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Abstract. We classify, up to few exceptions, the orbit closures of the Mod(Σ)-
action on the affine character variety χ(Aff(C)). We obtain from this classifi-
cation that the only obstruction for a non-abelian representation ρ : π1Σ −→
Aff(C) to be the holonomy of a branched affine structure on Σ is to be Eu-
clidean and not to have positive volume, where Σ is a closed oriented surface
of genus g ≥ 2.

1. Introduction.

We introduce several notations that we are going to use throughout the text:
• Σ is a closed oriented surface of genus g ≥ 2.
• Γ is the fundamental group of Σ.
• Mod(Σ) is the mapping class group of Σ.
• Aff(C) is the complex affine group of dimension 1.
• χ(Γ,Aff(C)) = χ is the character variety.

1.1. Translation surfaces. A nowadays very popular topic, at the crossroads
of dynamics, algebraic geometry and metric geometry, are translations surfaces.
These are the structures whose local charts are given by locally integrating an
holomorphic 1-form on a Riemann surface. The periods of the associated 1-form
are geometric invariants of the structure, and they can be thought of as an element
of

Hom(H1(Σ,Z),C) ' H1(Σ,C).
In the language of geometric structures, this period morphism is the holonomy
of the translation structure. A very nice theorem, although relatively unknown,
characterises the elements of H1(Σ,C) which can arise as the holonomy of a trans-
lation surface.

Theorem 1.1 (Haupt, [Hau20]). A morphism p ∈ H1(Σ,C) can be realised as the
holonomy of a translation surface if and only if the two following conditions hold:

(1) the volume of p is positive;
(2) if the image of p is a lattice Λ in C, then vol(p) > vol(C/Λ).

The volume vol of an element p ∈ H1(Σ,C) is the intersection product <(p) ·
=(p). The terminology ’volume’ comes from the fact that a translation surface
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whose period is p has volume equal to <(p) · =(p). This remark makes the first
condition in the Theorem 1.1 obviously necessary.

1.2. Complex projective structures. Another major matter of interest in the
theory of surfaces are complex projective structures, whose model is CP1 with
PSL(2,C) acting through projective transformations. They historically arose
when mathematicians of the 19th century were studying particular cases of order
two complex differential equations on Riemann surfaces. To each can be associated
a complex projective structure whose holonomy is exactly the monodromy of the
associated differential equation. The question of determining the representations
that can be realised has been solved by Gallo, Kapovich and Marden:

Theorem 1.2 (Gallo-Kapovich-Marden, [GKM00]). A representation ρ : π1Σ −→
PSL(2,C) is the holonomy of a projective structure if and only if the two following
condition hold:

(1) the image of ρ is a non-elementary subgroup of PSL(2,C);
(2) ρ can be lifted to SL(2,C).

We say a projective structure is ’branched’ when it has a finite number of special
points which have punctured neighbourhoods projectively equivalent to a ramified
cover of a point in CP1. For example a translation surface can be thought of as a
particular case of branched projective structure, thinking of C as a subset of CP1

and the set of translations as a subgroup of PSL(2,C). Its branched points are
the conical points, which are the zeros of the underlying holomorphic 1-form.

1.3. Branched affine structures. We will be interested in this article to branched
affine structures. They lie somewhere inbetween translation and strictly projec-
tive structures: the model space is C and the transformation group is the one-
dimensional complex affine group Aff(C). A simple way to build examples of such
structures is to glue the sides of a Euclidean polygon using affine transformations;
the branched points will be located at the vertices. These are particular cases
of branched projective structures as translation surfaces are particular cases of
branched affine ones. Although these objects make their appearance in several
different works (far from claiming for exhaustivity, see [Man72], [Man73],[Gun80],
[Vee93], [McM00]), they have not yet been investigated as a proper research sub-
ject. The author believes that these structures are rich and provide questions of
both geometric and dynamic nature, together with natural links to Teichmüller
theory that make of them a distinguishable matter of interest.

This article will deal with the elementary question of determining which repre-
sentations are the holonomy of a branched affine structure.

1.4. Mapping class group dynamics. A powerful tool to investigate the ho-
lonomy problem is the mapping class group action on the associated character
variety. The latter parametrises the set of all representations of the fundamental
group of a compact surface into the affine group Aff(C) (up to conjugation), and
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is equipped with a natural action of the mapping class group by precomposition.
A classical argument of Ehresmann popularised by Thurston ensures that the set
of geometric representations is open in the character variety, and it is obviously
invariant by the action of the mapping class group. A good understanding of this
action is a path to the answer to the holonomy problem. In [Gha16] we proved
that the mapping class group action on the character variety is ergodic relatively
to the Lebesgue measure. However, it only gives that almost every representation
is geometric and does not characterise the obstruction to be.
In a remarkable unpublished note, Kapovich revisits Haupt’s theorem recalled
above (Theorem 1.1), giving a proof completely based on the analysis of mapping
class group action. In that case the action is nothing but the Sp(2g,Z) action on
an homogeneous space and the use of the powerful theorem of Ratner leads to a
complete classification of the closed invariant subset of the character variety and
consequently reproves Haupt’s theorem. Note that mapping class group dynam-
ics have already been extensively studied on G-character varieties, when G is a
reductive Lie group as PSL(2,R), PSL(2,C) or SU(2), see for example [Gol97],
[Gol], [MW], [Pal11], and for the case G = Aff(C) we would like to mention [GM].

1.5. Results. In this article, we give a systematic description of the closure of
the Mod(Σ)-orbit of a point in χ. We are able to identify dynamical phenomenons
of ’Ratner’ type: the closure of an orbit is, up to few exceptions, a submanifold
of χ. More precisely, we prove the following theorem:
Theorem 1.3. Consider [ρ] ∈ χ(Γ,Aff(C)) such that the image of its linear part
αρ is not the group of nth roots of the unity for n = 2, 3, 4, 6. Then the closure of
its orbit under the Mod(Σ)-action is a real analytic submanifold of χ.

From the precise description of the orbits that we give (which is a consequence
of the classification results of Section 4.3 and of Theorem 5.1), and additional geo-
metric constructions to handle the particular cases that are out of reach through
the Mod(Σ) approach, we are able to completely characterise the representations
which are the holonomy of a branched affine structure:
Theorem 1.4. Let ρ : Γ −→ Aff(C) be a non-abelian representation.

• If ρ is not Euclidean, then it is the holonomy of a branched affine structure.
• If ρ is Euclidean, it is the holonomy of a branched affine structure if and
only if its volume is positive.

1.6. Acknowledgements. We are very grateful to Julien Marché for having
shared his infinite wisdom on twisted cohomology by which he brought a concep-
tual light on a calculation of the author, rendering the latter far less mysterious,
and to Yves Benoist and Tyakal Venkataramana for valuable discussions about
Lemma 5.5. It is also a pleasure to thank Jeremy Daniel for having, although
very reluctantly, answered several of our questions on Lie group theory. Finally,
the author is infinitely indebted to Bertrand Deroin for his constant interest and
support throughout this project.
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2. Branched affine structures on compact oriented surfaces.

2.1. Basics. A (branched) affine structure on Σ is a (Aff(C),C)-structure with a
finite number of singular points at which the structure is ’branched’, which means
that at such a singular point, the structure is the pull-back of ramified cover(at
this point) of finite degree. For the sake of precision, we give two equivalent
definitions of what an affine structure is:

Definition 1. A branched affine structure on Σ is a atlas of charts (Uj , ϕj) such
that

(1) There exist a finite number of points p1, · · · , pn, each belonging to only
one Uj

(2) Every time two open of charts Ui and Uj overlap, the transition map
ϕi ◦ ϕ−1

j : ϕj(Ui ∩ Uj) −→ ϕi(Ui ∩ Uj) is the restriction of an element
Aff(C) to ϕj(Ui∩Uj) on each of the connected components of ϕj(Ui∩Uj).

Any chart can be analytically continued to define a ’super chart’ on the univer-
sal cover of Σ which is equivariant with respect to a representation of Γ in Aff(C).
This remark leads to an alternative definition of a branched affine structure.

Definition 2. A branched affine structure on a compact Riemann surface Σ is
a non constant holomorphic function dev : Σ̃ −→ C together with a group homo-
morphism ρ : Γ −→ Aff(C) such that dev is ρ-equivariant, i.e. satisfies that for
every z ∈ Σ̃ and every γ ∈ Γ, we have

dev(γ · z) = ρ(γ)(dev(z))

dev is called the developing map of the structure and ρ the holonomy morphism
of the structure.

Affine structures arise naturally either as generalisation of flat and translations
surfaces (see [Vee93] for a very nice description of the structure of their moduli
spaces, and also [Vee97] for an investigation of their basic geometric properties),
or as particular cases of branched projective structures whose holonomy has image
an elementary subgroup of PSL(2,C). A rather elementary but fundamental way
to build affine structures is to glue along affine transformations the sides of a
(collection of) polygon.

2.2. Holonomy. Two affine surfaces are isomorphic if there exists a bijection
between them which is affine when restricted to affine charts. In particular it
implies that if (dev, ρ) is an affine structure on Σ and f ∈ Aff(C), f ◦ dev defines
the same affine structure and the holonomy representation associated to f ◦ dev
is f ◦ ρ ◦ f−1. Conversely two isomorphic affine structures on Σ define holonomy
representations which are only conjugated by an element of Aff(C). The class
up to conjugation of the holonomy representation therefore defines a geometric
invariant of the structure. This invariant is known to be far from classifying;
describing the set of surfaces having the same holonomy as been investigated
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in several contexts (see for instance [BG15] or [CDF14] in the case of branched
projective structures).

The question we are going to investigate in this paper is to determine the
representations that arise as the holonomy of a branched affine structure.

2.3. Surgeries. We describe in this subsection procedures which we call surgery,
which consist in cutting affine surfaces along several geodesic segments and gluing
them back along those segments with different combinatorics in order to get new
affine structures.

2.3.1. Connected sum. A geodesic line(resp. segment) on an affine surface is a
path which is parametrised in any chart by a straight line(resp. segment). Since
being a straight line(resp. segment) is invariant by Aff(C), those objects are
well-defined.
Consider two closed affine surfaces Σ1 and Σ2, as well as two geodesic segments
γ1 ⊂ Σ1 and γ2 ⊂ Σ2. Cut along γ1(resp. γ2) to get a surface Σ′1(resp. Σ′2) with
a unique piecewise geodesic boundary component γ+

1 ∪ γ
−
1 (resp. γ+

2 ∪ γ
−
2 ). The

surgery consists in gluing γ+
1 to γ−2 and γ+

2 to γ−1 respecting the affine structure.
We get this way an affine structure on Σ1#Σ2 with two new branched points at
the end of the image of γ+

1 , both of angle 4π.

Figure 1. The ’connected sum’ surgery.

A fact worth noticing is that the linear holonomy α of this structure can
be easily computed in terms of the ones of Σ1 and Σ2. The first homology
group H1(Σ1#Σ2,Z) is equal to the product H1(Σ1,Z) × H1(Σ2,Z) and α :
H1(Σ1#Σ2,Z) −→ C∗ is equal to the product α1 × α2.

2.3.2. Adding a handle. There is a surgery, very similar to the previous one, that
consists in creating a handle on an initial surface Σ of genus g. Consider a and
b two segments on Σ and cut along these two segments. We get a new surface
with two boundary components a+ ∪ a− and b+ ∪ b−.. Glue a+ to b− and a− to
b+(along the unique affine transformations mapping a+ to b− and a− to b+) to
get a new affine structure on the compact surface of genus g + 1.

Remark that on the new handle, a the loop has trivial holonomy (the one that
surrounds a+ ∪ a− = b+ ∪ b−).
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3. Character variety and mapping class group dynamics.

3.1. Character variety. We define in this section the character variety, which is
roughly the set of representation of Γ up to conjugation. We could directly take the
quotient Hom(Γ,Aff(C))/Aff(C) for the natural action of Aff(C) by conjugation,
which is the most natural thing to do. Unfortunately, this quotient is not very
nice, it is not an analytic variety nor a smooth manifold and worst, is not even
Hausdorff. This difficulty can be avoided by analyzing with little more care the
structure of Hom(Γ,Aff(C)) and the action of Aff(C).

Recall that Aff(C) is canonically isomorphic to the semi direct product C∗nC
where C∗ acts linearly on C as GL(1,C). Therefore any representation ρ : Γ −→
Aff(C) is the data of two functions Liρ and Trρ such that

(1) Liρ : Γ −→ C∗ is a group homomorphism.
(2) Trρ : Γ −→ C satisfies ∀γ1, γ2 ∈ Γ,

Trρ(γ1 · γ2) = Trρ(γ1) + Liρ(γ1)Trρ(γ2)
• Since C∗ is abelian, Liρ factorizes through

Liρ : H1(Σ,Z) −→ C∗

because H1(Σ,Z) is the abelianisation of Γ. Liρ can then be seen as an
element of H1(Σ,C∗) ' Hom(H1(Σ,Z),C∗).
• Let α be an element of H1(Σ,C∗). We define

Z1
α(Γ,C) = {λ : Γ −→ C | ∀γ1, γ2 ∈ Γ, λ(γ1 · γ2) = λ(γ1) + α(γ1)λ(γ2)}

Z1
α(Γ,C) is a complex vector space. Its dimension can be computed

in the following way : Γ is a finitely generated group, with generators
a1, b1, · · · , ag, bg and a unique relation between those generators

∏g
i=1 [ai, bi] =

1. Any element λ ∈ Z1
α(Γ,C) is characterised by its values λ(a1), λ(b1), · · · , λ(ag), λ(bg)

and these numbers must satisfy the following relation (which is simply ap-
plying λ to the relation on the generators) :

g∑
i=1

λ(ai)(1− α(ai)) + λ(bi)(1− α(bi)) = 0

Conversely any data of 2g complex numbers satisfying the relation
above defines an element of Z1

α(Γ,C). The relation is trivial if and only if
α ≡ 1. Hence Z1

α(Γ,C) has complex dimension 2g if α ≡ 1 and 2g − 1 in
all other cases.
• For every ρ ∈ Hom(Γ,Aff(C)), Trρ belongs to Z1

Liρ(Γ,C).
All the previous remarks can be rephrased in the following proposition :

Proposition 3.1. The projection
π : Hom(Γ,Aff(C)) −→ H1(Σ,C∗)



7

gives Hom(Γ,Aff(C)) \ π−1({1}) the structure of a complex vector bundle whose
fiber has complex dimension 2g − 1.

Aff(C) acts by conjugation on Hom(Γ,Aff(C)): if f ∈ Aff(C) and ρ ∈ Hom(Γ,Aff(C)),
(f · ρ)(γ) = f ◦ ρ(γ) ◦ f−1. Notice that

(1) ∀f ∈ Aff(C), π(f · ρ) = π(ρ).
(2) ∀α ∈ H1(Σ,C∗), 1− α ∈ Z1

α(Γ,C).
(3) If f = z 7→ az + b, Trf ·ρ = aTrρ + b(1− Liρ).

We introduce H1
α(Γ,C) = Z1

α(Γ,C)/C · (1 − α). We use this specific notation
because H1

α(Γ,C) is first cohomology group of Γ twisted by α. We also introduce
Hom′(Γ,Aff(C)) to be subset of Hom(Γ,Aff(C)) made of representations whose
image is not an abelian subgroup of Aff(C). We define the character variety to be
the equivalence classes of representations whose image is not an abelian subgroup
under the action of Aff(C) :

χ(Γ,Aff(C)) = Hom′(Γ,Aff(C))/Aff(C)
We then have the following description of the structure of χ(Γ,Aff(C)):

Proposition 3.2. The projection

π : χ(Γ,Aff(C)) −→ H1(Σ,C∗)

gives χ(Γ,Aff(C)) the structure of a CP2g−3-bundle over H1(Σ,C∗){1} ' (C∗)2g \
{1, · · · , 1}.

For a proof, see [Gha16], Proposition 1.2.

3.2. Action of the mapping class group. The mapping class group is classi-
caly defined to be the group of connected components of Diff+(Σ) the group of
preserving orientation diffeomorphisms of Σ, namely

Mod(Σ) = Diff+(Σ)/Diff0(Σ) = H0(Diff+(Σ))
Recall that Γ = π1(Σ, ∗). A diffeomorphism f ∈ Diff+(Σ) induces a group

isomorphism :

f∗ : π1(Σ, ∗) −→ π1(Σ, f(∗))
An arbitrary choice of a path c going from ∗ to f(∗) gives an identification between
π1(Σ, ∗) and π1(Σ, f(∗)) and post-composing by such an identification gives us
f ′∗ : Γ −→ Γ. Two such choices give automorphisms of Γ which are conjugated,
f therefore defines an element of Out(Γ). Since f is orientation preserving, any
f ′∗ : Γ −→ Γ preserves the fundamental class in H2(Γ,Z). We have then defined a
group homomorphism :

ϕ : Mod(Σ) −→ Out+(Γ)
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where Out+(Γ) is the subgroup of Out(Γ) of elements preserving the funda-
mental class in H2(Γ,Z). A famous theorem of Dehn, Nielsen and Baer states
that ϕ is an isomorphism, see [FM12, p.232].

Aut(Γ) acts naturally on Hom(Γ,Aff(C)) by precomposition. We are going to
prove in this paragraph that this action induces an action of Out(Γ) on χ(Γ,Aff(C)).
Consider φ, ψ ∈ Aut(Γ), note [φ], [ψ] their respective class in Out(Γ). Assume
[φ] = [ψ]. In other words, there exists g ∈ Γ such that φ = g · ψ · g−1. Take
ρ ∈ Hom′(Γ,Aff(C)). Then, ∀γ ∈ Γ we have

ρ ◦ φ(γ) = ρ(gψ(γ)g−1) = ρ(g) · ρ ◦ ψ(γ) · ρ(g)−1

Hence for all ρ ∈ Hom′(Γ,Aff(C)), ρ ◦ φ and ρ ◦ ψ belong to the same class
in χ(Γ,Aff(C)). This proves the Aut(Γ)-action induces an action of Out(Γ) =
Mod(Σ) on χ(Γ,Aff(C)). We will refer to this action by the action of Mod(Σ) by
precomposition.

3.3. The subset of holonomy of branched affine structures. We say of a
representation ρ : Γ −→ Aff(C) (or of its class in χ(Γ,Aff(C))) that it is geometric
if it is the holonomy of a branched affine structure.

Proposition 3.3. The subset of geometric representations is an open subset of
Hom(Γ,Aff(C)). Its projection is therefore open in χ(Γ,Aff(C)) and it is Mod(Σ)-
invariant.

Proof. The Mod(Σ) invariance is rahter easy. Consider an affine structure of (class
of) holonomy ρ and f a diffeomorphism of Σ. The affine structure pulled-back by
f has holonomy [ρ ◦ f∗], and [ρ ◦ f∗] is therefore geometric.

We now explain why the general Ehresmann-Weil-Thurston principle for geo-
metric structures ensures that the set of geometric representations is open. Let ρ0
be the holonomy representation of an affine structure on Σ and U ⊂ Hom(Γ,Aff(C))
an open subset containing ρ0. The group Γ acts properly and discontinuously on
U × Σ̃× CP1 the following way

U × Σ̃× CP1 −→ U × Σ̃× CP1

(ρ, x, z) 7−→ (ρ, γ · x, ρ(γ) · z)
We denote the quotient of this action E. The natural projection E → U is a
submersion whose fibers are compact (they are all diffeomorphic to Σ × CP1).
Ehresmann’s theorem ensures that it is actually a fiber bundle whose fiber over
ρ we denote Mρ. It is itself a flat bundle in CP1 over Σ, whose monodromy is
exactly ρ. We denote by Fρ the foliation associated to its flat connection.

The projection on the factor Σ is also a fiber bundle of fiber U ×CP 1. Eheres-
mann’s theorem together with the continuous family of foliations Fρ provide for
each point p ∈ S an open set Ωp 3 p such that a neighbourhood of (ρ0, p)×CP1 in
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E has product structure of the form U ′ ×Ω×CP1 such that the sets ρ×Ω×{z}
are included in leaves of Fρ.

We are now set to prove that an affine structure of holonomy ρ0 can be deformed
to an affine structure of holonomy ρ for ρ close to ρ0. Recall that a branched affine
structure on Σ of holonomy ρ is a section of Mρ which is transverse to Fρ except
at a finite number of points where it is tangent to the foliation at a finite order.
Consider an arbitrary trivialisation V ×Mρ0 of E above a neighbourhood V of ρ0.
The graph of a section s0 of Mρ0 can be pushed to each Mρ for ρ ∈ V by means
of this trivialisation. Using the trivialisations defined in the next paragraph, it is
easy to see that if s0 was transverse to Fρ except at a finite number of points, so are
its pushed forwards. Moreover, at the finite number of points, the pushed forward
must have same order of tangency and they therefore define affine structures of
holonomy ρ for all ρ ∈ V .

�

3.4. Euclidean representations.

3.4.1. The volume of a Euclidean representation. Euclidean representations are
in some way essentially different from stricly affine ones. A remarkable fact is
that we can, for such Euclidean representations, define an invariant called the
volume. For a Euclidean representation ρ, it is the total volume of the pull back
of volume form of C by any ρ-equivariant map Σ̃ −→ C, see [Gha16] for further
details on this construction.
There is a more cohomological way to define this volume. A Euclidean represen-
tation can be thought of as an element of Z1

α(Γ,C). The cup product

∧ : H1
α(Γ,C)×Hα(Γ,C) −→ H2(Γ,C) = C

is a non-degenerated bilinear form (because of the Poincaré duality) which makes

vol : H1
α(Γ,C)×H1

α(Γ,C) −→ H2(Γ,C) = C
(µ, ν) 7−→ µ ∧ ν

a non-degenerated Hermitian form of signature (g−1, g−1) (see [Gha16], Proposi-
tion 6.2). Since a point a Euclidean representation in χ is a point in P(H1

α(Γ,C)),
it makes sense to say that is has positive, null or negative volume. This ’sign’ is
Mod(Σ)-invariant; in particular a Euclidean geometric representation must have
positive volume.

3.4.2. The Torelli group action. The natural action of the Torelli group on H1
α(Γ,C)

must preserve the form vol. This therefore defines for every unitary α a represen-
tation rα

rα : I(Σ) −→ PU(vol) ' PU(g − 1, g − 1).
We are going to come back to this action in careful detail in Section 5
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4. The Mod(Σ)-action on H1(Σ,C∗).

The Mod(Σ)-action on H1(Σ,C∗) is the action by precomposition, when think-
ing of H1(Σ,C∗) as Hom(H1(Σ,Z),C∗). Up to the choice of a symplectic basis of
H1(Σ,Z), H1(Σ,C∗) identifies to (C∗)2g ' R2g ×R2g/Z2g and the Mod(Σ)-action
factors through the diagonal linear action of Sp(2g,Z) on R2g × R2g/Z2g. We
describe in this Section the possible orbit closures of this action.

4.1. Closed subgroups of C∗ and closed invariant subsets of H1(Σ,C∗).
Subsets of H1(Σ,C∗) which consists of elements α such that Im(α) ⊂ H, where H
is a closed subgroup of C∗ are closed in H1(Σ,C∗) and invariant under the action
of the mapping class group. A first step in the understanding of orbit closures of
the Mod(Σ)-action on H1(Σ,C∗) is therefore to list such subgroups H.

Proposition 4.1. Let H be a closed subgroup of C∗.
(1) Either H is a finite subgroup spanned by a root of unity;
(2) or H is discrete and of the form {ena | n ∈ Z} for some complex number

a;
(3) or H is a 1-parameter subgroup of the from Ha = {eta | t ∈ R};
(4) or H is the product of one of the last two type by a a finite subgroup

spanned by a root of unity;
(5) or H is C∗.

Proof. C∗ being a two dimensional Lie group, the proposition follows from the
fact that every closed subgroup of a Lie group is a Lie subgroup.

�

Each subgroup of this list gives rise to an invariant closed subset by the Mod(Σ)-
action. Except for the class of non unitary characters whose modulus has discrete
image in R∗+, we are going to prove that these are the only closed invariant subset
of H1(Σ,C∗).
Other invariant subsets. In the case where Im(|α|) is discrete and non-trivial,
there exists m > 0 such that the character µ ∈ H1(Σ,R), which is the lift of
|α|, has values in mZ. Let θ̃ ∈ H1(Σ,R) be a lift of θ = arg(α). Such a lift is
unique up to an element of H1(Σ,Z). The value v = µ ∧ θ̃ modulo mZ(which we
denote by µ∧ θ) is therefore invariant of the Mod(Σ)-action. The level sets of the
function µ ∧ · being closed, they therefore define closed invariant subset for the
action of the mapping class group. Such a set is denoted by Hm,v. We are going
to prove that the closed invariant subset that we have just described are the only
one. More precisely:

Proposition 4.2. • If Im(|α|) is discrete and non trivial and is equal to
〈em〉 with m > 0, and that µ ∧ arg(α) = v, then Mod(Σ) · α = Hm,v,
where Hm,v is the set of characters whose modulus has image 〈em〉, and
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for which the cup product of the lift of their modulus and their argument
is v ∈ R/mZ.
• If α is unitary or if Im(|α|) is not discrete, then Mod(Σ) · α is the set of
characters β such that Im(β) ⊂ Im(α).

The remainder of the Section will be devoted to its proof.

4.2. Ratner’s theorem. We are interested in classifying the possible orbit clo-
sures of an element of R2g × R2g/Z2g under the Sp(2g,Z)-action. To that pur-
pose, we remark that a subset A of R2g × R2g is invariant under the action of
Sp(2g,Z) n Z2g if and only if it projection p(A) on R2g × R2g/Z2g is invariant
under the Sp(2g,Z)-action.

We can also remark that since G = Sp(2g,R) n R2g acts transitively on X =
R2g × R2g, there is a natural identification between X and G/U where U is the
stabilizer in G of a point in X. Since Γ = Sp(2g,Z)nZ2g is a lattice in G, we are
going to be able to apply the Ratner’s powerful theorem to our setting. Rephrased
in our specific context, it can be stated as follow:

Theorem 4.3 (Ratner, [Rat91]). Let G,U and Γ be as above and p ∈ X = G/U
such that p = gU . Then there exists a closed subgroup Hg < G such that

• Ug = gUg−1 ⊂ Hg;
• Γ ∩Hg is a lattice in Hg;
• Γ · p = ΓHp.

The first step towards the orbit classification of the Mod(Σ)-action on H1(Σ,C∗)
is to list those subgroups H < Sp(2g,R)nR2g which contains U = U ′×{0} where

U ′ < Sp(2g,R) is the stabiliser of the point ~e =

1
0
...
0

.
We fix p = (~x, ~u) ∈ R2g × R2g/Z2g and g being such that p = gU or in other

word (~x, ~u) = g ·(~e,~0). Let Hg be the group given by Ratner’s theorem. Denote by
Ag < Sp(2g,R) the image ofHg under the projection Sp(2g,R)nR2g −→ Sp(2g,R)
and Bg < R2g the kernel of this projection. We first prove two lemmas that will
help us traduce the two first conditions of Theorem 4.3 in terms of Ag and Bg.

Lemma 4.4. Bg is either ~0, R~x, ~x⊥ or R2g.

Proof. Remark that Bg is invariant under the action of Ug by conjugation (which
is nothing but the natural linear action of Ug). Let V be an invariant subvector
space of R2g, four possibilities can occur:

(1) V = ~0;
(2) V = ~x;
(3) V contains ~y such that ~x ∧ ~y 6= 0. Ug acts transitively on the set of lines

on which ~x ∧ · is non zero, which is dense in R2g and therefore V = R2g.
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(4) V ⊂ ~x⊥ and V 6= ~x. Since Ug acts transitively on vectors orthogonal to ~x
which are not on the line directed by ~x, V = ~x⊥.

�

Lemma 4.5. Let H be a closed Lie subgroup of G = Sp(2g,R) n R2g. Then
Sp(2g,Z)nZ2g ∩H is a lattice in H if and only if Sp(2g,Z)∩A is a lattice in A
and Z2g ∩B is a lattice in B.

Proof. Denote by π the natural projection:

H/(H ∩ Γ) −→ A/Sp(2g,Z) ∩A
This projection is a fiber bundle whose fiber is isomorphic to B/(Z2g ∩ B). The
Haar measure on H is the product of the Lebesgue measure on the fiber and the
Haar measure A/(A∩Sp(2g,Z)). Therefore the volume of H is exactly vol(A/(A∩
Sp(2g,Z))) · vol(B/(Z2g ∩B)).

�

According to the previous lemma, if Hg associated to the orbit closure of p ∈ X,
Ag is unimodular and contains π(Ug) which is Stab(~x). According to [Kap] (or
[CDF] for a clearer exposition of the arguments), Hg is either Ug or Sp(2g,R).
We deduce from the two lemmas above the following proposition.

Proposition 4.6.
Hg = Ag nBg

Proof. Without loss of generality we can assume that p = (~e,~0) and U = Stab(p).
If Ag = U then it is obvious (because Hg contains U n {~0}). We assume from
now on that Ag = Sp(2g,R). We are first going to do the proof in the case
when B = ~0. In this case the projection Sp(2g,R) n R2g −→ Sp(2g,R) is one-to-
one and its inverse defines by projecting on the R2g factor a continuous function
ϕ : Sp(2g,R) −→ R2g such that

∀A,B ∈ Sp(2g,R), ϕ(AB) = ϕ(A) +Aϕ(B)
Proving the proposition in this specific case is equivalent to prove that ϕ vanishes
everywhere. Since ϕ vanishes on U , it defines ϕ : Sp(2g,R)/U ' R2g \ 0 −→ R2g

such that

∀A ∈ Sp(2g,R) and ∀y ∈ R2g \ 0, ϕ(Ay) = ϕ(A1) +Aϕ(y)
and ϕ(~e) = 0, where A1 denotes the first column of the matrix A. Considering
~z such that ~z ∧ p 6= 0. One can find a element A ∈ U such that Ker(A − Id) =
Span(~y,~e). Since ϕ(A) = 0, ϕ(~y) must be a fixed point of A and therefore lies
in Span(~y,~e). Since the set of ~y such that ~z ∧ ~y 6= 0 is dense, every ϕ(~y) lies in
Span(~y,~e).
We want to show that ϕ(~y) = 0 for all ~y. Consider A ∈ Sp(2g,R) such that
A~e = ~y, i.e. A1 = ~y. Consider ~z such that A~z does not belong to Span(~e, ~y). On
one hand
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ϕ(A~z) = ϕ(~y) +Aϕ(~z)
but also

ϕ(A~z) = λA~z + µ~e.

This implies that ϕ(~y) is a multiple of ~e, which holds for all ~y. But then
ϕ(A~y) = ϕ(A1) +Aϕ(~y) and therefore ϕ(~y) must be zero because ϕ(A~y) is also a
multiple of ~e.
When Bg 6= 0, one can still play the same game. Notice that the set of ~z such that
(A,~z) belongs to Hg is an affine subspace of tangent subspace Bg and we can still
define ϕ : Sp(2g,R) −→ R2g/Bg which vanishes on Ug. A similar argument left to
the reader gives that ϕ vanishes everywhere and therefore proves the proposition.

�

We deduce then from the lemma above that a subgroup of G which contains
Ugn{~0} = Stab(p) with p = (~x, ~u) is either Ugn{0}, UgnR~x, Ugn~x⊥, Sp(2g,R)n
{0} or Sp(2g,R) n R2g. For the sake of the exposition, we will denote in what
follows by H0 = A0 nB0 an arbitrary subgroup of the list for ~x = ~e.

4.3. Orbit closures classification. We are now set to classify the orbit closures
of the action of Γ on H1(Σ,C∗) = R2g × R2g/Z2g. We consider p̃ = (~x, ~u) ∈
R2g ×R2g representing a point p ∈ H1(Σ,C∗), and we make the extra assumption
that ~x 6= 0. In this case, we can apply Ratner’s theorem to p̃ = gU where
g : ~z 7→ C~z + ~u and C is such that its first column is ~x. For one of the subgroups
H0 = A0nB0 listed above, we have that Γp̃ = ΓgH0g

−1p̃ and that Γ∩gH0g
−1 is a

lattice in gH0g
−1 = Hg. The conjugation map H0 −→ Hg writes down explicitly

(M,~y) 7−→ (CMC−1, ~u− CMC−1~u+ C~y).

Therefore Ug = gUg−1 = Stab(~x) and Bg = C · B0. We now classify orbits
depending on whether Ag = Stab(~x) or Sp(2g,R).

1) If Ag = Stab(~x). Since Sp(2g,Z) must be a lattice in Ag (see Lemma 4.5), ~x
must belong to a rational line, i.e. there exists ~x′ ∈ Zn such that ~x = λ~x′ for a
constant λ > 0. This is equivalent to say that the absolute value of elements of
Im(p) is the (discrete) group spanned by eλ if ~x′ has been chosen primitive. In
this case four possibilities can occur:

• Bg = 0. In that case γp̃ = γp̃ which is equivalent to the fact that Im(p) is
a discrete subgroup of C∗.
• Bg = R~x. Since Ag = Stab(~x), the image in R2g × R2g of Hg · p is equal
to {~x} × {Stab(~x)~u + R~x} = {~x} × {~u + ~x⊥}. If ~u does not belong to
R~x, then Hg · p = {~x} × {~y | ~y ∧ ~x = ~u ∧ ~x} and thus Γ · p = Hλ,v where
v = ~u ∧ ~x modλ. If ~u ∈ R~x it implies that Im(p) is a discrete subgroup of
the form {enλ+n2iπµ | n ∈ Z} where µ is irrational.
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• Bg = ~x⊥ works the exact same way than the previous case, one remarks
that the projectionHg −→ H1(Σ,C∗) maps to {~x}×{~u+~x⊥} and therefore
the same conclusion holds.
• The last remaining subcase Bg = R2g cannot occur since we already proved
that the closure of the orbit of p must be contained in an invariant subset
of the type Hm,v.

So far we have classified all possible orbit closures of p in the case when the
image its modulus is a given discrete subgroup of R∗. Three situations can occur:

(1) p has discrete image and its image is isomorphic to Z × Z/nZ through
(k, k′) 7→ ekz0+ 2iπk′

n for a certain z0 ∈ C∗;
(2) its rotational part has not discrete image in U and in this case its orbit

closure is the set Hλ,v;

2) If Ag = Sp(2g,R). In this case, B0 is either {0} or R2g. One easily deduce
from the fact that Ag = Sp(2g,R) that the modulus of p has dense image in R∗+.
Using similar arguments to case 1), we find that:

(1) either the rotational part of p has finite image 〈e
2iπ
n 〉, in this case Im(p) =

R∗+ × 〈e
2iπ
n 〉 and the closure of the orbit of p is the set of elements whose

closure of the image is L × 〈e
2iπ
n 〉, where L is a one parameter subgroup

of C∗, of the form {etz0 | t ∈ R} for a certain z0 6= 0 ;
(2) or the rotational part of p has dense image in U, in this case Im(p) = C∗

and the closure of the orbit of p is the set of elements whose closure of the
image is C∗.

The latter case is actually the generic case relatively to the Lebesgue measure.

3) If the modulus of p is trivial, i.e. p is Euclidean. This case is the easiest.
We let the reader verify that a direct application of Ratner’s theorem to the
case R2g \ {0} = Sp(2g,R)/Stab(~e) for the Sp(2g,Z)-action gives the following
dichotomy:

(1) either Im(p) is a finite subgroup of U and in this case the orbit of p is
discrete and consist of the representations having the same image.

(2) or Im(p) is dense in U and in this case the closure of the orbit of p is the
set of Euclidean elements of H1(Σ,C∗).

5. The Torelli group action on PH1
α(Γ,C).

The kernel of the symplectic representation of Mod(Σ) is called the Torelli
group and is denoted by I(Σ). A remarkable fact is that the action of I(Σ)
stabilises globally the fibers of the bundle

χ(Γ,Aff(C)) −→ H1(Σ,C∗).
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For every parameter α ∈ H1(Σ,C∗), Stab(α) contains the Torelli group and the
Stab(α)-action induces a projective linear representation

τα : Stab(α) −→ Aut(Lα) ' PGL(2g − 2,C).
called the Chueshev representation. It was first introduced by Chueshev in [Chu90].

In [Gha16], we computed explicitly the action of a family of Dehn twists along
2g− 2 separating curves, which allowed us to prove the ergodicity of the Mod(Σ)
action. We analyse with more careful detail this action in order to describe the
closure of its image in PGL(2g − 2,C). We prove the following theorem whose
proof the whole Section is dedicated to.
Theorem 5.1. (1) If Im(α) is a non-trivial subgroup of R∗+, then rα(Stab(α))

is dense in PGL(2g − 2,R) ⊂ PGL(2g − 2,C) ' PGL(H1
α(Γ,C)).

(2) If Im(α) ⊂ U and is different from 〈exp(2iπ
n )〉 for n = 1, 2, 3, 4, 6, then

rα(Stab(α)) is dense in PU(g−1, g−1) ⊂ PGL(2g−2,C) ' PGL(H1
α(Γ,C)).

(3) If Im(α) is any other subgroup of C∗, then rα(Stab(α)) is dense in PGL(2g−
2,C) ⊂ PGL(H1

α(Γ,C)).
5.1. Remarkable elements of H1

α(Γ,C). Let δ ⊂ Σ be a separating simple
curve. For any α ∈ H1(Σ,C∗), we define µδ an element of H1

α(Γ,C) associated
to δ. Let p be the base point of π1Σ = Γ. We make the assumption that p ∈ δ.
Any class [γ] ∈ Γ can be represented by a closed curve γ based at p such that γ
intersects δ transversally and a finite number of time.
The curve δ separates Σ into two components Σ+ and Σ−. It can be decomposed
in a finite number of curves γ1, · · · , γk whose end points lie on δ such that for all
i ≤ k, γi is entirely contained in Σ+ or Σ−. Let βi a closed curve that one get
joining the end points of γi by a portion of δ. Remark that the homology class
of βi does not depend on the way we close γi because δ is separating and hence
homologically trivial. We set by definition

µδ(γ) = (−1)ε +
k∑
i=1

(−1)ε+i
∏
j≤i

α(βj)

This formula defines an element µδ of Z1
α(Γ,C) which is trivial in H1

α(Γ,C) if and
only if the restriction of α to either Σ+ or Σ− is trivial. This construction of µδ
can be extended to the case where δ is such that α(δ) = 1, but the construction
is slightly more involved. It is done in detail in [Gha16, Lemma 3.2]. We will use
this fact in a crucial way at the end of the section, see Lemma 5.4.

We give now a more conceptual construction of µδ. δ is a separating curve,
the two surfaces Σ+ and Σ− are therefore such that Σ+ ∩ Σ− = δ. The Mayer-
Vietoris exact sequence for the twisted cohomology of Σ associated to the partition
Σ = Σ+ ∪ Σ− is the following

0→ H0
α(Σ)→ H0

α(Σ+)⊕H0
α(Σ−)→ H0

α(δ)→ H1
α(Σ)→ H1

α(Σ+)⊕H1
α(Σ−)→ H1

α(δ)→ H2
α(Σ)→ · · ·
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If α is non-trivial restricted to both Σ+ and Σ−, the two first factors of the
sequence vanish. We are left with an injective morphism

H0
α(δ)→ H1

α(Σ)

whose image of the fundamental class of H0
α(δ) in H1

α(Σ) is µδ.

5.2. Fomula for the action of a Dehn twist.

Proposition 5.2. Let δ ⊂ Σ be a simple curve such that α(δ) = 1. For µδ as
above, the action of Tδ on H1

α(Γ,C) is a transvection of vector µδ. More precisely,
for any λ ∈ Z1

α(Γ,C),

Tδ · λ = λ+ λ(δ)µδ

Once again, the proof can be found in [Gha16], Lemma 3.2.

5.3. Genus two representations. The genus 2 is the model to be understood,
for it contains all the geometrical difficulty. We therefore make the assumption
that Σ has genus 2 for the remainder of this subsection. Depending on whether
α is totally real, unitary or generic the image of the Torelli group falls in three
distinct subgroups of PSL(2,C), respectively PSL(2,R), PU(1, 1) or PSL(2,C).
We aim at describing more precisely the image depending on α. We are going to
prove that except for a finite number of exceptions, the image of Stab(α) is dense
in the subgroup of PSL(2,C) in which it is obviously contained.

Lemma 5.3. (1) If α ∈ H1(Σ,C∗) has image a non-trivial subgroup of R∗.,
then the image of Stab(α) under the Chueshev representation has dense
image in PSL(2,R) ⊂ PSL(2,C) ' PGL(H1

α(Γ,C)).
(2) If α ∈ H1(Σ,C∗) has image a non-trivial subgroup of C∗ not contained

in U, then the image of Stab(α) under the Chueshev representation has
dense image in PSL(2,C) ' PGL(H1

α(Γ,C)).
(3) If α ∈ H1(Σ,C∗) has image a subgroup of U which is different from
〈exp(2iπ

n )〉 for n = 1, 2, 3, 4, 6, then the image of Stab(α) under the Chue-
shev representation has dense image in PU(1, 1) ⊂ PSL(2,C) ' PGL(H1

α(Γ,C)).
(4) If α ∈ H1(Σ,C∗) has image 〈exp(2iπ

n )〉 for n = 1, 2, 3, 4, 6, then the im-
age of Stab(α) under the Chueshev representation a discrete subgroup of
PU(1, 1) ⊂ PSL(2,C) ' PGL(H1

α(Γ,C)).

We dedicate the rest of the subsection to the proof of Lemma 5.3, which will
require examination of several cases. Most of them will be dealt with the calcu-
lation of the action of two particular Dehn twists along separating curves, as it
had previously been done in [Gha16].
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Action of two Dehn twists along separating curves. If the curves a and b
are such that both A = α(a) and B = α(b) are different from 1, we have proven
in [Gha16, Section 3.2] that the matrices of the two Dehn twists around the cuves
of Figure 4 are (

1 (1−A)(1−B)
0 1

)(
1 0

(1−A−1)(1−B−1) 1

)

Figure 2. Two separating curves.

When the product (2−A−A−1)(2−B−B−1) is strictly smaller than 1, these
two matrices generate a non-discrete, non-elementary subgroup of PSL(2,C), ac-
cording to Jorgensen’s lemma (see [Jør76]). Its closure is a non-elementary Lie
subgroup of PSL(2,C) and is either PSL(2,C) or PSL(2,R) (which is conjugated
to PU(1, 1)). Whether it is one or the other can be read in the fact that the trace
of the elements of the group generated by the two matrices are all real. Whenever
we are in one of the following cases

• Im(α) is dense in C∗,
• Im(α) is dense in R∗,
• Im(α) contains a subgroup dense in U,

we can find a configuration (up to the action of the mapping class group) for which
A and B satisfy the hypothesis required to apply Jorgensen’s lemma to find that
the closure of the image of the Torelli group in PGL(H1

α(Γ,C)) ' PSL(2,C) is
• the whole PGL(H1

α(Γ,C)) when Im(α) is dense in C∗;
• the stabiliser in PGL(H1

α(Γ,C)) of the projectivisation of the subset of
elements of H1

α(Γ,C) which are totally real when Im(α) is dense in R∗;
• either, if Im(α) is contained and dense in U, the projectivisation of the
group of isometries of the Euclidean volume form (which has signature
(1, 1)); or the whole PGL(H1

α(Γ,C)) when Im(α) is contains a subgroup
dense in U and Im(|α|) is a discrete subgroup of R∗+.

The last case can be refined. Since the only thing we need is to find A and B in
Im(α) such that (2−A−A−1)(2−B−B−1) < 1, the image of the Torelli group is
dense when Im(α) = 〈exp(2iπ

n 〉 for n 6= 1, 2, 3, 4, 6. This comes from the fact that
(2− exp(2ikπ

n − exp(2ikπ
n

−1) = 2(1− cos(2ikπ
n )) which can be strictly smaller than
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1 if and only if n is not in the list 1, 2, 3, 4, 6. In fact, when n belong to this list,
the image of Stab(α) by the Chueshev representation is discrete since it lies in
PGL(2,Z) if n = 1 or 2, PGL(2,Z[i]) if n = 4 and PGL(2,Z[ω]) if n = 3 or 6.We
also ask the question whether these images have finite index in the arithmetic
groups they are contained in.

Working out the remaining cases requires to also make use of elements of
Stab(α) which are not in the Torelli group. So far it is unknown if the image
of the Torelli group can be discrete when Im(α) is a discrete cyclic subgroup of
R∗.
When separating curves do not suffice. For some α such that Im(α) is a
discrete cyclic subgroup of R∗, any pair of Dehn twists as in the preceding para-
graph fail to generate a non-discrete group. To deal with this case, we are going
to appeal to elements of Stab(α) which do not belong to I(Σ). Assume that a is
a simple closed curve which belongs to Ker(δ). Then Ta the Dehn twist along a
belongs to Stab(α). Let δ be a separating curve such that δ and ν are respectively
the blue and red curves on Figure 3.

Figure 3. The curves a and δ.

Lemma 5.4. The group generated by the action of Tδ and a twist Ta with a ∈
Ker(α) and a ⊂ Σ+ generate a parabolic subgroup of PGL(H1

α(Γ,C)) whose ma-
trices in a base µδ, λ where λ is such that λ(δ) = 1 are(

1 1
0 1

)
,

(
1 1− α(b)
0 1

)
where b is a simple closed curve of Σ+ such that a ∧ b = 1.

Proof. This lemma is the consequence of two remarks:
• µδ and µa are equal. It suffices to compute their values on an appropriate
basis, and from the fact that α(a) = 1 follows the equality.
• Choosing appropriate lifts ã, b̃ and δ̃ to π1Σ, we have δ̃ = [ã, b̃]. Then for
any λ ∈ Z1

α(Γ,C), λ(δ̃) = (1−α(b))λ(ã)− (1−α(a))λ(b̃) = (1−α(b))λ(ã).
We deduce the lemma from Proposition 5.2. �
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The important corollary of this lemma is that if Im(|α|) has discrete non-trivial
image in R∗+, rα(Stab(α)) has dense image in PGLR(H1

α(Γ,C)) ' PGL(2,R) if
Im(α) ⊂ R∗.

5.4. Arbitrary genus. In this subsection, we do complete the proof of Theorem
5.1. The idea to deal with arbitrary genus is to see that embedded genus two sur-
faces give rise to copies of PGL(2,R),PGL(2,C) or PU(1, 1) in PGL(H1

α(Γ,C)) '
PGL(2g − 2,C) (depending on whether α is totally real, unitary or generic) and
that those many embeddings allow to generate the whole PGL(2g−2,R),PGL(2g−
2,C) or PU(g − 1, g − 1), still depending on the nature of α (except for the finite
number of exceptional unitary cases). To this purpose we will need a lemma of
representation of Lie groups that we expose in the next paragraph.

Lemma 5.5. Let G < SL(n,C) be an irreducible connected semi-simple Lie group
containing a copy of SL(2,C) preserving a decomposition C2 ⊕ Cn−2, acting nat-
urally on C2 and fixing Cn−2. Then G = SL(n,C) or Sp(n,C).

Its proof can be found in [BH89, Proposition 6.4, p345]. It is actually stated in
a more general form in the article and the version we present is a specialisation
of their statement for c = +1. We will also need the two following geometric
lemmas:

Lemma 5.6. For any α ∈ H1(Σ,C∗), rα(Stab(α)) ⊂ GL(H1
α(Γ,C)) acts irre-

ducibly on H1
α(Γ,C).

Proof. Let V a strict subvector space of H1
α(Γ,C). There exists a free homotopy

class δ of null-homologous curves, non trivial homotopically such that:
• ∃ϕ ∈ V such that ϕ([δ]) 6= 0;
• µδ (see Section 5.1) does not belong to V .

Tδ carries ϕ outside V since Tδ · ϕ = ϕ + ϕ([δ])µδ. This implies that no strict
subvector space of H1

α(Γ,C) is Stab(α)-invariant. �

Lemma 5.7. (1) If Im(α) ⊂ U and is different from 〈exp(2iπ
n )〉 for n =

1, 2, 3, 4, 6, then the closure of rα(Stab(α)) ⊂ PGL(H1
α(Γ,C)) ' PGL(2g−

2,C) contains a copy of PU(1, 1) whose lift to GL(2g − 2,C) preserves a
decomposition C2⊕C2g−4, acting as U(1, 1) on the C2 factor and trivially
on the other.

(2) If Im(α) ⊂ R and α is not unitary, then the closure of rα(Stab(α)) ⊂
PGL(H1

α(Γ,C)) ' PGL(2g− 2,C) contains a copy of PSL(2,R) whose lift
to GL(2g−2,C) preserves a decomposition C2⊕C2g−4, acting as SL(2,R)
on the C2 factor and trivially on the other.

(3) If Im(α) is any other subgroup of C∗, then the closure of rα(Stab(α)) ⊂
PGL(H1

α(Γ,C)) ' PGL(2g− 2,C) contains a copy of PSL(2,C) whose lift
to GL(2g−2,C) preserves a decomposition C2⊕C2g−4, acting as SL(2,C)
on the C2 factor and trivially on the other.
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Proof. The strategy is to choose an appropriate couple of Dehn twists whose
action generate the wanted subgroup. For a generic α, a couple of curves δ and ν
like in the figure below will do the trick.

Figure 4. Two Dehn twists along the curves δ and ν.

The evil cases are when we cannot choose a and b such that (2−A−A−1)(2−B−
B−1) > 1, where A = α(a) and B = α(B), see subsection 5.3. These corresponds
to cases such that either

• α is unitary with image 〈exp(2iπ
n )〉 for n = 1, 2, 3, 4, 6;

• Im(|α|) is discrete.
There is nothing that can be done in the first case, for we have seen that when

Im(α) = 〈exp(2iπ
n )〉 for n = 1, 2, 3, 4, 6 the image of the Stab(α) representation we

are considering is a discrete subgroup of PGL(H1
α(Γ,C)).

In the second case, the trick we used in the genus 2 case can be recycled: using
Dehn twists along simple closed curves of Ker(α) (see paragraph 5.3).

Except for the unitary exceptional cases, this leads to generating a dense sub-
group in U(1, 1), SL(2,R) or SL(2,C) preserving the plane generated by µδ and
µν . One can easily find a set of curves (ηi)1≤i≤2g−4 such that

• the ηi’s are homologically trivial;
• the ηi’s are all disjoint from δ and ν;
• the µδi complete µδ and µν in a basis of H1

α(Γ,C).
The subspace generated by the ηi’s is therefore fixed by the action of the sub-

group we have constructed and this finishes the proof of the lemma. �

We are now ready to complete the proof of Theorem 5.1. LetG be the connected
component of the closure of the image of Stab(α) in PGL(H1

α(Γ,C)) ' PGL(2g−
2,C); it is a real Lie subgroup of PGL(2g−2,C). We prove the theorem depending
on whether α is unitary, real or generic.

(1) α is generic
Consider the subgroup generated by couples of Dehn twists like in the
proof of Lemma 5.7. The closure of such a subgroup belongs to G and
the latter therefore satisfies the conclusion of Lemma 5.7, and is also a
connected complex Lie subgroup. Also Lemma 5.6 ensures that the action
of (a lift of) G on Cn is irreducible. Lemma 5.5 implies that G′ is therefore
the whole PGL(2g−2,C), since G does not preserve any symplectic form.
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(2) α is totally real and not unitary
By complexifying, we are going to be reduced to the previous case. If

G was a strict subgroup of PGL(2g−2,R), GC its complexification sitting
in PGL(2g − 2,C) would also be a strict subgroup. But then (a lift of)
GC enjoys the following properties:
• its action is irreducible;
• it contains a copy of SL(2,C) stabilising a projective line.

The reasoning of the previous case therefore applies and we can conclude
that G is the whole SL(2g − 2,R).

(3) α is unitary and not exceptional
SU(g−1, g−1) is an other real form of SL(2g−2,C), the complexification
operation carried out in the totally real case generalises and we are able
to conclude that G is the whole PU(g − 1, g − 1).

6. Geometrising representations.

Consider ρ : Γ −→ Aff(C) a representation and denote by α ∈ H1(Σ,C∗) its
linear part. We are going to deal with the question of whether ρ is the holonomy of
a branched affine structure depending on the orbit of α under the Mod(Σ)-action,
which has been studied in Section 4. We indicate how we are going to proceed:
first we deal with the linear parts and prove that every linear character α ∈
H1(Σ,C∗) is realised as the linear part of the holonomy of a branched structure.
Then we remark that for a given character α ∈ H1(Σ,C∗), the set of geometric
elements(that is, realised by a branched affine structure) of P(H1

α(Γ,C)) is open
and invariant by the action Stab(α). This remark, together with the explicit
description of the closure of the image of Stab(α) in PGL(H1

α(Γ,C)) obtained in
the previous section, will allow us to deal with almost all cases. The remaining one,
namely when Im(α) is unitary and finite of order 2, 3, 4 or 6, will be dealt with in
a more geometric way, giving explicit models realising admissible representations
by means of simple surgeries on translation surfaces. We prove the following
theorem:

Theorem 6.1. Let ρ : Γ −→ Aff(C) be a non-abelian representation.
• If ρ is not Euclidean, then it is the holonomy of a branched affine structure.
• If ρ is Euclidean, it is the holonomy of a branched affine structure if and
only if its volume is positive.

6.1. Abelian representations. We say a word about Abelian representations
which have already essentially been dealt with by Haupt. Actually, Haupt only
handles the case where the representations are translations. But since a affine
structure whose holonomy is Abelian is either a translation surface or the expo-
nential of a translation surface, the general case of Abelian surface can easily been
deduced from Haupt theorem.

Proposition 6.2. Assume that (Σ,A) is a branched affine surface whose ho-
lonomy is abelian, and that Σ is not a translation surface (assumption which is



22 SELIM GHAZOUANI

equivalent to the statement that the image of the holonomy falls in the subgroup of
transformation fixing a given point in C). Then there exists a translation structure
T on Σ such that A = exp(T ).

Proof. Suppose f is a developing map of A for which the corresponding holonomy
fixes 0 ∈ C. Then ω = df

f defines a meromorphic differential on the underlying
Riemann surface. The poles of ω are exactly at the points at which f cancels
and its residue at such a point is the order at which f cancels at this point. The
residue formulae implies that the sum of the residues must equal 0, which implies
that there are no poles (in particular f does not cancels). Thus ω is holomorphic
and defines a translation structure T on Σ whose exponential if A, for ω = df

f is
the differential of (the locally well-defined) logarithm of f .

6.2. Linear parts. The set of linear parts which are not geometric is a closed
Mod(Σ)-invariant subset of H1(Σ,C∗). It is in particular the union of the orbit
closures of the elements it contains. Based on this remark we are going to prove
the

Proposition 6.3. Every element in H1(Σ,C∗) is the linear part of a branched
affine structure.

Proof. To prove the proposition, we are going to prove that each possible orbit
closure of the Mod(Σ)-action contains a least one element which is realised by
a branched affine structure (which is sufficient since the set of geometric linear
holonomies is open). This task will be made easy by the fact that these orbit
closure are almost all characterised by the (closure of the) image of their elements,
and we therefore distinguish cases depending on the closure of Im(α) ⊂ C∗.

(1) Im(α) is unitary. We perform the ’adding a handle’ surgery on a trans-
lation surface of genus g − 1 along two segments of same length. Assume
that the angle in between the two segment is θ. Then the image of the
linear part of the new surface of genus g has image 〈eiθ〉. We realise this
way elements of the closure of the orbit of any unitary representation.

(2) Im(α) is not unitary. In that case there exists a translation structure T
on Σ such that exp(T ) has linear holonomy α. That can easily be deduced
from the following fact. Let a and b are arbitrary non zero complex num-
bers which generate a non unitary subgroup of C∗. There exists a′ and b′
such that a = exp(a′) and b = exp(b′), and (a, b) form an oriented basis
of Cas a R-vector space. If a1, b1, · · · , ag, bg is a suitable symplectic basis
of H1(Σ,Z), applying the last fact to the g couples (α(ai), α(bi)) leads to
construct α′ : H1(Σ,Z) −→ C satisfying the hypothesis of Haupt’s theo-
rem and such that exp(α′) = α). Geometrising α′ by means of Haupt’s
theorem and exponentiating leads to geometrising α. Note that the full
holonomy of the structure is abelian and agrees with α.

�



23

Remark. Based on Proposition 3.3 it is easy to prove that every strictly affine
representation is geometric. For every non unitary α : Γ −→ C∗ there exists a
translation structure on Σ whose exponential has holonomy α. This α represents
the point 0 in H1

α(Γ,C) and by Proposition 3.3 the set of geometric representations
of linear holonomy α is an open set containing 0, its projection to P(H1

α(Γ,C)) is
therefore onto.
This trick does not work with euclidean representations since the only abelian geo-
metric and unitary representation have trivial linear holonomy; it is a consequence
of Proposition 6.2 and Haupt’s theorem (Theorem 1.1). That is for geometrising
these representations that the mapping class group dynamics point of view is effi-
cient.

6.3. A tiny bit of linear algebra. We classify the orbits of the respective
actions of PGL(2g − 2,R) and PU(g − 1, g − 1) on CP2g−3.

Proposition 6.4. • If g = 2, the action of PGL(2g− 2,R) = PSL(2,R) on
CP1 has three orbits: the real line, the upper half plane and the lower half
plane.
• If g ≤ 3, the PGL(2g − 2,R) -action on CP2g−3 has exactly two orbits:
the set of real lines and its complement.
• The action of PU(g − 1, g − 1) has exactly three orbits on CP2g−3: the
sets of line which are positive, null and negative for the hermitian form
preserved by U(g − 1, g − 1).

We leave to the reader the proof of this elementary proposition.

6.4. Strictly affine representations. We are now set to prove that every strictly
affine representation is the holonomy of a branched affine structure. Recall that
if α ∈ H1(Σ,C∗) is strictly affine(meaning that |α| is non-trivial):

• the set of representations ρ : Γ −→ Aff(C) whose linear part is α and which
are not abelian, up to the action by conjugation of Aff(C) is parametrised
by the projectivised space P(H1

α(Γ,C));
• the image of the action of Stab(α) on P(H1

α(Γ,C)) is dense in either
PGL(2g − 2,R) or PGL(2g − 2,C) depending on whether Im(α) is in-
cluded in R∗ or not;
• the subset of P(H1

α(Γ,C)) that parametrises geometric representations is
open, empty and Stab(α)-invariant.

The set of non-realisable representations is therefore a closed subset, invari-
ant by the action of Stab(α). According to Proposition 6.4, such a set is either
the whole P(H1

α(Γ,C)), or the set of totally real representations(only in the case
where α is real). It cannot be the whole P(H1

α(Γ,C)) because its complement
is non-empty. We now show that if α is real, the set of totally real repre-
sentations contains geometric representations. In subsection 6.1, we show that
the abelian representation defined by α is realised by an affine structure. The
Ehresman-Thurston argument implies that there is an open set containing α in
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Hom(Γ,Aff(C)) which is realised by affine branched structure. Such an open set
must contain non abelian, totally real representation whose linear part is α. We
have proven the

Proposition 6.5. If ρ is a strictly affine representation, then it is the holonomy
of a branched affine structure.

6.5. Euclidean representations. If almost all cases of Euclidean representa-
tions can be dealt with using the Stab(α) < Mod(Σ), few exceptional cases need
a specific treatment. We will make the distinction between the case where Im(α)
is 〈exp(2iπ

n )〉 for n = 1, 2, 3, 4, 6(exceptional cases) and the other cases (generic
cases).

6.5.1. Generic case. In the case where α is generic, we have seen that (Theorem
5.1) Stab(α) < Mod(Σ) acts on P(H1

α(Γ,C)) through a subgroup dense in PU(g−
1, g − 1). Since PU(g − 1, g − 1) acts transitively on the set of representations
of positive volume (thought of as as subset of P(H1

α(Γ,C))), any representation
of positive volume whose linear part is generic is realised by a branched affine
structure.

6.5.2. Explicit realisation of the exceptional cases. When Im(α) is generated by
−1, i, ω3 = exp(2iπ

3 ) or ω6 = exp( iπ3 ), the image of Stab(α) is discrete in
PGL(H1

α(Γ,C)) and the arguments used to deal with every other cases cannot
be applied to determine the elements in H1

α(Γ,C) that can be realised by a geo-
metric structure. We first prove a lemma giving a normal form for representations
whose linear part is finite.

Lemma 6.6. Let ρ : Γ −→ Aff(C) be a representation such that Im(α) is finite
of order n, where α is the linear part of ρ. Then there exists a generating set
{A1, B1, · · · , Ag, Bg} of Γ = π1Σ with

∏g
i=1 [Ai, Bi] = 1 such that

• {A1, B1, · · · , Ag, Bg} projects to a symplectic basis of H1(Σ,Z);
• ρ(A1) = z 7→ e

2iπ
n z + k;

• ρ(B1) = z 7→ z;
• for all i > 1, ρ(Ai) and ρ(Bi) are translations.

Proof. The proof is elementary. Since α has a finite image, we can find a symplec-
tic basis a1, b1, · · · , ag, bg of H1(Σ,Z) for which α(a1) = e

2iπ
n and α(b1) = α(a2) =

· · · = α(bg) = 1. The basis a1, b1, · · · , ag, bg can be lifted to {A1, B1, · · · , Ag, Bg} a
generating set of π1Σ such that [A1, B1]−1 =

∏g
i=2 [Ag, Bg]. Since for i > 2, ρ(Ai)

is a translation, ρ(
∏g
i=2 [Ag, Bg]) =

∏g
i=2 [ρ(Ag), ρ(Bg)] must be trivial, hence

ρ(A1) and ρ(B1) must commute. But since ρ(A1) is a non-trivial rotation and
ρ(B1) is a translation, ρ(B1) must be trivial. Which proves the lemma.

�

We now explain the strategy we are going to follow. For the remainder of
the section, ρ is a Euclidean representation whose linear part has finite image
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and positive volume. From the normal form of the representation we deduce
an Abelian representation made of translation on a surface Σ′ of genus g − 1
which factors through p : H1(Σ′,Z) −→ C. If we can find a translation structure
on Σ′ whose period morphism is p, we can geometrise ρ: it is enough to apply
the surgery presented in Section 2.3.2 (the ’adding a handle’ surgery) to the
translation structure along two segments forming an angle of 2iπ

n to get a surface
whose holonomy is (up to conjugation) ρ.

According to Lemma 6.6, ρ splits into two representations of the fundamental
group of a surface of genus g − 1 and of a torus. The image of the representation
induced on the torus has volume zero because its image is cyclic. The volume
of ρ is therefore equal to the volume of p ∈ H1(Σ′,C) induced on Σ′ of genus
g − 1, hence the volume of p is positive. If p can be realised by a translation
surface, we can realise ρ as we previously explained. Recall Haupt’s theorem that
characterises periods which can be realised by a translation surface:

Theorem 6.7 (Haupt, [Hau20]). Let ω ∈ H1(Σ,C). It can be realised as the period
morphism of a translation surface if and only if the two following conditions hold:

(1) the volume of ω is positive;
(2) if the image of ω is a lattice Λ in C, then vol(ω) > vol(C/Λ).

Since p has positive volume ρ can be realised unless it has discrete image in C
and violates the second condition of Haupt’s theorem. In the latter case, we can
suppose that its image is Z ⊕ iZ up to an affine renormalisation. Our strategy
at this point is to put ρ in a form which will allow us to realise it starting from
the flat torus C/Z ⊕ iZ and performing successive ’adding a handle surgeries’.
According to [CDF, Proposition 2.7], it must have volume 1 and one can find a
symplectic basis of Σ′, call it a′2, b′2, · · · , a′g, b′g such that p(a′g) = 1, p(b′g) = 1 and
p(a′i) = p(b′i) = 0 for 1 < i < g. We deduce from this remark that there exists a
presentation of Γ = {A′1, B′1, · · · , A′g, B′g |

∏g
i=1 [A′g, B′g]} such that :

• ρ(A′1) = z 7→ exp(2iπ
n )z;

• ρ(B′1) = z 7→ z;
• ρ(A′i) = ρ(B′i) = z 7→ z for 1 < i < g;
• ρ(A′g) = z 7→ z + 1;
• ρ(B′g) = z 7→ z + i.

By applying appropriate Dehn twists in the subsurface of genus g− 1 with one
boundary component whose fundamental group is generated byA′1, B′1, · · · , A′g−1, B

′
g−1

we easily deduce a presentation Γ = {A′′1, B′′1 , · · · , A′′g , B′′g |
∏g
i=1 [A′′g , B′′g ]} such

that:
• ρ(A′i) = z 7→ exp(2iπ

n )z for 1 ≤ i < g;
• ρ(B′i) = z 7→ z for 1 ≤ i < g;
• ρ(A′g) = z 7→ z + 1;
• ρ(B′g) = z 7→ z + i.
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Such a representation is easily realised by starting from the torus C/Z⊕ iZ and
realising g − 1 successive ’adding a handle’ surgeries.
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