belongs to the interval [ p

n
, p+1

n
] modulo 1.

This lemma says in substance that the convergence of the limit

lim
n→∞

T̃ n(0)

n
to the rotation number of T is uniform.

Proof. Assume that T̃ n(0) ∈ [p, p + 1]. Using the fact that T̃ is 1-periodic, we get by
induction that for all k ≥ 0

kp ≤ T̃ kn(0) ≤ k(p+ 1).

Dividing by kn and passing to the limit gives that ρ(T ) ∈ [ p
n
, p+1

n
].

�

25
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We can now move to the proof of Proposition 25

Proof of Proposition 25. Consider an open set U ∈ S1 and T0 in ρ−1(U). Because
U is open there exists n such that (ρ(T0)− 4

n
, ρ(T0) + 4

n
) ⊂ U . By applying Lemma 1 to T0

we get that T̃0
n
(0) belongs to the interval (ρ(T0)− 1

n
, ρ(T0) + 1

n
). Now the map

T 7−→ T̃ n(0)

n
being continuous, we get that there is an open set around T such that ρ(T ) ∈ [ρ(T0) −
2
n
, ρ(T0) + 2

n
] ⊂ (ρ(T0)− 4

n
, ρ(T0) + 4

n
) ⊂ U .

�

2. One-parameter families

Let T0 be an orientation-preserving circle homeomorphism.

Proposition 27. The map

ψ := t ∈ S1 7−→ ρ(rt ◦ T0) ∈ S1

is increasing and it is strictly increasing at any t such that ρ(rt ◦ T0) is irrational.

Proof. There are two points in this Proposition: proving the monotonicity of ψ and
proving the strict monotonicity at irrational points.

The monotonicity comes from the following fact. Let T0 be a circle homeomoprhism and
consider a small ε. Let Tε be x 7→ T0(x) + ε. If T̃0 is a lift of T0, then T̃ε = T̃0 + ε is a lift of
Tε. Now one easily shows by induction that for all n ∈ N we have

T̃ε
n
(0) ≥ T̃0

n
(0) + ε

which implies that ρ(Tε) ≥ ρ(T0).

The second point is more delicate. Assume T0 has irrational rotation number. We only need
to show that ρ(Tε) 6= ρ(T0) for any small ε > 0.
Consider n such that T qn0 (0) is at distance less than ε

2
and such that T qn0 (0) is approaching

zero "from below". Because we have T̃ε
qn

(0) ≥ T̃0
qn

(0) + ε, T qnε (0) is going to be place on the
other side of 0 compared to T qn0 (0). This implies that the cyclic order on the orbit of 0 under
T0 is different from that of Tε which in turns implies that their rotation numbers differ.

�

3. Morse-Smale diffeomorphisms

Definition 9 (Morse-Smale). A circle diffeomorphism T (of class at least C1) is called
Morse-Smale if the following hold

(1) it has finitely many periodic orbits;
(2) all its periodic orbits are either attracting or repelling i.e. for any x and k such that

T k(x) = x, (T k)′(x) 6= 1;
(3) for every point x ∈ S1 whose orbit is not periodic, ω(x) is an attracting periodic orbit

and α(x) is a repelling one.
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It turns out that the three conditions in the definition above are redundant; the second one
can be shown to imply the two others. We still insist on giving them, as it is the simple
dynamical behaviour that they imply altogether which is the motivation for the definition of
the concept of Morse-Smale diffeomorphism.

Theorem 28. The setMS ⊂ Diff1
+(S1) is open and dense.

Proof. Proof of the openness Consider a map T that is Morse-Smale. It has k
periodic orbits that are either attracting or repelling.

• There exists an open neighbourhood of T in Diff1
+(S1) for which those k attract-

ing/periodic orbit survive. This is an application of Exercise 14 to T q where q is the
order of a periodic orbit.
• The set

P := {T ∈ Diff1
+(S1) | ∃x ∈ S1 such that T (x) = x and T ′x) = 1}

is closed.
• The intersection of U with the complement of P in Diff1

+(S1) is an open neighbourhood
consisting of Morse-Smale circle diffeomorphisms.

Proof of the density Consider first a circle diffeomorphism T with rational rotation
number. We show that T can be approximated in the C1-topology by diffeomorphism with
finitely many periodic orbits.
Fix ε > 0. S1 can be partitioned into S1 = [x0, , x1] ∪ [x1, x2] ∪ · · · [xn, x0] such that for all k
xk is a periodic point and that we have

• either (xk, xk+1) does not contain any periodic point;
• or for all x ∈ (xk, xk+1), |T ′(xk)− T ′x)| < ε.

(We leave it to the reader as an exercise that such a partition can be constructed) To simplify
the discussion we assume that periodic orbits have order 1 i.e. are fixed points. Consider
an interval [xk, xk+1] which contains at least on fixed point y in its interior. Because of the
choice we have made, the derivative on [xk, xk+1] is very close to 1. We can therefore make a
small perturbation of T by adding a µ : [xk, xk+1] −→ R for instance such that

• ||µ′|| is very small;
• µ(xk) = µ(xk+1) = 0;
• µ′(xk) = µ′(xk+1 = 0;
• µ(y) = 0;
• y is the only fixed point of T + µ in (xk, xk+1).

See below the graph of such a perturbation.
By proceeding this way on each interval [xk, xk+1], we can find an arbitrarily small C1

perturbation of T which has only finitely many fixed points. Amongst those fixed points,
some might have derivative equal to 1. We leave it as an exercise to show that one can find a
small perturbation close to such a fixed point which makes the derivative at the fixed point
different from and creating at most one other fixed point whose multiplier is different from
1 as well. This proves that a circle diffeomorphism T with rotation number number equal
to 0 can be approximated by Morse-Smale circle diffeomorphisms in the C1-topology. The
same proof works for T with rational rotation number, by replacing fixed points with periodic
orbits.
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Figure 1. In green the graph of the original T and in red its perturbation
with only three fixed points.

By Proposition 27, T with irrational rotation number can be approximated by T with
rational rotation number (by considering the family (T + α)α∈S1 for instance) thus T can
be approximated by Morse-Smale circle diffeomorphisms. This concludes the proof of the
theorem.

�

Exercise 14. Consider f0 ∈ Diff1
+([0, 1]) such that there exists x0 ∈ (0, 1) such that

f(x0) = x0 and f ′(x0) 6= 1.
(1) Show that there exists a continuous function x : U ⊂ Diff1

+([0, 1]) −→ (0, 1) where U
is a neighbourhood of U such that

∀f ∈ U , f(x(f)) = x(f) and f ′(x(f)) 6= 1.

(2) Show that this map is unique.

Exercise 15. LetMSk the set of Morse-Smale diffeomorphisms with at most k periodic
orbits.

(1) Show thatMSk is non-empty if and only if k is even.
(2) Show that for any k,MSk is not dense.
(3) Show that for all k even, the closure ofMSk is contains ρ−1(S1 \Q).



CHAPTER 5

Ergodic theory and Denjoy theorem

In this chapter we discuss the ergodic theory of circle homeomorphisms. In a nutshell,
because circle homeomorphisms preserves the ordering of the circle, they enjoy very strong
equirepartition properties.
When working with a relatively regular circle diffeomorphism T , these ergodic-theoretic
considerations can be applied to the observable log DT to improve on the regularity of
semi-conjugation. Precisely, we get Denjoy’s theorem that asserts that a class C2 circle
diffeomorphism with irrational rotation number is actually topologically conjugate to the
associate rotation (instead of only semi-conjugate in the case of circle homeomorphisms).

1. Invariant measures

Proposition 29. The rotation of angle α is uniquely ergodic for any α irrational.

Proof. Rα is the rotation of angle α. Consider functions of the form

fk := x 7→ e2πikx.

Consider the Birkhoff sums of fk for an arbitrary point x0

Sn(fk)(x0) =
n−1∑
j=0

e2πik(x0+jα) = e2πikx0

n−1∑
j=0

(e2πikα)j = e2πikx0 · (e2πikα)n − e2πikα

e2πikα − 1
.

In particular for any n

|Sn(fk)(x0)| ≤ 2

|e2πikα − 1|
and consequently for any x0 ∈ S1 and any

lim
n→+∞

Sn(fk)(x0)

n
= 0 =

∫
S1

fkdLeb.

The vector space spanned by the (fk)k≥1 is dense (with respect to the topology of the uniform
convergence) in the subspace of continuous functions which are of mean zero with respect to
the Lebesgue measure. We thus get that for any f ∈ C0(S1,R) such that

∫
S1 fdLeb = 0 and

for any x0 ∈ S1

lim
n→+∞

Sn(f)(x0)

n
= 0 =

∫
S1

fkdLeb.

This implies that Rα is uniquely ergodic and its unique invariant measure is the Lebesgue
measure.

�

29
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Proposition 30. Let T be a circle homeomorphism with irrational rotation number
α. Then it is uniquely ergodic and its unique invariant measure µ supported by its unique
invariant minimal Cantor set. Moreover, the image of µ by the semi-conjugacy to Rα is the
Lebesgue measure.

Proof. We know that T is semi-conjugate to Rα via an increasing map ϕ. Let ϕ̃ : R −→ R
be a lift of ϕ.

• ϕ̃ is continuous and increasing.
• For all x ∈ R, ϕ̃(x+ 1) = ϕ̃(x) + 1.

For any continuous increasing function, there exists a unique atom-free measure µ such that
for all x0 and x in R

ϕ(x) = ϕ(x0) +

∫ x

x0

dµ.

Because for all x ∈ R, ϕ̃(x+ 1) = ϕ̃(x) + 1, µ([x, x+ 1]) = 1 for any x.
We claim that µ is invariant under T . This is a consequence of the following facts:

• by definition, ϕ∗µ = Leb;
• the Lebesgue measure is invariant by Rα.

Let A be any measurable subset of S1. By definition,

µ(T (A)) = Leb(ϕ(T (A))) = Leb(Rα(ϕ(A)) = Leb(ϕ(A)) = µ(A)

which proves that µ is invariant.
Remains to prove uniqueness. Let µ′ be a T -invariant probability measure. Because ϕ ◦ T =
Rα ◦ϕ, ϕ∗µ′ is Rα-invariant and by unique ergodicity of Rα is equal to the Lebesgue measure.
For any measurable set A,

µ′(A) = Leb(ϕ(A)) = µ(A) which implies that µ′ = µ; this proves uniqueness of the
invariant measure.

�

2. The cohomological equation for rotations

2.1. Ergodic averages. We begin with a general discussion on the ergodic theory of
dynamical systems. The Ergodic Theorem states that temporal averages of observables
converge to spatial averages for extremal invariant measures. It can be rephrased the following
way

Theorem 31 (Ergodic Theorem). Let µ be a T -invariant ergodic measure. For µ-almost
every x the following holds. For any observable f ∈ C0(X,R), we have

lim
n→+∞

1

n
Sn(f)(x) = lim

n→+∞

1

n

n−1∑
0

f ◦ T k(x) =

∫
X

fdµ

or in other words

Sn(f)(x)− n ·
∫
X

fdµ = o(n).
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This can be summed up the following way:for an ergodic measure spatial averages are equal
to temporal averages. One might wonder whether it is possible to get estimates on the rate of
convergence in this Theorem i.e. try and find estimates of the o(n) featuring in the second
formulation of the Theorem. The smaller it is, the "more ergodic" the transformation is. Of
course, we are looking for estimates which are somewhat independent of the choice of the
observable f . 1

Definition 10. Let T : X −→ X be a continuous transformation of a compact topological
space. An observable is called a continuous coboundary if there exists a continuous observable
ϕ such that

f = ϕ ◦ T − ϕ.

Continuous coboundaries are a remarkable class of observables because their Birkhoff sums
Sn(f)(x) are uniformly bounded (independently of the point x). Indeed for any x ∈ X (and
NOT almost every with respect to a given measure)

Sn(f)(x) =
n−1∑
i=0

f ◦ T i(x) =
n−1∑
i=0

ϕ ◦ T i+1(x)− ϕ ◦ T i(x) = ϕ ◦ T n(x)− ϕ(x)

and thus |Sn(f)(x)| ≤ 2||ϕ||0.
This shows that being a coboundary has strong implications: not only does it forces to have
mean zero with respect to any invariant measure; it also implies that Birkhoff sums are
uniformly bounded. A priori, there is no reason why a given continuous function of zero
average should be a coboundary.

2.2. The cohomological equation for rotations. In this paragraph we consider the
following problem. Let f : S1 −→ R be a smooth observable. What are the conditions on
f for it to be a coboundary for the rotation of angle α? We will see that an answer to this
question can be given using Fourier analysis.
This is going to the first time where we are going to have to make an assumption of arithmetic
nature on the angle α.

We consider f ∈ Cr(S1,R) and we look for a continuous ϕ such that

f = ϕ ◦Rα − ϕ.
Assume such an observable ϕ exists and write f =

∑
ane

i2πnx and ϕ =
∑
bne

i2πnx their
Fourier series. We have

ϕ ◦Rα =
∑

(bne
i2πnα) · ei2πnx

and we thus get that were such an observable ϕ to exist, its Fourier coefficients should satisfy

∀n ∈ Z, bn · (ei2πnα − 1) = an.

First thing we notice (but we alredy knew it) is that it forces
∫
S1 fdLeb = a0 = 0.

1"Observable" is another way to call a function X −→ R in the context of ergodic theory. It underlines
the fact that we think of this function as a "test" function for which we compute temporal averages.
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Theorem 32. Assume that α satisfies the following arithmetic assumption: there exists
C > 0 such that for any rational p

q
, |α − p

q
| ≥ C

q3
. Then for any observable f ∈ C∞(S1,R)

there exists a unique ϕ ∈ C∞(S1,R) such that

f =

∫
S1

fdLeb + ϕ ◦Rα − ϕ.

Before proving this theorem, we make two important comments.
(1) The hypothesis on α is generic, meaning that it is satisfied for a subset of full measure

of α ∈ [0, 1). This hypothesis is one about rational approximations of α and says in
substance that α is not too well approximated by rational numbers.

(2) The fact that the observable f has been chosen of class C∞ is important, however
there exists versions of this theorem in lower/higher regularity. We will not prove
that here, but the lowest regularity for which versions of this theorem can hold is Cr
for any r > 1.

To prove this Theorem we are going to need the following Lemma:

Lemma 33. Let f : R −→ R a 1-periodic continuous function and let (an)n∈Z its Fourier
coefficients. f is of class C∞ if and only if |an| = o( 1

nk
) for all k ∈ N∗.

Conversely, if (an)n∈Z is a sequence of real number such that |an| = o( 1
nk

) for all k ∈ N∗ then
the series ∑

ane
i2πnx

is absolutely convergent and defines a C∞, 1-periodic function.

Proof. Exercise.
�

Proof of Theorem 32. Let f(x) =
∑

n∈Z ane
i2πnx be the Fourier expansion of f .

We are going to show that the formal solution to the cohomological equation ϕ(x) =∑
n∈Z∗

an
ei2πnα−1

ei2πnx actually defines a C∞ function. C∞, 1-periodic function are charac-
terised by the fact decay of its Fourier coefficients (see Lemma 33). We therefore try to give
an estimate of ei2πnα − 1.

|ei2πnα − 1|2 = | cos(2πnα)− 1|2 + | sin(2πnα)|2 ≥ | cos(2πnα)− 1|2

In a neighbourhood of 0, we have | cos(2πx)−1| ≥ 2π
3
|x|2. In particular there exists a constant

δ > 0 such that

|ei2πnα − 1| ≥ min
{√2π

3
d(nα,Z), δ

}
.

By assumption, we have

d(nα,Z) ≥ C

n2
.

We consider the sequence bn = an
ei2πnα−1

. Because of the above estimate for n large enough we
have

|bn| ≤
1

C
· n2|an|.
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By assumption, f is C∞ and thus by Lemma 33, we have that |an| = o( 1
nk

) for all k ∈ N. This
in turn implies that

|bn| = o(
1

nk
)

for all k ∈ N. The formal Fourier series
∑

n∈Z ane
i2πnx thus defines a C∞ observable ϕ such

that

ϕ ◦Rα − ϕ = f.

This completes the proof of Theorem 32.
�

This Theorem has an interesting consequence: any smooth observable of mean zero over a
rotation of angle satisfying the arithmetic condition of Theorem 32 has its Birkhoff sums
uniformly bounded.

2.3. On the arithmetic condition arising in Theorem 32. It is natural (and im-
portant) to wonder how restrictive is the assumption that for any rational p

q
, |α − p

q
| ≥ C

q3

(main assumption in Theorem 32. We indicate the following Theorem whose proof is beyond
the scope of these notes (although it is not too difficult).

Theorem 34. The set

{
α ∈ R | ∃C > 0 such that ∀p

q
∈ Q, |α− p

q
| ≥ C

q3

}
has full Lebesgue measure.

3. The Denjoy-Koksma inequality

3.1. Bounded variation functions. We introduce a class of functions that is going to
be of importance in the analysis of circle diffeomorphisms.

Definition 11. A function f ∈ C0(S1,R) is said to have bounded variation if there
exists a constant K > 0 such that for any ordered partition of S1, x0 ≤ x1 ≤ · · · ≤ xn ≤
xn+1 = x0 we have that

n∑
i=0

|f(xi+1)− f(xi)| < K.

The variation of f , which we denote by Var(f) is defined to be the supremum over all
partitions of the sum

∑n
i=0 |f(xi+1)− f(xi)|.

One can check that differentiable functions and Lipschitz functions have bounded variation
(see Exercises). Another important property is that the property of having bounded variation
is invariant under pre-composition by homeomorphisms of S1.
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3.2. Denjoy-Koksma inequality. In Section 2 we showed that for special rotations
(whose angles are badly approximable by rational numbers) a smooth function of mean zero
is a coboundary which in particular implies that their Birkhoff sums are bounded. In this
paragraph, we show a weaker result (boundedness at special time) but which is valid for

• ANY irrational rotation number;
• ANY circle homeomorphism with irrational number;
• for a class of observables which is much less regular than smooth (bounded variation).

Theorem 35 (Denjoy-Koksma inequality). Let T be a circle homeomorphism of irrational
rotation number α and let f : S1 −→ R an observable with bounded variation function. Let
(qn)n∈N∗ be the sequence of special times associated with α. Then the following holds:

∀n ≥ 1, ∀x ∈ S1, |
qn∑
k=1

f(T k(x))− q
∫
S1

fdµ| ≤ Var(f)

where µ is unique T -invariant probability measure on S1.

To prove this Theorem we are going to need the following Lemma

Lemma 36. Let α be an irrational number, Rα the rotation of angle α and p
q
an irrational

approximation of α (i.e. |α− p
q
| ≤ 1

q2
). Denote by Ik the interval [ k

qn
, k+1

q
]. Then for any k,

there is a unique 1 ≤ j ≤ q such that Rj(0) ∈ Ik.

Proof. Exercise.
�

Proof of the Denjoy-Koksma Inequality. Let µ the invariant measure by T . The
map

ϕ : y 7→
∫ y

x

dµ

defines a semi-conjugacy from T to Rα which maps x to 0 (see proof of Proposition 30). We
therefore have

ϕ ◦ T = Rα ◦ T.
Consider any sequence (yk)0≤k≤q−1 such that ϕ(yk) = {k

q
} and let Jk be the interval [yk, yk+1].

We have the following two properties.
(1) For all k, µ(Jk) = 1

q
.

(2) For any k, there is a unique 1 ≤ jk ≤ q such that T j(x) ∈ Jk. This is an application
of Lemma 36 to ϕ(x) = 0 and the fact that ϕ is order-preserving.

For any k, there exists xk ∈ Jk such that f(xk) =
∫
Jk
fdµ (because f is continuous). This

way we get

n∑
j=1

f(T j((x)− q
∫
S1

fdµ = q

q∑
k=1

1

q
(f(T jk(x))− f(xk)

and thus
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|
n∑
j=1

f(T j((x)− q
∫
S1

fdµ| ≤ |
q∑

k=1

Var(f|Jk)| ≤ Var(f).

�

4. Denjoy theorem

In this Section we prove that a C2 circle diffeomorphism of irrational rotation number is
always conjugate to the associated rotation.

4.1. The logarithm of the derivative. Many proof in smooth one-dimensional dy-
namics involve the logarithm of the derivative. The main reason for that is that the logarithm
of the derivative of T n can be written as a Birkhoff sum of the logarithm of the derivative of
T . Precisely

Lemma 37. Let T : S1 −→ S1 be a circle diffeomorphism. For any n ∈ N and x ∈ S1 we
have the following equality

log D(T n)(x) =
n−1∑
i=0

(log DT (T i(x))

Proof. Exercise.
�

We give an immediate application of Lemma 37.

Proposition 38. Let T be a circle diffeomorphism whose derivative is continuous. Assume
the rotation number of T is irrational. Denote by µ the unique invariant measure of T . Then∫

S1

log DTdµ = 0.

Proof. Assume by contradiction that
∫
S1 log DTdµ 6= 0. Up to considering T−1) we

can assume that
∫
S1 log DTdµ = a > 0. The ergodic theorem implies that the sequence of

functions

n−1∑
i=0

(log DT (T i(x))

converges uniformly to the constant function a. In particular there exists n0 such that for all
n ≥ n0,

∑n−1
i=0 (log DT (T i(x)) > 0. By Lemma 37, this implies that for all x ∈ S1

D(T n)(x) > 1.

But T n is a diffeomorphism so Leb(S1) = Leb(T n(S1)) =
∫
S1 D(T n)(x)dx = 1 which contra-

dicts D(T n)(x) > 1 for all x ∈ S1.
�
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4.2. Absence of wandering intervals in C2-regularity. In this paragraph we prove
the following celebrated theorem due to Denjoy.

Theorem 39. Let T be a C2 circle diffeomorphism with irrational rotation number α.
Then

(1) T has no wandering intervals.
(2) Equivalently, T is conjugate to Rα.

We have now developed all the tools to make an efficient proof of this theorem: the Denjoy-
Koksma inequality (Theorem 35) and the chain rule for the logarithm of the derivative (Lemma
37).

Proof. The idea that we follow is the following: because the derivative is sufficiently
regular, at special times qns the logarithm of D(T qn is uniformly bounded and in turns it
implies that D(T qn is bounded from below away from 0. But it there were a wandering interval,
the derivative at a point of the wandering interval should tend to zero to allow the lengths of
the images of the wandering interval to tend to zero. We make this rigorous hereafter.

Assume by contradiction that an interval I is a wandering interval. Because all the T n(I) of
I are disjoint we must have ∑

n∈N

Leb(T n(I)) ≤ Leb(S1) = 1.

T is of class C2 which implies that DT and thus log DT are of class C1 and in particular hae
bounded variation. Applying the Denjoy-Koksma inequality to log DT , which we know by
Proposition 38 to have mean zero with respect to the unique invariant measure of T we get
that for all n ≥ 1 and for all x ∈ S1

|
qn∑
i=1

(log DT (T i(x))| ≤ V = Var(log DT ).

By Lemma 37, this implies that for all x ∈ S1 we have

e−V ≤ D(T qn)(x) ≤ eV .

Because

Leb(T qn(I)) =

∫
I

D(T qn)(x)dx

we obtain that for all n ≥ 1, Leb(T qn(I)) ≥ e−V Leb(I). There are infinitely many such qn,
this thus contradicts the fact that ∑

n∈N

Leb(T n(I))

is finite. This terminates the proof of Theorem 39.
�



5. DENJOY COUNTEREXAMPLES 37

5. Denjoy counterexamples

We close this chapter with a construction showing that Theorem 39 is essentially optimal.

Theorem 40. For any irrational α, there exists a C1-circle diffeomorphism of rotation
number α which has a wandering interval.

The construction of such "Denjoy counter-examples" is achieved by going through the blow-up
construction (paragraph 2.3) with a little extra care. We recall the notation we used

• I0 is a wandering interval;
• for all n ∈ Z, In = T n(I0);
• C = S1 \

⋃
n In.

The construction we carried out then was purely topological. We can attempt at making it
more smooth, this requires

(1) deciding of lengths (ln) for the intervals (In) such that
∑

n∈Z ln <∞;
(2) a specification of the map T on each of the branches T : In → In+1.

Once such a specification is given, the resulting map is C1 on the whole of S1 if and only if
for any x ∈ C, the limit

lim
y→x

T ′(y)

exists and defines a continuous function on S1. This is by virtue of the following fact

Proposition 41. Let f : (a, b) −→ R a continuous function which is differentiable on a
dense subset A. Assume that f ′ : A −→ R extends to a continuous function g on the whole of
(a, b). Then f is of class C1 and for all x ∈ (a, b), f ′(x) = g(x).

Proof. Exercise. �

We therefore need to find a slick way of achieving this. The idea is that we started from a
map whose derivative was one everywhere and since blown-up intervals accumulate to the
Cantor set that is the remnant of the initial C1-structure of the circle, we should try to get
the derivative of the branches T : In −→ In+1 tend to 1 as |n| → +∞.
This will be impossible to achieve for an arbitrary choice of the lengths (ln). For instance, the
choice ln = 1

S|n|
will force T ′(xn) = 2 or 1

2
for at least one xn ∈ In. We make the better choice

ln =
1

n2
.

We have the following

Proposition 42. Let In = [an, bn] and assume that |In| = ln = 1
n2 for all n ∈ Z∗. Then

there exists a C1 diffeomorphism Tn : In −→ In+1 such that
(1) T ′(an) = T ′(bn) = 1;
(2) ||T ′ − 1||0 −→ 0.

Proof. For any l > 0, consider a tent function of magnitude a
gal := [0, l] −→ R

x 7−→ 1− a(1− 2
l
|x− l

2
|)

We define T al to be x 7→
∫ x

0
gal (t)dt. The map T al is such that

• T al is strictly increasing if a < 1;
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• (T al )′(0) = (T al )′(l) = 1;
• T al ([0, l]) = l − a l

2
.

If we take ln = 1
n2 and an = 2(1 − n2

(n+1)2
) we obtain that T maps an interval of length 1

n2

to an interval of length 1
(n+1)2

. Furthermore, an tends to 0 when |n| tends to ∞, thus T anln
satisfies the conclusions of the Proposition.

�

One can now use the diffeomorphisms Tn : In −→ In+1 of Proposition 42 when doing the
blow-up construction to obtain a C1 circle diffeomorphism of S1 with a wandering interval.
This completes the proof of Theorem 40.

6. Exercises

Exercise 16. Show that fk := x 7→ e2πikx is always a coboundary for Rα, α irrational,
irrespective of α’s arithmetic properties.

Exercise 17. (1) Assume that f : S1 −→ R is a µ-Lipschitz function. Show that f
has bounded variation and that Var(f) ≤ µ.

(2) Assume furthermore that f is of class C1. Show that in this case Var(f) =
∫
S1 |f ′|dLeb.

Exercise 18. Assume that α is an irrational number of bounded type (i.e. there exists
K1 such that for all n ∈ N∗, an ≤ K1). Show that for any bounded variation observable f of
mean zero, there exists K2 > 0 such that for all k ∈ N∗

|
k−1∑
i=0

f(Ri
α(x))| ≤ K2 · log n.



CHAPTER 6

The local rigidity theorem and KAM theory

In this chapter we discuss a proof of the celebrated local rigidity theorem of Arnol’d. We
discuss briefly the context of this result. It is known, by Denjoy’s theorem, that a C2 circle
diffeomorphism of irrational rotation number is topologically conjugate to the associated
rotation. The question we are concerned with here is the following

Question 43. Could it be that this conjugacy is more regular?

This question is considerably more difficult than that of the topological conjugacy as it is
essentially a question of analysis. Because we expect this problem to be difficult in general,
we are going to consider a simplified version of it, hoping that it will allow us to isolate the
difficulty without being bothered by too much technical complication. We are going to try
and solve the following question

Question 44. Let Rα be the rotation of irrational angle α. Consider a map of the form
T : x 7→ x+ α + η(x) where η is a very small analytic 1-periodic function such that T also
has rotation number α. Is it true the map conjugating T to Rα is also analytic?

The main reason why we make this particular simplification is because we want to study a
linearised problem and use some form of implicit function theorem.

1. The linearised problem

1.1. Analytic maps. We first define the class of maps we are going to be working with.
This choice my seem somewhat arbitrary, but it should become apparent later on that it
minimises technical issues.

Definition 12. A C∞-map f : (a, b) −→ R is analytic if at every point x ∈ (a, b) there is
a neighbourhood Ux of x in (a, b) such that

(1) its Taylor expansion at x has a positive radius of convergence and is defined on Ux;
(2) f is equal to its Taylor expansion on Ux.

Now, we say that a circle diffeomorphism T is analytic if and only if any of its lift to
R is analytic. Consider a lift T̃ of T , it is an increasing map R −→ R which satisfies
T̃ (x+ 1) = T̃ (x) + 1. By definition, T̃ extends to a holomorphic function that is defined on a
strip

Sδ =
{
z ∈ C | Im(z) < δ

}
.

We will make use of this fact later on in the discussion.
39
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1.2. The linearised equation. For the remainder of the chapter, T is an analytic
diffeomorphism close to Rα a lift of which we write

T̃ := x 7→ x+ α + η(x)

where η is a 1-periodic analytic function. Our ultimate goal is to show that T is conjugate to
Rα via an analytic map close to the identity. We can therefore try an write the equation that
such an analytic map ϕ should satisfy. We write ϕ = Id + h where h is to be thought of as a
small analytic 1-periodic function. ϕ,Rα and T must satisfy

ϕ ◦ Rα = T ◦ ϕ.
Writing ϕ(x) = x+ h(x) and T (x) = x+ α + η(x) for all x ∈ R we get

ϕ(x+ α) = ϕ(x) + α + η(ϕ(x))

x+ α + h(x+ α) = x+ h(x) + α + η(x+ h(x))

and then

h(x+ α)− h(x) = η(x+ h(x)).

The map x 7→ η(x+h(x)) can be approximated at first order by x 7→ η(x). Thus, the equation
ϕ ◦ Rα = T ◦ ϕ can be linearly approximated by the linear equation

h ◦Rα − h = η.

This is nothing but the cohomological equation that we have already partially studied in 2.

Remark 45. At a very heuristic level, what we are trying to do is to invert the map

ϕ 7−→ ϕ ◦ Rα ◦ ϕ−1

in a neighbourhood of Id in the Fréchet manifold Diffω+(S1) where the map

h 7−→ h ◦Rα − h
from the space of 1-periodic analytic functions (which is the tangent space at Id of Diffω+(S1))
is its derivative. If we manage to put ourselves in a context where we can apply a local
inversion theorem (or implicit function theorem), we should be able to solve our problem.

2. Inverse function theorem

Motivated by the discussion of the preceding section, we state and prove a somewhat
general version of the inverse function theorem and try to see if it (or elements of its proof)
apply to our context.

Theorem 46 (Inverse function). Let E and F be two Banach spaces and let f : E −→ F
be a continuously differentiable function such that at a certain point x ∈ E , the differential of
f

Dx(f) : E −→ F
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is a continuous linear isomorphism whose inverse is also continuous. Then there exists a
neighbourhood U of x and a neighbourhood V of y = f(x) such that f(U) = V and f is a
bijection restricted to U .

If we wanted to apply this theorem to the map ϕ 7−→ ϕ ◦ Rα ◦ ϕ−1 in some reasonable
space, as suggested in the previous section, we shall fail for the following two reasons.

• Either we decide to work in a Banach space of circle diffeomorphisms of class Cr for
a certain r large enough. In that case, the "differential" of our map h 7−→ h ◦Rα− h
cannot really be inverted. Indeed, in the process of solving the cohomological equation
there is a loss of regularity (a solution h is twice fewer differentiable than the datum
η).
• Or we decide to work in a space of C∞ or analytic circle diffeomorphism, then we lose
the local structure of Banach space. The differential h 7−→ h◦Rα−h can be inverted
but the C∞ or analytic topology is defined by a family of semi-norms which endows
it with the structure of a Fréchet space which is weaker than a Banach structure.

Nonetheless, in the latter setting we are dealing with a very particular case and the differential
is completely explicit, so we might hope that the proof of Theorem 46 adapts. Let us go
through this proof.

Proof of the Inverse Function Theorem. The proof starts with reducing the prob-
lem to a formally simpler setting. Up to pre and post-composing f by two translations, and
post-composing by

(
Dx(f)

)−1, we can assume that
• E = F ;
• x = f(x) = 0;
• D0(f) = Id.

The map f − Id is continuously differentiable and its derivative vanishes at 0. Hence there
exists r > 0 such that for any x ∈ B(0, r),
||D(f − Id)(x)|| ≤ 1

2
. Which means that on B(0, r), f − Id is 1

2
-Lipschitz. In particular

(f − Id)(B(0, r) ⊂ B(0,
r

2
).

Now for any y ∈ B(0, r
2
) we consider the following map

ϕy := x 7→ f(x)− x+ y.

Notice that f(x) = y if and only ϕy(x) = x. By the triangle inequality, we have

ϕy(B(0, r) ⊂ B(0, r)

. Moreover, ϕy is 1
2
-Lipschitz. By the contraction mapping theorem, ϕy has a unique fixed

point in B(0, r) and thus there exists a unique x ∈ B(0, r) such that f(x) = y.
We have obtained the existence of a pre-image via f for any point in a neighbourhood of
0. The rest of the proof is just checking that the local inverse to f thus defined enjoys all
the nice properties that one would expect. We do not carry out this discussion as we have
explained the bit we need for our problem.

�
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3. The cohomological equation II

We have seen that the differential of the map

ϕ 7−→ ϕ ◦Rα ◦ ϕ−1

is more or less given by

h 7−→ h ◦Rα ◦ h−1.

This is not completely rigorous; the correct statement is that h ◦Rα ◦h−1 = η is the linearised
version of the equation ϕ ◦Rα = T ◦ϕ. The inverse function theorem discussed in last section
(Theorem 46)

(1) requires the structure of a Banach space which we do not have on Diffω(S1);
(2) requires that the differential of the function that we are trying to invert be a continuous

(equivalently) bounded operator.
The first thing that we suggest we do is to try and improve the Fréchet structure on Diffω(S1)
and hope that the cohomological equation can be solved within this space, and that the
operator which associate to an observable the associated solution to the cohomological equation
be continuous. A natural thing to do is consider the space

Eδ := {1− periodic η analytic on Sδ | ∃CT > 0 |η(x)| ≤ CT for x ∈ Sδ}.
For any η ∈ Eδ, T = Id+η passes to the quotient S1 = R/Z to an analytic circle diffeomorphism
provided η is small enough. Note the following things

• Not every (lift of an) analytic circle diffeomorphism can be extended to the whole
strip Sδ. δ is somehow a measure of how analytic T is. The bigger the δ the more
"analytic" the circle diffeomorphism.
• Eδ can be endowed with the structure of a Banach space by simply considering the
norm

||η||δ = sup
x∈Sδ
|η(x)|.

We now do the analysis of the cohomological equation for observables η ∈ Eδ.

Theorem 47. Let α be an irrational number such that there exists K > 0 such that for
any irrational number p

q
∈ Q, we have |α− p

q
| ≥ K

q3
. Let η be an element of Eδ. Then

(1) there exists an analytic h such that

h ◦Rα − h = η;

(2) for any µ > 0, h belongs to Eδ−µ;
(3) there exists a constant C > 0 such that for any µ > 0,

||h||δ−µ ≤
C

µ3
||η||δ.

In order to prove this theorem we will need the following lemma.
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Lemma 48. (1) Let η ∈ Eδ and consider its Fourier development

η(x) =
∑
n∈Z

ane
inx.

Its Fourier coefficients satisfy

|an| ≤ ||η||δe−|n|2πδ.
(2) Conversely, for any sequence(an)n∈Z satisfying |an| ≤ Ce−|n|2πδ the series∑

n∈Z

ane
inx

defines an element of Eδ whose norm is less than C.

Proof. We make use of the fact that

an =

∫ 2π

0

e−n2xπiη(e2πix)dx =

∫ 2π

0

z−nη(z)dz.

Integrating z−nη(z)dz along the rectangle defined by vertices 0, 2π, 2π + iε, i+ ε, we obtain

an = −
∫ 2π+iε

iε

z−nη(z)dz = −
∫ 2π+iε

iε

e−nε2πe−n2xπiη(e2πix)dx

from which we get

|an| ≤ ||η||δe−2π|n|ε

and that for any ε < δ which gives the result. The converse is obtained by similar calculations
to establish the convergence of the formal series

∑
ane

2πin.
�

Proof of Theorem 47. We have seen in Section 2 that if η =
∑
ane

2πin the Fourier
coefficients of h are bn = an

e2πinα−1
. Thus

|bn| ≤ |an|
1

|e2πinα − 1|
.

|e2πinα − 1| ≥ | sin(2πinα)| and when {2πinα} is sufficiently small (say less than 1
2
) we have

|e2πinα − 1| ≥ | sin(2πnα)| ≥ 1

2
{2πnα}.

But for all n ∈ N, |{nα}| ≥ K
n2 which yields for z = e2πi(x+iy) for small y

|h(z)| ≤
∑
n∈Z

|an|n2

2πK
|z|n.

By Lemma 48, we have |an| ≤ ||η||δe−|n|2πδ. Assume |y| ≤ ε < δ we get |z|n ≤ e2π|ny| and thus

|h(z)| ≤
∑
n∈Z

1

2πK
||η||δe−|n|2π(δ−ε)n2e−|n|2πε
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|h(z)| ≤ 1

2πK
||η||δ

∑
n∈Z

e−|n|2π(δ−ε)n2.

Set Γ =
∫ +∞

0
x2e−xdx. We have

∫ +∞
0

t2e−2π(δ−ε)tdt = 1
8π3(δ−ε)3

∫ +∞
0

x2e−xdx. Ultimately this
yields

|h(z)| ≤ ||η||δΓ
16π4(δ − ε)3

.

If we write ε = δ − µ and C = Γ
16π4 we get the expect result.

�

Unfortunately we notice that Theorem 47 predicts a loss of regularity when solving the
cohomological equation. This loss of regularity is responsible for the impossibility of applying
the Inverse Function Theorem at our problem, as to invert the differential of the map defining
the conjugacy equation (which is equivalent to solving the cohomological equation), one has
to place oneself in a bigger Banach space.

4. Newton’s method

In this paragraph we recall Newton’s method for finding roots of an equation. This
algorithm will be the base idea behind an iterative scheme to solve the local conjugacy
problem for circle diffeomorphisms.

We consider a C2 map F : R −→ R and assume that it vanishes at a point z, but that we do
not know the exact value of z. We explain here Newton’s method which is a way to construct
approximations of z converging extremely fast to z.
The idea is to start from any point x0 ∈ R (not too far from z) and replace F by its
linear approximation at x0. One constructs this way x1 to be the point at which this linear
approximation vanishes. x2 is built in a similar fashion by replacing F at x1 by its linear
approximation. Iterating the process one constructs a sequence (xn) which is going to converge
to z. We make this formal.

4.1. Formal definition of the approximating sequence. Following what is suggested
in the above paragraph, we recursively define given any x0 the sequence (xn) by

xn+1 = xn −
F (xn)

F ′(xn)
.

For this to work, we must place ourselves in a neighbourhood of z on which F ′ does not
vanish.

4.2. Proof of the convergence. At any point y, the linear approximation of F is the
map

Ly := x 7→ F (y) + (x− y)F ′(y).

Applying Taylor’s theorem, we get that for any y

Ly(z)− F (z) =
1

2
F ′′(u)(z − y)2
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for a certain u ∈ [z, y]. Set εn = |z − xn|. Applying the formula above we get the existence of
un ∈ [z, xn] such that

F (xn)− (z − xn)F ′(xn) =
1

2
F ′′(un)(z − xn)2

One can divide this equality by F ′(xn) and use the fact that xn+1 = xn − F (xn)
F ′(xn)

to find

(xn+1 − z) =
F ′′(un)

2F ′(xn)
(z − xn)2

from which we derive

εn+1 ≤
||F ′′||
2||F ′||

ε2n.

If we start with an x0 such that (x0 − z)2 is sufficiently small compared to ||F
′′||

2||F ′|| , we get the
existence of a constant C such that εn ≤ Cε2

n

0 hence the super-exponential convergence of the
sequence xn to z.

5. Arnold’s theorem

In this last Section, we prove the following theorem

Theorem 49 (Arnol’d, 1961). Let α be a real number such that there exists K > 0f such
that for any rational p

q
, |α− p

q
| ≥ K

q3
. Then there exists ε(α, δ) > 0 such that for any η ∈ Eδ, if

• ||η||δ ≤ ε(α, δ);
• the rotation number of T = Rα + η is α;

then the map conjugating T to Rα is analytic.

We explain the strategy, that builds on Newton’s method, that we implement to prove
Theorem 49.

Step 1: Linearisation We have seen in paragraph 1.2 that the equation ϕ ◦Rα = T ◦ ϕ is
equivalent to

h ◦Rα − h = η ◦ ϕ
if we write T = Rα + η and ϕ = Id + h. Because ϕ is assumed to be close to the identity, this
equation can be linearised to

h ◦Rα − h = η.

Step 2: Solving the linear equation In paragraph 2.2 we have solved the linearised
equation. We have noticed that in the process of solving this equation there is a loss of
regularity. Namely, if the input η is analytic and defined on a strip of a certain size about the
real axis, its solution h is still analytic but defined on a strip marginally thinner. This can
refined to a parametrised control of the || · ||δ−ε-norm of h in function of the || · ||δ-norm of η.
This is given by Theorem 47.

Step 3: Error term in the linearised solution We can use the linearised solution to
defined a conjugating map ϕ1 = Id + h. Newton’s method suggest that
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ϕ1 ◦ T ◦ ϕ−1
1

will miss Rα by a quantity whose norm is of the order of ||η||2δ . In the process there is a loss
of regularity, and the smaller the loss we consider (i.e. the smaller the ε is the measurement
of the || · ||δ−ε of the norm of the solution h) the bigger the constant in front of the ||η||2δ error
term. This constant is made illicit.

Step 4: Fast convergence in the Newton scheme We define inductively Tn+1 = ϕn◦Tn◦
ϕ−1
n and ϕn+1 the linearised solution to the equation ϕ ◦Rα = T ◦ ϕn. The fast incontinence

of the scheme allows to show that the maps

ϕn ◦ · · · ◦ ϕ2 ◦ ϕ1

actually converges to an analytic circle diffeomorphisms conjugating T to Rα.

6. Estimates on the linearised solution

In this paragraph we essentially implement Step 3 of the outline of the proof of Theorem
49.

6.1. Estimates for ϕ1 and ϕ−1
1 . Recall that h ∈ Eδ−µ is the solution of the equation

h ◦Rα − h = η −
∫
S1

ηdLeb

and that we have set ϕ1 = Id + h. We first need the following Lemma

Lemma 50. Let f be an element of Eν for some ν > 0. Then there exists a constant
C1 > 0 such that

||f ′||ν−ε ≤
C1

ε
||f ||ν .

Proof. This is a standard lemma of complex analysis. By Cauchy’s integral formula we
have that for every r such B(z, r) ⊂ Sν

f ′(z) =

∫
∂B(z,r)

f(w)

(z − w)2
dw.

From which we deduces

|f ′(z)| ≤ ||f ||ν
∫
∂B(z,r)

dw

r2
dw =

2π

r
||f ||ν .

If z ∈ Sν−ε, r can be made arbitrarily close to ε hence the result.
�

From this Lemma we can deduce

Proposition 51. If ||η||δ < µ4

CC1
then

(1) ϕ1 = Id + h is a diffeomorphism from Sδ−2µ onto its image;
(2) The image of Sδ−µ contains Sδ−3µ and thus ϕ−1

1 is well-defined on Sδ−3µ.
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Proof. (1) By Lemma 50, ||h′||δ−2µ ≤ C1

µ
||h||δ−µ and by Theorem 47

||h′||δ−2µ ≤
CC1

µ4
||η||δ.

Hence if ||η||δ < µ4

CC1
then ϕ′1(z) 6= 0 on Sδ−2µ; which implies that ϕ is a diffeomor-

phism on its image when restricted to Sδ−2µ.
(2) Since ||η||δ ≤ µ4

CC1
by Theorem 47 ||h||δ−µ ≤ µ

C1
. Since C1 = 2π > 1, ||h||δ−µ ≤ µ.

Thus the image of Sδ−2µ by ϕ1 = Id + h contains Sδ−3µ.
�

We now need an estimate on ϕ−1
1 . We write ϕ−1 = Id− h+ g where g is an analytic function

in Eδ−3µ.

Proposition 52. With the notation above, there exists a universal constant C2 > 0 such
that

||g||δ−4µ ≤
C2

µ7
||η||2δ .

Proof. We just write that for all z ∈ Sδ−3µ, ϕ−1
1 ◦ ϕ1(z) = z, which rewrites

z + h(z)− h(z + h(z)) + g(z + h(z)) = z

from which we get

g(z + h(z)) = h(z + h(z))− h(z).

We write g(z + h(z)) = |h(z)|
∫ 1

0
h′(z + th(z))dz for any z such that the segment [z, z + h(z)]

belongs to Sδ−µ. This is in particular the case when z ∈ Sδ−2µ. Restrict z further so that
[z, z+ h(z)] ⊂ Sδ−2µ; this is achieved if z ∈ Sδ−3µ. We can use the estimates of ||h′||δ−2µ given
by Lemma 50. We get that for any z ∈ Sδ−3µ

|g(z + h(z))| ≤ ||h||δ−ν ||h′||δ−2µ ≤
C1C

2

µ7
||η||2δ .

Now any y ∈ Sδ−4µ can be written as z + h(z) with z ∈ Sδ−3µ hence the conclusion of the
Proposition.

�

6.2. Main estimate. In this paragraph we prove the main estimate that we will need
to implement Newton’s scheme. Consider T = Rα + η with η ∈ Eδ and such that T is an
analytic circle diffeomorphism. We set ϕ1 = Id + h where h is the solution to the equation

h ◦Rα − h = η −
∫
S1

ηdLeb.

By Proposition 51, we know that if η is chosen small enough, ϕ1 is an analytic circle
diffeomorphism which extends to a strip of width Sδ−2µ where µ depends on how small η is.

Theorem 53. Consider T = Rα + η, h and ϕ1 as above and assume that ρ(T ) = α.
Consider ϕ−1

1 ◦ T ◦ ϕ1 which we write Rα + η̃. There exists a constant C3 > 0 such that if
||η||δ ≤ µ4

CC1
then
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||η̃||δ−6µ ≤
C3

µ7
||η||2δ .

Proof. The strategy of the proof is to compute ϕ−1
1 ◦ T ◦ ϕ1 in term of h, g and η and

to use Theorem 47 and Proposition 51 to get the estimate. We get

T ◦ ϕ1(z) = z + α + h(z) + η ◦ ϕ1(z)

and

ϕ−1
1 ◦ T ◦ ϕ1(z) = z + α + h(z) + η ◦ ϕ1(z)− h ◦ T ◦ ϕ1(z) + g ◦ T ◦ ϕ1(z).

We now group terms together in order to use the cohomological equation estimate

ϕ−1
1 ◦ T ◦ ϕ1(z) =z + α + h(z)− h ◦ Rα(z) + η(z)

+ η ◦ ϕ1(z)− η(z)

+ h ◦ Rα(z)− h ◦ T ◦ ϕ1(z)

+ g ◦ T ◦ ϕ1(z).

We see that

η̃(z) = h(z)− h ◦ Rα(z) + η(z)+ η ◦ ϕ1(z)− η(z)+h ◦ Rα(z)− h ◦ T ◦ ϕ1(z)+g ◦ T ◦ ϕ1(z)

and we now give estimates for all the coloured terms.

• Because h solves the cohomological equation, we get that

h(z)− h ◦ Rα(z) + η(z) = −
∫
S1

η.

• We write

η ◦ ϕ1(z)− η(z) = |h(z)|
∫ 1

0

η′(z + th(z))dt

for any z such that [z, h(z)] ⊂ Sδ−2µ. This is the case for z ∈ Sδ−3µ. There we can use the
estimate that |η′(z)| ≤ C1

µ
||η||δ (Proposition 50) and by Theorem 47 we get

|η ◦ ϕ1(z)− η(z)| ≤ C1C

µ4
||η||2δ .

• We have h ◦ Rα(z)− h ◦ T ◦ ϕ1(z) = h(z + α)− h(z + h(z) + α + η(z + h(z)) and thus

h ◦ Rα(z)− h ◦ T ◦ ϕ1(z) = |h(z) + η(z + h(z))| ·
∫ 1

0

h′(z + α + t[h(z) + η(z + h(z))])dt.

Provided that [z + α, z + α + h(z) + η(z + h(z))] ⊂ Sδ−2µ we get the following estimates

|h ◦ Rα(z)− h ◦ T ◦ ϕ1(z)| ≤ [||h(z)||δ−µ + ||η||µ] · ||h′||δ−2µ.

The condition [z + α, z + α + h(z) + η(z + h(z))] ⊂ Sδ−2µ is satisfied if z ∈ Sδ−4µ.

• Finally we have the estimate
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|g(y)| ≤ C2

µ7
||η||2δ

for y ∈ Sδ−4µ. Applying this to y = T ◦ϕ1(z) = z+α+h(z) +η(z+h(z) we get that provided
that z ∈ Sδ−6µ

|g ◦ T ◦ ϕ1(z)| ≤ C2

µ7
||η||2δ .

Putting all this information together we get that for any z ∈ Sδ−6µ we have

|η̃(z)| ≤ |
∫
S1

η|+ C4

µ7
||η||2δ

which is not quite what we wanted, because of this extra term
∫
S1 η for which we have a

priori no control. To get around this problem, we use the fact that because x 7→ x+ α+ η̃(x)
defines a circle homeomorphism of rotation number α, there must be an x0 ∈ [0, 1) such that
η̃(x0) = 0 (this is essentially contained in the proof of Proposition 27). At such a point we
have ∫

S1

η = η ◦ ϕ1(x0)− η(x0) + h ◦ Rα(x0)− h ◦ T ◦ ϕ1(x0) + g ◦ T ◦ ϕ1(x0)

and using the upper bounds that we have just obtained on the green, blue and purple terms,
we obtain that for a certain universal constant D,

|
∫
S1

η| ≤ D

µ7
||η||2δ .

We can now re-inject in the formula of η̃ to obtain the conclusion of the Theorem.
�

7. Convergence in the inductive scheme

We have now set the stage for the implementation of Newton’s scheme. Start with
T = T0 = Rα + η0 and define the following inductively.

(1) hn+1 is the solution to

hn+1 ◦Rα − hn+1 = −ηn +

∫
S1

ηndLeb.

(2) ϕn+1 = Id + hn+1, ϕn+1 : S1 −→ S1 is an analytic diffeomorphism provided hn+1 is
small enough.

(3) Tn+1 := ϕ−1
n+1 ◦ Tn ◦ ϕn+1.

(4) ηn+1 is the 1-periodic function such that Tn+1 = Rα + ηn+1.
We also define ψn = ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕn. Note that with this notation we have

Tn = ψ−1
n ◦ T0 ◦ ψn.

Our ultimate goal is to show the following Proposition

Proposition 54. There exists δ′ > 0 such that
• ηn is analytic, belongs to Eδ′ and ||ηn||δ′ −→ 0.
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• hn is analytic, belongs to Eδ′ and there exists an analytic ψ∞ which extends analytically
to Sδ′ and such that

ψn −→ ψ∞

in the topology defined by the norm || · ||δ′.

The path to follow to prove the first point is quite clear : apply the main estimate given by
Theorem 53 to get an inequality of the form

||ηn+1||δn−µn ≤
C3

µ7
||ηn||2δn

and adjust µn so that
(1) on the one hand, the cumulated loss of regularity

∑
µn is finite (and less than the

an initial δ0;
(2) on the other hand, the term C3

µ7n
tends to infinity slowly enough not to break the fast

convergence in Newton’s scheme allowed by the quadratic error in ||ηn||δn .
Note that given any analytic T0 = Rα + η0, there exists a δ0 such that η0 ∈ Eδ0 . We make the
following assumption

||η0||δ0 ≤ ε0 = max{ δ0

CC1

, a}

where a > 0 is a quantity whose value is to be decided later. We now set

(1) εn = ε
( 3
2

)n

0 ;
(2) µn = δ0

6(n+1)2
(so that

∑
n∈N µn <

δ0
2
).

We claim that with these assumption and notation we have

Proposition 55. ∀n ∈ N we have

||ηn||δ0−∑n
0 µi
≤ εn.

Proof. The proof goes by induction. Assume that the Proposition holds true for a given
n i.e. ||ηn||δ0−∑n

0 µi
≤ εn. By the main estimate Theorem 53 we get

||ηn||δ0−∑n+1
0 µi

≤ 67C3

δ7
0

· (n+ 1)14ε
1
2
nε

3
2
n .

What we have just done is split the ε2n into ε
1
2
nε

3
2
n to get εn+1 and an extra term which we

hope is going to be small enough to counter-balance the term 67C3

δ70
· (n+ 1)14. What we want

precisely for the induction to go through is

67C3

δ7
0

· (n+ 1)14 · ε
1
2
n ≤ 1

which is equivalent to

εn ≤ (
67C3

δ7
0

· (n+ 1)14)−2.
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The quantity on the right hand side can be written under the form (A(n+ 1))−14. Recall that
εn = ε

( 3
2

)n

0 ≤ a( 3
2

)n . If a is initially chosen small enough, the inequality above obviously holds
true. Thus, up to choosing a carefully, the induction can be carried out.

�

This Proposition has the following consequence. Because for any n ∈ N, δ −
∑n

i=0 µi ≥
δ
2
, we

get

||ηn|| δ
2
≤ εn

and thus the sequence (Tn) converges to Rα in the topology induced by the norm || · || δ0
2

(we
can take δ′ = δ0

2
for the conclusion of Proposition 54).

Convergence of (ψn). The one thing left to establish is the convergence of the sequence
(ψn) to an analytic map ψ∞ such that

ψ−1
∞ ◦ T0 ◦ ψ∞ = Rα.

Recall that by definition

ψn = ψ1 ◦ · · · ◦ ϕn
and since ϕn = Id + hn with hn very small for the || · ||δ′-norm, it is reasonable to expect the
convergence (ψn). We prove it formally now. Consider lifts

ϕ̃n := z 7→ z + hn(z)

defined on Sδ−∑n
0 µi

. Note that the µi have been chosen so that

˜ϕn+1(Sδ−∑n+1
0 µi

) ⊂ Sδ−
∑n

0 µi

in application of Proposition 51 and thus ψ̃n := ψ̃1 ◦ · · · ◦ ϕ̃n is well-defined on Sδ′ for all
n ∈ N∗. Furthermore we can write

ψ̃n(z) = z + h1(ψn−1(z)) + h2(ψn−2(z)) + · · ·+ hn(z)

and therefore

||ψ̃n(z)− z||δ′ ≤
n∑
i=1

||hi||δ′ .

By Theorem 47

||hi||δ′ ≤
C

µ3
i−1

ε2i−1

from which we easily find that ||hi||δ′ ≤ ε
3/2
i−1 from which we get ||ψ̃n(z) − z||δ′ is uniformly

bounded. We now conclude by showing that (ψ̃n) is Cauchy sequence

˜ψn+1(z)− ψ̃n(z) = ψn(z + hn+1(z))− ψn(z) = |hn+1(z)|
∫ 1

0

ψ̃n
′
(z + thn+1(z))dt.

Using Lemma 50, we get control for any ε > 0



52 6. THE LOCAL RIGIDITY THEOREM AND KAM THEORY

|| ˜ψn+1 − ψ̃n||δ′−ε ≤
2π

ε
||hn+1||δ||ψ̃n||δ.

Since ||hn+1||δ′ ≤ ε
( 3
2

)n

0 we obtain that (ψn) is a Cauchy sequence with respect to the || · ||δ−ε-
norm for any ε > 0. Eδ is a Banach space for any δ, hence we obtain that the sequence (ψn)
converges to a analytic circle diffeomorphism which extends to Sδ−ε for any ε > 0. This
completes the proof of Arnold’s Theorem (Theorem 49).
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