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ABSTRACT. We generalise to the genus one case several results of Thurston
concerning moduli spaces of flat Euclidean structures with conical singular-
ities on the two dimensional sphere.

More precisely, we study the moduli space of flat tori with n cone points
and a prescribed holonomy ρ. In his paper ‘Flat Surfaces’ Veech has estab-
lished that under some assumptions on the cone angles, such a moduli space
F[ρ] ⊂ M1,n carries a natural geometric structure modeled on the complex
hyperbolic space CHn−1 which is not metrically complete. Using surgeries
for flat surfaces, we prove that the metric completion F[ρ] is obtained by ad-
joining to F[ρ] certain strata that are themselves moduli spaces of flat sur-
faces of genus 0 or 1, obtained as degenerations of the flat tori whose moduli
space is F[ρ]. We show that the CHn−1-structure of F[ρ] extends to a complex

hyperbolic cone-manifold structure of finite volume onF[ρ] and we compute
the cone angles associated to the different strata of codimension 1.

Finally, we address the question of whether or not the holonomy of Veech’s
CHn−1-structure on Fρ has a discrete image in Aut(CHn−1) = PU(1,n−1). We
outline a general strategy to find moduli spaces F[ρ] whoseCHn−1-holonomy
gives rise to lattices in PU(1,n−1) and eventually we give a finite list of F[ρ]’s
whose holonomy is an arithmetic lattice.

1. INTRODUCTION

In their paper [DM86] on the monodromy of Appell-Lauricella hypergeo-
metric functions, Deligne and Mostow bring to light complex hyperbolic struc-
tures on M0,n for n ≥ 4, parametrised by a n-uplet µ= (µ1, . . . ,µn) ∈]0,1[n such
that

∑n
i=1µi = 2. They prove that if µ verifies the arithmetic criterion

(INT) ∀i , j with i 6= j : µi +µ j < 1 =⇒
(
1−µi −µ j

)−1 ∈Z ,

then the holonomy of the associated complex hyperbolic structure is a lattice
in the automorphism group

PU(1,n −3)= Aut
(
CH

n−3)

of the (n −3)-dimensional complex hyperbolic space CHn−3.

∗Corresponding author.
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In [Thu98], Thurston gives a geometric interpretation of these complex hy-
perbolic structures in terms of flat metrics with cone type singularities on the
sphere S2. Define θ = (θ1, . . . ,θn) ∈]0,2π[n by θi = 2π(1−µi ) for i = 1, . . . ,n. One
can think of M0,n as the set of flat metrics with n cone points of respective an-
gles θ1, . . . ,θn on the sphere with area 1 (up to isometry), which we denote by
M0,θ. Parametrising such flat structures leads naturally to endow M0,θ with a
complex hyperbolic structure (see [Thu98], [Sch] or [Par06]) which coincides
with the one considered in [DM86]. Thurston describes the metric completion
of M0,θ in terms of degenerations of flat spheres and recovers that the crite-
rion (INT) is equivalent to the metric completion of M0,θ being an orbifold
and therefore a lattice quotient of the complex hyperbolic space CHn−3.

In [Vee93], Veech extends to compact (oriented) surfaces of arbitrary genus
several basic results of Thurston’s approach. The starting point is a theorem of
Troyanov [Tro86] asserting that, given g ≥ 0 and n > 0 such that 2g −2+n > 0,
if θ = (θi )n

i=1 ∈]0,∞[n verifies the following discrete Gauß-Bonnet formula

(1)
n∑

i=1
(2π−θi ) = 2π(2−2g )

then, given a genus g closed oriented surface Ng , a conformal structure on it
and n distinct points p1, . . . , pn on Ng , there exists a unique flat structure of
area 1 on Ng which is compatible with the given conformal structure, singular
exactly at p1, . . . , pn and such that it is locally isometric at pi to a Euclidean
cone of angle θi , this for every i = 1, . . . ,n.

Troyanov’s theorem gives a natural isomorphism between Mg ,n and the set,
denoted by Mg ,θ , of isomorphism classes of flat structures on Ng with n cone
points of angles data θ. The naive hope that a complex hyperbolic structure
would arise when parametrising such a moduli space is doomed to failure.
Such a fact actually happens in the genus 0 case because in that case prescrib-
ing the cone angles is equivalent to prescribing the parallel transport along
any closed curve on the punctured surface. But this does not hold for a n-
punctured surface Ng ,n of higher genus.

In [Vee93], Veech shows that the level sets of the (locally well defined1) linear
holonomy map

Mg ,θ −→ H1(Ng ,n ,U
)

1Actually, this map is not well defined at the orbifold points of Mg ,θ. To bypass this diffi-
culty, one has to work, as Veech did with great care, not on this moduli space but on its orbifold
universal covering. The latter is a certain space of isotopy classes of flat structures with conical
singularities on Ng which is isomorphic to the usual Teichmüller space Teichg ,n . We will not
discuss this matter further and will refer to [Vee93] for details.
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form a real analytic foliation of Mg ,θ whose leaves are holomorphically em-
bedded complex manifolds of dimension 2g − 3+n. When g = 0, this folia-
tion is trivial and has only one leaf, which is the whole moduli space M0,θ, on
which one can put a natural geometric structure modeled on a homogeneous
space. A geometric way to do this is as follows: given a flat sphere with n pre-
scribed conical singularities, one can develop it into the Euclidean plane and
get a (2n − 2)-gon from which the original flat sphere can be reconstructed.
The conical angles being prescribed, the polygons obtained this way depend
only on n−2 complex parameters and the area form is a non-degenerated Her-
mitian form in these ones if none of the conical angles θ is an integer multiple
of 2π. This method, which was first introduced by Thurston in [Thu98] in the
genus 0 case, extends very naturally to the leaves of Veech’s foliation, whatever
the genus is: one can parametrise locally such a leaf by means of Euclidean
(4g +2n −2)-gons which depend only on 2g +n −2 complex parameters. We
call linear parametrisation such a parametrisation.

Given two integers p, q ∈N, let U(p, q) be the group of linear automorphisms
ofCp+q which let invariant the standard Hermitian form hp,q of signature (p, q).
The projectivization of the set of points z ∈Cp+q such that hp,q (z) > 0 is known
as the (indefinite when p > 1) complex hyperbolic space of type (p, q) and will
be denoted by CH

p+q−1
p . It is homogeneous under PU(p, q), cf. [Wol11, §12.2].

Let θ ∈ (R∗
+ \ 2πZ)n be such that the Gauß-Bonnet relation (1) holds true.

Theorem ([Vee93]). There exists (pθ, qθ) ∈N2 with pθ+qθ = 2g +n−2 such that

the natural linear parametrisations of the leaves of Veech’s foliation together

with their area form endow them with a
(
CH

2g+n−3
pθ

,PU(pθ, qθ)
)
-structure.

Moreover, in [Vee93, §14], Veech performs a lengthy explicit calculation lead-
ing to the conclusion that the geometric structure on the leaves of the preced-
ing theorem is complex hyperbolic (i.e. pθ = 1) in exactly two cases:

(i) g = 0 and all the conical angles θi are in ]0,2π[; or

(ii) g = 1 and all the angles θi are in ]0,2π[ but one which lies in ]2π,4π[.

As said above, the former case was treated in [Thu98] (as well as in [DM86]
but with the approach involving hypergeometric functions). In this paper we
investigate the latter case.

Let θ = (θi )n
i=1 satisfying (1) for g = 1 and n > 1 and such that condition (ii)

above holds true. For any linear holonomy ρ, we denote by F[ρ] the leaf of
Veech’s foliation on M1,θ that corresponds to (the orbit [ρ] through the action
of the pure mapping class group of) ρ. The analytic and very explicit descrip-
tion of Veech’s foliation carried out in the twin paper [GP] shows that when ρ
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is rational (meaning that the subgroup Im(ρ) ⊂U is finite), F[ρ] is an algebraic
suborbifold of M1,n .

In this paper we give an extrinsic geometric description of the metric com-
pletion of such a leafF[ρ] for the complex hyperbolic structure given by Veech’s
Theorem above. The main theorem of the paper is a generalisation of a result
of Thurston in [Thu98].

Theorem. Let ρ ∈H1(N1,n ,U) be a rational linear holonomy data.

(1) The metric completion of F[ρ] has a stratified analytic structure whose

strata are finite unramified covers of lower dimensional rational leaves

of Veech foliation on Mg ′,n′ with g ′ = 0 and n′ ≤ n +1 or with g ′ = 1 and

n′ ≤ n −1; there is a finite number of such strata.

(2) This metric completion, denoted by F[ρ] hereafter, is a complex hyper-

bolic cone manifold of dimension n −1, whose volume is finite.

(3) The cone angles around strata of complex codimension 1 of F[ρ] can be

computed using appropriate surgeries.

The genus 0 case invites us to wonder if some of these leaves F[ρ] are lattice
quotients ofCHn−1. Unfortunately, the computation of the cone angles around
codimension 1 strata (point (3) of the previous theorem) shows that as soon
as n > 2, the cone angle around a certain strata of codimension 1 (formed by
collisions involving the only cone point whose angle is larger than 2π) is bigger
than 2π. This prevents any leaf F[ρ] from being a lattice quotient provided that
n ≥ 3.

Nevertheless, it does not exclude the possibility that the holonomy of the
complex hyperbolic structure is a lattice in PU(1,n − 1), as both Mostow and
Sauter showed that it can happen when g = 0 (see [Mos88, Sau90]). Further-
more, the moduli spaces F[ρ] are not always connected. Consequently, it ap-
pears more relevant to ask the aforementioned questions for the connected
components of F[ρ]. Of course, it beforehand demands to determine these
components, which already seems interesting and not completely trivial.

We give in Section 11 some neccesary conditions on ρ and θ for this to hap-
pen. This should reduce the problem to the study of a finite number of candi-
dates.

Finally, we would like to draw attention on a possible interpretation of our
work. If Im(ρ) = 〈exp(2iπ/n)〉 ⊂U, the leaf F[ρ] can be seen as a stratum of the
space of meromorphic differential forms of order n on elliptic curves.
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1.1. Organisation of the paper. Section 1 is the present Introduction.

Section 2 and Section 3 are dedicated to introducing the central objects of
the article: flat surfaces and Veech isoholonomic foliations on Mg ,n respec-
tively.

Building on [Sch, Thu98, Vee93], we introduce in Section 4 natural parametri-
sations of the leaves of Veech’s foliations that will be used in the sequel.

Section 5 is devoted to proving technical lemmas on the geometry of flat
surfaces that are crucial for describing the metric completion of F[ρ]. Accord-
ing to us, some of them, such as Lemma 5.7, are missing in [Thu98] and could
help to complete some proofs in the genus 0 case.

We describe in Section 6 several surgeries on flat surfaces which are the ma-
jor tools of the paper. They allow us to reinterpret some results of [Thu98] and
to formally understand the possible ways flat tori can geometrically degener-
ate. This leads to a definition of ‘geometric convergence’ for flat surfaces distin-
guishing limits by taking into account not only the isometry class of the limit
metric space but also the way to degenerate to it in F[ρ]. This definition co-
incides with the one of convergence for the complex hyperbolic metric but is
susceptible to be generalised to cases when Veech’s CH

p+q−1
p -structure of F[ρ]

is not Riemannian. Finally, using these surgeries and a simple inductive pro-
cess, we compute by a geometric argument the signature of Veech’s area form,
recovering Veech’s result.

Sections from 7 to 9 are devoted to analysing the geometric structure of F[ρ].
In Section 7, we describe the metric completion of F[ρ] in terms of the surg-
eries introduced in Section 6, while in Section 8, we prove that the complex
hyperbolic volume of F[ρ] is finite by performing an explicit calculation using
special coordinates. We finally prove in Section 9 that the metric completion
of F[ρ] has the structure of a complex hyperbolic cone manifold, which is a
refinement of the stratified structure brought to light in Section 7.

After describing a general algorithm to determine the strata appearing in the
metric completion of F[ρ], we analyse in Section 10 the particular case of tori
with two cone points. In particular, we show how the rather abstract material
developed in this article is used to analyse the (one dimensional in that case)
complex hyperbolic structure. We prove that the F[ρ] are hyperbolic surfaces
with a finite number of cone points and we compute their angles. This section
strongly echoes the article [GP]. In particular, this analysis shows that some of
them are lattice quotients of CH1.

In Section 11, we draw a strategy to answer the following question : in the
case of tori with three conical points, is it possible that the holonomy of the 2-
dimensional complex hyperbolic structure on F[ρ] is a lattice in PU(1,2) ? We
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give necessary conditions for the answer to be positive and use them to outline
a strategy to reduce the question to a finite number of candidates.

The paper ends with two short appendices. In Appendix A, after recalling
some basic points of complex hyperbolic geometry, we introduce some special
coordinates which appear useful in our study. Finally, Appendix B is devoted
to the notion of cone manifold. We focus in particular on the case of complex
hyperbolic cone manifolds.

1.2. Notes and references. We think it could be helpful to the reader to men-
tion the main other mathematical works to which the present paper is linked.

As is more than obvious from the previous lines, this text text must be seen
as an attempt to generalize some results of Thurston’s seminal paper [Thu98]
concerning moduli spaces of flat spheres to the case of tori. Even if the term
does not appear formally in Thurston’s paper, we believe it is fair to say that
the crucial geometric tools used by Thurston are ‘surgeries’ for objects of this
type. This is a standard but powerful technique to study flat surfaces which has
been widely used in the more specific realm of (half-)translation surfaces, see
for instance [MS91, Section 6], [MZ08] or [EMZ03] among many other papers
of this field. It is then not so surprising that surgeries play a central role in the
present paper as well.

Thurston’s article[Thu98] has been very influential. Among the papers deeply
relying on it about the theory of conical flat structures on the Riemann sphere,
one can mention [Web93], [Par06], [GLL11] and [BP15] where some partic-
ular cases are considered in detail. The recent paper [McM] deserves to be
mentioned as well: in it, the author gives a more detailed treatment of the
notion of cone-manifold than in [Thu98] and obtains a nice version of the
Gauß-Bonnet theorem for complex hyperbolic cone-manifolds that he even-
tually uses to compute the volumes of the Picard/Deligne-Mostow/Thurston’s
moduli spaces.

As is well known, some of the main results of [Thu98] coincide with some
results obtained previously by Deligne and Mostow in the celebrated papers
[DM86] and [Mos88] (see also their book [DM93]). In the truly masterpiece
[DM86], they pursue and obtain definitive results that conclude researches on
the monodromy groups of Appell-Lauricella hypergeometric functions going
back at least to Picard. Their approach is not geometric as in [Thu98] but relies
essentially on arguments of analytic and/or cohomological nature.

In addition to [Thu98] and [DM86], the other starting point of our research
is the remarkable paper [Vee93] by Veech that concerns moduli spaces of flat
surfaces with conical singularities and seems to have been deeply influenced
by the two former articles. In it, Veech establishes basic and important results
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concerning flat surfaces of arbitrary genus. One can say that the methods used
by Veech are a mix of the geometric ones of Thurston, and of the analytic ones
of Deligne and Mostow.

It seems to us that this paper by Veech has not received the attention it de-
served despite the importance of the results obtained therein and the interest-
ing problems it suggests. Some of the reasons for this could be that [Vee93] is
quite long and technical. If most of its arguments are basically elementary, the
analytic treatment used by Veech as well as some long computations at some
points hide at first sight the geometrical beauty of its main results. Note also
that the topic discussed in [Vee93] is quite general since the linear holonomies
of the flat surfaces considered in it, if unitary, are not just ±1. It seems that the
researchers interested in this subject, Veech included, have focused on the case
of (half-)translations surfaces that is nowadays very popular and for which a lot
of deep results have been obtained during the last twenty years.

We believe that an interesting fact highlighted by our work is that both Thur-
ston’s geometric approach and Deligne-Mostow’s hypergeometric one can be
generalised to the genus 1 case. As said above, this is what is done for Thurston’s
approach in the present paper. The hypergeometric approach à la Deligne-
Mostow is developed in the dizygotic twin paper [GP]. In it, we first prove that,
as in the genus 0 case for which this is well-known, Veech’s constructions of
[Vee93] can be made completely explicit when working with elliptic curves.
We then specialise to the case of elliptic curves with two marked points and
are able to describe exactly the moduli spaces of such marked tori that are al-
gebraic subvarieties of the moduli space M1,2: these are the modular curves
Y1(N ) for N ≥ 2 and we can describe very precisely the complex hyperbolic
structure constructed by Veech which each of them carries.

Our credo is that, even more than in the genus 0 case, the geometric ap-
proach (by means of flat surfaces à la Thurston) as well as the hypergeometric
one (à la Deligne-Mostow) are complementary. Each of them sheds a different
light on the objects studied and combining these two approaches should be
very powerful. We have not used the two methods together yet but we plan
to do so in forthcoming papers. For the moment, readers are just strongly en-
couraged to take a look at [GP] and to compare the methods and the results of
the latter to the ones of the present text.

Finally, we would like to mention an interesting direction of research that
seems very appealing but has not been so much explored until now. Depend-
ing on the chosen conical angles, one obtains geometric structures of different
kinds on the leaves of Veech’s foliation on Mg ,n (see Veech’s theorem page 3).
The complex hyperbolic case is certainly one of the most interesting but we
believe that there is much to discover in some other cases as well.
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Very few works have been done beyond those concerning the complex hy-
perbolic case and all of them concern the genus 0 case. Some concrete cases
have been treated à la Thurston in [Web93] and [GLL11]. More influenced by
[DM86] are the recent papers [McM13] and [Ven14a, Ven14b] where the au-
thors study the arithmecity of the image of some non-irreducible representa-
tions of the (pure) braid group one of the factors of which is the monodromy
group of a certain hypergeometric differential system.

1.3. Acknowledgements. We are thankful to Adrien Boulanger for some in-
teresting discussions about the notion of holonomy. We are also grateful to
Richard Schwartz for kindly answering several technical questions about the
notion of cone manifold, as well as to John Parker and Curtis McMullen for use-
ful correspondences. We are very thankful to Bertrand Deroin for the constant
support and deep interest he has shown in our work since its very beginning.
Finally, the second author thanks Brubru for her many corrections.

While investigating moduli spaces of flat metric, we have grown an interest
in historical questions related to the genesis of the papers [DM86] and [Thu98].
We are thankful to Nicolas Bergeron, Pierre Deligne, Étienne Ghys, Curtis Mc-
Mullen, Jean-Pierre Otal, John Parker, Marc Troyanov and William Veech for
taking the time to answer some of our historically flavoured questions.

2. FLAT SURFACES

We collect in this section some well-known notions and basic results on flat
surfaces. For some general references, see [Tro86, Vee93, Tro07].

2.1. Generalities. The Gauß-Bonnet formula ensures that the only compact
orientable surface carrying a flat metric is the torus. Nevertheless, relaxing
the requirement that the metric is flat everywhere and allowing singular points
makes it possible to build flat surfaces in every genus.

FIGURE 1. The Euclidean cone Cθ of angle θ ∈]0,2π[ embeds in R3.
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2.1.1. We first define the kind of singularities that will be allowed for flat sur-
faces in this paper. For any θ > 0 distinct from 2π, the Euclidean cone of angle

θ, denoted by Cθ throughout the paper, is the quotient of R+×(R/θZ) obtained
by contracting {0}× (R/θZ) onto a point (called the apex of the cone) endowed
with the flat metric dr 2+r 2d t 2 in the standard coordinates (r, t )∈R>0×(R/θZ).

For any positive ǫ, we denote by Cθ(ǫ) the image of [0,ǫ]×(R/θZ) into Cθ and
the superscript symbol ∗ will mean that the apex has been removed.

Definition 2.1 ([Tro86]). A flat surface with conical singularities is an ori-

entable compact surface endowed with a flat Riemannian metric singular at n

points p1, . . . , pn , such that any pi has a neighbourhood isometric to a Euclidean

cone.

For the sake of simplicity, we will use flat surface throughout the paper in-
stead of flat surface with conical singularities. A singular point p is called a
cone point or a conical point and the angle θp of the associated Euclidean
cone its cone angle. The quantity 2π−θp is called the curvature at p .

2.2. Examples. We describe below some classical examples of flat surfaces.

2.2.1. A very intuitive example of a flat structure is given by the surface of
a cube embedded in R3. The pull-back of the ambient metric defines a flat

metric on the 2-dimensional sphere away from the edges and the vertices. On
the edges, away from the vertices, the pulled-back metric can be extended in
such a way that it is still flat on each edge (this corresponds to the intuitive
operation of bending the faces around an edge). We have defined a flat metric
on the 8-punctured sphere. A neighbourhood of each vertex is isometric to a
neighbourhood of a Euclidean cone of angle 3π/2.

2.2.2. The case of the cube considered above generalises in a straightforward
manner to the boundary of any polyhedron P in the 3-dimensional Euclidean
space: the natural flat structures of the polygonal 2-faces of ∂P glue together
along the straight edges of ∂P and induce a global flat structure which is regular
outside the vertices of P and with conical singularities at these points.
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2.2.3. Another way to build flat surfaces consists in gluing isometrically the
sides of only one Euclidean polygon. We will see later on in Section 4 that, in
some sense to be made precise, every flat surface can be built this way. This
approach is quite useful and will be extensively used throughout this paper.

In order to give a concrete example, we consider the case of an hexagon. One
can glue its sides in three essentially different ways (see [JV01, p.89]) to build
(topologically) a torus as in Figure 2 beneath:

FIGURE 2. Gluing patterns for flat tori with two singular points.

which respectively give after gluing the three following tori with 2 marked points:

FIGURE 3.

Now assume that H is a Euclidean hexagon and choose one of the three glu-
ing patterns of Figure 2, say Pattern 2. We choose H such that the sides which
are glued together have the same length (see Figure 4). The Euclidean met-
ric on the hexagon can be extended to the whole torus, except at the points
corresponding to the vertices of the hexagon. These points have a punctured
neighbourhood isometric to a Euclidean cone with angle α+γ+µ (for the red
point) and β+δ+ν (for the blue point). Since H can be triangulated using four
Euclidean triangles, one obtains that α+β+γ+δ+µ+ν= 4π.

Rewriting this equality
(
2π− (α+γ+µ)

)
+

(
2π− (β+δ+ν)

)
= 0 ,

one obtains that the sum of the curvatures at the singular points vanishes,
which is exactly Gauß-Bonnet formula in this case (see §2.3.2 below).
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FIGURE 4. A flat torus with two cone points built from gluing
the sides of the Euclidean hexagon at the top.

2.2.4. A nowadays popular and very much studied example of flat surfaces
is given by the so-called (half-)translation surfaces, namely pairs (X ,ω) (resp.
(X ,η)) where X is a compact Riemann surface andω (resp. η) an abelian (resp. a
quadratic) differential on it. The flat metric associated to such a pair is just
|ω|2 (resp. |η|). Note that these objects can be characterised as the flat sur-
faces whose linear holonomy (cf. Section 2.4 below) is trivial (resp. has values
in {±1}) hence they form a very particular class of flat surfaces.

2.2.5. A flat cylinder C is the metric space one gets by gluing two opposite
sides of a Euclidean rectangle. It is a flat surface with two totally geodesic
boundary components. Its length is the length of the sides glued together and
its width (or height) is the length of one of its boundary component. More
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intrinsically, the length of C is the distance between its two boundary compo-
nents and its width is its systole.

2.3. On the geometry of flat surfaces. In the subsections below, we collect
some classical material about the geometry of flat surfaces and fix some defi-
nitions and notations that will be used in the sequel.

2.3.1. Flat surfaces as length spaces. We recall in this subsection basic but
important properties of flat surfaces that will be used throughout the paper.
For a general exposition of the theory of length spaces, we refer to [BH99] or to
[Gro99] for the proofs of the results stated in this subsection.

Let N be an arbitrary flat surface with cone type singularities. If γ : [0,1] −→
N is a piecewise C1-path, one defines its length as

L(γ) =
∫

[0,1]
|γ′(t )|d t .

As usual, the distance between two points x , y ∈ N is defined as

d(x, y) = inf
γ

L(γ)

where γ is taken amongst all the C1-paths such that γ(0) = x and γ(1)= y .

The following basic results will be extensively used throughout the article:

• The application d : N ×N −→R+ is a distance on N . Whenever we refer
to a distance on the flat surface N , it will be this one.

• For any two points x, y ∈ N , there exists a piecewise geodesic path γ

from x to y such that d(x, y) = L(γ).

• For any free homotopy class c of closed curves on N , there exists a
closed, piecewise geodesic path ϕ whose free homotopy class is c such
that L(ϕ) = inf{γ | [γ]=c} L(γ).

• There exists a closed, piecewise geodesic path σ whose free homotopy
class is non-trivial such that L(σ) = inf{γ | [γ] 6=0} L(γ).

From now on, we will use the notation N for a surface, which depending on
the context will be understood as endowed with either a topological, a flat or
a conformal structure. We will also use the notation Ng ,n when we will need
to specify the genus and/or the number of cone points (resp. marked points)
of the flat (resp. conformal) structure. Finally whenever we will refer to the
(co)homology groups H1(Ng ,n ,G) or H1(Ng ,n ,G) for a given group G , Ng ,n will
stand for the underlying topological surface of genus g with n punctures.
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2.3.2. The Gauß-Bonnet formula. A regular Riemannian metric h on a sur-
face Σ enjoys the fact that its curvature function κh satisfies

∫

Σ

κhdµh = 2πχ(Σ)

where µh is the measure on Σ induced by h and χ(Σ) is the Euler characteristic
of Σ. This relation is called the Gauß-Bonnet formula and can be generalised
to the case of flat surfaces with conical singularities. One must think of the
associated singular Riemannian metric as a metric whose curvature is con-
centrated at its singular locus, and therefore think of its curvature function as
a linear combination of Dirac masses at the singular points.

If N is a compact orientable flat surface with n singular points of respective
cone angles θ1, . . . ,θn , the following Gauß-Bonnet formula holds true:

n∑

i=1
(2π−θi ) = 2πχ(N ).

We refer to [Tro86, §3] or [Vee93, §3] for proofs and more details on this matter.

2.3.3. Exponential maps. Let p be a regular point of N and denote by rp the
injectivity radius at p. For r > 0, one denotes by D(r ) the Euclidean disk of
radius r centered at the origin. We will say that ‘the’ exponential map ip at p

is the map (well defined and unique up to rotations)

ip : D(rp ) −→ N

such that ip (0) = p which is a local isometry. This map can be extended to
the whole Euclidean plane except for a countable union of semi-lines which
correspond to the geodesics starting at p which cannot be extended because
they meet a singular point. The proof is elementary and left to the reader.

This definition generalises at a singular point p of N . If θ stands for the
cone angle at p, let rp be the biggest r > 0 such that the portion of cone Cθ(r )
(cf. §2.1.1) can be isometrically embedded in N at p. Then one defines the
exponential map at the cone point p as the corresponding embedding

ip : Cθ(rp ) −→ N

which is unique, up to the isometries (i.e. rotations) of the cone Cθ. This map
enjoys the same properties as the exponential map at a regular point.

2.4. Affine and linear holonomy of a flat surface. If N is a flat surface, the
punctured surface N∗ = N \ S (where S is the set of singular points of N ) is en-
dowed with a (non complete) flat metric which is everywhere regular. Another
way to phrase this is to say that N \ S carries a (C, Iso+(C))-structure (Iso+(C)
denotes the group of orientation preserving Euclidean isometries of C≃R2).
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With such a structure comes a holonomy representation

(2) Hol : π1(N∗) −→ Iso+(C) ,

whose class for the action by conjugation of Iso+(C), is a geometric invariant
of the flat structure. The group Iso+(C) being the set of affine transformations
of the form z 7→ az +b with a ∈U and b ∈C, it is isomorphic to the semi-direct
productU⋉C. The projection onto the first factorU is a group homomorphism
and post-composing hol by this projection produces a new representation

ρ : π1
(
N∗)

−→U

called the linear holonomy of the considered flat surface.

The group U being commutative, ρ factors through the abelianisation of
π1(N∗) namely the first homology group H1(N∗,Z) of the punctured surface
N∗. Let n be the cardinal of S and denote by p1, . . . , pn the n cone points of N .
If θ = (θ1, . . . ,θn) is the associated angle datum (i.e. the cone angle at pk is θk

for any k) and if δk is a simple closed curve turning anticlockwise around pk ,
then necessarily ρ(δk ) = e iθk for k = 1, . . . ,n. We denote by H1(N∗,U,θ) the set
of Z-linear forms on H1(N∗,Z) which maps δk onto e iθk for every k:

H1(N∗,U,θ
)
=

{
ρ ∈ Hom

(
H1

(
N∗,U

)
,Z

) ∣∣∣ ρ
(
δk

)
= e iθk for k = 1, . . . ,n

}
.

In what follows, we will consider ρ as an element of this space. Remark that
basically, ρ is nothing else but the parallel transport of the considered flat Rie-
mannian metric on N∗.

2.5. Isometries. We end this section with a few words about the group Iso+(N )

of direct isometries of a given compact flat surface N .

First, remark that this group is finite since it embeds into the group of bi-
holomorphisms of the underlying Riemann surface which is known to be fi-
nite. Second, the subgroup of Iso+(N ) made of elements fixing a given cone
point must be cyclic, since its elements are completely determined by their
differential at the fixed point which is a rotation. It follows easily that the sub-
group PIso+(N ) formed by pure direct isometries of N (here ‘pure’ means that
the considered isometries fix pointwise the set of cone points) is necessarily
cyclic.

3. VEECH’S ISOHOLONOMIC FOLIATIONS ON Mg ,n

3.1. Moduli spaces of flat surfaces and Troyanov’s Theorem. Let N be a com-
pact oriented surface of genus g with n marked points p1, . . . , pn and θ = (θi )n

i=1
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an angle data satisfying the Gauß-Bonnet relation (1). Since we are only inter-
ested in this case, and because making such a non-resonant assumption will
simplify the exposition, we will always assume that

(3) at least one of the angles θi is not an integer multiple of 2π.

We define Eg ,θ as the set of flat structures on N such that the metric is sin-
gular at pi with a cone angle θi at this point, up to the action of Diff+0 (N ,S)2

where S = {p1, . . . , pn}. One can think of Eg ,θ as the set of flat surfaces of genus
g with cone angles θ with a marking of its fundamental group. For more details
on this construction and the ones to come, we refer to [Vee93, Theorem 1.13].

Notice that a flat structure defines canonically a conformal structure on N .
Away from the singularities, this conformal structure is given by the regular
flat structure. At a singular point p of cone angle θp > 0, there is an essentially
unique local coordinate z centered at p such that the flat metric is |zαp d z|2
with αp = (θp /2π)− 1. By means of z, one extends the conformal structure
of the punctured surface through p. Since this can be done for every conical
singularity of N , one obtains a well-defined map

(4) Eg ,θ −→Teichg ,n ,

where Teichg ,n denotes the usual Teichmüller space of conformal structures
on a surface of genus g with n marked points. The remarkable fact is that this
map is one-to-one. This is a consequence of Troyanov’s theorem stated below.

Theorem ([Tro86]). Every conformal structure on N is induced by a flat metric

with conical singularities of angle θi at pi for i = 1, . . . ,n. Moreover, this flat

metric is unique up to normalization.

The proof (given in [Tro86]) essentially consists in solving the PDE that the
metric tensor associated to a given conformal structure must satisfy. For more
details, we refer to the original article [Tro86] which is very pleasant to read.

Consequently, one has a one-to-one correspondance Eg ,θ ≃Teichg ,n allow-
ing to identify these two moduli spaces. In particular, this endows Eg ,θ with
the structure of a complex manifold of dimension 3g −3+n.

3.2. Veech’s foliations. Since we are considering marked flat structures, the
linear holonomy map

(5) hol= holθ : Teichg ,n ≃ Eg ,θ −→ H1(Ng ,n ,U
)

which associates its linear holonomy morphism to a flat structure, is well de-
fined. Clearly, hol maps Teichg ,n into H1(Ng ,n ,U,θ).

2By Diff+0 (N ,S), we denote the group of orientation preserving diffeomorphisms of N which
are isotopic to the identity and which let S pointwise invariant.
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From hypothesis (3), it follows that the trivial character (the one sending any
holomogy class onto 1 ∈ U) does not belong to H1(Ng ,n ,U,θ). This case being
excluded, the following theorem holds true:

Theorem ([Vee93]). The linear holonomy map (5) is an open real-analytic sub-

mersion. Moreover, for any ρ ∈ Im(hol), the level set hol−1(ρ) is a complex sub-

manifold of Teichg ,n of complex dimension 2g −3+n.

This result implies in particular that the level sets Fρ = hol−1(ρ) for ρ ∈
Im(hol) form a real-analytic foliation by complex submanifolds of Teichg ,n .
This foliation will be denoted by F (θ) (or just F for short, when θ has been
fixed) and will be called the Veech foliation of Tei chg ,n associated to θ.

3.3. Invariance by the pure mapping class group. We now explain how this
foliation descends to Mg ,n . The pure mapping class group PMCGg ,n acts on
Teichg ,n preserving Veech’s foliation: namely any element f ∈ PMCGg ,n sends
Fρ onto F f ∗ρ . Hence the foliation F (θ) factors through the projection

(6) Teichg ,n −→Mg ,n =Teichg ,n /PMCGg ,n

to define a singular foliation on the moduli space Mg ,n . The latter is denoted
by F(θ) (or just by F when θ is fixed) and will also be called Veech’s foliation.3

• We will now refer to a specific leaf F[ρ] where [ρ] is the orbit of an ele-
ment of H1(Ng ,n ,U,θ) under the action of PMCGg ,n . Note that it is the
image of Fρ ⊂Teichg ,n by the quotient map (6).

• Since PMCGg ,n acts on H1(Ng ,n ,U, ,θ) preserving its symplectic form,
the foliation has a transverse symplectic structure of dimension 2g .

• We say that F[ρ] is a leaf of Veech’s foliation. That is not rigorously cor-
rect, because usually, in foliation theory, one demands that leaves be
connected. It is actually proven in [GP, §4.2.5], through some explicit
analytic computations, that F[ρ] can have several distinct connected
components. Nevertheless, we will refer below to the F[ρ]’s as leaves for
convenience.

3.4. Geometric structures on the leaves. Let p and q be non-negative inte-
gers and let

hp,q : (z, w) 7−→
p∑

i=1
zi wi −

p+q∑

j=p+1
z j w j

3Strictly speaking, since PMCGg ,n acts with fixed points on Teichg ,n , one should more rig-
orously speak of F(θ) as an ‘orbifoliation’ on Mg ,n . However, because it will not be the source
of real problems, we will ignore this subtlety in the whole paper.
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be the standard hermitian form of signature (p, q) on V = Cp+q . Let V+ be the
set of elements z ∈Cp+q such that hp,q (z, z) > 0 and let CHp+q−1

p be the image
of V+ in CPp+q−1. The group of automorphisms of hp,q , namely PU(p, q), acts

transitively by biholomorphisms on CH
p+q−1
p , see [Wol11, §12.2]. Note that for

p = 1, CHq
1 is nothing else but the usual complex hyperbolic space CHq .

Assume that θ = (θi )n
i=1 ∈]0,+∞[n is such that θi ∉ 2πZ for i = 1, . . . ,n.

Theorem ([Vee93]). There exists a pair of integers (p, q) = (pθ, qθ) ∈ N2 with

p +q = 2g −2+n, such that the leaves of Veech’s foliation F (θ) on Teichg ,n are

endowed with natural (CHp+q−1
p ,PU(p, q))-structures. These geometric struc-

tures are invariant under the action of the pure mapping class group hence can

be pushed-forward on the leaves of Veech’s foliation F(θ) on Mg ,n .

In [Vee93, §14], Veech gives an explicit closed formula in function of θ for
the signature (pθ, qθ). We explain briefly where this geometric structure comes
from. Consider ρ ∈ H1(Ng ,n ,U,θ) in the image of holθ and consider the asso-
ciated leaf Fρ ⊂ Teichg ,n . Given a flat surface in it, one can consider its full
Euclidean holonomy (2). Since its linear part is fixed (and equal to ρ), the
meaningful geometric information is contained in the translation part of this
full holonomy, which can be viewed as an element of the projectivization of a
certain twisted cohomology group denoted here by H1

ρ(Ng ,n ,C). One can then
construct a relative period map

(7) Fρ −→ P
(
H1

ρ(Ng ,n ,C)
)

.

Veech (and previously Thurston in [Thu98] for flat surfaces of genus 0) proves
that the preceding map is a local biholomorphism (see [Vee93, Theorem 0.6]).
Moreover, one can define a non-degenerate hermitian form hρ on H1

ρ(Ng ,n ,C)
(which is actually the area of the corresponding flat surface) such that the rel-
ative period map lands into P+(H1

ρ(Ng ,n ,C)), where the latter stands for the set

of complex lines in H1
ρ(Ng ,n ,C) on which hρ is positive. Thus the target space of

(7) is nothing else but a model of CHp+q−1
p and any element f of the PMCGg ,n

induces an isomorphism of (CHp+q−1
p ,PU(p, q))-structures

f :
(
Fρ ,hρ

)
−→

(
F f ∗ρ ,h f ∗ρ

)

(see [Vee93, Theorem 0.7]; this amounts to saying that changing the marking
of a flat surface does not change its area).
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Except for very few cases4, those CH
p+q−1
p -structures are known not to be

complete.5 A more geometric description of some of those structures in the
following sections will make this fact obvious.

4. LINEAR CHARTS ON THE LEAVES OF VEECH’S FOLIATION.

In this section we present material about local parametrisations of mod-
uli spaces of flat surfaces. Although this material is well known, there is no
standard point of view or unified theory of these parametrisations. Depending
on the context, parameters obtained from gluing Euclidean polygons, analytic
calculations, twisted cohomology or a combination of several of these are bet-
ter suited to formalize an idea or to simply perform a computation. Neverthe-
less all these points of view (to be detailed) are essentially the same. References
developing various material are [Thu98, Section 3], [GP, Sch] and [Vee93, Sec-
tions 9,10 and 11].

For the remainder of the section g , n and ρ : H1(Ng ,n ,Z) −→U are fixed. We
also suppose that 2g +n −3 > 0 in order that F[ρ] has positive dimension.

4.1. Polygonal models for flat surfaces. We describe here a geometrically in-
tuitive local parametrisation of Fρ . Take N a flat surface in Fρ such that N can
be recovered from gluing isometrically suitable sides of a Euclidean polygon P

with 2k sides. Necessarily, k = 2g −1+n. We identify to C the Euclidean plane
in which P lies in and associate to each side the corresponding complex num-
ber zi , 1 ≤ i ≤ 2k (with the convention that P is positively oriented relatively to
its interior) defined by

zi = end point of the side − initial point of the side .

Assuming that (the side associated to the complex number) z j is paired with
(the side associated to) zk+ j , the 2k-uplet (z1, . . . , z2k ) must satisfy the following
relations :

2k∑

i=1
zi = 0 and

∣∣zi

∣∣=
∣∣zk+i

∣∣ for i = 1, . . . ,k .

4For instance, when g = 0, n = 4 and θ = (π/2,π/2,π/2,π/2), the complex hyperbolic struc-
ture ofE0,θ/PMCG0,4 ≃M0,θ ≃P1 \{0,1,∞} is nothing else but the one given by the uniformisa-
tion (0,1 and ∞ are cusps) hence is complete. Actually, we are not aware of any other example
of a complete moduli space of flat surfaces beside this one.

5The term ‘complete’ has to be understood here in the sense of geometric structures, cf.

[Thu97, §3.5]. For geometric structures modeled on a (possibly indefinite) complex hyperbolic

space CH
p+q−1
p , this coincides with the fact of being geodesically complete for the associated

Levi-Civita connection (see [Tho15, Proposition 1.2] for instance).
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FIGURE 5. Polygonal model for a genus 2 surface with two cone points

Note that since we require that zi be paired with zi+k , the z j ’s for j = 1, . . . ,2k

do not necessarily appear in cyclic order (see Figure 5 for instance). The com-
plex numbers ρi = zi /zk+i ∈U are the holonomy of a curve (which is closed in
the corresponding flat surface N ) joining the middle of zi to the middle of zk+i

and therefore belongs to Im(ρ). One rewrites the previous equations

(8)
2k∑

i=1
zi = 0 and zi = ρi zk+i for i = 1, . . . ,k .

After eliminating zk , zk+1, . . . , z2k , one sees that z = (z1, . . . , zk−1) ∈Ck−1 com-
pletely characterise the polygon P and therefore the associated flat surface N .

Any (k − 1)-uplet u = (u1, . . . ,uk−1) close to z in Ck−1 defines a polygon Pu

whose sides verify the equations above. Performing the associated gluing (mean-
ing that one glues the side associated to ui to the one associated to ui+k =
ρ−1

i
ui for i = 1, . . . ,k −1) builds another element of Fρ .

Let U ⊂ Ck−1 be a small open subset containing z such that all the 2k-gons
corresponding to elements of U are not degenerated. One defines a map

ϕ : U −→Fρ

by associating to each u ∈ U the renormalized flat surface associated to Pu ,
that is the one of area one. Notice that ϕ is not locally injective since ϕ(λu) =
ϕ(u) for all (λ,u) ∈ C∗ ×U such that λu ∈ U . That being said, ϕ induces a
map ψ : V −→ Fρ where V = PU is the image of U in P(Ck−1). It is possible to
prove that ψ is a local biholomorphism for the structure inherited as a leaf of
a foliation of Teichg ,n as has been done by Veech, see [Vee93, Lemma 10.23].
Nonetheless, we want to adopt an intrinsic point of view on the geometry of
Fρ and will therefore ignore Veech’s results.
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We remark that ψ : V −→Fρ is a local homeomorphism :

• The fact that ψ is one-to-one follows straightforwardly from the follow-
ing remark: since we are looking at marked flat structures, any isometry
preserving the marking between close surfaces in the parametrisation
V must come from an isometry of the polygons themselves being the
identity on the boundary of the polygon; and therefore be the identity.

• The fact that ψ is onto is a consequence of the fact that the polygonal
model survives to small deformations.

We will actually ignore the second point and define a structure of (complex)
manifold on Fρ using ψ. Two details remain to be settled :

(1) we have been able to build ψ only if N is built out from gluing a poly-
gon. We now need to extend this construction to the general case;

(2) then we need to prove that if two charts have overlapping images, then
the transition maps are biholomorphisms.

The first difficulty can be settled introducing the notion of pseudo-polygon.
We follow here [Sch]. A pseudo-polygon is a flat metric on a (closed) disk
whose boundary is locally isometric to a piecewise geodesic path in C. By de-
veloping a pseudo-polygon, we can also define it as an immersion of the closed
disk into the plane whose boundary is piecewise geodesic.

Proposition 4.1. Every flat surface N can be built out from gluing sides of a

pseudo-polygon.

The proof of this proposition is carefully done in the case g = 0 in [Sch], and
in the general case in [Vee93]. The crucial point is the existence of a totally
geodesic triangulation (see Lemma 6.23 in [Vee93] or the construction of the
Delaunay decomposition that we will detail in Section 5) for a given flat surface
N ). Starting from there, one easily checks that for any graphΓ in the 1-skeleton
of such a triangulation such that N \Γ is simply connected, then the (metric
completion for the length metric of) the latter is a pseudo-polygon.

The main remark at this point is that the parametrisation built when N comes
from a polygonal model straightforwardly generalises to the case when N is
built out from a pseudo-polygonal model, simply by immersing (using the de-
veloping map of the flat structure) such a pseudo-polygon in C. According to
Proposition 4.1, every surface has a pseudo-polygonal model and therefore the
maps ψ built this way form an atlas of charts for Fρ .

From now on, a local parametrisation (z1, . . . , zk−1) arising in this way will be
referred to as a polygonal parametrisation.
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4.2. Area form and linear parametrisation. Another very important remark
at this point is that a polygonal parametrisation comes with a natural hermit-
ian form which is the signed area of the corresponding flat surface. If U is an
open subset of Ck−1 on which is defined a polygonal parametrisation ϕ of Fρ ,
we denote by Aϕ,U the corresponding hermitian form.

The proof that Aϕ,U is actually a hermitian form in z = (z1, . . . , zk−1) goes the
following way : every immersed pseudo-polygon can be triangulated in such
a way that each side is a geodesic path joining two edges. Let T1, . . . ,TL be the
triangles of the triangulation. For any l , the area of Tl is

A(Tl ) =
1

2
Im

(
zTl

z ′
Tl

)

where zTl
and z ′

Tl
are the complex numbers associated to two consecutive

sides of Tl , oriented in such a way that they form a direct basis of C (seen as a
2-dimensional real vector space). zTl

and z ′
Tl

both are linear combinations of
z1, . . . , z2k and therefore of z1, . . . , zk−1 thanks to (8). For any l , the area A(Tl ) is
a hermitian form in z. Since the area of the whole surface is given by

Aϕ,U (N ) =
L∑

l=1
A(Tl ) ,

it follows that Aϕ,U is indeed a hermitian form in (z1, . . . , zk−1).

The next proposition describes the regularity of the transition maps and set-
tles point (2) of Section 4.1.

Proposition 4.2. Let (ϕ1,U1) and (ϕ2,U2) be two polygonal parametrisations of

Fρ such that W =ϕ1(U1)∩ϕ2(U2) ⊂Fρ is non-empty and connected. Then

ϕ−1
2 ◦ϕ1 : ϕ−1

1 (W ) −→ϕ−1
2 (W )

is the restriction of an element of GLk−1(C) such that (ϕ−1
2 ◦ϕ1)∗AU1 = AU2 .

Proof. Let P and Q be two polygonal models for a flat surface N , and immerse
P in C. Let z1, . . . , z2k be the complex numbers associated to the sides of P .
Consider now a side wi of Q, and develop it in C starting from an initial copy of
P (say P0) and gluing a copy Pi+1 of P to a side of Pi every time it is necessary
to keep track of wi . Thus one can express wi as a linear combination of the
complex number associated to the sides of P and find an expression of wi of
the form

wi =
k−1∑

j=1
αi , j z j

where the αi , j are constants depending only on ρ and the combinatorics of
the side wi relatively to P . Therefore the coordinates (w1, . . . , wk−1) depend
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linearly on (z1, . . . , zk−1). The area only depends on the underlying surface and
therefore does not depend on the parametrisation. �

The proposition above tells us that the polygonal charts endow Fρ with a
complex projective structure (and with an additional structure coming from
the preserved area form, which will be investigated later). The previous analy-
sis invites us to define a more general class of parametrisations :

Definition 4.1. A local holomorphic parametrisation (z1, . . . , zk−1) of Fρ is called

a linear parametrisation if it depends linearly on a polygonal parametrisation.

This class is much more convenient than the class of polygonal parametrisa-
tion because it is the larger class of holomorphic charts enjoying the property
that the area form is hermitian in the associated coordinates. We will also see
in Section 4.4 that it is possible to build other such linear parametrisations in
a natural way which will be extensively used throughout the article.

4.3. Projection onto F[ρ]. We have built in this section projective charts on
Fρ ⊂ Teichg ,n . If N ∈ F[ρ] is a regular point of F[ρ] i.e. if the projection π :
Fρ −→ F[ρ] is a local homeomorphism at N , any chart at Ñ ∈ π−1(N ) can be
pushed forward and gives a chart at N . The fact that N is not regular is equiva-
lent to the fact that PIso+(Ñ ), the group of pure direct isometries of the flat sur-
face Ñ (see §2.5), is non-trivial. In that case any chart at Ñ gives a non-injective
local parametrisation of a neighbourhood of N in F[ρ] whose transformation
group is the stabilizer of Ñ in PMCG1,n which is isomorphic to PIso+(Ñ ).

4.4. Parametrisations coming from topological gluing. Here we describe pa-
rametrisations which are generalisations of polygonal parametrisations: we
are just going to relax the condition that the sides of the polygon we are gluing
be geodesic.

Consider a (topological) triangulation T of Ng ,n such that the set of vertices
is exactly the set of cone points of N . As explained in [Thu98] in genus 0 (see
[Sch] for details) and [Vee93, §10] in arbitrary genus, one can find a graph in the
1-skeleton of T, such that its complement Q in Ng ,n is simply connected. Q is
a topological disk endowed with a flat metric whose boundary corresponds to
consecutive edges of triangulation. Let F : Q −→C be a developing map of the
flat metric on Q and let q1, . . . , q2k , q2k+1 = q1 be the vertices of the boundary
∂Q of the metric completion Q of Q for the length distance induced by the
flat structure of Q. The map F extends continuously to Q and one sets ξi =
F (qi+1)−F (qi ) for i = 1, . . . ,2k. The following proposition holds true:

Proposition 4.3. For an appropriate choice of pairwise distinct indices i1, . . . , ik

in {1, . . . ,2k}, the parameters (ξi1 , . . . ,ξik−1 ) form a linear parametrisation of Fρ .
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Notice that if the triangulationTused to construct them was totally geodesic
then these coordinates would form a polygonal parametrisation. The proof
uses arguments similar to those of the proof of Proposition 4.2.

5. GEOMETRIC PROPERTIES OF FLAT SURFACES

AND CHARACTERISTIC FUNCTIONS

In this section we develop material and prove several technical lemmas about
the intrinsic geometry of flat surfaces which will be used in Sections 7 and 8 in
order to understand the geometry of the moduli spaces F[ρ]. Most of the work
done in this paper is about reinterpreting questions regarding the geometry of
these moduli spaces, in terms of how flat surfaces can degenerate. The mate-
rial developed below goes some way to answering these questions.

We denote by h the flat metric on a given flat surface N and by dh (or just
by d for short) the induced distance (see Section 2.3). We also denote by S ⊂ N

the set of conical points of N (for the flat structure induced by h).

5.1. Characteristic functions. We define four quantities associated to N :

– its systole :

σ(N ) =σ(N ,h) = inf
{

Lh(γ)
∣∣ γ simple essential closed curve

}
;

– its relative systole :

δ(N ) = δ(N ,h) = inf
{

Lh(γ)
∣∣ γ joining two distinct singular points

}
;

– its diameter:

D(N ) = D(N ,h) = sup
x,y∈N

dh(x, y);

– its relative diameter :

s(N ) = s(N ,h)= sup
x∈N

dh(x,S).

(The terminology relative is inspired by the terminology used for translation
surfaces, where a relative period of an abelian form on a Riemann surface is
the value of the integral of this 1-form on a path linking two of its zeroes).

Note that these four quantities all depend linearly on a rescaling of h. Most
of the time, we will consider them under the supplementary assumption that
the area of N is 1. In this case, one gets geometric invariants attached to N .

A classical fact from Riemannian geometry (see Section 2.3) is that σ,δ, D

and s all are realised by piecewise geodesic paths, singular only at points where
they cross singular points of N .
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Proposition 5.1. The four following inequalities hold true:

(1) D(N ) ≥ δ(N ); (2) D(N ) ≥σ(N )/2;

(3) D(N ) ≥ s(N ); (4) s(N ) ≥ D(N )/(2n) .

Proof. The first and third inequalities are obvious. We now prove the second
one. Consider c a curve realising σ(N ). Let p and q be two points on c diamet-
rically opposed (by this we mean that they cut c into two parts of equal length).
We claim that d(p, q) = σ(N )/2. Otherwise there would be a path of length
strictly smaller than σ(N )/2 going from p to q . This path completed with one
of the parts of c going from p to q would form an essential closed curve of
length smaller than σ(N ). Since d(p, q) =σ(N )/2, we have D(N ) ≥σ(N )/2.

Finally we prove (4). Let now p and q be two points realising D(N ). The
point p can be joined to a point s1 ∈ S by a path of length at most s(N ), and q

to s∞ ∈ S by a path of length at most s(N ). But a singular point can always be
joined to another singular point by a path of length at most 2s(N ). Join then
s1 and s∞ by a path going from singular point to singular point. Remark that
we can make sure that such a path visits each singular point only once. Such a
path has length at most 2ns(N ), hence D(N ) ≤ 2ns(N ). �

5.2. Voronoi decomposition and Delaunay triangulation. We explain briefly
a well-known but important construction in the realm of flat surfaces. We omit
the proofs below and refer to [MS91] for a careful and detailed treatment.

The Voronoi decomposition of N is defined as follows:

• the 2-cells are the connected components of the set of points p ∈ N

such that d(p,S) is realised by a unique geodesic path;

• the 1-cells are the connected components of the set of points p ∈ N

such that d(p,S) is realised by exactly two distinct geodesic paths;

• the 0-cells are the connected components of the set of points p ∈ N

such that d(p,S) is realised by at least three distinct geodesic paths.

It is checked in [MS91] (see Proposition 4.1) that 0-cells are points and 1-cells
are totally geodesic paths.

The Delaunay decomposition is defined as the polygonal decomposition
which is dual to the Voronoi decomposition in the following way. One checks
that Dp , the Euclidean disk of radius d(p,S), injects at p for any p being a 0-cell
of the Voronoi decomposition. A Delaunay 2-cell is defined as the convex hull
of the elements of S belonging to ∂Dp . A 1-cell is a connected component of
the boundary in N \ S of such a convex hull and a 0-cell is a element of S.

In [MS91, Lemma 4.3 and Theorem 4.4], it is checked that :

• the set of 0-cells is exactly S;
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• 1-cells are saddle connections;

• for each 1-cell C1, there are two distinct 2-cells C2 and C ′
2 such that

C1 ⊔C2 ⊔C ′
2 is a neighbourhood of C1 in N ;

• a Delaunay 2-cell is isometric to a convex Euclidean polygon inscribed
in a circle of radius less than s(N );

• Delaunay 1-cells have length smaller than or equal to 2s(N ).

From the Delaunay decomposition (which is unique and only depends on
the geometry of N ) one can get a Delaunay triangulation by subdividing the
2-cells into triangles. Notice that a Delaunay triangulation is not necessar-
ily a simplicial triangulation since a triangle might not be determined by its
vertices. We have now as an immediate corollary of this construction and of
Proposition 5.1:

Proposition 5.2. The length of any 1-cell of any Delaunay triangulation of N is

always smaller than 2D(N ).

We also prove the following lemma:

Lemma 5.3. The interior of any path in N realising δ(N ) is a 1-cell of the Delau-

nay decomposition of N (hence is a 1-cell of any Delaunay triangulation of N).

Proof. Remark that if a saddle connection is such that the only paths realising
the distance of its middle point to S are the two paths connecting the middle
point to the end points, then it is a 1-cell of the Delaunay decomposition. This
is a direct consequence of the construction of the latter. We now check that
such a saddle connection γ realising δ(N ) must verify the above property.

Assume that there is a second path u going from p ∈ S to the middle point
of γ whose length is less than δ(N )/2. The point p must be different from one
of the two endpoints of γ, and if concatenating the half of γ starting from this
point and u, one gets a path v of length less than δ(N ) going from two distinct
elements of S. Being singular at the middle of γ, v can be shortened in order to
get a path whose length is strictly less than δ(N ) which is impossible. Therefore
γ must be a 1-cell of the Delaunay decomposition. �

5.3. Surfaces with large diameter. The aim of this subsection is to prove that
flat surfaces with large diameter and finite linear holonomy must necessarily
contain long flat cylinders. If one dismisses the hypothesis that the linear ho-
lonomy is finite, one can build counterexamples by gluing cones of very small
angle. This was already known for spheres (see [Thu98]) or when the linear
monodromy ranges in {−1,1} (see [MS91, Corollary 5.5]). The proof of Propo-
sition 5.6 below is highly inspired by the techniques developed in [MS91].
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Elementary facts about cones. We remind the reader that Cθ stands for the
(Euclidean) cone of angleθ ∈]0,+∞[, namely the metric space obtained by glu-
ing the sides of a plane sector of angle θ. Its vertex is denoted by 0 and one sets
C∗
θ
= C∗

θ
\ {0}. The latter does not carry closed regular geodesic but, if θ < π, it

carries piecewise geodesic paths with only one angular point. More precisely:

Proposition 5.4. If θ <π then for any point p ∈C∗
θ

:

• there exists a unique closed simple piecewise geodesic path in C∗
θ

singu-

lar only at p;

• the interior angle of the latter at the angular point is π−θ;

• the length of this piecewise geodesic path is 2 sin(θ/2) ·d(0, p).

Proof. The proof of the proposition is straightforward after noticing that such
a cone is obtained after doing the gluing pictured just below.

θ

p

π−θ

FIGURE 6. The simple closed piecewise geodesic path with one
angular point at p on Cθ (in green). �

Lemma 5.5. Let N be a flat surface and γ be a piecewise geodesic path of length

L(γ) on N with one angular point which avoids conical points. Assume that γ

cuts locally N at its angular point into two angular sectors of angles π+θ and

π−θ respectively, with 0 < θ <π. Then

(1) the linear holonomy along γ is e iθ or e−iθ;

(2) there is a cone point q of N such that d(q,γ) ≤ L(γ)/(2 tan(θ/2)).

Proof. The point is that such a geodesic γ has a neighbourhood that is iso-
metric to a neighbourhood of the unique (up to isometry) closed geodesic of
length L(γ) of the cone of angle θ. The only obstruction for this isometry to
extend to the whole cone is that the boundary of its definition domain meets
a singular pointof N (one can use the exponential map along γ). Otherwise γ

is on the cone of a cone point of N whose associated conical angle is θ. In any
case, there is a singular point of N , whose distance toγ is less than the distance
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from the geodesic of length L(γ) in Cθ to the cone point of Cθ. This distance is
exactly L(γ)/(2 tan(θ/2)). �

Proposition 5.6. Let ρ ∈ H1(N ,U,θ) be such that Im(ρ) is finite. There exist

two positive constants K1(ρ) and K2(ρ) such that for every flat surface N ∈ Fρ

normalised such that its area is 1, if D(N ) ≥ K1(ρ) then N contains an embedded

flat cylinder of length at least K2(ρ)D(N ).

Proof. Let N be an element of Fρ . Let p ∈ N be a point maximizing the dis-
tance s to S the set of singularities, i.e. such that s = s(N ) = d(p,S) where S ⊂ N

stands for the set of singular points of N .
Let rp be the injectivity radius at p. Then rp < 1/

p
π since the area of N

is one. If s > rp then D(rp ), the closed Euclidean disk of radius rp , can be
immersed in N at p (since s is realised at p). There are two distinct points
a and b on the boundary of D(rp ) which project onto the same point in N

and the immersion i : D(rp ) −→ N is injective on D(rp ), by definition of rp .
Therefore the chord joining a and b maps to a piecewise closed geodesic γ

path in N , with one angular point at i (a) = i (b).

We claim that if s is large enough, then the linear holonomy along γ must
be trivial. This is a corollary of Lemma 5.5. More precisely, if Im(ρ) =

〈
e2iπ/m

〉

and s > rp (1+ tan(π/m)−1), γ cuts N at i (a) into two angular sectors both of
angles π. Hence γ is a closed regular geodesic which belongs to a flat cylinder
C and the holonomy along γ is 1. Moreover, a and b must be diametrically
opposed and γ must have length 2rp . Otherwise one side of the cylinder C

would be covered by D(rp ). But then rp would not be the injectivity radius at
p. The closed geodesic γ contains p and the cylinder C containingγ has length

at least 2
√

s2 − r 2
p , because any cylinder on a flat surface can be extended until

its boundary meets a singular point.

If one assumes that s ≥ 2/
p
π ≥ 2rp , then the cylinder we have found has

length at least s
p

3 hence at least D(N )
p

3/2n according to Proposition 5.1.
It follows that statement of the lemma holds true if one takes K1(ρ) =

(
1 +

tan(π/m)−1
)
/
p
π and K2(ρ) =

p
3/(2n). �

5.4. Collisions. A very important feature of the description of the metric com-
pletion of the moduli spacesF[ρ] is to characterize geometrically what happens
when two singular points collide, i.e when δ(N ) goes to zero. We prove below
two results describing situations when such a collision cannot occur, at least
without the diameter going to infinity.

Lemma 5.7. Let θ1 and θ2 be two positive angles such that θ1 +θ2 < 2π. There

exists a constant K (θ1,θ2) > 0 such that if Σ is any flat sphere with n conical

singularities satisfying the three following conditions:
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• all the cone points p1, . . . , pn of Σ have positive curvature;

• the cone angles of Σ at p1 and p2 are θ1 and θ2 respectively;

• the area of Σ is 1;

then the following holds true: d(p1, p2) ≥ K
(
θ1,θ2

)
.

This lemma tells us that two too positively curved singular points cannot
collide. We would like to draw attention to the fact that, in the authors’ opin-
ion, this lemma is missing in [Thu98].

Proof. The idea of the proof is to compare this situation to the case of the
sphere Σ

0 with three cone points, of respective angles θ1, θ2 and 2π−θ1 −θ2.
Such a sphere is unique up to dilatation of the flat metric metric and is built by
gluing two isometric triangles of angles θ1/2, θ2/2 and (2π−θ1 −θ2)/2.

Let p0
1, p0

2 and p0
3 be the cone points on Σ

0 of respective angles θ1,θ2 and
2π−θ1 −θ2. Normalise Σ

0 so that the length of the unique geodesic l 0 from p0
1

to p0
2 has same the length as the one from p1 to p2 on Σ, denoted by l . Remark

that Σ0 is the disjoint union of geodesic paths going from p0
3 to points of l 0.

A neighbourhood of l 0 in Σ
0 is isometric to a neighbourhood of l in Σ. We

extend such an isometric identification using the remark above, developing
the geodesics of the decomposition. The only obstruction to do so appears
if such a geodesic meets a singular point, which can only happen for a finite
number of such geodesics. We denote by A the finite union of those parts of
geodesics on which the isometry cannot be extended.

We have thus defined a local isometry

i : Σ0 \ A −→Σ .

Since all the singular points of Σ have positive curvature, the closure of i (Σ0)
must also be open and since i is a local isometry, one gets

area(Σ0) ≥ area(Σ) = 1

which implies the lemma. �

Lemma 5.8. Let M be a flat torus with two cone points p1 and p2. There exists

a pseudo-hexagon P such that M is isometric to P/ ∼ where ∼ is one of the three

gluing patterns of Figure 2.

Proof. Let Γ be a connected graph in the 1-skeleton of the Delaunay decompo-
sition of M such that M \Γ is connected and simply connected. Γ has exactly
for vertices the two cone points of M . By a Euler characteristic argument, its
number of edges e must satisfy 2−e +1=χ(M) = 0 and therefore e = 3.

One easily checks that the only connected graphs with two vertices and three
edges that one can draw on a torus are the three graphs represented on Figure
3. Then cutting alongΓ gives the expected pseudo-polygonal model for M . �
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Proposition 5.9. Let (Mn)n∈N be a sequence of flat tori with two cone points

belonging to a leaf F[ρ] with Im(ρ) finite. Assume that for all n ∈N, Mn has area

1. If limn→+∞δ(Mn) = 0 then D(Mn) →+∞ as n goes to infinity.

Proof. Suppose that (Mn)n∈N and ρ are as in the statement and assume that
D(Mn) does not go to infinity although δ(Mn) tends to zero when n → +∞.
Then, up to extracting an appropriate subsequence, we can assume that the
D(Mn)’s are bounded. For any n, consider the Delaunay decomposition of Mn

and take in its 1-skeleton a graph Γn such that

• Γn contains a curve realising δ(Mn), as guaranteed by Lemma 5.3;

• Qn = Mn \Γn is simply connected.

According to Lemma 5.8, for any n ∈ N, the metric completion Qn of Qn

is a pseudo-hexagon (i.e. a pseudo-polygon with six sides) whose lengths of
the sides are uniformly bounded (according to Proposition 5.2) and the gluing
pattern to recover Mn is one of the three patterns of Figure 2.

Again up to extracting a subsequence, we can assume that for any n ∈N:

(1) Mn can be obtained from Qn by using the same gluing pattern;

(2) the sides glued together always form the same angle ;

(3) the length of each side converges.

(To assume (2), one has to use that ρ has finite image. That one can assume
that (3) holds true as well follows from Proposition 5.2.)

Since the lengths of two sides go to zero (the ones which are identified by
the gluing with the curve realising δ(Mn) in Mn), the sequence of pseudo-
hexagons (Qn)n∈N converges to a quadrilateral whose opposite sides have the
same length and therefore are parallel. Since Im(ρ) is finite, this implies that
the corresponding sides in ∂Qn = Qn \ Qn where parallel for all n sufficiently
big. This forces the gluing pattern to be Pattern 1 of Figure 2. But a hexagon
glued with this pattern and having two pair of sides glued together parallel
must be a regular torus with no singular point (this is an easy exercise left to the
reader). This would force F[ρ] to contain regular tori, which is impossible since
we have supposed that its elements have exactly two singular points. Therefore
the sequence of diameters (D(Mn))n∈N must go to infinity as n does. �

5.5. Closed curves realising the systole. As well as collisions, the ways in which
simple closed curves can collapse are also very important to characterise.

Lemma 5.10. Let N be a flat torus with n ≥ 2 cone points and suppose that p1 is

the only cone point which has a negative curvature. The systole σ(N ) is realised

by a simple closed piecewise geodesic which meets the set of cone-points only

once at p1. Moreover, the only point at which it might not be smooth is p1.
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Proof. Consider the set of non homotopically trivial closed curves. Classi-
cal Riemannian geometry (see Section 2.3) ensures it exists a minimiser of the
length functional on this set and that it is piecewise geodesic.

We claim that such a minimiser is simple. Otherwise it could be decom-
posed into two closed curves of strictly shorter length with at least one of these
two being essential.

A minimiser cannot pass through a point of positive curvature because oth-
erwise one can unshape it in order that it avoids the cone point and that its
length is shorter. Therefore the only cone point it might pass through is p1,
and one can always make sure that there is a minimising path passing through
p1 : otherwise the path is actually totally geodesic and a neighbourhood of this
path is a flat cylinder which can be extended until meeting a cone point which
must be p1. Any boundary component of this extended flat cylinder would be
a required path. �

A path realisingσ(N ) cuts the surface at p1 in two angle sectors, whose angle
must be bigger than π (otherwise one can shorten the path by passing on the
side where the angle is smaller than π). Two eventualities can occur :

(1) one of the angle equalsπ; in this case such a path bounds a flat cylinder;
(2) both angles are strictly bigger than π.

For our purpose, it is important to distinguish these two situations.
In the case we are mostly interested in (when g = 1 and θ = (θi )n

i=1 is such
that only the point of cone angle θ1 carries negative curvature), they actually
correspond to two geometric aspects of F[ρ] : flat tori verifying (1) are in a
cusp while those verifying (2) are close to a stratum corresponding to the Devil
surgery S3, see Section 6.3. The proposition below proves that, in the very spe-
cific case when g = 1 and ρ is rational, if the diameter remains bounded and
the systole goes to zero, we are in situation (2).

Proposition 5.11. Assume that g = 1, θ = (θi )n
i=1 is such that only θ1 is big-

ger than 2π and ρ ∈ H1(N ,U,θ) has finite image. For all K > 0, there exists a

constant ǫ(K ) > 0 such that for N ∈ F[ρ] normalised such that its area equals 1,

if D(N ) ≤ K and σ(N ) ≤ ǫ(K ), then any curve realising the systole and passing

through the point of negative curvature of N cuts locally the latter at this point

into two angular sectors whose angles both are strictly bigger than π.

Proof. We argue by contradiction. Assume that there exist a constant K and a
sequence (Nn)n∈N of flat tori such that for all n ∈N, one has :

• Nn ∈F[ρ] and its area is equal to 1;

• σ(Nn) ≤ 1
n

;
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• Nn contains a cylinder Cn of width σ(Nn) (i.e. we are in situation (1)
described above);

• D(Nn) ≤ K .

For all n ∈N, Nn \Cn is a sphere whose boundary is the union of two piece-
wise geodesic closed curves of the same length σ(Nn) touching at the only
point where they both are singular, namely p1(n) the cone point of negative
curvature of Nn . One can cut at the point where the two boundary circles
touch, and glue together the two geodesic parts of the new boundary circle
(which have the same length) to get a flat sphere Sn . Since the cone angle θ1

at p1(n) is supposed to belong to ]2π,4π[, the resulting sphere has only pos-
itively curved cone points. The angles θ′1(n) and θ′2(n) at the two ‘new’ cone
points of Sn created by the previous cutting and pasting operation, must sat-
isfy θ′1(n)+θ′2(n)+π+π= θ1. Since θ1 is strictly smaller than 4π, we get:

θ′1(n)+θ′2(n) < 2π .

For k = 1,2, the cone angle θ′
k

(n) must be such that e iθk (n) ∈ Im(ρ) therefore
these two angles can take only a finite number of values. So, up to extracting
a subsequence, one can assume that these two cone angles are independent
of n. The fact that the sequence of diameters (D(Mn ))n∈N is bounded by K

implies that the length of Cn is bounded by 2K . Therefore the area of Sn , which
is bigger than 1−2σ(Nn)K , is bigger than 1/2 provided that n is large enough.
Hence θ′1(n)+θ′2(n) < 2π and the distance between the associated cone points
goes to zero. This contradicts Lemma 5.7 and proves the proposition. �

6. SURGERIES

A surgery is a procedure through which a new flat surface with conical sin-
gularities is produced from another one by means of geometrical gluing and
pasting relying on elementary Euclidean geometry. This notion naturally ap-
pears when studying moduli spaces of flat surfaces (implicitly in [Thu98] but
also more explicitly in [KZ03]). In the previous section, we have studied differ-
ent ways for flat surfaces to degenerate, namely sequences of surfaces contain-
ing very large embedded flat cylinders, essential curves which collapse or cone
points colliding. In the present section, we introduce several surgeries which
are to be seen as the inverse processes of the aforementioned degenerations.
We will distinguish five distinct types of surgeries:

• The first one, denoted by S1, was known and implicitly considered by
Thurston in [Thu98]. It consists in blowing up a singular point of posi-
tive curvature into two singular points of positive curvature.
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• The second surgery, denoted by S2, is a straightforward generalisation
of the first one, which allows to blow up points of negative curvature.
We will therefore refer to both S1 and S2 as Thurston’s surgeries.

• The third surgery S3 is new. We call it the Devil’s surgery. It consists
in creating a handle by removing the neighbourhoods of two singular
points and gluing their boundaries together.

• The fourth surgery S4 consists in blowing up a regular point into three
singular points. We call it the Kite surgery.

• The last surgery S5 consists in creating a handle by adding a long flat
cylinder to any flat surface having two isometric totally geodesic bound-
ary components.

Surgeries S1, S2 and S4 could have been seen as the same in a more gen-
eral presentation but we find more convenient to differentiate them for our
purpose. At the end of this Section, we compute the signature of the area form
in the case we are interested by using surgeries and we give a definition of the
notion of geometric convergence which will be central in the description of the
metric completion of F[ρ] carried on in Section 7.

6.1. Thurston’s surgery S1 for a cone angle smaller than 2π. Let N be a flat
surface of genus g with cone angles θ = (θ1, . . . ,θn) at p1, . . . , pn ∈ N . Let F[ρ] be
the leaf of Veech’s foliation to which N belongs. Suppose that θ1 < 2π and let
θ′1 and θ′′1 be two angles smaller than 2π such that

(9) 2π−θ1 =
(
2π−θ′1

)
+

(
2π−θ′′1

)
.

In this subsection, we describe a surgery building out flat surfaces of genus
g with n +1 singular points of cone angle θ′ = (θ′1,θ′′1 ,θ2, . . . ,θn) from N (note
that because we have assumed (9), the new angle datum θ′ still satisfies Gauß-
Bonnet formula (1)). The surgery is local on N , in the sense that it is performed
on a small neighbourhood of p1 without modifying the rest of the surface.

Choose a point p in a small neighbourhood C of p1 isomorphic to the trun-
cated cone Cθ1(ǫ) for a certain ǫ > 0 (see §2.1). As θ′1 is bigger than θ1, there
are exactly two distinct segments of same length issued from p which meet at
their endpoints and form an interior angle equal to 2π−θ′1 at p (see Figure 7).

The surgery works the following way : delete the 2-gon on C which corre-
sponds to the quadrilateral B in grey on Figure 7. Its sides are two geodesics
which have the same length and the same endpoints p ′

1 and p ′′
1 . Removing the

2-gon and gluing these two segments together, one gets a new flat surface N ′

having two cone points of angle θ′1 and θ′′1 at p ′
1 and p ′′

1 .
Recall that F[ρ] is the leaf of Veech’s foliation to which N belongs. There

exists a neighbourhood U of N in F[ρ] and ǫ> 0 sufficiently small so that for all
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Cutting along the line Deleting B and gluing the red 

lines together

FIGURE 7. Thurston’s surgery S1.

flat surfaces in U , the previous surgery can be performed for all p in a disc of
radius ǫ centered at p1, the cone point of angle θ1. Remark that the class [ρ′]
such that N ′ ∈F[ρ′] does not depend on the choice of N in U .

This allows us to define a map

S1 : C∗
θ1

(ǫ)×U −→F[ρ′](10)
(
p, N

)
7−→ N ′ ,

where C∗
θ1

(ǫ) is Cθ1(ǫ) minus its apex (see Section 2). This definition requires an
identification of Cθ1 (ǫ) in each element of U . We do this by choosing a geodesic
path c joining p1 and p2. This path survives in a neighbourhood of N in U . We
decide that Cθ1 (ǫ) is embedded in an element of U in order that it always meets
the previous geodesic path in the same locus. Let z0 ∈ C be a (germ of) linear
parametrisation of C∗

θ1
(ǫ) such that z0 ∈R if and only if the corresponding point

p belongs to the aforementioned geodesic path joining p1 to p2.

There is a little ambiguity for the choice of the path c whenever some ele-
ments of U have non-trivial isometries; in that case the identification of C∗

θ1
(ǫ)

on elements of U cannot be made continuous. We chose to ignore this diffi-
culty for a moment and then we will address it in Remark 6.2 further.

Proposition 6.1. We use the notations introduced just above.

(1) If (z1, . . . , zm) is a linear parametrisation of U then (z0, z1, . . . , zm) is a

linear parametrisation of U ′ ⊂F[ρ′].

(2) The map S1 is a local biholomorphism.

(3) If all elements of U have no non-trivial isometry then S1 is one-to-one.

Proof. Consider a topological polygonal model of N ∈U which is such that c

is an edge of this polygon. This model can be extended to a model of N ′ by
adding a point on the side representing the class of c, see Figure 8.
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FIGURE 8. The surface N before surgery S1 on the left and N ′

after surgery on the right.

Let (z1, . . . , zn) be a linear parametrisation of U such that the geodesic path
c from p1 to p2 develops on z1, and let z0 be the complex number on which
the geodesic path from p1 to p develops. Let N ′ be a flat surface obtained after
applying a S1 surgery to N . Let (w0, . . . , wn) be a linear parametrisation of a
neighbourhood of N ′ in F[ρ′] associated to the extended polygonal model of
N , such that at N ′, w0 represents the closest geodesic path from p ′

1 to p ′′
1 , w1

represents a path joining p ′
1 to p2, w2 a path joining p ′′

1 to p3, and the other
wi ’s represent paths involving end points different from p ′

1 and p ′′
1 .

FIGURE 9.

According to Figure 9, the following relations hold true

w0 = ρ0z0, w1 = z1 + z0 and w2 = z2 +ρ1z0 ,

where ρ0 and ρ1 are constants (which can be made explicit) depending only
on θ1,θ′1 and θ′′1 .
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Therefore (z0, z1, . . . , zn) is a linear parametrisation of a neighbourhood of N ′

in F[ρ′]. This implies directly the two first points of the proposition, in partic-
ular the fact that S1 is a local biholomorphism. It remains to prove the injec-
tivity of S1 under the additional hypothesis that all the elements of U have a
trivial isometry group. The length of the shortest path from p ′

1 to p ′′
1 (which

equals |z0| provided that the latter is small enough in the area 1 normalisation)
is a geometric invariant. The surface N from which N ′ is obtained from also
is a geometric invariant. Assume that there exist two points p and p ′ on C∗

θ1
(ǫ)

such that the resulting surfaces from the surgery at p and p ′ are the same. This
would imply that the initial surface has an isometry fixing p1 and sending p to
p ′. The (pure) isometry group of a surface being finite, S1 is a local biholomor-
phism which is one-to-one if all the elements of U are all isometry free. �

Remark 6.2. (1) It is worth giving a more abstract and intrinsic definition of
the surgery introduced above. Let U ⊂ F[ρ] as above and assume that none of
its elements admits a nontrivial isometry. Then there exists a ‘universal flat

curve’ over U , namely a map νU : TU →U such that the fiber over a flat surface
N viewed as a point of U is N itself, but this time viewed as a 2-dimensional
flat surface with conical singularities. This family of surfaces comes with n

sections pi : U → TU which are such that pi (N ) is the i-th cone point of N

for every i = 1, . . . ,n. One denotes by Pi the image of pi for every i and by
T

∗
U =TU \∪n

i=1Pi the ‘n-punctured universal flat curve over U ’

Within this formalism, one can verify that Thurston’s surgery S1 admits an
intrinsic definition as the (germ of) map (T ∗

U ,P1)6 → F[ρ′] which, for any p ∈
T

∗
U sufficiently close to P1 associates the flat surface N ′ obtained by perform-

ing the surgery described by Figure 7 above on the surface N = νU (p) with
respect to p and the cone point p1(N ). Clearly, obtaining the more explicit
definition (10) just amounts to trivializing TU →U along P1.

(2) The preceding more conceptual approach also has the interest to point
out what is the main issue when some of the elements of U admit nontrivial
isometries and how to deal with it. Indeed, in this case, there is no universal
curve over U but one will exist over a non-trivial orbifold cover Ũ of U and
working with the latter, one can define Thurston’s surgery the same way than
above.

For instance and more concretely, if N0 ∈ U is such that PIso+(N0) is non-
trivial, then it is necessarily cyclic of finite order, say m, according to §2.5. In
this case there exists Ũ → U an orbifold cover of order m of U , whose deck
transformation group is isomorphic to the isometry group of N0, on which the
identification of C∗

θ1
(ǫ) in elements U can be made in a continuous way.

6By (T ∗
U ,P1) we means ‘the germ of T

∗
U along P1’.
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Therefore the surgery still defines a map

S1 : C∗
θ1

(ǫ)×Ũ −→F[ρ′](
p, N

)
7−→ N ′

which is equivariant under the action of the isometry group of N0.

6.2. Thurston’s surgery S2 for a cone angle greater than 2π. Assume now
that θ1 > 2π. Let θ′1 > 2π and θ′′1 < 2π be such that

2π−θ1 =
(
2π−θ′1

)
+

(
2π−θ′′1

)
.

Let V1 be a neighbourhood of p1 isometric to a portion of cone Cθ1 (ǫ) for a
certain ǫ> 0. Define η= θ1 −2π and let p be a point of V1. If p is close enough
to the singular point p1 there is a unique 4-gon P in V1 having the following
properties (see Figure 10) :

• p and p1 are opposite vertices of P and the external angles of the latter
at these two points are θ′′1 and η respectively;

• the external angles at the two other vertices of P both are θ′1/2;

• the sides of P crossing at p (resp. at p1) have the same length;

FIGURE 10. Thurston’s surgery S2.

We build a new flat surface N ′ in the following way : we remove the interior
of P and glue together the sides crossing at p1 and p. We obtain a flat surface
with a singularity of angle θ′′1 and another singularity of angle θ′1. As when
θ1 < 2π, the class [ρ′] such that N ′ ∈F[ρ′] does not depend on the choice of N .
For a neighbourhood U in F[ρ], this allows us to define a map

S2 : C∗
θ1

(ǫ)×U −→F[ρ′](
p, N

)
7−→ N ′ .
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Similarly to the case when θ1 < 2π, the map S2 is a local biholomorphism
on its image, and for any linear parametrisation (z1, . . . , zm) of U , (z0, z1, . . . , zm)
is a linear parametrisation of the image of S2, where z0 is the complex number
on which the segment [p1, p] develops. The proof is exactly the same as in the
θ1 < 2π case and is left to the reader. A similar remark to Remark 6.2 also holds
true for S2 as well.

The following remark will play a crucial role in the proof of Proposition 7.7
which is one of the main result of the paper.

Remark 6.3. If l is the length of the segment between the points of angle θ′1
and θ′′1 and m the one between p1 and the point of angle θ′1 (after surgery),
then

(11) m =
sin

(
θ′′1
2

)

sin
(
θ′1+θ

′′
1

2

) l .

Given a flat surface N with two conical points p ′
1 and p ′′

1 of angles θ′1 > 2π
and θ′′1 < 2π which are linked by a saddle connection c of length l , one can
wonder when it is possible to reverse Thurston’s surgery S2. The only obstruc-
tion to do so is that c can be extended on the side of p ′

1 (the point of negative
curvature) on a distance equal to the right-hand side of (11), while cutting θ′1
in half. The proof of this claim is elementary and left to the reader.

6.3. The Devil’s surgery S3. Let θ′1,θ′′1 ,θ2, . . . ,θn be the respective cone angles
at the cone points p ′

1, p ′′
1 , p2, . . . , pn of a flat surface N . We make the simplifying

assumption that θ′1 and θ′′1 are (strictly) less thanπ, but we will see later on that
the surgery we are going to describe can still be performed for θ′1 and θ′′1 less
than 2π.

Let C ′
1 and C ′′

1 be two neighbourhoods of p ′
1 and p ′′

1 , isometric to Cθ′1
(ǫ) and

Cθ′′1
(ǫ) respectively, with ǫ> 0 sufficiently small. Consider two points q ′ and q ′′

in C ′
1 and C ′′

1 respectively such that the unique closed geodesic paths c ′ and
c ′′ in C ′

1 and C1" respectively, singular only at q ′ and q ′′ have the same length
(see Proposition 5.4). Remove the superior part of the two cones C ′

1 and C ′′
1 by

cutting along c ′ and c ′′ respectively. Then glue c ′ and c ′′ isometrically in order
that q ′ and q ′′ are glued together. One gets a flat surface of genus g +1 with n

cone points of angle θ1,θ2, . . . ,θn with θ1 = 2π+θ′1 +θ′′1 .
Let β be a simple curve, avoiding singular points, joining two regular points

of c ′ and c ′′ glued together. Now allow q ′ and q ′′ to vary on two circles around
p ′

1 and p ′′
1 in order that c ′ and c ′′ are the same length. We want to perform

the surgery in order that the linear holonomy of the resulting surface does not
change and equals a certain (class under the action of the pure mapping class
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FIGURE 11. The Devil’s surgery from a flat sphere to a flat torus.

group) ρ′. It is equivalent to the fact that the holonomy along β does not vary,
because the holonomy of the resulting flat surface is totally determined by the
holonomy of the original surface and the holonomy along β. When q ′ moves
on the circle it belongs to (namely the set of points of C ′

1 whose distance to the
apex p ′

1 is the same than the one of q ′), the linear holonomy along β increases
exactly by the angle that q ′ makes relatively to its initial position. Hence if we
want to keep the linear holonomy around β constant, we have to move q ′′ by
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the same angle as q ′. This allows us to build a map :

S̃3 : �C∗
θ′1

(ǫ)×U −→F[ρ′]
(
p, N

)
7−→ N ′

where U is an open subset of F[ρ], the moduli space to which the original sur-
face belongs.

Proposition 6.4. Suppose that every element of U has no non-trivial isometry.

Then S̃3 is a covering map onto its image. If θ′1 and θ′′1 are not commensurable

(i.e. if θ′1/θ′′1 ∉Q) then it is a biholomorphism onto its image.

However, if θ′1/θ′′1 = k/l for some coprime positive integers k and l , then the

deck group is the group generated by the rotation of angle lθ′1 = kθ′′1 . In particu-

lar S̃3 factors through

S3 : C∗
lθ′1

(ǫ)×U −→F[ρ′]
(
p,Σ

)
7−→Σ

′

which is a biholomorphism onto its image.

Proof. The fact that S̃3 is a local biholomorphism just relies on the fact that
one can get a linear parametrisation of F[ρ′] by adding the parameter z0 to any
linear parametrisation of U , with z0 a linear parametrisation of C∗

lθ′1
(ǫ).

The key fact is that two surfaces resulting from the surgery under considera-
tion are isometric if and only if the two points q ′ and q ′′ are the same because
we have supposed that the elements of U do not have non-trivial isometries
(see the proof of Proposition 6.1). When q ′ varies in the universal covering of
C∗
θ′1

(ǫ), the point q ′′ eventually comes back to its initial position if and only if

the two cone angles θ′1 and θ′′1 are rationally related : the lack of injectivity ap-
pears when q ′ and q ′′ come back for the first time to their initial position as
q ′ turns around p ′

1 and q ′′ follows, which happens if and only if an equation
of the form kθ′1 = lθ′′1 (for some non-trivial couple of coprime integers (k, l )) is
satisfied. In this case, l is the exact number of times q ′′ turns around p ′′

1 while
q ′ turns k times around p ′

1. �

When θ′1 (resp. θ′′1 ) is greater thanπ, we cannot cut the cone of angle θ′1 (resp.
θ′′1 ) in the way it has been done previously. We let the reader verify that one
only has to replace the truncated cone of angle θ′1 at p ′

1 (resp. of angle θ′′1 at p ′′
1 )

by the metric space obtained by gluing the sides a and b on Figure 12 below.
This metric space is the cone of angle θ′1 (resp. θ′′1 ) to which one has added the
triangle T appearing on Figure 12 with the aforementioned identifications.
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FIGURE 12. The modified cone of angle θ >π.

Regarding the lack of injectivity of the map S̃3 (or S3) when some elements
of U have non-trivial isometries, one can make a statement similar to Remark
6.2 to address the question.

6.4. The kite surgery S4. Fix θ1 ∈]2π,4π[ and θ2,θ3 ∈]0,2π[ such that
(
2π−θ1

)
+

(
2π−θ2

)
+

(
2π−θ3

)
= 0.

We describe in this section a local surgery building from a regular flat torus a
new one with three conical points of respective angles θ1,θ2 and θ3.

Let T be a regular flat torus (i.e. without singular points for the flat metric),
and p2 a point on T . If p3 is a point close enough to p2, there exists a unique
kite with opposite vertices p2 and p3 and such that the external angle at these
points are θ2 and θ3 respectively. The external angles at the two other vertices
are necessarily equal to the half of θ1, see Figure 13.

FIGURE 13. Performing the kite surgery
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The kite surgery consists in removing the kite (in grey on the above picture)
and gluing the adjacent sides in order to get three singular points of respective
angles θ1,θ2 and θ3. Since the flat torus T is determined by a lattice in C, i.e.

by two R-linearly independent complex numbers z1, z2 such that T =C/(Zz1+
Zz2). One can perform the kite surgery on T by placing p2 at 0 and p3 at z0 for
any given z0 sufficiently small.

Up to renormalisation, we can assume that z1 = 1 and z2 = τ ∈H. Let T ′ be
the resulting torus (more precisely the class of tori up to renormalisation by
an element of C). Let F[ρ′] be the leaf to which this surgery makes T ′ come.
Because z0 and −z0 are equivalent under the action of the hyperelliptic in-
volution, the kite surgery performed at these two parameters gives isometric
surfaces. Similarly to the previous cases, one can build a map

S4 : C∗
π(ǫ)×H −→ F[ρ′](

z0,τ
)

7−→ T ′

which is a local biholomorphism onto its image, except at points having excep-
tional symmetries where it is an orbifold covering onto its image. The proof is
similar to the proof of Proposition 6.1, one just has to take a suitable topologi-
cal model for T that makes (z1, z2, z3) a linear parametrisation of F[ρ].

6.5. The surgery S5 : Building flat surfaces with a Euclidean cylinder. In this
section we do not make any assumptions on the cone angles θ1, . . . ,θn . We
explain a simple surgery (to which we shall refer as S5) building flat surfaces
of genus g +1 and with n −1 cone points having an arbitrarily long Euclidean
cylinder out of an initial flat surface N of genus g and with n cone points.

Let γ be a geodesic path joining p1 and p2 the conical points of N , of respec-
tive angles θ1 and θ2. Cut along γ to get a flat surface with one boundary com-
ponent and then glue p1 and p2 together. The resulting surface has a boundary
consisting of two simple closed geodesics touching at one point where they are
singular. Then we glue a flat cylinder along these two boundary components
to get a new flat surface N ′ of genus g +1 with an embedded cylinder (see Fig-
ure 14). Note that the cone angle of N ′ at its new singular point (namely the
one obtained after having identified p1 and p2) is easily seen to be θ1+θ2+2π.

There are two real parameters for the aforementioned gluing of the flat cylin-
der: its length and a twisting parameter. Both can be encoded by a single com-
plex number z0 whose imaginary part is positive, such that the cylinder we glue
identifies with the one of base 1 and height z0. This makes sense because there
always exists a normalization of N such that the the geodesic joining p1 and
p2 in the initial surface develops onto the segment [0,1].
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FIGURE 14. The surgery S5 performed on a flat sphere with four
cone points: (1) we cut along the geodesic segment between two
of them; (2) we identify the two corresponding points on the
boundary; (3) then we glue a flat cylinder in order to obtain a
flat tori with three cone points.

If U ⊂ is a neighbourhood of the initial surface inF[ρ], we can build a natural
map

S5 : A×U −→ F[ρ′]

(z0, N ) 7−→ N ′ ,

where A stands for the infinite cylinder H/(z ∼ z +1).
The surgery S5 associates to N and z0 the surface obtained after gluing the

flat cylinder of height the parameter z0 to (the good normalisation of) N .

Proposition 6.5. The surgery S5 is a local biholomorphism onto its image.

Proof. Let (z1, . . . , zn) be a linear parametrisation of U such that z1 parametrises
the geodesic segment along which the surgery is performed. Then one verifies
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that (z0z1, z1, . . . , zn) is a linear parametrisation of the image of S5. The proof
works in the same way as in Proposition 6.1. �

6.6. Calculation of the signature of the area form in particular cases. A corol-
lary of the description of these surgeries is an easy inductive computation of
the signature of the Veech form in the specific cases we are interested in.

Proposition 6.6. (1) Suppose that g = 0 and that 0 < θi < 2π for all i =
1, . . . ,n. Then Veech’s area form has signature (1,n −3).

(2) Suppose that g = 1, 2π< θ1 < 4π and that 0 < θi < 2π for all i such that

1 < i ≤ n. Then Veech’s area form has signature (1,n −1).

Proof. The proof goes by induction in both cases. We explain only (2) since the
proof of (1) is basically the same but simpler and roughly sketched in [Thu98].
We suppose that g = 1 and n ≥ 3, and ρ ∈ H1(N ,U,θ). Let ρ′ be the reduction
(see Section 7) associated to a collision between two points of angles θi and θ j .
Such a collision can actually happen if and only if (2π−θi )+(2π−θ j ) < 2π, and
two such points always exist since there is initially only one conical point of
negative curvature which is also smaller than 4π, provided that n ≥ 3. There-
fore the leaf associated to ρ′ is not empty and one can perform Thurston’s
surgery on elements of F[ρ′] to get elements of F[ρ]. Let (z0, z1, . . . , zn−1) be a
linear parametrisation of F[ρ] such that (z1, . . . , zn−1) is a linear parametrisa-
tion of F[ρ′] and z0 is such that (z0, z1, . . . , zn−1) represents the element that
one gets after performing Thurston’s surgery with parameter z0 on the sur-
face represented by (z1, . . . , zn). If A is the area form for the parametrisation
(z0, z1, . . . , zn−1) and A′ the one for (z1, . . . , zn−1), then one has

A(z0, . . . , zn−1) = A′(z1, . . . , zn−1)−µ|z0|2

for a certain positive constant µ which depends only on the value of the angle
of the cone point on which the surgery is performed. The induction hypothesis
ensures that A′ has signature (1,n−2) and therefore A has signature (1,n−1).

The case n = 2 remains to be handled. By the same argument as in the case
of the Devil’s surgery we find that in that case the signature is (1,1). This com-
pletes the proof of the proposition. �

6.7. Cone angle around a codimension 1 stratum. As we will see in detail
later, the surgery maps Si (for i = 1, . . . ,4) describe the cone-manifold struc-
ture of the metric completion of F[ρ] close to a codimension 1 stratum, when
Veech’s area form endows F[ρ] with a complex hyperbolic structure. In partic-
ular, they allow the computation of the associated cone-manifold angles.
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(1) In case of both Thurston’s surgeries S1 of S2, the cone-manifold angle
around the codimension 1 stratum is the angle of the Euclidean cone
angle on which the surgery is performed.

(2) In the case of Devil’s surgery, when both angles are rational multiples of

2π, say 2πm′/n and 2πm′′/n, the cone-manifold angle is 2πlcm(m′,m′′)
n

.

(3) In the case of the Kite surgery S4, the cone angle always equals π since
the parameter space for the surgery is the neighbourhood of a regular
point of angle 2π on which the hyperelliptic involution acts.

6.8. Geometric convergence. We end this section dedicated to surgeries by a
paragraph on a notion of geometric convergence for flat surfaces. Whether
two Riemannian manifolds (in a moduli space) are close or not depends on an
a priori definition.

Definition 6.1. Let N ′ be a flat surface of area 1 obtained from a surgery S on

a surface N. The width of this surgery at N is :

• the distance between the two new cone points in N ′ if S ∈ {S1 , S2};

• the length of the short essential curve created on N ′ if S =S3;

• the distance between p2 and p3 in N ′ (see §6.4 for the notations) if S =S4.

The width of a surgery is a positive parameter which depends linearly on the
size (or the area) of the removed (or added) part of (or to) the initial surface on
which one performs the surgery. When g and θ are such thatF[ρ] has a complex
hyperbolic structure, this width has a geometric interpretation in terms of the
distance to the strata of the metric completion which will be made explicit in
the following section (see Lemma 7.9).

Definition 6.2 (Geometric convergence). A sequence of flat surfaces (Mn)n∈N ∈
(F[ρ])N is said to be geometrically converging either if it converges in F[ρ] or if

there exist

• a flat surface M∞ belonging to a leaf F[ρ′] for a reduction ρ′ of ρ;

• a small neighbourhood U of M∞ inF[ρ′] on which a surgery map S =Si

(for some i = 1,2,3,4) is well defined;

• (ǫn)n∈N a sequence of positive numbers going to 0;

• a truncated sequence (M ′
n)n>>1 of flat surfaces elements of U which con-

verge to M∞ in U ⊂F[ρ′],

such that Mn is obtained after a surgery S of width ǫn on M ′
n for n >> 1.

We say that the sequence (Mn)n∈N geometrically converges to the couple

(M∞,S ), or just to M∞ if (Mn)n∈N converges in F[ρ].
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The true interest of this definition is that it will allow us to make the dif-
ference between two sequences of surfaces in F[ρ] whose limits are isometric
metric spaces but lying at different places in (the metric completion of) F[ρ].

7. THE METRIC COMPLETION

For the remainder of the section, N is a surface of genus g = 0 with n + 3
punctures or of genus 1 with n+1 punctures (we write the number of punctures
this way in order that F[ρ] has complex dimension n).

We also make the assumption that

• if g = 0 all the angles θ1, . . . ,θn+3 belong to ]0,2π[;

• if g = 1 then θ1 ∈]2π,4π[ and all the other cone angles θi are in ]0,2π[.

Therefore, for any ρ ∈ H1(N ,U,θ) in the image of the linear holonomy map,
the leaf F[ρ] of Veech’s foliation in the corresponding moduli space of marked
curves is endowed with a complex hyperbolic structure of dimension 2g +n−3
(see [Thu98] for the case g = 0 and Proposition 6.6 or [Vee93] for the case g = 1).
In the present section, we are interested in the structure of the metric comple-
tion of F[ρ] endowed with this complex hyperbolic structure. Therefore every
mention a geometric property of F[ρ] will now be relative to this structure.

This section is dedicated to the proof of the following theorem:

Theorem 7.1. Let X be the metric completion of F[ρ]. If Im(ρ) is finite then:

(1) X has a stratified structure X = X0 ⊔X1 ⊔ . . .⊔Xn with X0 =F[ρ];

(3) the topological closure of Xi in X is Xi ⊔Xi+1 ⊔ . . .⊔Xn ;

(3) for i = 0, . . . ,n, Xi is a smooth complex hyperbolic manifold of complex

dimension i which carries a natural CHi -structure;

(4) each Xi is a finite union of finite covers of F[ρ̃] for some reductions ρ̃ of ρ.

The definition of a reduction of a representationρ is given in the section below.

From now on, we assume that Im(ρ) is finite.

7.1. Strata. In Section 6, we have introduced various surgeries, describing dif-
ferent ways flat surfaces can degenerate and how to parametrise these surg-
eries. The degenerated flat surfaces we see appearing these ways belong to the
metric completion of X0 =F[ρ]. More precisely, they appear in copies of (finite
coverings of) Fρ̃ of complex dimension n −1 where ρ̃ is a reduction of ρ in the
following sense :

Definition 7.1. A unitary character ρ̃ ∈ H1(N ,U) is a reduction of ρ ∈ H1(N ,U)
if there exists an injective diffeomorphism i : M −→ N such that ρ̃ = i∗ρ.
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We define inductively the strata X1, . . . , Xn appearing in the description of X .
The first stratum X1 is the set of couples flat surface/surgery (N ,S ) such that
there exists a sequence of elements of X0 = F[ρ] geometrically converging (in
the sense of Definition 6.2) to a pair (N ,S ) not already in X0.

Lemma 7.2. The stratum X1 is a finite union of finite covers of some F[ρ̃] for

some reductions ρ̃ of ρ and such that the complex dimension of F[ρ̃] is n −1.

Proof. The holonomy ρ̃ of the limit of a sequence geometrically converging is
a reduction of ρ. Since Im(ρ) is finite, there are only finitely many such reduc-
tions and therefore only finitely F[ρ̃] to which such a limit can belong.

Now let F[ρ̃] be such that one of its elements (N0,S0) appears as the limit of
a geometrically converging sequence. We claim that Z , the connected compo-
nent of X1 to which (N0,S0) belongs to, is a finite cover of a connected compo-
nent of F[ρ̃]. One can define a local homeomorphism from a neighbourhood
of (N0,S0) in Z to the component of F[ρ̃] containing N0 associating to any cou-
ple (N ,S0) ∈ Z sufficiently close to (N0,S0) the associated flat surface N . This
map is a covering map which is finite since the fiber over a point is included
in the set of different ways to perform the corresponding surgery, which is fi-
nite (see Section 6). This fiber is actually trivial for surgeries different from the
Devil surgery.

More precisely let ρ̃, be such that one element N0 of F[ρ̃] appears as the limit
of a geometrically converging sequence along a surgery S . The set of elements
of X1 whose associated flat surface belongs to F[ρ̃] is exactly the covering map
over F[ρ̃] whose fiber over a point is the number of ways to perform the surgery
S at this point. �

The next step is to prove that the disjoint union X0 ⊔ X1 embeds into the
metric completion of X0 = F[ρ]. This is a direct consequence of the following
proposition:

Proposition 7.3. If (Mn)n∈N ∈ (F[ρ])N geometrically converges, then it is a Cauchy

sequence for the the metric induced by the complex hyperbolic structure on F[ρ].

Proof. The statement is clear if (Mn)n∈N converges in F[ρ] so we assume that it
is not the case. We consider a linear parametrisation (z0, z1, . . . , zn) such that

• z0 is the surgery parameter (i.e. the small segment linking the two new
cone points after Thurston’s surgery, or the small closed broken geo-
desic segment appearing after a Devil’s surgery which is such that the
width of the surgery is |z0| in a normalisation of area 1, etc.); and

• (z1, . . . , zn) is a linear parametrisation of the leaf to which the surface on
which the surgery is done belongs to.
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For any m ∈ N, let z(m) = (zi (m))n
i=0 stand for the coordinates of Mm in

the considered linear parametrisation, normalised so that the corresponding
area of Mm is 1. From the very definition of metric convergence, it comes that
(z0(m))m∈N goes to 0 and ((zi (m))n

i=1)m∈N converges in Cn since the associated
sequence of flat surfaces in the corresponding stratum converges. It follows
that z(m) converges in Cn+1 as m tends to infinity.

On the other hand, the normalisation of the areas of the Mm’s ensures that
the z(m)’s stay away from the boundary of the model of the complex hyper-
bolic space associated with the considered linear parametrisation (z0, . . . , zn).
The proposition follows. �

Thanks to the preceding result, one has a map:

i1 : X0 ⊔X1 −→F[ρ].

Proposition 7.4. The map i1 defined just above is injective.

Proof. Clearly, the restriction of i1 to X0 = F[ρ] is the identity. Since i1(X1)∩
F[ρ] =;, it suffices to show that i1|X1 is injective to get the proposition.

Let (A1,S1) and (A2,S2) be two distinct points in X1. The surgery maps

Si : C∗
θ1

(ǫi )×Ui −→ F[ρ]

(z0, N ) 7−→ N ′ ,

defined in Section 6, where Ui is a neighbourhood of Ai for i = 1,2, extend
continously to Si : Cθ1(ǫi )×Ui −→F[ρ] which are homeomorphisms onto their
images and whose respective images are neighbourhoods of i1(A1) and i1(A2)
in X . If Ui and ǫi are chosen small enough, the images of S1 and S2 do not
overlap which implies that i (A1) and i (A2) are separated and therefore differ-
ent. �

The distance induced on X1 by this embedding is nothing else but the one
induced by its natural complex hyperbolic structure: a neighbourhood of X1

in X = F[ρ] can be described by a finite number of linear parametrisations of
the form (z0, . . . , zn) in which X1 corresponds to the locus {z0 = 0}.

Remark 7.5. We would like to stress that in the preceding assertion, one has
to be aware that (z0, . . . , zn) does not induce a local system of coordinates on
a neighbourhood in X of a small open subset of X1. Actually, what must be
understood is that the equation z0 = 0 cuts out something (a piece of X1 as it
happens) in the boundary of the definition domain of the chart induced by the
linear parametrisation (z0, . . . , zn). We will not dwell again on this subtlety in
what follows but will only make reference to the present remark.
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The definition of X2 is slightly more subtle because it is possible that two
essentially different geometrically converging sequences in X1 converge to the
same point in F[ρ]: consider for instance a case when g = 1 and n = 3. We can
distinguish two types of components in X1 : the one which are moduli spaces
of tori with two cone points, and those which are Thurston-Deligne-Mostow’s
moduli spaces of flat spheres with four cone points. Both can degenerate on
flat spheres with three cone points. It can happen that these a priori different
limits are identified in F[ρ]. One must think of such points as parts of the in-
tersection locus of two connected components of X1 on which two different
surgeries can be performed, each leading to a different component of X1.

In order to define correctly X2, we proceed in two steps : we first define in
an analogous way Y2, that one shall think to be roughly the set of couples flat
surface/surgery (M ,S ) such that there exists a sequence in X1 geometrically
converging to (M ,S ). However, the fact that we are dealing with finite covers
of leaves prevents us from giving such a straightforward definition. Bypass-
ing this difficulty is rather easy: X1 is a finite union of finite covers of some
leaves F[ρ̃], for some reductions ρ̃ of ρ. Such a finite cover Z0 can be partially
metrically completed by adjoining a codimension 1 stratum Z1 (possibly with
several connected components) in order that the covering map π : Z0 −→F[ρ̃]

extends to a map
π̃ : Z0 ⊔Z1 −→F[ρ̃] ⊔X ′

1

which is a covering map, possibly ramified along X ′
1, where X ′

1 is analogous
to X1 associated to F[ρ̃] and such that π̃−1(X ′

1) = Z1: X ′
1 is a finite union of

some unramified finite covers of some leaves F[ρ̃′] for some reduction ρ̃′ of ρ̃.
Then one defines Y2 as the (finite) union of all such Z1’s associated to all the
finite covers appearing in X1 and is itself a finite union of finite covers of some
leaves F[ρ̂] for some reduction ρ̂ of ρ (a reduction of a reduction of ρ is again a
reduction of ρ as it follows immediately from Definition 7.1).

Defined this way, X1⊔Y2 maps into the metric completion of X1 as a complex
hyperbolic manifold with each of its connected components endowed with the
induced complex hyperbolic distance. But note that this construction does not
take into account how close these connected components can be in F[ρ].

As we did for X1, we define a map :

(12) i2 : X1 ⊔Y2 −→F[ρ]

whose restriction to X1 coincides with the one of i1. The main difference be-
tween the maps i1 and i2 is that the latter is not injective : some components
of Y2 are identified. We define X2 as the image of Y2 under that map or equiv-
alently, Y2 with the aforementioned components identified. The crucial point
is that X0 has a distance only defined on each of its connected components
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by the complex hyperbolic metric, while the distance on X1 takes into account
the way in which X1 is embedded in X .

The following property allows to identify the irreducible components of X2

with some unramified coverings of some reductions of F[ρ].

Proposition 7.6. If A and B are distinct points of Y2 such that i2(A) = i2(B) then

(1) the flat surfaces associated to A and B are isometric;

(2) there exists ρ̂, a reduction of ρ, and a connected component Z of F[ρ̂]

such that the images by i2 of the components of Y2 containing A and B

are both equal to the same finite cover of Z .

Proof. Let NA and NB the two flat surfaces associated to A and B respectively.

Assume that NA and NB are not isometric. Consider two sequences in X1

geometrically converging to A and B respectively. They can be approximated
by two Cauchy sequences inF[ρ] converging to the same point inF[ρ]. But their
associated flat surfaces converge towards two different metric spaces, which is
impossible. This proves (1).

Let Z be the component of F[ρ̃] to which N = NA = NB belongs to. We first
remark that there are neighbourhoods of A and B in Y2 which are identified
under i2: there are two surgeries SA and SB on N which produce images under
i2 of neighbourhoods of A and B in Y2. This identification can be extended to
a cover of Z . This cover must be finite since it is covered by a component of Y2

which is finite according to Lemma 7.2. �

From the map (12) and by the very definition of X2, one deduces an injective
map j2 : X1 ⊔ X2 → F[ρ]. Since the restrictions of i1 and j2 to X1 coincide, one
can consider their fiber product over X1 in order to get an injective map:

X0 ⊔X1 ⊔X2 −→F[ρ].

Inductively, one defines Y j+1 from X j in exactly the same way we defined
Y2 from X1. Then one defines X j+1 by identifying some components of Y j+1

using the natural map i j : X j ⊔Y j+1 −→F[ρ]. Note at this point that the analog
of Proposition 7.6 for Y j holds true, the proof being completely similar. Since a
reduction ρ̂ of a reduction ρ̃ of ρ is still a reduction ofρ, we get that Xi is a com-
plex hyperbolic manifold of dimension n−i whose connected components are
some coverings of some leaves F[ρ̃] for some reduction ρ̃ of ρ.

Putting all pieces together we get that

• X0 ⊔X1 ⊔·· ·⊔Xn embeds into the metric completion X of X0 =F[ρ];

• ∀i , Xi is a finite union of finite covers of Fρ̃ for some reductions ρ̃ of ρ;
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• ∀i , the distance of X induces on Xi its natural structure of complex
hyperbolic manifold of dimension dim(X0)− i .

7.2. Proof of the surjectivity.

Proposition 7.7. Assume that Im(ρ) is finite. Then the embedding

X0 ⊔X1 ⊔ . . .⊔Xn −→ X =F[ρ]

is onto.

This proposition says in substance that the metric space obtained by adding
to F[ρ] the degenerated surfaces that ones sees when reversing the surgeries
studied in Section 6 is complete. Before giving the proof, we have to state two
technical lemmas relating the complex hyperbolic geometry of F[ρ] to the ge-
ometry of the underlying flat surfaces parametrized by this leaf.

Lemma 7.8. If Im(ρ) is finite then the two following assertions hold true for any

sequence (Mn)n∈N of flat surfaces in F[ρ] normalised so that their area is 1:

(1) If (Mn)n∈N is a Cauchy sequence then (D(Mn))n∈N is bounded.

(2) If (D(Mn))n∈N is bounded then (Mn)n∈N is a Cauchy sequence (up to ex-

traction).

Proof. We postpone the proof of (1) to Section 8 in which we provide a descrip-
tion of the parts of F[ρ] on which the diameter function D is large.

The proof of (2) consists in remarking that using the Delaunay decomposi-
tion of Mn , we can assume that, up to extraction:

• all the Mn’s are recovered by gluing the sides of a pseudo-polygon through
the same gluing pattern;

• the side glued together always form the same angle (that this can be
assumed follows from the fact that Im(ρ) is finite by assumption);

• the lengths of each side converge (since the lengths of the edges of the
Delaunay triangulation are smaller than 2D(Mn) by Proposition 5.2).

In the chart defined by the gluing pattern, the coordinates of the Mn ’s form
a Cauchy sequence. Then using the fact that their areas all have been assumed
to be 1, one can argue in the same way as at the end of the proof of Proposition
7.3 and get that (Mn)n∈N is a Cauchy sequence for the metric on F[ρ] induced
by the complex hyperbolic structure it carries. �

Lemma 7.9. There exists a positive constant K = K[ρ] such that if M ∈ X0 =F[ρ]

(which is supposed to be normalised such that its area equals 1) is obtained from

a surgery S of width ǫ from an element of X1 then

d(M , X1) ≤ K ǫ ,
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where d denotes the extension of the complex hyperbolic distance on X0 to X .

Proof. Let (z0, z1, . . . , zn) be a linear parametrisation compatible with the surgery
S (see Section 6) which is such that

• the parameter z0 is the surgery parameter, in particular |z0| = ǫ is the
width of the surgery;

• (z1, . . . , zn) is a linear parametrisation of U ⊂ X1;

• in the coordinates z0, . . . , zn , the area form A writes down

A(z0, z1, . . . , zn) = A′(z1, . . . , zn)−µ|z0|2

where
– µ = µS is a positive constant depending on the surgery S (it is

the constant such that µ|z0|2 is the area of the part of the surface
removed while processing the surgery);

– A′ is the area form on U expressed in the coordinates z1, . . . , zn .

Note that since the image of ρ is assumed to be finite, the set of such µS ’s is
finite and thus µS is uniformly bounded from above.

One can compute the complex hyperbolic distance between two points in
the complex hyperbolic space using formulas involving A (see [Gol99, p.77]
for instance). If a : Cn+1 ×Cn+1 −→ C stands for the polarisation of A, namely
the hermitian form such that A(X ) = a(X , X ) for every X ∈ Cn+1, the complex
hyperbolic distance d(X ,Y ) between two points [X ], [Y ] ∈CHn ⊂CPn satisfies

cosh2
(

d(X ,Y )

2

)
=

a(X ,Y )a(Y , X )

a(X , X )a(Y ,Y )
.

If X = (x0, X ′) ∈ Cn+1 and Y = (y0,Y ′) ∈ Cn+1 with X ′ = (x1, . . . , xn) and Y ′ =
(y1, . . . , yn), the formula for a(X ,Y ) is

a(X ,Y ) = a′(X ′,Y ′)−µx0 y0

where a′ stands for the polarisation of A′.

We want to estimateα= d((z0, z1, . . . , zn), (0, z1, . . . , zn)). Since M is supposed
to have area 1 therefore according to the discussion above, we have

cosh2
(α

2

)
=

(
1+µǫ2

)2

1 · (1+µǫ2)
= 1+µǫ2 .

Since for all a > 0, one has 1+a2 ≤ cosh(a), it comes

1+
α2

4
≤

√
1+µǫ2 ≤ 1+

µ

2
ǫ2

from which we deduce that α ≤
√

2µǫ. Since µ is bounded from above by a
constant only depending on the image of ρ, the proposition is proved. �
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We end this section with the proof of Proposition 7.7. We still suppose that
Im(ρ) is finite, which is the crucial hypothesis on which everything done in this
paper relies on. We just say a word on the general strategy. In order to show that
any Cauchy sequence accumulates to one point in a stratum, we first prove
that, since the diameter along a Cauchy sequence is bounded, if such a Cauchy
sequence does not converge in F[ρ], it implies that it degenerates in the sense
that either its systole or its relative systole goes to zero. If the latter occurs, we
show that such a surface having a sufficiently short systole or relative systole is
obtained from one of the four surgeries described in Section 6 and therefore is
very close to X1. Then we conclude with an inductive argument.

Proof of Proposition 7.7. Let M• = (Mn)n∈N be a Cauchy sequence in X0 =F[ρ]

for the complex hyperbolic metric. For the remainder of the proof, we set

Dn = D(Mn) , σn =σ(Mn) and δn = δ(Mn)

for any n ∈N. We aim at proving that M• converges in F[ρ] to a point belonging

to the image of the embedding X0 ⊔ . . .⊔Xn −→F[ρ].

The proof goes by induction on dim(X0). We distinguish three cases:

(1). The two sequences (δn)n∈N and (σn )n∈N both do not converge to zero.

According to Lemma 7.8, the sequence of diameters (Dn)n∈N is bounded. The
Delaunay decomposition provides polygonal models of Mn such that the length
of each side is bounded (see Proposition 5.2). One can extract a subsequence
such that all polygonal models have the same gluing pattern, and therefore,
since Im(ρ) is finite, extract a subsequence whose polygonal model converges
towards a non degenerated pseudo-polygon whose associated surface in X0 is
the limit of the Cauchy sequence M•.

(2). The sequence (δn)n∈N converges to zero while (σn )n∈N does not.

In that case, one proves that (d(Mn , X1))n∈N converges to zero. First remark
that in that case necessarily dim(X0) ≥ 3. Indeed, according to Proposition
5.9, if dim(X0) = 2 we have that δn converging to zero implies that Dn goes
to infinity which would contradict Lemma 7.8. For every n ∈ N, consider two
singular points pn , qn of Mn of respective cone angles θn and θ′n , such that
d(pn , qn) = δn . Three subcases are to be distinguished in this situation :

• both curvatures (2π−θn) and (2π−θ′n) are positive (i.e. pn and qn carry
positive curvature). In that case one can always reverse Thurston’s sur-
gery S1, with width of order δn (see Section 6.1);

• one of the two curvatures (2π−θn) or (2π−θ′n), say the former, is neg-
ative: one has θn > 2π while θ′n < 2π. In this case (2π−θn)+ (2π−θ′n)
is negative since there is at least one other cone point which must have
positive curvature. We want to verify if there is enough room to reverse
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Thurston’s surgery S2, which means that one can extend the geodesic
line from qn to pn after the point of negative curvature on a distance of

(13)
sin

(
θ′n
2

)

sin
(
θn+θ′n

2

) ·δn

so that the extended line cuts the angle at pn into two equal angles (see
Remark 6.3). If this is possible, one can cut along the extended line and
fill with an appropriate Euclidean kite, and therefore reverse Thurston’s
surgery S2 with small width of order δn .

• we now prove that if the two latter cases do not occur, we are in a sit-
uation where the kite surgery S4 can be reversed. If we cannot extend
the geodesic line from qn to pn , it must be either because it meets an-
other cone point or that the line auto-intersects. The latter case can-
not happen if n is large enough otherwise the systole would be smaller
than (13)7. Since θn and θ′n range in a finite set, that would imply that
σn goes to zero. So the extended line meets a singular point rn . One
can try to reverse Thurston’s surgery with pn and rn . If [pn , qn] is long
enough we are brought back to the previous case. In the case when it is
not long enough, we are going to prove that

(
2π−θn

)
+

(
2π−θ′n

)
+

(
2π−θ′′n

)
= 0 .

In that case dim(X0) = 2 and one can reverse the kite surgery with very
small width.

Assume that Thurston’s surgery S2 cannot be reversed neither with
pn and qn nor with pn and rn . Let ln be the length of the geodesic
segment from qn to pn and l ′n the length of the one from rn to pn (see
Figure 15).

FIGURE 15. The three points pn , qn and rn .

The fact that Thurston’s surgery S2 cannot be reversed neither with
pn and qn nor with pn and rn implies that the two following inequalities

7The fact that the line auto-intersecting gives rise to a non-essential curve is not totally
obvious. Actually this very curve could turn around a singular point rn of cone angle smaller
than π. But since there can be only one such point whose cone angle is smaller than π, we can
play the same game with rn and pn being sure that this situation will not occur.
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l ′n ≤
sin

(
θ′n
2

)

sin
(
θn+θ′n

2

) ln and ln ≤
sin

(
θ′′n
2

)

sin
(
θn+θ′′n

2

) l ′n

hold true and therefore Lemma 7.10 (proven below) applies.

(3). The sequence (σn )n∈N converges to zero.

This case is the easiest. Since (Dn)n∈N is bounded and σn → 0 as n goes to
infinity, Proposition 5.11 applies for n large enough. This implies that a surgery
of the Devil S3 of small width can be reversed.

We have proven so far that either (Mn)n∈N converges to a point in X0 or that
for n large enough Mn can be recovered from a point of X1 by a surgery of
width going to zero as n goes to infinity. In that latter case, Proposition 7.9
ensures that d(Mn, X1) converges to zero. Applying the induction hypothesis to
a sequence (M ′

n)n∈N of flat surfaces M ′
n ∈ X1 which are such that d(M ′

n , Mn) ≤
d(Mn , X1) ≤ 1/n for any n >> 1, one gets that the limit of the sequence (Mn)n∈N
in F[ρ] belongs to X0 ⊔X1 ⊔ . . .⊔Xn ⊂F[ρ].

The proof of Proposition 7.7 is over. �

Lemma 7.10. Let T be a flat torus and p1, p2 and p3 three distinct singular

points on it, of respective cone angles θ1,θ2 and θ3. Assume that p1 is the only

point of negative curvature among all the cone points of T and that p2, p1 and

p3 sit, in this order, on a geodesic line broken at p1, cuting the cone angle θ1 into

two equal angles. Denote by l the length of the part of the line from p1 to p2,

and l ′ the length of the part of the line from p1 to p3. Assume also that

(14) l ′ ≤
sin

(
θ2
2

)

sin
(
θ1+θ2

2

) l and l ≤
sin

(
θ3
2

)

sin
(
θ1+θ3

2

) l ′.

Then the four following assertions hold true:

(1) (2π−θ1)+ (2π−θ2)+ (2π−θ3) = 0;

(2) T has no other cone point than p1, p2 and p3;

(3) both majorations in (14) actually are equalities;

(4) T can be recovered by a kite surgery from a regular flat torus.

Proof. The two inequalities of (14) together yield to

sin

(
θ1 +θ2

2

)
sin

(
θ1 +θ3

2

)
≤ sin

(
θ2

2

)
sin

(
θ3

2

)
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or equivalently cos
(
θ1 + θ2+θ3

2

)
− cos

(θ2+θ3
2

)
≥ 0 which in its turn is equivalent

to

(15) sin

(
θ1 +θ2 +θ3

2

)
sin

(
θ1

2

)
≤ 0.

On the one hand, we have −2π< (2π−θ1)+ (2π−θ2)+ (2π−θ3) ≤ 0 because
of the Gauß-Bonnet formula. This implies that 4π > (θ1 +θ2 +θ3)/2 ≥ 3π and
therefore that sin((θ1 +θ2 +θ3)/2) ≤ 0, with equality if and only if θ1,θ2 and θ3

sum up to 6π. But on the other hand, 2π< θ1 < 4π according to our hypothesis
henceπ< θ1/2 < 2π and sin(θ1/2) < 0. Inequality (15) forces sin((θ1 +θ2 +θ3)/2)
to vanish. Therefore θ1 +θ2 +θ3 = 6π or equivalently

(
2π−θ1

)
+

(
2π−θ2

)
+

(
2π−θ3

)
= 0 .

This implies in particular that

sin
(
θ2
2

)

sin
(
θ1+θ2

2

) =




sin
(
θ3
2

)

sin
(
θ1+θ3

2

)



−1

and therefore one obtains that the majorations in (14) actually are equalities.

Note that the lengths of two consecutive sides of a kite of external angles
θ1/2,θ2,θ3 satisfy the above equalities and therefore one can cut along the
aforementioned geodesic line and fill with the appropriate kite to reverse the
kite surgery. �

8. FINITENESS OF THE VOLUME OF F[ρ]

We prove in this section that the volume ofF[ρ] is finite under the hypothesis
that ρ has finite image. Without the latter assumption (that we shall assume
to hold true for the remainder of the section), it is possible to prove that the
volume of F[ρ] must be infinite. We will only be interested in the genus 1 case,
the genus 0 case having already been dealt with by Thurston in [Thu98].

Proposition 5.6 essentially tells us that the lack of compactness of the metric
completion of F[ρ] is characterised by the property of having large embedded
cylinders. Surfaces satisfying this property can be recovered by performing a
surgery on a flat sphere along a distinguished geodesic segment between two
conical points, see Section 6.5.

8.1. Cylindrical coordinates. Let T0 ∈F[ρ] be a torus containing a flat embed-
ded cylinder. It is built up from a flat sphere S0 on which has been performed
surgery S5 described in Section 6 along a geodesic segment between two coni-
cal points of S0. Let ρ̃ be such that S ∈F[ρ̃] and let (z0, . . . , zn−1) be a local linear
parametrisation of F[ρ̃] at S0 such that z0 represent the geodesic path along
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which the surgery is performed, and let zn be the complex number such that
the inserted cylinder has sides z0, zn . Then (z0, . . . , zn) is a linear parametrisa-
tion of F[ρ]. We call any such parametrisation a cylindrical parametrisation

whose existence is guaranteed by Proposition 4.3.
Let A be the area form of the flat tori in F[ρ] close to T0 expressed in the co-

ordinates z0, . . . , zn and denote by B the area form of the associated flat spheres
in F[ρ̃], expressed in the coordinates z0, . . . , zn−1.

The area of the aforementioned embedded flat cylinder is Im(z0zn) therefore
the two area forms A and B are linked by the following relation :

A
(
z0, . . . , zn

)
= B

(
z0, . . . , zn−1

)
+ Im

(
z0zn

)
.

Normalising with z0 = 1, we get a genuine parametrisation ofF[ρ] (resp. F[ρ̃])
(z1, . . . zn) (resp. (z1, . . . zn−1)) and the preceding relation becomes

A(1, z1, . . . , zn) = B(1, z1, . . . , zn−1)− Im(zn).

8.2. Finiteness of the volume. The strategy to estimate the complex hyper-
bolic volume of F[ρ] is to restrict ourselves to parts of F[ρ] where the diameter
is large (i.e. where corresponding flat tori have large embedded flat cylinders,
see Proposition 5.6) and use the cylindrical coordinates defined above to per-
form some quasi-explicit estimations.

For every positive ǫ, one sets

Aǫ =
{

T ∈F[ρ]
∣∣ σ(T ) = ǫ and T contains a flat cylinder of width ǫ

}

and Bǫ =
{

T ∈F[ρ]
∣∣ σ(T ) ≤ ǫ and T contains a flat cylinder of width σ(T )

}
.

As is it often implicitly assumed in a large part of the paper, the points of F[ρ]

are flat surfaces which are supposed to be normalised in order that their area
is 1. In particular we assume this hypothesis in the definitions above.

Both Aǫ and Bǫ are closed subsets of F[ρ]. Moreover, from Section 6.5, it
comes that when non-empty, Aǫ is a smooth real-analytic hypersurface inF[ρ].

For a given ǫ > 0, the elements of Aǫ can be modified by thickening of a
length t the embedded flat cylinder of width ǫ (by thickening, we mean replac-
ing the cylinder of length l by a cylinder of length l + t ). When renormalising
in order that the area is equal to 1, the width of the cylinder becomes smaller
than ǫ. This defines a map

(16) Aǫ×R≥0 −→ Bǫ ,

which is a local diffeomorphism (see Section 6.5). The fact that this map is
well-defined relies on the uniqueness of the cylinder of width ǫ in any T ∈ Aǫ

for ǫ small enough. A proof of this fact is given at the end of the section, in
Lemma 8.4. Note that this also shows that Aǫ is precisely the boundary of Bǫ.
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Proposition 8.1. For any ǫ sufficiently small, the map Aǫ×R≥0 −→Bǫ is onto.

Proof. First remark that it is sufficient to prove the proposition for a fixed ǫ0 >
0, because the statement will then hold true for every smaller ǫ.

Second, since Bǫ is the disjoint union of the Aη’s for η ∈]0,ǫ], the proposi-
tion follows from the fact that, for every t > 0, the image of Aǫ× {t } by (16) is
the whole hypersurface Aǫ/

p
1+ǫt , as soon as ǫ is taken sufficiently small. This

technical assertion is proved in Subsection 8.4 below. �

For the remainder of this section, we fix ǫ such that (16) is surjective. Now
remark that the closure of F[ρ] \ Bǫ in F[ρ] is compact. Indeed, a sequence in
F[ρ] \ Bǫ must have bounded diameter according to Proposition 5.6. But then,
up to extraction, it is a Cauchy sequence by Lemma 7.8 and therefore con-
verges in F[ρ]. Since Aǫ = ∂Bǫ, its closure in F[ρ] must be compact as well.

We are now able to prove the

Proposition 8.2. The volume of Bǫ is finite.

Proof. Since the closure of Aǫ inF[ρ] is compact, Aǫ can be recovered by a finite
union of simply-connected open sets (Ui )i∈I such that for each i ∈ I :

(1) the diameter of Ui for the complex hyperbolic metric is finite;

(2) there are cylindrical coordinates defined on Ui .

More precisely, each element in Ui can be recovered from surgery S5 on a
sphere of a certain leaf F[ρ̃] along a geodesic joining two singular points and
we have a linear parametrisation (z0, . . . , zn) of Ui such that

• z0 parametrises the geodesic along which the surgery is performed;

• (z0, zn) parametrises the added cylinder;

• (z0, . . . , zn−1) is a linear parametrisation of F[ρ̃].

The area form therefore writes down the following way

(17) A(z0, . . . , zn) = B(z0, . . . , zn−1)+ Im(zn z0) .

Normalising with z0 = 1, we get a parametrisation of F[ρ] (resp. of F[ρ̃]) by
(z1, . . . zn) (resp. by (z1, . . . zn−1)) and the preceding relation becomes

A(1, z1, . . . , zn) = B(1, z1, . . . , zn−1)+ Im(zn) .

In this chart the local diffeomorphism Aǫ×R≥0 −→ Bǫ is given by
(
(z1, . . . , zn ,θ), t

)
7−→

(
z1, . . . , zn−1, zn + i t +θ

)
.

where θ is the twist parameter of the cylinder of width ǫ in Aǫ. At this point, we
would like to stress that (z1, . . . , zn ,θ) is not a system of coordinates on Aǫ, but
the latter written in these coordinates is a real-analytic submanifold of codi-
mension 2.
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In view of (17), (z1, . . . , zn−1, zn + i t +θ
)

is a system of pseudo-horospherical
coordinates on Bǫ (see Appendix A where this notion is introduced and dis-
cussed). Since the diameter of each Ui is finite, the image of such a map re-
stricted to Bi = (Aǫ∩Ui )×R≥0 is included into a domain UKi ,λi

introduced in
Appendix A, for some Ki ,λi > 0. It follows that the complex hyperbolic vol-
ume vol(Bi ) of Bi is finite for any i ∈ I . There are only a finite number of Ui ’s
covering Aǫ and since ǫ has be taken such that the map (16) is onto, one gets

vol
(
Bǫ

)
≤

∑

i∈I

vol(Bi ) ,

which implies that the complex hyperbolic volume of Bǫ is finite. �

As mentioned above, the finiteness of the volume of F[ρ] follows from the
preceding proposition, hence we have proved the following theorem:

Theorem 8.3. Assume g = 1 and θ is such that 2π < θ1 < 4π and θi < 2π for

i ≥ 2. If ρ has finite image, then the volume of F[ρ] for its complex hyperbolic

structure is finite.

8.3. Uniqueness of the ‘systolic cylinder’. We prove the following lemma an-
nounced in Subsection 8.2.

Lemma 8.4. There exists ǫ1 > 0 such that for any flat torus T with only one point

of negative curvature and associated cone angle less than 4π, the following holds

true: if T has an embedded flat cylinder of width ǫ< ǫ1 then the latter is unique.

Proof. Assume that T contains two distinct embedded cylinders C1 and C2,
both of width ǫ.

First assume that these two cylinders intersect. Without loss of generality,
we can suppose that a component A of ∂C1 intersects C2. Since A is totally
geodesic, it must enter C2 through one of its boundary component and exit
by the other. But A has length ǫ so C1 has length at most ǫ. But considering
the proof of Lemma 8.5 below, this can be seen to be impossible if ǫ is small
enough.

If C1 and C2 do not intersect, one gets two embedded cylinders in T whose
interiors are disjoints. This implies that their boundary components are ho-
motopic. T \ C1 ∪C2 has two connected components. Because the boundary
components are homotopic, the total curvature in each of these components
must be an integer multiple of 2π. Which is impossible because of the condi-
tion on the cone angles of T . �

8.4. A technical lemma. We fix ǫ > 0. For any positive η < ǫ, it is easily seen
that the preimage of Aη ⊂ Bǫ by (16) is Aǫ× {tη} with tη = (ǫ2 −η2)/(ǫη2) > 0.

Lemma 8.5. For ǫ sufficiently small, any map Aǫ× {tη} → Aη is surjective.
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Proof. Since Im(ρ) is finite, the number of genus 0 moduli spaces M0,θ′ that
can be obtained from elements of F[ρ] by reversing the surgery S5 is finite.
Consequently, the minima κ of the set of constants K (θ′1,θ′2) given by Lemma
5.7 for the corresponding angle data θ′ (of course each time with respect to the
two cone points involved in the surgery), is positive.

We claim that the statement of the lemma holds true for any ǫ< κ. Indeed,
if it was not the case, it would exist T ∈ Aη for some η < ǫ, which were not in
the image of Aǫ× {tη} → Aη. For such a T , one verifies that the length of the
systolic flat cylinder of T (of width η) is necessarily less than or equal to ηtη/ǫ.
Then removing this cylinder from T and inverting the surgery S5 would give a
flat sphere with a short geodesic between two of its cone points. After renor-
malization of the area, this sphere and this geodesic together would contradict
Lemma 5.7 since ǫ< κ (the computational details are left to the reader). �

8.5. Proof of Lemma 7.8. We finally explain how the above description of the
parts of F[ρ] consisting of tori with long embedded cylinders gives a proof of
the first point of Lemma 7.8, namely that the diameters of the elements of any
Cauchy sequence in F[ρ] are uniformly bounded.

Consider a path γ : [0,1] −→Bǫ. We have the following estimate

L(γ) ≥
∣∣∣ log

(
c(γ(1)

)
− log

(
c(γ(0)

)∣∣∣.

where c(T ) is the length of the cylinder of width at most ǫ (with T ∈ Bǫ). This is
a direct consequence of Lemma A.3 of Appendix A.

Assume that we have a Cauchy sequence whose diameter goes to infinity.
We can assume that all its elements belong to a subset Bǫ of F[ρ] considered
above (this follows from Proposition 5.6). Applying the above estimate to paths
linking elements of the sequence leads to a contradiction.

9. THE METRIC COMPLETION IS A CONE-MANIFOLD

In this section, we prove a theorem describing the structure of the metric
completion of F[ρ]. We refer to Appendix B for further precisions and refer-
ences on the notion of cone-manifold.

We assume that either

• g = 0 and θi ∈]0,2π[ for all i = 1, . . . ,n; or

• g = 1, θ1 ∈]2π,4π[ and θi ∈]0,2π[ for i = 2, . . . ,n,

so that Veech’s geometric structure on F[ρ] is complex hyperbolic.

Theorem 9.1. Let ρ ∈ H1(N ,U,θ) be such that Im(ρ) is finite. The metric com-

pletion of F[ρ] is a complex hyperbolic cone-manifold.
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The proof goes by induction on m = dim(F[ρ]). Assume that it has been
proven that the theorem holds true for all F[ρ] carrying a complex hyperbolic
structure such that 2g +n−3 = dim(F[ρ]) ≤ m−1. The case g = 0 has been dealt
with by Thurston in [Thu98].

Consider ρ ∈H1(N ,U,θ) such that 2g +n−3= m. We have proven in Section
7 (see Theorem 7.1) that F[ρ] = X is a disjoint union of X0, . . . , Xm such that

• X0 =F[ρ];

• Xi is a complex hyperbolic manifold of dimension m − i ;

• the metric completion of Xi in X is Xi+1 ⊔ . . .⊔Xm .

We prove by induction on i that any point in Xi has a neighbourhood in X

isometric to a complex hyperbolic cone-manifold. Let p be a point of Xi . It
has a neighbourhood Up in Xi which is isometric to an open subset of CHm−i .
Following Thurston in [Thu98], we define an ‘orthogonal projection’ π : Vp −→
Up from a neighbourhood Vp of p in X onto Up the following way : we have
seen in Section 7 that there exists a neighbourhood Vp of p in X such that for
any q ∈Vp there exists a unique q ′ ∈Up such that q can be recovered from q ′ by
performing a finite number of the four surgeries S1,S2,S3 and S4 described
in Section 6, and one has π(q) = q ′.

Thurston calls this map ‘orthogonal projection’ because, in a sense which is
made precise in Appendix B, the fibers of π are orthogonal to its image Up .

Lemma 9.2. Let p, Up , Vp and π be defined as above.

(1) For all r ∈Up , V (r ) =π−1(r ) \ {r } is foliated by geodesics ending at r .

(2) For all r ∈Up , the intersection V (r )∩(X0⊔ . . .⊔Xi−1) is a totally geodesic

sub-cone-manifold of X0 ⊔ . . .⊔Xi−1.

(3) For all r ∈Up , V (r ) is orthogonal to Up .

Proof. We fix r ∈ Up and consider an element q of V (r ) = π−1(r ). By using
an appropriate topological polygonation (cf. Proposition 4.3), one can find a
linear parametrisation (z1, . . . , zm) at q such that

• if (ξ0, . . . ,ξm−i , . . . ,ξm) are the coordinates of q in this parametrisation,
then π(q) has coordinates (ξ0, . . . ,ξm−i ,0, . . . ,0);

• the area form A in the zi ’s can be written out

(18) A(z0, . . . , zm) = A1(z0, . . . , zm−i )− A2(zm−i+1, . . . , zm)

where A1 has signature (1,m − i ) and A2 is positive-definite (A2 is the
total area removed by the successive surgeries).
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• in the local coordinates z1, . . . , zm , the stratum X J for j > i is cut out by
the equations zm−( j+1) = zm− j+2 = ·· · = zm = 0.8

The image of [0,1]∋ t −→ (ξ0, . . . ,ξm−i , tξm−i−1, . . . , tξm) ∈Cm+1 projects onto
a geodesic path in Vp joining q to r = π(q) (see Lemma A.1.(2)). Remark that
this geodesic does not depend on the choice of the zi ’s: it is the one pointing in
the direction of r hence it is intrinsic (because there is a unique geodesic seg-
ment linking to distinct points in a complex hyperbolic space). The collection
of those geodesics for all q ∈ V (r ) gives the announced foliation of V (r ). Tak-
ing Vp small enough, one can ensures that the foliation if globally well defined
by using for instance a finite number of linear parametrisation whose pairwise
intersections are 1-connected. The first point of the lemma is proved.

A neighbourhood of q in V (r )∩X0 consists of the submanifold parametrised
by z ′

1, . . . , z ′
m such that z ′

1 = ξ1, . . . , z ′
m−i

= ξm−i and therefore projects onto a
totally geodesic subspace CHi .

Finally, the splitting (18) of A gives us that V (r ) and Up are orthogonal. �

We continue to use the notations of the previous lemma.

Proposition 9.3. V (r ) is a CHi -cone-manifold with r as its unique cone point.

Proof. Define

B(ǫ) =
{

q ∈V (r ) | ∃ a geodesic of length ≤ ǫ joining q to r
}

and S(ǫ) =∂B(ǫ) =
{

q ∈V (r ) | ∃ a geodesic of length ǫ joining q to r
}

For ǫ small enough, S(ǫ) does not meet X j for j ≥ i then it lives in

X \∪ j≥i X j = X0 ⊔X1 ⊔ . . .⊔Xi−1

which is a complex hyperbolic cone-manifold according to the induction hy-
pothesis.

In particular S(ǫ) is locally a totally geodesic sub-cone-manifold intersected
with a germ of a complex hyperbolic sphere whose centre belongs to V (r ). It is
therefore, according to Lemma B.3, a (S2i−1,U(i ))-cone-manifold. According
to the previous lemma, B(ǫ) is a cone over this cone-manifold and the propo-
sition is proved. �

Proposition 9.4. For any r ∈Up , there exists a neighbourhood of r in X which

is a complex hyperbolic cone-manifold.

8There is a subtlety here about the precise location of the locus cut out by these equations
with respect to the definition domain of the considered linear parametrisation. We let the
reader state a remark analogous to Remark 7.5 for the case under scrutiny.
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Proof. There exists an ǫ such that for all r ∈U , the ball of radius ǫ at r in Vr is
an embedded cone. There is a neighbourhood of U in X which has the product
structure U ×B(ǫ) satisfying the hypothesis of Proposition B.5. Hence U ×B(ǫ)
is a complex hyperbolic cone-manifold and this proves the proposition. �

The induction process can be carried on which proves that X =F[ρ] is a com-
plete complex hyperbolic cone-manifold.

10. LISTING THE F[ρ]’s AND THEIR CODIMENSION 1 STRATA

We have given so far a rather abstract analysis of the geometric structure of
a leaf F[ρ] when Im(ρ) is finite. We now give a list of all such F[ρ] associated
to a rational angle data θ when g = 1. Let Gθ ⊂ U the subgroup generated by
e iθ1 , . . . ,e iθn and ωρ a root of unity such that Im(ρ) = 〈ωρ〉.

Let M be the smallest positive integer such that Gθ = 〈ωM
ρ 〉.

10.1. Listing the F[ρ]’s associated to θ. The starting point of our description is
the following lemma :

Lemma 10.1. Consider ρ and ρ′ two elements of H1(N ,U,θ) such that:

(1) Im(ρ) = Im(ρ′);

(2) Im(ρ)
(
and therefore Im(ρ′)

)
is finite.

Then ρ and ρ′ are equivalent under the action of the pure mapping class group.

Proof. Let a,b be two simple closed curves avoiding the marked points of N

which form a symplectic basis of the homology of the unmarked torus N , and
δ1, . . . ,δn curves that circle the marked points, in order that ρ(δi ) = θi for i =
1, . . . ,n. Up to an element of the pure mapping class group, we can replace

(1) first a and b by ak bl and ambn with
[

k l

m n

]
∈ SL(2,Z). We can this way

arrange that ρ(a) = 1 and ρ(b) is such that
〈
Gθ , ρ(b)

〉
= Im(ρ);

(2) then b by b
∏n

i=1δ
ki

i
where the ki ’s are arbitrary integers. An appropri-

ate choice gives that ρ(b) generates Im(ρ).

As an immediate consequence of these facts we get that the class ofρ∈ H1(N ,U,θ)
under the action of the pure mapping class group only depends on its image,
if the latter is finite. �

A leaf F[ρ] is therefore only determined by its associated angle data θ and
the smallest integer M ≥ 1 which is such that Gθ is generated by ωM

ρ . From
now on, we refer to such a leaf/moduli space as Fθ(M). We are now going to
give a description of its codimension 1 strata.

We distinguish three types of such strata :
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• the P-strata which are obtained from a devil surgery. Here ‘P’ stands
for pinching;

• the C-strata which are obtained from a Thurston’s type surgery. Here
‘C’ stands for colliding;

• the K-strata which are obtained from a kite surgery. Here ‘K’ stands for
kite. We remark that such a K-stratum appears in the metric comple-
tion of F[ρ] if and only if n = 3 and Gθ = Im(ρ).9

At this point we must mention an aspect of the description that we have so
far ignored: we have been using throughout the article the terminology ‘leaf ’ in
a non-standard way. While in foliation theory, a leaf is automatically supposed
to be connected, the definition we use allows Fθ(M) not to be. This can indeed
happen if N has genus 1 as the explicit description of the case g = 1, n = 2 car-
ried on in [GP] reveals such non connectedness phenomena (see [GP, §4.2.5]
for an explicit example). The determination of the connected components in
the general case is an open problem that seems interesting to the authors for
the reasons explained in Section 11.

In what follows, we fix a leaf F[ρ] with Im(ρ) finite and we explain below sev-
eral algorithms to determine the strata of complex codimension 1 appearing
in the completion F[ρ]. We denote by M the integer such that F[ρ] =Fθ(M).

10.2. Finding the P-strata. Let m be the positive integer such that Gθ is the

subgroup of U generated by e
2iπ
m . With these notations, one has

Im
(
ρ
)
=

〈
e

2iπ
mM

〉
.

Since θ1 > 2π there exists p such that

θ1 = 2π
(
1+

p

m

)
.

A P-stratum is a (finite cover) of a moduli space of flat spheres whose angles
datum is (θ′1,θ′′1 ,θ2, . . . ,θn) with θ′1 and θ′′1 such that

(1) θ′1 +θ′′1 = θ1 −2π;

(2) both e iθ′1 and e iθ′′1 belong to Im(ρ) = 〈e
2iπ
mM 〉.

This condition is sufficient for such a moduli space of flat sphere to appear
as a stratum of the metric completion of F[ρ]. There is therefore a P-stratum
for each way of decomposing the integer pM as a sum of two positive integers.

The stratum associated to a decomposition

(D) pM = r ′+ r ′′

9Note that since a K-stratum appears when three cone points collide together, it can be
considered as a particular kind of C-stratum.



64 S. GHAZOUANI AND L. PIRIO

with r ′,r ′′ > 0 is a finite cover of the moduli space of flat spheres whose angles
datum is (

e
2πr ′
mM ,e

2πr ′′
mM ,θ2, . . . ,θn

)
.

According to Section 6.7, the cone angle around the stratum associated to
the decomposition (D) is

2π
lcm(r ′,r ′′)

mM
.

10.3. Finding the C -strata. A C -stratum of codimension 1 is a moduli space
of flat tori with n − 1 cone points corresponding to the collision of two cone
points pi and p j of respective angles θi and θ j . The new angles datum θ′ is
such that θi and θ j have be replaced by θi +θ j −2π.

A holonomy character ρ′ ∈ H1(N ,U,θ′) is such that a finite cover of F[ρ′] is
a stratum of F[ρ] if and only if Im(ρ) is generated by Im(ρ′), e iθi and e iθ j (see
Subsection 6.1) . We describe now the positive integers M ′ which are such that
Fθ′(M ′) appears as a C -stratum of the metric completion of F[ρ] =Fθ(M).

Let m′ be the positive integer such that Gθ′ is generated by e2iπ/m′
. Remark

that m′ divides m. We are trying to find the integers M ′ such that e
2iπ

M ′m′ and e
2iπ
m

generate Im(ρ) = 〈e
2iπ
Mm 〉. This is equivalent to find the integers M ′ such that

lcm
(
M ′m′,m

)
= Mm ,

Since m′|m, this is equivalent to determine the positive integers M ′ verifying

lcm
(
M ′,

m

m′

)
= M

m

m′ .

The list of solutions to the preceding relation viewed as an equation in M ′,
provides the list of leaves Fθ′(M ′), associated to the collision between θi and
θ j which appear as C -strata of F[ρ].

10.4. The 1-dimensional case. We now consider the case when n = 2. We as-
sume θ = (θ1,θ2) ∈ 2πQ2 with θ1 + θ2 = 4π. A leaf Fθ(M) is a 1-dimensional
complex hyperbolic manifold or equivalently, a real hyperbolic surface.

According to Theorem 9.1, the metric completion of Fθ(M) is a hyperbolic
surface of finite volume, with a finite number of cone points and a finite num-
ber of cusps. We give in this section a refinement of the description of the
P-strata appearing inFθ(M) (there is actually no C -stratum in the metric com-
pletion of Fθ(M) when n = 2 according to Proposition 5.9) and give a list of the
cusps by geometric means. We finally explicit the case when θ = (3π,π).

A leaf Fθ(M) when n = 2 shall be thought of as a generalisation of the mod-
ular surface H/PSL(2,Z) which is the moduli space of regular flat tori. Veech’s
hyperbolic structure matches its standard one. It is not very surprising that the
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analytical analysis carried on in [GP] shows that the connected components
of Fθ(M) are conformally equivalent to modular curves of the form Y1(N ) =
H/Γ1(N ), for some certain integers N ≥ 2.10

Cone points. Strata ofFθ(M) correspond to flat spheres S with three cone points
of angles θ′ = (θ′1,θ′′1 ,θ2) such that θ′1 +θ′′1 = θ1. Listing such flat spheres has
been done in the preceding section. We also saw that P-strata are finite cov-
ers of moduli spaces of flat spheres, in this specific case such a finite cover is a
union of points. There are as much copies of S appearing in the metric com-
pletion Fθ(M) as ways of performing the Devil surgery on S.

Let T ∈ Fθ(M) be a torus build by a Devil surgery on S. Let γ be a simple
curve on T avoiding the singular points that intersects the systole only once
(see Section 6.3 for more details and pictures). We remark that ρ(γ) has to be
such that 〈e iθ′1 ,e iθ′′1 ,e iθ2 ,ρ(γ)〉 = Im(ρ).

With the notations of the previous section, if

θ′1 =
2πr ′

mM
and θ′′1 =

2πr ′′

mM
,

then there are exactly gcd(r ′,r ′′) different ways to perform the Devil’s surgery
in such a way that that the holonomy around γ belongs to Im(ρ). Amongst
these ways, only ϕ(gcd(r ′,r ′′)) (where ϕ is Euler’s totient function) are such
that 〈e iθ′1 ,e iθ′′1 ,e iθ2〉 = Im(ρ) and this number is the exact number of times that
S appear in the metric completion of Fθ(M). The cone angle around such a
point is 2πlcm(r ′,r ′′)/(mM).

Cusps. According to Subsection 6.5, the cusps of Fθ(M) are in one-to-one cor-
respondence with couples (S,γ) where

(1) S is a flat sphere with three cone points of angles θ′1, θ′1 and θ2, such

that θ′1 +θ′1 = θ1 −2π and Im(ρ) = 〈e iθ′1 ,e iθ′′1 ,e iθ2〉;
(2) γ is a regular geodesic in S between the cone point of angle θ′1 and the

one of angle θ′′1 .

Such a geodesic always exists and is unique, we are therefore reduced to
count the number of flat spheres with three cone points such that Im(ρ) =
〈e iθ′1 ,e iθ′′1 ,e iθ2〉. This reduces to counting the number of pairs of positive in-
tegers (r ′,r ′′) such that r ′+ r ′′ = pM and gcd(r ′,r ′′) = 1.

10.5. An example : θ = (3π,π). We are now going to compute the number of
conical points and cusps of Fθ(M) in the special case when θ = (3π,π). In this
case p = 1 and m = 2.

10See [GP, §4.2.4] for more details.
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• Each cone point corresponds to a partition r +s = M with r, s > 0. There
are ⌊M+1

2 ⌋ such partitions. To a partition (r, s) is associated ϕ(gcd(r, s)=
gcd(r, M)) cone points, all of the same angle 2πlcm(r, M − r )/M .

• In particular the number of cone points is

1

2

M−1∑

r=1
ϕ

(
gcd(r, M)

)
.

• There are as many cusps as unordered partitions of r + s = M such that
r and M are coprime. Thus the number of cusps is exactly

1

2
ϕ(M) .

The number of cusps and cone points put together gives us the number of
punctures of F(3π,π)(M) which is

1

2

M∑

r=1
ϕ

(
gcd(r, M)

)
.

A reordering of this sum gives that the total number of punctures ofF(3π,π)(M)
is actually

1

2

∑

d |M , d 6=M

ϕ(d)ϕ (M/d) .

This number is equal to the number of cusps of the modular curve X1(M) =
H/Γ1(M) (see [DS05]). This is not a coincidence: it is proved in [GP, §4.2.5.3]
that the conformal type of F(3π,π)(M) is actually the same as the one of Y1(M).

11. HOLONOMY OF THE CHn−1-STRUCTURE: DISCRETENESS

11.1. Previous works in the genus 0 case. Thurston proves in [Thu98] (recov-
ering by geometric methods results of Deligne and Mostow from [DM86]) that
when g = 0 and n ≥ 4, if the angle datum θ = (θ1, . . . ,θn) ∈]0,2π[n verifies

(INT) ∀i , j = 1, . . . , i 6= j , 2π< θi +θ j =⇒ θi +θ j −2π divides 2π ,

then the metric completion of F ≃ M0,n (the unique leaf of Veech’s foliation
in this case) is a connected complex hyperbolic orbifold of finite volume and
therefore a quotient CHn−3/Γθ where Γθ is a lattice in PU(1,n −3). This lattice
Γθ is exactly the image of holonomy morphism

hol : π1
(
M0,n

)
−→ PU(1,n −3)
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of the (CHn−3,PU(1,n −3))-structure of F. Sometimes it happens that the im-
age Γθ = hol(π1F) of the holonomy is a lattice in PU(1,n −3) even if the met-
ric completion of F is not an orbifold. The combined works of Picard, LeV-
avasseur, Terada, Deligne-Mostow, Mostow, Thurston and Sauter (see [LV93,
Ter73, Thu98, DM86, Mos88, Sau90]) lead to the following results:

(1) there exists 94 angles data θ for which F is an orbifold, and therefore
Γθ = hol(π1F) is a lattice;

(2) this builds lattices in PU(1, N ) for all N = n −3 = 1, . . . ,9, some of them
being non-arithmetic for N = 1,2 and 3;11

(3) if N ≥ 3, Γθ is a lattice if and only if θ verifies (ΣINT), apart from one
exception, where (ΣINT) is a refinement of the criterion (INT);12

(4) when N = 2, there exist 9 angles data failing (ΣINT) for which Γθ =
hol(π1F) is a lattice.

11.2. Genus 1 and n = 3. We now address the following question, which must
seem natural at this point:

Question 1. Let T be a torus with three marked points, and θ an admissible

rational angle datum. Does there exist ρ ∈ H1(T,U,θ) such that hol(π1F[ρ]) is a

lattice in PU(1,2) ?

As we have seen in Section 10, such a leaf F[ρ] is only determined by θ and
an integer M . We denote such a leaf by Fθ(M). The first difficulty to address is
the question of the connectedness of the leaves F[ρ]: Fθ(M) may have several
connected components (see Subsection 3.3 for a short discussion of this mat-
ter) and it is possible that the holonomy of one of these is a lattice and that it is
not the case for the others.

The following lemma, whose proof in the genus 0 case can be found in [Mos88],
outlines a strategy to search for connected components of Fθ(M) whose holo-
nomy is a lattice:

Lemma 11.1. Let F be a connected component of Fθ(M) whose complex hyper-

bolic holonomy is a lattice in PU(1,2). Then the complex hyperbolic holonomy

of every codimension 1 stratum is a lattice in PU(1,1).

This lemma provides necessary conditions on such a connected component
F to have discrete holonomy in PU(1,2), conditions which hold true in several
cases. To find candidates to have holonomy a lattice in PU(1,2), the strategy
goes the following way :

11These non-arithmetic examples have been for a long time the only known examples of
non-arithmetic complex hyperbolic lattices until the recent work of Deraux, Parker and Pau-
pert [DPP15].

12See [Mos86, §1] or [Thu98, Theorem 0.2] for a precise statement of condition (ΣINT).
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(1) identify the different connected components of Fθ(M);

(2) verify if the criterion given by Lemma 11.1 is verified, using the list of
Thurston-Deligne-Mostow for genus 0 type codimension 1 strata or the
strategy suggested in the next paragraph for genus 1 codimension 1
strata;13

(3) amongst the isolated candidates, compute the complex hyperbolic ho-
lonomy and verify that it is discrete.

The last step seems to be the most difficult to achieve so far, since the meth-
ods used in the genus 0 case (see for example [Par06]) tends to become algo-
rithmically too complicated in our case and strongly rely on the knowledge of
simple generators of the fundamental group of M0,n (a finite familly of distin-
guished Dehn twists).

11.3. Some cases when the holonomy is an arithmetic lattice. We remark
that for a certain number of connected components F of leaves of Veech’s foli-
ation, the holonomy is an arithmetic lattice in PU(1,2).

It follows from the following lemma:

Lemma 11.2. Let F be a connected component of a leaf F[ρ]. Then, up to a

suitable conjugation, the coefficients of the matrices of hol(π1F) lie in Z[Im(ρ)].

This lemma is an easy consequence of the fact that the matrices of the tran-
sitions maps of an atlas of linear parametrisations coming from topological
polygonations must have coefficients in Z[Im(ρ)], see Section 4 and the proof
of Proposition 4.2. In particular if Z[Im(ρ)] is discrete in C, then for any con-
nected component F of F[ρ], the image of its holonomy is discrete in PU(1,2).

The developing map F̃ → CH2 of such a F factors through a local isometry
F→CH2/hol(F). Since F has finite volume (cf. Section 8), hol(F) is necessarily
a lattice which must be arithmetic since it belongs to PU(1,2)∩SL3(Z[Im(ρ)]).

This situation actually happens: if Im(ρ) = 〈e
2iπ
n 〉 for n = 3,4 or 6 thenZ[Im(ρ)]

is discrete. Note that the argument does apply to higher dimensions as well.

11.4. Holonomy in the 1-dimensional case. Subsection 10.4 is the first step
towards a geometric description of the moduli spaces F[ρ] when g = 1 and n =
2. A comprehensive description of this case is carried on in the paper [GP].

The following Proposition, which is just a suitable reformulation of Poincaré’s
theorem on fudamental domains of Fuchsian groups, gives an easily verifiable
sufficient criterion for a (connected component of a) leaf F to have discrete
holonomy in PU(1,1).

13By a ‘genus g strata’ we mean a strata whose elements are flat surfaces of genus g .
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Proposition 11.3. The metric completion F of F is a lattice quotient of CH1 if

and only if all the cone angles at points of F \F are integer parts of 2π.

This Proposition combined with the analysis carried on in [GP] allows us to
find several such F which are lattice quotients (cf. [GP, §6.1] for more details).

APPENDIX A. Complex hyperbolic geometry.

A.1. Complex hyperbolic space. On the complex vector space Cn+1 of dimen-
sion n +1, we consider the hermitian form 〈·, ·〉 of signature (1,n) defined by

〈z, w〉 = z0w0 −
n∑

i=1
zi wi

for z = (z0, . . . , zn) and w = (w0, . . . , wn) in Cn+1.

All the definitions to come do not depend on the choice of the hermitian
metric of signature (1,n) since two such form a linearly conjugated. Recall that
CPn is the set of complex line of Cn+1. We define CHn , the complex hyperbolic

space of dimension n, to be the subset of CPn formed by the lines in Cn+1 on
which 〈·, ·〉 is positive:

CHn =
{

[z] ∈CPn
∣∣z ∈Cn+1, 〈z, z〉 > 0

}
.

We denote by PU(1,n) the set of linear automorphisms of Cn+1 which pre-
serve 〈·, ·〉. It acts projectively on CHn and satisfies to the following properties:

• its action on CHn is free and transitive;

• PU(1,n) is exactly the group Aut(CHn) of biholomorphisms of CHn ;

• there exists a Riemannian metric on CHn for which PU(1,n) is exactly
the set of orientation preserving isometry. This metric is called the
complex hyperbolic metric;

• this metric has sectional curvature comprised between −1
4 and −1. Its

holomorphic sectional curvature is constant.

The stabiliser of a point in CHn (which is exactly the stabiliser of a positive
line PU(1,n)) is conjugated to U(n) ⊂ PU(1,n), which is the maximal compact
subgroup of PU(1,n). The complex hyperbolic space CHn is therefore isomet-
ric to the rank one (hermitian) symmetric space PU(1,n)/U(n). It is the non-
compact dual of CPn .

The distance for the complex hyperbolic metric can be explicitly computed
by means of the initial hermitian form:
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Lemma A.1. Let [z] and [w] be two points in CHn ⊂CPn with z, w ∈Cn+1.

(1) The complex hyperbolic distance α between [z] and [w] satisfies

cosh2
(α

2

)
=

〈z, w〉 · 〈w, z〉
〈z, z〉 · 〈w, w〉

.

(2) The geodesic curve linking [z] to [w] in CHn is the projectivisation of the

linear segment [z, w] = {z + t w |t ∈ [0,1]} linking z to w in Cn+1.

(For some proofs, see [Par10]).

A.2. Coordinates.

A.2.1. The ball model. In order to have coordinates on CHn , one can take
affine coordinates of CPn . Since z0 6= 0 if [z] = [z0 : · · · : zn] belongs to CHn ,
the latter is included in the affine chart {z0 6= 0} of CPn .

In the z0 = 1 normalisation, it comes that z1, . . . , zn provide a global system
of holomorphic coordinates which identify CHn with the complex n-ball:

{ (
zi

)n

i=1 ∈Cn
∣∣

n∑

i=1

∣∣zi

∣∣2 < 1
}

.

In this model of the complex hyperbolic space, the hyperbolic metric iden-
tifies with the Bergman metric of the complex n-ball.

Although we do not use it in the present text, the complex ball is a very clas-
sical model for CHn which is worth being mentioned. We will not say anything
more about it but one can find a comprehensive presentation in [Gol99].

A.2.2. Pseudo-horospherical coordinates. More important for our purpose is
a special kind of affine coordinates onCHn which are very close, in spirit, to the
horospherical coordinates introduced by Goldman and Parker in [GP92].

Let ξ = (ξ0, . . . ,ξn) be a system of linear coordinates on Cn+1 such that the
expression of the hermitian form 〈·, ·〉 in these can be written out

〈ξ,ξ〉 =
i

2

(
ξnξ0 −ξ0ξn

)
+a

(
ξ̂, ξ̂

)

for a hermitian form a of signature (1,n−1) and where ξ̂ stands for (ξ0, . . . ,ξn−1).

Lemma A.2. If ξ= (ξi )n
i=0 is such that 〈ξ,ξ〉 > 0 then ξ0 6= 0.

Proof. One verifies that, up to a linear change of coordinates letting ξ0 invari-
ant, one can assume that 〈ξ,ξ〉 = i

2 (ξnξ0 −ξ0ξn)+
∑n−1

j=0 ǫ jξ jξ j for some ǫ j be-

longing to {−1,0,1}. By assumption, a(ξ̂, ξ̂) =
∑n−1

j=0 ǫ jξ jξ j has signature (1,n−1)
hence exactly one of the ǫ j ’s is equal to 1, all the others being equal to -1.
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If ǫ0 = −1, then i
2 (ξnξ0 −ξ0ξn)−ξ0ξ0 has signature (1,1). Since

∑n−1
j=1 ǫ jξ jξ j

has signature (1,n −2) (because ǫ j = 1 for some j ≥ 1), this would imply that
〈·, ·〉 has signature (2,n −1), a contradiction. �

From the preceding lemma, it follows that the complex hyperbolic space
admits a model contained in the affine chart {ξ0 6= 0} of CPn . Then, under the
normalization ξ0 = 1, the ξk ’s for k = 1, . . . ,n provide global affine coordinates
on this model which will be called pseudo-horospherical coordinates.

In such coordinates, the associated quadratic form is given by 〈ξ,ξ〉= Im(ξn)+
a(ξ̂, ξ̂) with ξ̂= (1,ξ1, . . . ,ξn−1) and consequently, this model of the complex hy-
perbolic space CHn consists in the set of ξ= (ξ̂,ξn) ∈Cn such that

Im
(
ξn

)
>−a

(
ξ̂, ξ̂

)
.

In the standard (homogeneous) coordinates z = (z0, z1, . . . , zn) on Cn+1, the
formula for the complex hyperbolic metric is the following

g =−
4

〈z, z〉2

∣∣∣∣
〈z, z〉 〈d z, z〉
〈z,d z〉 〈d z,d z〉

∣∣∣∣ .

A straightforward calculation gives the following formula for the expression
of this metric in pseudo-horospherical coordinates:

g =−
4

〈ξ,ξ〉2

(
〈ξ,ξ〉 ·a

(
d ξ̂,d ξ̂

)
−a

(
ξ̂,d ξ̂

)
·a

(
d ξ̂, ξ̂

)
− Im

(
dξn ·a

(
ξ̂,d ξ̂

))
−

∣∣dξn

∣∣2
)

.

Introducing u = 〈ξ,ξ〉 and s = Re(ξn), we therefore have ξn = s+i (u−a(ξ̂, ξ̂)).
In the coordinates system (s,u,ξ1, . . . ,ξn−1) on the pseudo-horospherical model
of CHn we are considering, the metric tensor g writes down

(19) g =
4

u2

(
du2

4
+

(d s

2
+ Im(ω)

)2
+Re(ω)2 −u ·Ω

)

where ω= a(ξ̂,d ξ̂) and Ω= a(d ξ̂,d ξ̂).

We now introduce the family of open sets in CHn :

UK ,λ =
{[

1,ξ1, . . . ,ξn

]
∈CH

n
∣∣∣
∣∣ξ1

∣∣, . . . ,
∣∣ξn−1

∣∣,
∣∣Re(ξn)

∣∣< K and Im
(
ξn

)
>λ

}

with K ,λ> 0.

Lemma A.3. Let K and λ be arbitrary positive constants.

(1) The complex hyperbolic volume of UK ,λ is finite.

(2) If γ : [0,1] −→ UK ,λ is path such that γ(t ) = (ξ1(t ), . . . ,ξn(t )) for any t ∈
[0,1], then its length L(γ) for the complex hyperbolic metric satisfies

L(γ) ≥
∣∣∣ log

(
ξn(1)

)
− log

(
ξn(0)

)∣∣∣ .
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Proof. In the coordinates system (s,u,ξ1, . . . ,ξn−1) on UK ,λ, the complex hy-
perbolic volume element writes down

√
det(g )d sdudξ1dξ1 · · · · ·dξn−1dξn−1.

Since both ω and Ω depend continuously on ξ1, . . . ,ξn−1, one gets that

√
det(g ) =

f
(
ξ1, . . . ,ξn−1

)

u2n+2

for some positive and continuous function f which thereby is bounded on
UK ,λ. The finiteness of the volume of UK ,λ follows directly from evaluating the
associated integral.

The second point of the lemma follows directly from the fact that g ≥ u−2du2

on UK ,λ. To see this, one has to prove that Ω is negative. But if Ω was not, since
du2/4+(d s/2+Im(ω))2+Re(ω)2 does not depend on u, one would deduce from
(19) that g would not be positive for large value of u, a contradiction. �

APPENDIX B. Cone-manifolds

B.1. Generalities. This section strongly builds on [McM], in particular the use
of joints for describing spherical cone-manifolds.

Let X be a complete homogeneous Riemannian manifold and let G be its
isometry group (or more generally a subgroup of its isometry group). We de-
velop material on cone-manifolds in this specific case. For any point p ∈ X ,
one denotes by Xp the set of geodesic rays emanating from it and Gp = StabG (p)
stands for its stabiliser.

A (X ,G)-cone-manifold is a geometric object built inductively as follows:

• if X is 1-dimensional, a (X ,G)-cone-manifold is just a (X ,G)-manifold;

• otherwise, a (X ,G)-cone-manifold is a topological space such that any
point in it has a neighbourhood isomorphic to a cone over a (Xp ,Gp )-
cone-manifold.

One just remarks that Xp is just the unit sphere at p in X and therefore Gp

can naturally be seen as a subgroup of O(n) where n is the dimension of X .

A simple example of a non trivial cone-manifold is a Euclidean cone. If X =
R2 and G = Iso(R2), Xp = S1 and Gp = O(2). A (Xp ,Gp )-manifold is nothing else
but a circle of length θ and a cone over it is a cone of angle θ. Finally, remark
that any (X ,G)-manifold is also a (X ,G)-cone-manifold in a natural way.
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B.2. Cones are cone-manifolds. Let X be a connected Riemannian manifold
such that G is the component of the identity of its isometry group. Let X ′ be
a totally geodesic submanifold of codimension 2 in X such that StabG (X ′) is
S1 =R/Z, i.e. it acts by rotation of angle θ around X ′ for any θ ∈ S1.

We explain the general construction of the cone of angle θ over X ′. The met-
ric completion Y of the universal covering of X \ X ′ is an infinite cyclic cover of
X branched along X ′. There is a group R of isometry lifting the action of S1 by
rotation to Y and if θ ∈]0,+∞[, one defines Xθ the cone of angle θ over X ′ to
be the quotient of Y by the action of the rotation of angle θ on Y . The image in
Xθ of the preimage of X ′ in Y is called the singular locus of the cone.

Proposition B.1. Xθ is a (X ,G)-cone manifold.

Proof. The proof goes by induction on the dimension of X . Away from its
singular locus, Xθ is a (X ,G)-manifold hence the proposition is clear here.

Let p be a point of the singular locus. The set W of points of Xθ that can
be joined to p by a geodesic path of length 1 happens to be a cone of angle θ

for a sphere S of radius 1 at a point q ∈ X ′ with isometry group StabG (q). A
neighbourhood of p in Xθ is then the cone over W . We want to show that W is
actually a (S,StabG (q) cone-manifold. This will be done by showing that W is
actually a cone of angle θ and applying the induction hypothesis.

The intersection S ′ = X ′ ∩ S is a totally geodesic submanifold of S for the
metric induced by X and S1 ⊂ StabG (X ′) ⊂ StabG (q). The universal cover of
S \ S ′ embeds in the one of X \ X ′ and therefore the metric completion of the
universal cover of S \ S ′ embeds in the metric completion Y of the universal
cover of X \X ′. W is then the quotient of the metric completion of the universal
cover of S \ S ′ by the rotation of angle θ. Hence W is a (S,StabG (q))-cone and
since dim(S) = dim(X )−1, is a (S,StabG (q))-cone-manifold. �

B.3. Joints. We now restricts to the case when X =CHn and G = PU(1,n). The
unit sphere at a pointp in X is S2n−1 = ∂(B n) where B n is the unit ball at p and
its isometry group is U(n) ⊂ G . For every k in {1, . . . ,n}, we can carry on the
construction detailed below.

The joint A ∗B of two topological spaces A and B is the space you get by
adjoining to every couple of points (a,b) ∈ A ×B a segment [a,b]. This opera-
tion can be made geometrical if A and B are spherical manifold. One remarks
that S2(n+k)−1 is the joint of S2n−1 ∗ S2k−1 where S2n−1 and S2k−1 are embed-
ded in S2(n+k)−1 in a essentially unique way such that each points x ∈ S2n−1

and y ∈ S2k−1 are joined by a unique geodesic path of length π
2 . This makes it

very clear how one can endow the joint of X a (S2n−1,U(n))-manifold and Y a
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(S2k−1,U(k))-manifold the structure of a (S2(n+k)−1 ,U(n+k))-manifold. A good
reference that deals with this construction is [BH99, Chapter I.5, p.63].

This property of naturality extends in some way to cone-manifolds.

Lemma B.2. Let M be a (S2k−1,U(k))-cone-manifold. Then the joint S2(n−k)−1∗
M has a natural structure of (S2n−1,U(n))-cone-manifold.

Proof. The proof goes by double induction on n and i = (n −k). To be more
precise, we assume that the lemma is true for all (n′,k ′) such that either n′ < n

or n′ = n and and k < k ′. Take p ∈ S2(n−k)−1 ∗M . We distinguish two cases :

(1) p does not belong to S2(n−k)−1 . In that case p belongs to an arc ]x, y]
with x ∈ S2(n−k)−1 and y ∈ M . Denote by Mi is the strata of codimen-
sion iof M . If i = 0, i.e. y is a regular point in M , p is a regular point
of S2(n −k)−1∗M . If i ≥ 1 by the induction hypothesis S2(n−k)−1 ∗Mi

is a (S2n−3,U (n − 1))-cone-manifold. In that case p has a neighbour-
hood which is the cone over the joint S2(k+i )−1 ∗V (y) where V (y) is a
(S2(n−k−i )−1 ,U (n −k − i ))-cone-manifold over which a neighbourhood
of y in Mi is the cone.

(2) p belongs to S2(n−k)−1. In that case a neighbourhood of p in S2(n−k)−1 ∗
M is a cone over the joint S2(n−k−1)−1 ∗M and the induction hypothesis
allows to conclude.

�

B.4. Strata. A CHn-cone-manifold X has a stratified structure X0⊔X1⊔·· ·⊔Xn

where Xk is a CHn−k -manifold whose metric completion is Xk ⊔·· ·⊔Xn . Every
point p ∈ X has a neighbourhood who is the cone over the joint S2(n−i )−1∗X (p)
where Xp is a (S2i−1,U(i ))-cone-manifold. Xk is defined to be the set of point
for which the biggest integer i for which a neighbourhood of p has the latest
structure is equal to k.

B.5. Totally geodesic subcone-manifolds. We dedicate a subsection to the no-
tion of totally geodesic subcone-manifolds. We assume here that X is a Rie-
mannian manifold which is either CHn or Sk and G is either PU(1,n) or a sub-
group of O(k). Xp is the unit sphere at a point p ∈ X and Gp = StabG ({p}). If
X is a (X ,G)-cone-manifold, a totally geodesic sub-cone-manifold Y of X is a
subset of X such that the intersection of Y with each stratum of X is a totally
geodesic submanifold of the stratum.

Lemma B.3. Let p be a point of X and Y be a totally geodesic submanifold of X

such that p ∈ Y . Then Xp ∩Y is a totally geodesic submanifold of Xp .

Proof. This is a consequence that in all the cases we are considering there
exists a subgroup G ′

p of Gp such that Stab(G ′
p ) = Y .
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�

Proposition B.4. A totally geodesic subcone-manifold Y of a Riemannian cone-

manifold M endowed with the natural metric structure coming from its embed-

ding is also a cone-manifold.

Proof. The proof goes by induction on dim(Y ). Take q in Y . q has neighbour-
hood in M which is a cone over a (Xp ,Gp )-manifold X ′, where Xp is the unit
sphere at a point p ∈ X and Gp = StabG ({p}). According to Lemma B.3 X ′∩Y is
also a totally geodesic cone manifold of dimension dim(Y )−1. The induction
hypothesis ensures that X ′∩Y is also a cone-manifold and therefore p has a
neighbourhood which is a cone over a cone-manifold.

�

B.6. Higher dimensional complex hyperbolic cones. We now give local mod-
els for some specific complex hyperbolic cone manifolds. In particular we gen-
eralise the notion of cone previously defined in the particular case of complex
hyperbolic geometry. Let X be a complete complex hyperbolic cone-manifold
of dimension k and let p a point being a stratum of codimension k. We de-
note by X0 the set of regular points of which is open in X . Consider the trivial
productCHn×X0. There is a unique complex hyperbolic structure on CHn×X0

such that

• Each fiber {∗}×X0 are locally totally geodesic
• Any fiber {∗}×X0 intersect CHn × {p} orthogonally.

The metric completion of CHn ×X0 is then CHn ×X . Here is the good moment
to explain the notion of orthogonality in a (CHn ,PU(1,n))-cone-manifold. Let
Y and Z be two totally geodesic sub-cone-manifold of X a (CHn ,PU(1,n))-
cone-manifold which intersect only at a point p. We say that they intersect
orthogonally if every couple of regular points p ∈ Y and q ∈ Z is contained in
an open set U of X such that

• U is isometric to an open set of CHn ;

• Y ∩U and Z ∩U are respectively identified with open subset of copies
of CHi and CH j in CHn which intersect orthogonally.

.

Proposition B.5. CHn × X seen as the metric completion of CHn × X0 is a com-

plex hyperbolic cone-manifold.

Proof. Let q a point in X which has maximal codimension. A neighbour-
hood of q in X which is a cone over a (S2k−1,U (k))-cone-manifold X ′. Ac-
cording to Lemma B.2 the spherical joint X ′ ∗S2n−1 has a natural structure of
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(S2(n+k)−1 ,U (n+k))-cone-manifolds, of which a neighbourhood of q in CHn ×
X is a cone over.

�
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