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Abstract

We prove that in genus greater than 2, the mapping class group action on
Aff(C)-characters is ergodic. This implies that almost every representation
π1S −→ Aff(C) is the holonomy of a branched affine structure on S, when
S is a closed orientable surface of genus g ≥ 2.
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Introduction
Let Γ be the fundamental group of a compact orientable surface S of genus

g ≥ 2. If G is a finite dimensional reductive Lie group (typically G = PSL(2,R)
or SU(2)), one can look at the character variety χ(Γ, G) which is defined to be the
quotient Hom(Γ, G)//G, in the sense of geometric invariant theory. The mapping
class group of S acts on χ(Γ, G) by precomposition, the study of this action was
popularized by Goldman in the early 80’s. The most classical result in the field, by
Goldman, is that the action is ergodic for G = SU(2) (see [Gol97]). This result was
extended to the case where G is compact by Pickrell and Xia, see [PX02]. In this
paper we study the case G = Aff(C) = {z 7→ az+b | (a, b) ∈ C∗×C}. Since Aff(C)
is solvable, the tools from symplectic geometry developed in the reductive case do
not apply in our setting. Worst, the character variety is not defined, at least in the
sense of geometric invariant theory. This very last point can be solved by defining
χ(Γ,Aff(C)) to be the quotient of Hom(Γ,Aff(C)) \ {abelian representations} by
the action of G by conjugation (see Section 1).

χ(Γ,Aff(C)) has a structure of fiber bundle. It comes from the isomorphism
Aff(C) ' C∗ n C, a representation ρ : Γ −→ Aff(C) is the data of a linear part
α : Γ −→ C∗ and a translation part λ : Γ −→ C (ρ = (α, λ) ∈ C∗ n C) , where
α is a group homomorphism and λ is a cocyle relation twisted by α. A point in
the quotient space will be parametrized by an element in H1(S,C∗) ' (C∗)2g (the
linear part) and an element in the projectivized space of H1

α(Γ,C∗) ' CP2g−3 (the
translation part), and this parametrization gives the fiber bundle structure.

In the case where G = C (the simplest non reductive case), the character
variety is H1(S,C) ' C2g. The action of the mapping class group on H1(S,C)
(which happen to be the linear action of Sp(2g,Z) on C2g) has an invariant non
constant continuous function, ω 7−→ ω ∧ ω ∈ H1(S,R) ' R. Hence this action is
not ergodic. (A careful study of this action has been carried on by M.Kapovich in
[Kap]). The main result of our paper is

Theorem 1. The mapping class group action on χ(Γ,Aff(C)) is ergodic.

The mapping class group action preserves this fiber bundle structure, and to
prove the theorem we first prove that the induced action on the base is ergodic.
Then we observe that the Torelli group stabilizes globally the fibers, and we prove
that its action is ergodic in almost every fiber.

• The action on H1(S,C∗) is actually the linear diagonal action of Sp(2g,Z)
on R2g × (R/Z)2g. An application of Fourier analysis combined to Moore’s
theorem gives the ergodicity.

• The Torelli group I(S) acts preserving the fibers of the fibrations, namely
the projectivized spaces of the twisted cohomology group H1

α(Γ,C). This
action happens to be projective an one gets a nice family of representations
of the Torelli group :

τα : I(S) −→ PGL(2g − 2,C)

In Section 3, we provide an explicit computation of the action of a family
of Dehn twists along separating curves on PH1

α(Γ,C). We deduce from this
computation that for almost all α, this action is ergodic.
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Those two last points together imply the main theorem. A remarkable consequence
of the computation is that the mapping class group preserves no symplectic form.
Actually it preserves no absolutely continuous measure relatively to the Lebesgue
measure, which contrasts with the case where G is reductive, where we have such
a symplectic form at hand, by the Goldman’s work (see [Gol84]).
Our original motivation was the study of the holonomy of branched affine struc-
tures. A direct corollary is that the set of representation arising as the holonomy
of such a structure is an open set of full measure of the character variety.

Acknowledgements. I would like to thank particularly Julien Marché for care-
fully explaining me twisted cohomology, Louis Funar for pointing out that the
representations of the Torelli group I am considering were originally due to Chue-
shev, and Serge Cantat for asking me the question that lead to this paper. I also
thank Luc Pirio for helpful discussions and useful comments on the text. I am
extremely grateful to my advisor Bertrand Deroin who convinced me to get in-
volved in mapping class group dynamics. His constant encouragements, advices
and careful reading of this text made his contribution to this work invaluable to
me. Finally, I would like to thank the DMA at École Normale Supérieure which
gave me wonderful working conditions.
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We introduce notations that will be used all along the paper :

• S is a compact connected oriented surface of genus g ≥ 2.

• Γ is the fundamental group of the surface S.

• Aff(C) is the group of complex affine transformations of the complex line.

• Mod(S) is the mapping class group of S.

1. Action of the mapping class group on the character vari-
ety.

1.1. Structure of the character variety.

Let us recall the standard presentation for Γ :

Γ = 〈a1, b1, · · · , ag, bg |
g∏
i=1

[ai, bi] = 1〉

Let ρ : Γ −→ Aff(C) be a group homomorphism. If we note ρ(ai) = Aiz + Ui and
ρ(bi) = Biz + Vi, the following holds :

g∑
i=1

(Ai − 1)Vi + (1−Bi)Ui = 0.

Conversely, every set (Ai, Ui, Bi, Vi) ∈ C∗ × C × C∗ × C verifying the equation
above defines a representation of Γ in Aff(C). Thus Hom(Γ,Aff(C)) can be seen
has an algebraic variety.
The quotient Hom(Γ,Aff(C)) by the action by conjugation of Aff(C) is not Hauss-
dorf. Nevertheless, the orbits responsible for this correspond to the degenerate
case where the representations are abelian. Removing these ones, one gets a nice
quotient.

Definition 2. The character variety χ(Γ,Aff(C)) is defined to be the quotient of
Hom(Γ,Aff(C))\{abelian representations} by the action by conjugation of Aff(C).

Let ρ ∈ Hom(Γ,Aff(C)) be a representation, one can look at its linear part
(obtained from ρ just by post composing by the natural group homomorphism
C∗ nC −→ C∗). This allows us to define :

l : Hom(Γ,Aff(C)) −→ Hom(Γ,C) = Hom(H1(S,Z),C)

which factors through χ(Γ,Aff(C)), because two conjugate representations have
the same linear part.

Proposition 3. The map L : χ(Γ,Aff(C)) −→ H1(S,C∗) is a projective fibration
with fiber CP2g−3.

Proof. The map l restricted to Hom(Γ,Aff(C)) \ l−1({Id}) is a vector bundle with
fiber C3. Furthermore, l−1({α}) = Z1

α(Γ,C) where

Z1
α(Γ,C) = {λ : Γ −→ C | ∀γ, γ′ ∈ Γ λ(γ · γ′) = λ(γ) + α(γ)λ(γ′)}
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The vector space Z1
α(Γ,C) is the set of cochains of the cohomology of Γ twisted by

α. The action of Aff(C) by conjuguation stabilizes the fibers l−1({α}) = Z1
α(Γ,C).

Let ρ := z 7→ az+b and λ ∈ Z1
α(Γ,C). We have ρ·λ = b(1−α)+aλ, so the quotient

of Z1
α(Γ,C) by the action of Aff(C) is the projective space of Z1

α(Γ,C)/C ·(1−α) =
H1
α(Γ,C). Twisted homology theory (see [Hat02], p.327) ensures that as soon as

α 6= Id, dimC H1(Γ,C) = 2g − 2, so the fiber is isomorphic to CP2g−3.

From now on, χ will be the variety of Aff(C)-characters.

Let H is a subgroup of C∗. We define

χH = {ρ ∈ χ | Im(L(ρ)) ⊂ H}

One will say that a representation ρ is

1. unitary (or euclidean) if it belongs to χU.

2. real if it belongs to χR∗.

3. almost real if there exists a subgroup of finite index Γ′ in Γ such that
L(ρ)(Γ′) ⊂ R∗.

4. abelian is the image of ρ is an abelian subgroup of Aff(C).

5. strictly affine in any other case.

1.2. The Mod(S) action.

The mapping class group of a closed surface S is classically defined as

Mod(S) = Homeo+(S)/Homeo0(S)

Any element of Mod(S) defines an element of Out(Γ) = Aut(Γ)/Inn(Γ). By a
theorem of Dehn-Nielsen-Baer

Mod(S) ' Out+(Γ)

where Out+(Γ) is the subgroup of elements in Out(Γ) preserving the fundamental
class in H2(Γ ' π1S,Z).

Notice now that any element of Aut(Γ) acts on Hom(Γ,Aff(C)) by precom-
position. This action induces an action of Out(Γ) on the character variety. An
important remark which will be detailed later is that this action preserves the fiber
bundle structure described in the previous section.

Proposition 4. 1. Let H be a subgroup of C∗. Then the Mod(S)-action pre-
serves χH .

2. The Mod(S)-action preserves the set of almost-real representations.

3. The Mod(S)-action preserves the set of strictly affine representations.
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Remark This action preserves no measure a priori. Still χ is a differentiable
manifold and even tough the Lebesgue measure is not canonically defined, it makes
sense to say that a subset A has measure zero (just say that is Lebesgue measure
in any chart is zero). In a more general setting, an action by diffeomorphisms on
a manifold will be said to be ergodic if any invariant subset has zero measure or
full measure in the sense defined previously.

1.3. The symplectic representation.

The mapping class group acts naturally on H1(S,Z), preserving the symplectic
intersection form. Up to the choice of a symplectic basis of H1(S,Z), one gets a
linear representation of Mod(S) in Sp(2g,Z) :

Ψ : Mod(S) −→ Sp(2g,Z).

Let us denote by I(S) the kernel of this representation. This group is usually called
the Torelli group. It is the subgroup of Mod(S) acting trivially on the homology
of S.

Theorem 5. The image of the symplectic representation is Sp(2g,Z).

This theorem was originally proved by Poincaré. A modern proof of this theorem
can be found in [FM12].
This way Mod(S) acts on Hom(H1(S,Z),C∗) by precomposition by the image of
the symplectic representation. This means that for f ∈ Mod(S), the following
diagram commutes :

χ

L
��

f // χ

L
��

H1(S,C∗)
Ψ(f)

// H1(S,C∗)

1.4. The Torelli group action on the fibers.

Proposition 6. The Torelli group I(S) preserves the fibers of L, and acts on them
by projective transformations.

Proof. Let f be an automorphism whose class in Mod(S) belongs to I(S). f acts
linearly on Z1

α(Γ,C), preserving the line generated by 1 − α. Thus f defines a
linear automorphism H1

α(S,C), and so a projective transformation of PH1
α(S,C).

2. Ergodicity of the Sp(2g,Z)-action on (C∗)2g.
The choice of a symplectic basis a1, b1, ..., ag, bg of H1(S,Z) identifies H1(S,C∗)

and (C∗)2g via the map

α −→ (α(a1), α(b1), ..., α(ag), α(bg))

The exponential map identifies H1
α(S,C) ' (C∗)2g with T2g×R2g in such a way that

the Sp(2g,Z)-action on H1
α(S,C) the diagonal action by linear transformations on

T2g × R2g. Let us recall the following theorem :
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Proposition 7. The Sp(2g,Z)-action on R2g is ergodic.

It is a corollary of Moore’s theorem, which states that if Γ is a lattice in a
semi-simple Lie group G and H is a closed non-compact subgroup of G, then the
Γ-action on G/H is ergodic. The original proof of this theorem can be found in
[Moo66].

Proposition 8. The Sp(2g,Z)-action on (C∗)2g is ergodic with respect to the
Lebesgue measure.

Proof. A point in T2g × R2g will be identified by the coordinates (θ, x). Let A be
a mesurable Sp(2g,Z)-invariant set. Let us write the Fourier expansion of ϕA, the
characteristic function of A :

ϕA(θ, x) =
∑
p∈Z2g

ap(x)e2iπ〈p,θ〉

Since ϕA is Sp(2g,Z)-invariant, one has

∀γ ∈ Sp(2g,Z), ∀x ∈ R2g ∀p ∈ Z2g atγp(x) = ap(γx)

LetB(z, n) = {x ∈ R2g | z appears in the Fourier expansion of ϕA(x, ·) with multiplicity n}
The B(z, n) are measurable Sp(2g,Z)-invariant sets, so they are either of full mea-
sure or of measure zero, because the Sp(2g,Z)-action on R2g is ergodic. Moreover,
the number of couples (z, n) such that |z| > δ for some fixed δ and B(z, n) is of
full measure is finite . So the number of couples (z, n) such that B(z, n) is of full
measure is at most countable. The intersection of all these B(z, n) is still of full
measure and on this set E the set of Fourier coefficients(counted with multiplicity)
of ϕA is constant. Let a ∈ C non zero such that a is one of the coefficient of the
Fourier expansion of ϕA at x ∈ E appearing n times. One defines the map :

Ta : E −→ P(Z2g)

which associates to x the set of points p such that ap(x) = a.
As the image of Ta is included in the set of finite subsets of Z2g (which is countable)
and since a 6= 0, there exists a subset K ⊂ P(Z2g) such that D = T−1(K) has
positive measure. Let us assume that K is different from {0}. Then Stab(K) ⊂
Sp(2g,Z) stabilizes the subvector space generated by K in R2g. If V is comple-
mentary to W , Stab(K) stabilizes the fibers of the fibration V ⊕W −→ W .
If V 6= R2g, Fubini’s theorem ensures that there exists a partition ofW = W1

∐
W2

such that both D1 = (W1×V )∩D and D2 = (W2×V )∩D have positive measure.
Moreover, both are Stab(K)-invariant. Let γ ∈ Sp(2g,Z), γ(D1) and γ(D2) are
γStab(K)γ−1-invariant. If γ1 and γ2 are such that γ1Stab(K)γ−1

1 = γ2Stab(K)γ−1
2

then γ1(D1) = γ2(D1) and γ1(D2) = γ2(D2). The sets
⋃
γ∈Sp(2g,Z) γ(D1) and⋃

γ∈Sp(2g,Z) γ(D2) form a non trivial Sp(2g,Z)-invariant partition of R2g which is
impossible because this action is ergodic. If K generates R2g, Stab(K) is a finite
group. Then K is conjugated in Gl2g(R) to a subgroup of isometries for any scalar
product, and so preserves a fibration in spheres, which is impossible by a similar
argument. We have then proved that for all p ∈ Z2g non zero and for almost all x,
ap(x) = 0. So ϕA only depends on x, and as the Sp(2g,Z)-action is ergodic on R2g,
ϕA is constant almost everywhere. Hence Sp(2g,Z) acts ergodically on (C∗)2g.

7



3. The Torelli group action on PH1
α(Γ,C) .

Let us fix once and for all a point p ∈ S in such a way that we identify
π1(S, p) and Γ. Any diffeomorphism f of S fixing the point p defines canonically
an automorphism of Γ whose class in Out(Γ) is the class of f ∗ in Mod(S).

3.1. Action of a Dehn twist on H1
α(Γ,C)

Proposition 9. Any Dehn twist along a separating curve belongs to I(S).

Proof. If Tδ is the Dehn twist along a simple curve δ then its action on homology
is

Tδ · a = a+ i(a, δ) · [δ]

where i is the algebraic intersection form. If δ is separating, then [δ] = 0 and then
Tδ’s action on homology is trivial. Hence Tδ belong to I(S).

We now explain how one can make an effective calculation of the action of a Dehn
twist along a separating curve.

Lemma 10. Let δ be a separating curve in S such that p /∈ δ, and [δ] ∈ π1(S, p) be
a representative of δ’s free homotopy class. Then there exists µ ∈ Z1

α(π1(S, p),C)
such that for all γ ∈ π1(S, p) and λ ∈ Z1

α(π1(S, p),C)

λ(Tδ(γ)) = µ(γ)λ([δ]) + λ(γ)

Proof. Let p ∈ S be the base point of π1S in such a way that all the closed curves
we will look at will be based at p, except if it is explicitly mentioned. Let δ be a
simple separating closed curve in S such that an embedded annulus around δ does
not contains p. Such a curve exists in any free homotopy class of a simple closed
curve. Let Tδ be the Dehn twist along δ. Let [γ] be a class in π1S and γ ∈ [γ]
such that the number of intersection of γ with δ is minimal. Let q1, ..., qk be the
intersection points of γ and δ in the order in which they appear. Let q0 ∈ δ, c an
arbitrary path from p to q0 and t the closed curve going from p to q0 through c,
then going through δ once and coming back to p through c.
Let βi be the closed curve going from p to qi through γ, going through δ (in the
positive sens if (−1)i+1 = 1 and in the negative sens if (−1)i+1 = −1) until q0 and
going back to p through the path c. Hence(It is a simple verification) :

Tδ([γ]) = [γ]
k∏
i=1

[βi]
−1[t]ε(i)[βi]

Remark that this formula holds whenever δ is non separating. Using this latest
hypothesis, one finds

T nδ ([γ]) = T n−1([γ])
k∏
i=1

T n−1([βi]
−1)[t]ε(i)T n−1([βi])

Let us compute λ(T nδ ([γ])
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λ(T nδ ([γ]) = λ(T n−1([γ])) + α([γ])λ([t]) ·
n∑
i=1

ε(i)α([βi])

and µ(γ) =
∑n

i=1 ε(i)α([βi]).

3.2. Action of a subgroup generated by two Dehn twists.

Figure 1: The curves δ1 and δ2

Let us consider the curves δ1 and δ2 from figure 3.2. The Dehn twists along
those curves generate a group G ⊂ I(S).
Let Ti be the automorphism of Γ induced by the Dehn twist along δi. Ti acts
on Z1

α(Γ,C) preserving the line generated by (1 − α). Lemma 10 ensures that
the action of Ti is Ti · λ = λ + ϕi · µi where µi ∈ Z1

α(Γ,C) and ϕi are such that
ϕi(µi) = 0.

Proposition 11.

1. µ1(δ2) = (1− α(a1)−1) · (1− α(a2)−1)

2. µ2(δ1) = (1− α(a1)) · (1− α(a2))

3. µ1(δ1) = 0

4. µ2(δ2) = 0

Proof. The two last inequalities directly follow from the fact that a simple closed
curve does not auto-intersect.
Let us write µ1(δ2) =

∑n
i=1 ε(i)α([βi]) according to Proposition 11. Let us compute

the βi using the algorithm described in the proof of lemma 10. One can choose q0

and c the path from t0 to p to be the part of δ2 going from p to q0 (cf. figure 3.2).
This way β1 is null-homotopic.
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Figure 2: Combinatorics of the intersections between δ1 and δ2

β2 is the curve built following δ2 from p to q2 then going to q0 following δ1 in
reverse and going back to p along δ2 in reverse. This gives the following curve :

Figure 3: The curve β2

The curve β2 is homologuous to a−1
1 . Proceeding with the algorithm, one finds :

• β1 is homologuous to 0.

• β2 is homologuous to a−1
1 .

• β3 is homologuous to a−1
1 a−1

2 .

• β4 is homologuous to a−1
2

This gives µ1(δ2) = 1−α(a1)−1 +α(a1)−1α(a2)−1−α(a2)−1. A likewise calculation
gives the value of µ2(δ1).

Proposition 12. [µ1] and [µ2] ∈ H1
α(Γ,C) form a basis of H1

α(Γ,C) for all α in a
dense set open set of full measure.

Proof. Assume there exists constants a, b, c such that

aµ1 + bµ2 + c(1− α) = 0

Evaluating on δ1 et δ2 , one finds 0 = aµ1(δ2) = bµ2(δ1). For α in a set of full
measure(the set of α such that (1−α(a1)−1)(1−α(a2)−1) and (1−α(a1))(1−α(a2))
do not vanish), a = b = 0, and so c = 0.
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Matrices of T1 and T2 in this basis are :

(
1 (1− α(a1))(1− α(a2))
0 1

)
,

(
1 0

(1− α(a1)−1)(1− α(a2)−1) 1

)

3.3. A criterion for ergodicty.

Lemma 13 (Jorgensen). If two matrices A and B generate a non-elementary
discrete subgroup of PSL(2,C) then

|Tr(A)2 − 4|+ |Tr(ABA−1B−1)− 2| ≥ 1

This lemma is proven in [Jør76].

Let us compute the quantity of the lemma for A =

(
1 a
0 1

)
and B =

(
1 0
b 1

)
.

Tr(ABA−1B−1) = 2 + (ab)2

Tr(A) = 2

So if A and B generate a non-elementary subgroup and if |ab| < 1, 〈A,B〉 is not
discrete. One the other hand, it is clear that when a and b are nonzero, the group
generated by A and B is non-elementary. In that case, A acts by translations on
CP1, the only point of finite orbit for A is the point at infinity. But since b 6= 0,
B send the point at infinity on 0 which has infinite orbit for the action of A.

Proposition 14. If H is a non-discrete and non-elementary subgroup of SL(2,C),
then H is either all SL(2,C) or conjugate to SL(2,R), a Z/2Z-extension of SL(2,R).

This proposition can be found in [Kap09](p.69).

Lemma 15. Let H be a subgroup of SL(n + 1,C) such that the action of H on
CPn is transitive. Then the action of H on CPn is ergodic.

Proof. This lemma is a consequence of Lebesgue regularity lemma.

4. Proof of the main theorem in genus 2.
The set U of elements α ∈ H1(S,C∗) such that |(1 − α(a1))(1 − α(a2))(1 −

α(a1)−1)(1−α(a2)−1)| < 1 and (1−α(a1))(1−α(a2))(1−α(a1)−1)(1−α(a2)−1) /∈ R
has positive measure (it contains an open set of (C∗)4 with 2 analytic submanifolds
of codimension 1 removed). Since the mapping class group action on H1(S,C∗) '
(C∗)4 is ergodic , V = Mod(S) · U has full measure.

Proposition 16. For all α ∈ V , the Torelli group action on PH1
α(Γ,C) is ergodic.

Proof. Consider α ∈ V . Then there exists β ∈ U and φ ∈ Mod(S) such that
φ · β = α. Recall that G ⊂ I(S) is the group generated by the Dehn twists along
δ1 and δ2. Precomposing by φ gives a projective isomorphism :

φ∗ : PH1
β(Γ,C) −→ PH1

α(Γ,C)
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such that the action of the groups G and φGφ−1 (on PH1
β(Γ,C) and PH1

α(Γ,C)

respectively) are conjugated by φ∗. If β ∈ U , the G-action on PH1
β(Γ,C) ' CP1 is

the action of a group with closure isomorphic to PSU(2) or PSL(2,C). Lemma 15
ensures that this action is ergodic, so the φGφ−1 action on PH1

α(Γ,C) is ergodic
since it is conjugated to G through a projective isomporhism.

One can take as the Lebesgue measure on χ \L−1(Id) the measure m = µ⊗ να
where µ is the Lebesgue measure on H1(S,C∗) and (να)α∈H1(S,C∗) is a familly of
measures on PH1

α(Γ,C) depending analytically on α.

We are now ready to end the proof of the main theorem in genus 2. Let A ⊂ χ \
L−1(Id) be an invariant measurable subset for the Mod(S) action. If µ(L(A)) = 0,
then m(A) = 0. Thus we can assume µ(L(A)) > 0. Since the Mod(S) action on
H1(S,C∗) is ergodic, L(A) has full measure. Put Aα = A ∩ PH1

α(Γ,C). Fubini
theorem implies that

m(A ∩B) =

∫
L(A∩B)

να(Aα ∩B)dµ

where B is any measurable subset.
If m(A) > 0, there exists ε > 0 and a set with positive measure W ⊂ L(A) for
which να(Aα) > ε. Remind that the set V has full measure so µ(W ∩V ) > 0. Since
µ(W∩V ) > 0, Mod(S)·(W∩V ) has full measure. But if α ∈ Mod(S)·(W∩V ) ⊂ V ,
να(Aα) > 0 because it contains the image of a Aβ of a map φ ∈ Mod(S) sending
β on α. But since α belongs to V , να(Aα) > 0 and the Torelli group action on
PH1

α(Γ,C) is ergodic, Aα has full measure. So for almost all α, να(Aα ∩ B) =
να(PH1

α(Γ,C) ∩B) and

m(A ∩B) = m(B)

So A has full measure, which proves that the action is ergodic.

5. Higher genus.
We proved in section 2 that the mapping class group action on H1(S,C∗) is

ergodic. In genus 2, the strategy is still to study the Torelli group action in the
fibers PH1

α(Γ,C). To be more precise, we prove that for almost all α, this action
is ergodic giving explicit formulas for the action of some specific Dehn twists. Let
p ∈ S be the base point of π1S = Γ. Any diffeomorphism f fixing p whose action
on H1(S,Z) is trivial acts linearly on H1

α(Γ,C) in such a way that the action of the
class of f in Mod(S) is the projectivized action of f on PH1

α(Γ,C). In this section
we prove that we can find a subgroup of diffeomorphisms fixing p whose action on
H1
α(Γ,C) is ergodic.

In a way similar to genus 2, one builds 2g − 2 curves (δi, ηi)1≤i≤g−1 with the
following properties :

1. For all i 6= j,the curve δi (respectively ηi) is disjoint from the curves δj and
ηj.

2. For a generic α ∈ H1(S,C∗) (in an open dense subset of full measure), the
classes [µ1], [ν1], · · · , [µg−1], [νg−1] form a basis of H1

α(Γ,C).
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3. Both the action of Tδi and Tηi stabilize the projective line associated to the
plane [µi], [νi].

4. The group generated by Tδi and Tηi acts projectively, the action is ergodic
on the stabilized projective line for all i and for α in an open set.

5. The g − 1 groups Gi = 〈Tδi , Tηi〉 commute, this way the G = G1 · · ·Gg−1

action is a diagonal action on C2g−2 ' H1
α(Γ,C).

Take the genus 2 surface from figure 3.2 and cut it twice along simple closed curves,
in a way to get a four holed sphere with boundary :

Take g−1 copies of this sphere, S1, S2, ..., Sg−1, each one carrying 2 marked simple
closed curves δi and ηi. Let us glue them back along the following patern :

......

This way one gets a genus g surface with the announced family of curves. Take
a point p disjoint from all the curves, and for each curve a path going from p to
a point of this curve. For δ1, let δ̃1 be the curve built going from p to δ1 through
the chosen path, doing one turn of δ1 and coming back to p. One builds for each
δi and ηi a curve δ̃i and η̃i in a similar way. Let i 6= 1, Tδi(δ̃1) = γδ̃1γ

−1 for some
γ ∈ Γ homologuous to δi. γ ∈ DΓ since δi is separating, so for all λ ∈ H1

α(Γ,C),
λ(Tδi(δ̃1)) = λ(δ̃1).
The same way one can define, associated to δ̃i, η̃i the cocycles µi, νi such that :

Tδi · λ = λ+ λ(δ̃i)µi

Tηi · λ = λ+ λ(η̃i)νi

for all λ ∈ H1
α(Γ,C).

Let us assume from now on that α is generic in the following sense : the field
generated by the images of α has transcendental dimension 2g. The set of such α
has full Lebesgue measure.
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Proposition 17.

1. For all i, there exists two homology classes ai and bi such that

• µi(ηi) = (1− α(ai)
−1) · (1− α(bi)

−1)

• νi(δi) = (1− α(ai)) · (1− α(bi))

• µi(δi) = 0

• νi(ηi) = 0

2. The classes [µ1], [ν1], · · · , [µg−1], [νg−1] generate H1
α(Γ,C).

3. For all 1 ≤ i ≤ g − 1, the action of the group generated by Tδi and Tηi
stabilizes the vector space generated by [µi] and [νi].

Proof.

1. The first point is exactly proposition 11 extended to higher genus. The proof
works the same way, applying lemma 10.

2. One writes a relation of linear dependence :

∑
i

uiµi + viνi = k(1− α)

Evaluating in δ̃i and η̃i, one finds that all the coefficients ui et vi are zero,
which implies k = 0.

3. Last point is a direct consequence of the remarks above the proposition. If
i 6= j, then µi(Tδi δ̃j) = µi(δ̃j), but since δ̃j is homotopic to a curve disjoint
from δi, µi(δ̃j) = 0. It works the same with the curves ηi, in such a way that
the vector space generated by the [µi] and [νi] is stabilized by the action of
Gi = 〈Tδi , Tηi〉.

Figure 4: The curves δi, ηi on a genus 4 surface.

We now have everything we need to prove :
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Theorem 18. The action of the mapping class group on χ is ergodic in genus
g ≥ 2.

Proof. Let G be the group generated by the Tδi , Tηi . G = G1 × · · · × Gg−1 since
the Gi commute. The Gi action on the subvector space generated by [µi] and [νi]
is the action of the group generated by the matrices :

(
1 (1− α(ai))(1− α(bi))
0 1

)
,

(
1 0

(1− α(ai)
−1)(1− α(bi)

−1) 1

)
Applying Jorgensen’s lemma, there exists an open set U of H1

α(Γ,C) for which for
all i, the action of Gi on the vector space generated [µi] and [νi] est ergodic (since
the action of its closure is transitive). This implies (according to Fubini’s theorem)
that the action of G on H1

α(Γ,C) is ergodic, hence the action of the Torelli group is
ergodic on PH1

α(Γ,C) for α ∈ U . Proposition 16 implies it is ergodic on PH1
α(Γ,C)

for α in a dense set of full measure. Applying Fubini’s theorem and using the fact
that the action of Mod(S) is ergodic on H1(S,C∗), one finds that the action of
Mod(S) on χ is ergodic.

Remark From the description of the image of the group G in PH1
α(Γ,C), one

can see that the mapping class group preserves no measure in the class of Lebesgue
measure. In particular this implies that there is no invariant symplectic form.

6. Euclidean characters.
Let us look at the action of the mapping class group on χU.

Let ρ : Γ −→ Aff(C) be a euclidean representation. One can naturally associate
to ρ a flat bundle in CP1 over S the following way : let S̃ be a universal cover of
S, Γ acts on S̃ × E :

γ · (x, z) = (γ · x, ρ(γ)(z))

The bundle associated to ρ is the quotient Fρ = S̃ × E/Γ. The foliation S̃ × E
factors through the quotient and defines a flat connection. Remark that this
construction can be made for any representation.

Whenever ρ is euclidean, one can define a volume form µx , x ∈ S on the fibers
since the standard volume form on E is preserved by the action of Γ (since ρ is
euclidean). One can build on Fρ a 2-form ωρ vanishing on the leaves of the foliation
and equal to µx in each fiber. Moreover the form ω is closed, since it is the form
dz in the coordinates (x, z).

Proposition 19. Let s be a section of the bundle Fρ.

v(ρ) =

∫
S

s∗ω

does not depend on the choice of the section s. It is the volume of the representation
ρ .
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Proof. E being convex, two sections s1 and s2 are homotopic through st. Notice
that

∫
S
s∗ω is the volume of the graph of ρ. The proposition is a corollary of Stokes

theorem applied to the image of the homotopy st in [0, 1]× Fρ.

The volume defines a function v : Hom(Γ, Iso+(C)) −→ R. Let us study the
restriction of this function to Z1

α(Γ,C) for a given α 6= 1. The volume of a cocycle
in λ ∈ Z1

α(Γ,C) is the volume of the associated representation.

This form can also be defined in a totally homological way. If α and β are two
elements of H1(S,C∗), one can define an algebraic product :

∧ : H1
α(Γ,C)× H1

β(Γ,C) −→ H2
αβ(Γ,C)

H2
α(Γ,C) = 0 as soon as α 6= 1. The bilinear form

∧α : H1
α(Γ,C)× H1

α(Γ,C) −→ C
(λ, µ) 7−→ λ ∧ µ

identifying canonically H2(Γ,C) and C. See [DM86] for more details (where every-
thing is done is the case of holed spheres, nevertheless it still holds in our setting).

Proposition 20. Take α ∈ H1(S,C∗)

1. For λ ∈ Z1
α(Γ,C), v(λ) only depends on the class of λ in H1

α(Γ,C).

2. The induced function v : H1
α(Γ,C) −→ R is a non-degenerate hermitian

form.

3. For all α the signature of the form is (g − 1, g − 1).

Proof. 1. Remark that if f := az + b ∈ Aff(C) , the map

Ψ : S̃ × E −→ S̃ × E
(x, z) 7−→ (x, f(z))

é induces an affine isomorphism between the bundles Fρ and Ffρf−1for any
representation ρ. From the definition of the forms ω one gets

Ψ∗ωρ = |a|2ωfρf−1

Any two representation define the same element in H1
α(Γ,C) if and only

if they are conjugated by a translation. In this case, they have the same
volume. The formula above ensures us that v is an hermitian form.

2. The fact that the form is non degenerate is just Poincaré duality in twisted
cohomology.

3. Assume α is real. Then conjugation is an order 2 endomorphism of H1
α(Γ,C)

such that v(λ) = −v(λ) for every λ ∈ H1
α(Γ,C). Since v is non-degenerate,

its signature is (g − 1, g − 1). An argument of connectivity extends the
property to arbitrary α.
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Proposition 21. 1. The action of the mapping class group preserves χ+
U , χ

−
U

and χ0
U.

2. The Torelli group acts on PH1
α(Γ,C) by transformations belonging to PU(∧α).

Proof. Just let a lift of a diffeomorphism to S̃ fixing a base point act on S̃ ×E to
see that two representations differing from f ∗ define the same volume form.

The representation of the Torelli group in the case of punctured spheres.
We have defined a family of representation indexed by H1(S,U) of the Torelli group
in PU(∧α) ' PU(g−1, g−1). Very little is known about this representation except
for the fact that for almost all parameters, its image is not discrete. This family
was originally discovered by Chueshev in the early 90’s, see [Chu90]. Let us now
assume that S has a finite number of punctures. One can still build an Hermitian
form on H1

α(Γ,C) : Veech shows in [Vee93] that the signature of the ∧α depends
on α. Moreover, one can pick α in order that ∧α has signature (1, n). The Torelli
group still defines a representation in PU(1, n).
It is an important question in complex hyperbolic geometry to build lattices in the
isometry group. It is natural here to ask if these representation might lead to new
constructions of lattices in PU(1, n).

7. Link with branched affine structures and open problems.
The original framework of this work was the study of affine branched structures,

especially their holonomy representations. A complex projective structure on a
surface S is an atlas of charts in CP1 where the transition maps are the restriction of
elements in PSL(2,C) = Aut(CP1). One can also think of a projective structure as
a (CP1,PSL(2,C))-structure in the sense of (X,G)-structures defined by Thurston.
If S is a surface endowed with a projective structure, one can pull this structure
back to its universal cover S̃, in such a way this structure factors through the
quotient S = S̃/Γ. Since S̃ is simply connected, any projective chart can be fully
extended to S̃. This defines a local diffeomorphsim

dev : S̃ −→ CP1

which is unique up to postcomposition by an element of PSL(2,C). Since the
structure factors trough, there exists a morphism hol : Γ −→ PSL(2,C) called the
holonomy such that for every γ ∈ Γ and x ∈ S̃ we have

dev(γ · x) = hol(γ)(dev(x))

Given a type of (X,G)-structure, one might ask what are the group homomorphism
which can arise as the holonomy map of a (X,G)-structure.

Translations surfaces and periods of abelian differentials. A translation
surface is an atlas of charts in C with transition maps being translations. Since such
structures can only arise when S is a torus, one has to allow singularities : a finite
set of points can carry a conical structure with angle being a integer multiple of
2π. See [Zor06] for a survey on the subject. The holonomy map of such a structure
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is a morphism ω : Γ −→ C which factors through ω : H1(S,Z) −→ C since C is
abelian. In this case, the holonomy problem is totally solved since the 20’s (see
[Hau20]) by the following theorem :

Theorem 22 (Haupt, 1920). An element ω ∈ H1(S,C) = Hom(H1(S,Z),C) is the
holonomy map of a translation surface (or equivalently is the periods of an abelian
differential over a Riemann surface) if and only if the two following conditions
hold :

1. I(ω) · R(ω) > 0

2. If the image of ω in C is a lattice Λ, then

I(ω) · R(ω) > vol(C/Λ)

A proof of this theorem exploiting mapping class group dynamics has been given
in [Kap].

Holonomy of complex projective structures. The holonomy problem is also
solved in the case of complex projective structures. Let us recall the theorem due
to Gallo, Kapovich and Marden (see [GKM00]) :

Theorem 23. A group homomorphism ρ : Γ −→ PSL(2,C) is the holonomy of a
complex projective structure if and only if the two following conditions hold :

1. ρ lifts to SL(2,C).

2. The image of ρ is a non-elementary subgroup of PSL(2,C).

We also can permit that our projective structures carry singular points which are
locally branched projective covering. Translation surfaces are particular cases of
branched projective structures, whose holonomy lives in the subgroup of transla-
tions. In this case the holonomy problem is answered by Haupt’s theorem. Now
one can look at complex affine structures, which are (C,Aff(C))-structures with
branched points.

Complex (branched) affine structures, holonomy and open problems.
A complex affine structure is defined to be a Riemann surface S with an non
constant holomorphic function

dev : S̃ ' H −→ C

equivariant with respect to a representation ρ : Γ −→ Aff(C). One can check
that this definition is equivalent to the usual definition with charts and transition
maps living in Aff(C). We ask the following question : which representation
ρ : Γ −→ Aff(C) can be realized has the holonomy map of a branched complex
affine structure ? A nice argument of Ehresmann popularized by Thurston ensures
that the set of geometric holonomies (which are realized by a branched affine
structure) is an open set of the character variety. Another remark is that whenever
one can realize one representation, one can realize all its image by the action of
the mapping class group. So we have a nice corollary of theorem 18 :
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Corollary 24. The subset consisting of representations which can be realized by a
branched complex affine structure is an open set of full measure.

We give here a list of questions arising from the study of these affine structures
which seems interesting to the author :

1. Characterize the representations which are the holonomy of a branched affine
structure.

2. Build explicit models realizing a given holonomy.

3. Describe more precisely the action of the mapping class group on χ and χ+
U .

Does there exists an analogous theorem to Ratner’s, or is it possible to find
orbits whose closure is not homogeneous ?

4. Study the dynamics of the directional foliation in the case where the holon-
omy lies in R∗ n C. Can phenomenons different from those known in the
case of translation surfaces happen ?

5. Study the family of representations of the Torelli group τα : I(S) −→
PGL(2g − 2,C). For which parameter α the image of this representation is
discrete ? When α is unitary, can one build this way lattices in PU(g−1, g−1)
?

6. Explore the case where the singularities are arbitrary.

7. Study the dynamics of the isoholonomic foliation of the moduli space of
branched affine complex structures. Is it ergodic ?

Recall that a strictly affine representation is a nonabelian representation which
is not unitary and whose angles of linear parts generate an infinite group of R/Z.
About the holonomy problem, the following conjecture seems reasonable :

Conjecture 25. Every strictly affine representation is the holonomy of a branched
affine structure.
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