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Abstract. We study the SL2(R)-action on the moduli space of (triangulable)
dilation tori with one boundary component. We prove that every orbit is either

closed or dense, and that every orbit of the Teichmüller flow escapes to infinity.

1. Introduction

Dilation surfaces form an interesting class of geometric structures on surfaces. Part
of their richness comes from the diversity of viewpoints from which they can be
seen and the variety of a priori distinct topics they relate to.

(G,X)-structures. They are defined as a class of (G,X)-structures in the sense
of Thurston where G is the affine group and X is the complex plane. It can be
convenient to think of them as a subset of (branched) complex projective structure
corresponding to restricting the structural group (see [6] for an introduction to
complex projective structures). From this point of view, it is natural to wonder
about the geometric properties of individual dilation surfaces and to try and find
algebraic and geometric invariants to tell them apart.

Teichmüller theory. A dilation surface can also be seen as a holomorphic differ-
ential on a Riemann surface taking values in a flat line bundle and as such they
are directly connected to Teichmüller theory. In particular, this connection is re-
sponsible for the well-definedness of moduli spaces of such objects. In this line of
thought, one can ask about the geometry of these moduli spaces, the properties
of its natural complex, algebraic and foliated structures as well as potential com-
pactifications. Evidence suggests that the geometry of these moduli spaces could
resemble that of infinite volume hyperbolic manifolds.

Homogeneous dynamics. As for translation surfaces, these moduli spaces come
with a locally free SL2(R)-action which makes for a connection with homogeneous
dynamics. A systematic study of this action should be compared with the re-
cent body of work on the homogeneous dynamics of infinite volume hyperbolic
3-manifolds (see [18], [17] and [21]) as well as to the case of the SL2(R)-action on
translation surfaces (see [9] and [8]).

Renormalisation theory. Part of the interest in these SL2(R)-actions comes
from the fact that they provide a renormalisation scheme for certain flows on sur-
faces. Indeed, dilation surfaces are dynamical objects: they carry natural families
of directional foliations which are geometric realisations of affine interval exchange
transformations (see [4], [3] and [15]). Contrary to translation flows, dilation flows
display enough of the variety of behaviour that can observed for smooth flows on
surfaces to be a credible finite dimensional approximation of parameter spaces of
such flows (see [7] [1] or [2]). Furthermore there is some evidence that these affine
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interval exchange transformations play a central role in the renormalisation theory
of non-linear flows on surfaces/generalised interval exchange maps ([5]). Dilation
surfaces thus provides a geometric realisation of both parameter spaces of flows on
surfaces and their renormalisation operators.
The present article is an attempt at understanding a class of dilation surfaces which
is a low-dimensional toy-model for the general case. The case under scrutiny is that
of dilation tori with one boundary component. We cobble together a study
of their geometric properties, description of some geometric features of the moduli
space, a complete analysis of the dynamics of their directional foliations and a study
of the SL2(R)-action as well as that of the Teichmüller flow.

We denote by D the moduli space of dilation tori (see Section 2.3 for a precise
definition) with one geodesic boundary component. Our main Theorem is the
following

Theorem 1.1 (Main theorem). Let T be an element of D.

• If the linear holonomy of T generates a discrete subgroup of (R+,×), then
SL2(R) · T is closed.

• If the linear holonomy of T does not generates a discrete subgroup of (R+,×),
then SL2(R) · T is dense in D.

• The orbit of T under the action of the Teichmüller flow diverges (eventually
leaves every compact of D).

We also prove that all trajectories of the Teichmüller flow escape to infinity. To-
gether with the above theorem, this supports the analogy between moduli spaces of
dilation surfaces and infinite volume hyperbolic manifolds. We discuss this further
in Section 6

Structure of the article. The article in organised as follows: in Section 2, we
introduce basic material about dilation surfaces. In Section 3, we specify some of
the material of Section 2 to the case of one-holed dilation tori and introduce a set of
coordinates on the moduli space upon which we build to study the action of SL2(R)
on D. In Section 4, we reproduce some material from [1] and apply it to give a
systematic description of the dynamics of directional foliations on one-holed dila-
tion tori. We turn to describing orbits of the Teichmüller flow in Section 5. Finally,
we conclude the article with comments, open questions and conjectures in Section 6.

2. dilation surfaces and their moduli spaces, generalities.

2.1. Generalities on dilation surfaces. The main objects we will deal with in
this article are dilation structures, defined as follows.

Definition 2.1. A dilation structure on a topological surface Σ - possibly with
boundary - is given by a finite set S ⊂ Σ, the singularities of Σ, and an atlas of
charts A = (Ui, ϕi)i∈I on Σ \ S such that

• the transition maps are locally restriction of elements of AffR∗+(C) = {z 7→
az + b | a ∈ R∗+ , b ∈ C};

• Seen in any chart, any connected component of the boundary - if any -
must be a straight line;

• each singularity in the interior of Σ has a punctured neighborhood which
is affinely equivalent to a punctured neighborhood of the cone point of a
Euclidean cone of angle multiple of 2π;
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• each singularity on the boundary of Σ has a punctured neighborhood which
is affinely equivalent to a punctured neighborhood of the cone point of an
Euclidean cone.

Note that the notion of straight line in this setting is well-defined since changes of
coordinates are affine maps, as opposed to the notion of geodesic which requires an
invariant metric. Moreover, any direction θ ∈ S1 the foliation by straight lines of
C in the direction defined by θ being invariant by dilation maps, it gives rise to a
well-defined oriented foliation Fθ on any dilation surface. Such a foliation is called
a directional foliation. We call the directional foliations the resulting family
of foliations, therefore indexed by the circle, that we denote (Fθ)θ∈S1 .

Finally, note that there is a canonical complex structure induced by a dilation
structure, since dilations are in particular holomorphic maps.

In order to define the moduli space of dilation structure, we need to consider them
up to trivial transformations, which consists to push-forward a dilation structure
via a diffeomorphism, artificially giving rise to two different atlases on a given
topological surface.

Definition 2.2. Given two dilation structures D1, D2 on a topological surface Σ,
we will say that a diffeormorphism g ∈ Diff+(Σ) which preserves the boundary of
Σ is an dilation automorphism with respect to the pair (D1, D2) if, written in
any affine coordinates of D1 and D2, g writes like a dilation map.

2.2. Triangulation and polygonal models. On the contrary of translation sur-
faces, not all dilation surfaces carry a geometric polygonation. The obstruction of
carrying such a triangulation can be characterize with the notion of affine cylinder.
The following definition will also be of crucial importance in order to state the two
divergence criteria given in Section 5.

Definition 2.3. A dilation cylinder of angle θ and multiplier λ, denoted by
Cλθ , is the quotient of an angular sector of angle θ in C∗ by the action of a dilation
z 7→ λz with λ ∈ R∗+ \ {1}.

Note that the construction only makes sense for θ ≤ 2π. However, replacing C∗
with an infinitely branched cover we can extend the construction to any positive θ.

A straight line polygonation of a dilation structure is a topological polygo-
nation of Σ with set of vertices equal to the set the singularities of the dilation
structure and whose edges are straight lines connecting singularities (also called
saddle connections).

Definition 2.4. We say that a dilation structure is polygonable if it admits
a straight line polygonation. If the topological surface under consideration has
boundary components, we impose moreover that these components lies in the set
of straight line edges of the polygonation.

Note that the above definition implies that all boundary components must contain
at least one singularity since we required that the vertices of the polygonation are
singularities. This condition may seen artificial at first, but it prevents (for in-
stance) one to glue arbitrary long cylinders on the boundaries which would make
the moduli space artificially big.

Note also that a polygonation of a surface may be refined to get a straight line tri-
angulation. We will at times say that a surface is triangulable if it has a straight
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θ

Figure 1. In black, a fundamental domain for the action of z 7→
2z on a cone of angle θ > π. Any leaf entering the cylinder is
trapped within it forever regardless of the direction of the leaf,
see the red one drawn on the figure for instance. This property
prevents a polygonation to ’connect’ both sides of the cylinder.

line polygonation whose faces are all triangles. A dilation surface is polygonable if
and only if it is triangulable.

As already mentioned, not all dilation structure carries such a polygonalisation.
The following theorem gives a simple characterisation of dilation surfaces which are
polygonable.

Theorem 2.5. [20, 7] A dilation surface admits a straight line triangulation if and
only if it does not contain an embedded open affine cylinder of angle π.

This theorem was proven by Veech in a set of unpublished notes [20].

As already mentioned, we shall restrict ourselves to polygonable dilation structures.
The advantage of being polygonable is that one can recover the dilation structure
by gluing together planar polygons. This data is referred to as a polygonal model
of the dilation structure. Such models will be of crucial use in order to study the
geometry of the moduli space.

2.3. Moduli spaces and its natural associated dynamics. We have now all
the material required to introduce moduli spaces. The following discussion is a
gathering of well known facts, see [10]. We keep it short since the next section
will provide us with an explicit description of the moduli space coming from the
polygonal models.

Since we consider surfaces with boundary, in order to define a sensible moduli space,
we shall fix the combinatoric of the singularity with respect to the boundary com-
ponents. For what follows when considering a topological surface Σ we suppose
fixed the number of singularity on each of the boundary components. We refer to
this data as an onto mapping ϕ from the singularities to the boundary components.
For example, a genus 1 surface with 2 boundary components, 2 singularities on one
component and 2 on the other one would be considered different from the same
topological surface but with 3 singularities on the first boundary component and 1
on the other .
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We denote by T D(g, n, ∂, ϕ) the set of all polygonable dilation structures of a
topological surface of genus g with n singularities, ∂ boundary components and
fixed combinatoric ϕ up to dilation automorphisms isotopic to the identity. Given
a topological surface Σ it is well known that the modular group Mod(Σ), i.e. the
group of all diffeomorphisms fixing the marked points and the boundary up to
those isotopic to the identity, acts properly and discontinuously on the Teichmüller
space (see for example [10, Section 12.3]). Since a dilation structure gives rise to a
holomorphic structure, the quotient in the following definition is an actual orbifold.

Definition 2.6. We call the dilation moduli space of a surface Σ of genus g
with n singularities, ∂ boundary components and a combinatoric ϕ the following
quotient space:

D(g, n, ∂;ϕ) := T D(g, n, ∂, ϕ)
/

Mod(Σ) .

This article aims to investigate the dynamical systems that dilation moduli spaces
naturally carry through one of the first non-trivial example. We shall denote by
D := D(1, 1, 1, ∗) the moduli space of a one holed torus with one singularity.
Note that, by our definition of polygonable the singularity must lie in the unique
boundary component and that the combinatoric ∗ is trivial. Note also that it forces
the euclidean angle around the unique singularity to be π by an Euler characteristic
argument.

In Section 3 we give a simple description of D using polygonal models.

2.4. The SL2(R)-action and the Teichmüller flow. There is a natural SL2(R)-
action defined on D(g, n, ∂). Formally the action can be defined as follows. Given a
matrix A ∈ SL2(R), we define the image of the dilation structure (U,ϕU )U∈U as the
structure given by the atlas (U,A ·ϕU )U∈U , which is still a dilation structure. The
normal subgroup R∗+ · Id < GL+

2 (R) lies in the kernel of this action and therefore

we have a well-defined action of GL+
2 (R)/R∗+ ∼ SL2(R).

One can also describe this action more visually using polygonal model that we
introduced in the previous subsection: if a dilation structure is given by gluing
parallel sides of a set P of polygons together and if A is an element of SL2(R),
the image of the corresponding dilation structure under A is simply given by the
unique corresponding gluing of the sets of polygons A · P , see Figure 2.4. In other
words, the SL2(R)-action on a moduli space D(g, n, ∂) is the trace of the natural
SL2(R)-action on the space of polygons.

One can also restrict the previous action to the diagonal group, parametrised as{(
et 0
0 e−t

)}
t∈R

,

in order to get an action of R on the moduli space, i.e. a flow. This flow is called the
Teichmüller flow. This flow is an extension to dilation surfaces of the standard on
acting on the moduli space of translation surfaces. It was extensively studied since
Masur’s seminal work relating the recurrence of the orbit of a given translation
surface to the unique ergodicity of the horizontal foliation of the same surface [16].

3. The rooms

3.1. The pentagonal model. We denote by Σ1,1 a topological torus with one
boundary component and a marked point lying on the boundary component. In
the case of a dilation structure in D(1, 1, 1), meaning a dilation structure on the
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Figure 2. The pentagon on the right is the image under a di-
agonal matrix A of SL2(R) of the pentagonal on the left, up to
a some dilation. The corresponding dilation structures obtained
from these pentagonal models are also image from one another. by
elements of SL2(R).

topological surface Σ1,1, one can always have a one face polygonal model which
embeds in the plane as in Figure 4.

Lemma 3.1. A dilation structure of D(1, 1, 1) can always be obtained in gluing
two pairs of parallel sides of a pentagon in the plane. In particular, every dilation
structure may be represented by a convex polygon in the plane.

Figure 3. The three triangles are glued according to the colors
of their side. The centred one has a black side corresponding to
the boundary of Σ1,1. The top and the right triangles have a
gluing corresponding to the one of a torus without boundary if one
identifies - topologically - the blue side and the violet one. This
corresponds to collapsing the centre triangle.

Proof. Let D ∈ D a dilation structure, which is polygonable by definition D. Up to
refining a given polygonation, one can suppose that it is a triangulation. We denote
by f the number of faces and and by e the number of edges of such a triangulation.
Using the Euler characteristic of the surface one can check that we must have on
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one hand

−1 = f − e+ 1

and, since every edges belongs to exactly 2 faces except the boundary, one the other
hand

3f = 2e− 1

which gives that e = 5 and then f = 3. One it then left to triangles that, glued
together, give rise to our dilation structure D. Since we required that the boundary
component must be an edge of the triangulation, there is one and only one in our
case, triangle having one of sides corresponding to the straight line boundary of
our torus. Collapsing topologically the boundary side and the face of this triangle
should give the gluing of two triangles which must give a triangulation of the torus
without boundary. Therefore, inserting the collapsed triangle back between the two
triangle left must lead to the gluing represented in Figure 3. This gluing actually
gives rise to a pentagonal as in Figure 4, concluding. �

The following definition is the key of what will define our parametrisation of D.

Definition 3.2. We call the space of rooms, that we denote by R, the space of
all pentagonals appearing in Lemma 3.1 up to dilation by a positive number, see
figure 4.

Figure 4. This polygonable model has a unique 2-cell, a penta-
gon, a unique vertex corresponding to the vertices of the pentagon
and three edges. Topologically, the resulting surface is a torus with
one boundary component, the black edge on the Figure. The green
and red sides are glued using the two unique dilation maps (that
we represented by the two arrows) sending a side to a parallel one.

Lemma 3.1 implies that the map R → D which associates to a room its correspond-
ing dilation structure is onto and continuous, in other words the space of rooms
parametrises D. In the next subsection, we make this parametrisation more explicit
by using a simple parametrisation of the space of rooms.

3.2. An explicit parametrisation of the space of rooms. Now that we have
the pentagonal model introduced in the last subsection, we use it to get a nice
parametrisation of our moduli space. The following picture shows how to asso-
ciate to a room a basis, up to multiplicative real constant and a pair of ’dilation
coefficients’.
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e1

e2

ν−12 e2

ν−11 e1

Figure 5. Given a oriented basis (e1, e2) of R2 and two dilation
parameters not both greater than 1, one can build a room in con-
sidering the rectangle of sides (e1, e2) here in red and green and
remove a triangle so that the ratio between parallel sides are re-
spectively ν−11 and ν−12 .

The above Figure shows that one can recover a room, and therefore a dilation
structure of D, from an oriented basis taken up to dilations and a pair of dilation
parameters. We denote by B the set of all oriented basis of R2 up to dilations.
For the resulting pentagonal to be well described, one must require that not both
ν1 < 1 and ν2 < 1 holds simultaneously.

We shall actually consider the pair (µ1, µ2) = (ln(ν1), ln(ν2)) instead of (ν1, ν2)
since it will appear that it is more convenient to work with. We call them the log-
dilation parameters, and we denote by Q the subset of R2 of all pairs (µ1, µ2)
such that µ1 < 0 and µ2 < 0 do not simultaneously hold. We also denote by p
the map which to a basis and pair of log-dilation parameters in Q gives back the
naturally occurring room,

p := B ×Q → R ,

described above and in figure 5.

This map is onto and natural with respect to the SL2(R)-linear action on both B and
the space of rooms; for any basis B, and any log-dilation parameters (µ1, µ2) ∈ Q
and any A ∈ SL2(R) we have

(3.3) p(A ·B, (µ1, µ2)) = A · p(B, (µ1, µ2)) .

Since we assumed that our dilation structure were polygonable Lemma 3.1 guaran-
tees that any polygonable structure can be recovered from a room and therefore the
parametrisation p of the space of room gives rise to a well defined parametrisation
p̃ to the moduli space D:

p̃ : B ×Q → D .

We call this map the ”local dilation torus parametrisation”. Moreover, the natural-
ity of (3.3) implies that this parametrisation is equivariant with respect to both the
SL2(R)-action on rooms and on our moduli space D: given a matrix A ∈ SL2(R)
and parameters (B(µ1, µ2)) ∈ B ×Q we have

(3.4) p̃(A ·B, (µ1, µ2)) = A · p̃(B, (µ1, µ2)) .
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This parametrisation takes into account in a simple way both the SL2(R)-action
and the holonomy group of the dilation structure.

Definition 3.5. The subgroup of R+ generated by the dilation parameters is called
the linear holonomy group associated to the dilation structure D.

Since this group is the image of the underlined holonomy map it only depends on
the underlined dilation structure D.

The local dilation torus parametrisation is not one-to-one since we did not take the
mapping class group action into account. It remains to understand what pairs of
pentagonal models give rise to the same dilation structure on a one-holed torus.
The mapping class group of the torus with one boundary - homomorphic to SL2(Z)
- writes down explicitly at the level of our space of parameters.

Figure 6. Cutting off the orange upper triangle and gluing it to
the left does not change the underlying dilation structure but does
change the associated pentagonal model.

The following formulas are obtained by cut and paste operations as illustrated in
Figure 6; τ1 and τ2 correspond to Dehn twists along the two curves generating the
homology of Σ1,1. Figure 7 shows how to get the first following formula, corre-
sponding to the cut and paste movement described in Figure 6.

(3.6)


τ1(e1, e2, µ1, µ2) = ((e1 + ν1e2, ν1e2), µ1, µ1 + µ2)

τ2(e1, e2, µ1, µ2) = (ν2e1, e2 + ν2e1, µ1 + µ2, µ2)

(τ1)−1(e1, e2, µ1, µ2) = (e1 − e2, ν−11 e2, µ1, µ2 − µ1)

(τ2)−1(e1, e2, µ1, µ2) = (ν−12 e1, e2 − e1, µ1 − µ2, µ2)

As already emphasised, the action on the log-dilation parameters corresponds to
the action on the image of the holonomy representation of the dilation structure
obtained by pre-composing with a given element of the mapping class group, seen
as acting on the first homology groups. Forgetting the basis component of our
parameters this action writes down, as expected from the general theory, simply as
the linear action of SL2(Z) on Q ⊂ R2.

Note however that given a room one can not always perform the 4 movements
described above: we must make sure that both the resulting dilation parameters
remains in Q in order to be sure that the resulting data defines a dilation structure.
In order to take this into account at the level of our space of parameters, we
introduce the following equivalence relation: two points x, y ∈ B×Q are said to be



10 ADRIEN BOULANGER AND SELIM GHAZOUANI

e′2

e′1

Figure 7. Since we dilated the upper left triangle by a factor ν2 in
pasting it to the right, the vector e′1 is ν2e1. The vector e′2 is given
by adding the vector e2 to the vector e′1 = ν2e1: e′2 = e2 + µ2e1.
The new dilation parameters are easy to compute by looking at
similar triangles.

equivalent (we note x ∼ y) if there is a sequence τ ε1i1 , ..., τ
εn
in

, with εi ∈ {−1, 1} and
ij ∈ {1, 2} such that

• τ εnin ◦ ... ◦ τ
ε1
i1

(x) = y;

• for all 1 ≤ j ≤ n− 1, τ
εj
ij
◦ ... ◦ τ ε1i1 (x) belongs in B ×Q.

We will say that two rooms are ∼equivalent if there are equivalent under the re-
lation ∼.

Because of technicalities that we will encounter along the proof of the proposition
stated below, we weaken this equivalence relation by forcing the log-dilation pa-
rameters to remain in R2

+ instead of Q and exchanging the above second condition

defining the equivalence relation ∼ by requiring that the sequence τ
εj
kj
, ..., ◦τ ε1k1 (x)

has log-dilations parameters remaining in R2
+ all along the process. Since every

surface can be represented by a convex room from lemma 3.1, one will still have a
parametrisation. We shall call the sequence described above an admissible paths
of rooms. The following Proposition sums up elements of the above discussion:

Proposition 3.7. The map

P : B × R2
+ /∼ → D ,

is continuous, onto and equivariant with respect to the SL2(R)-actions already de-
fined on D and B.

The map just defined will be called the dilation torus parametrisation.

Remark 3.8. The equivalence relation just introduced might not seem very nat-
ural. One might wonder if D is actually homomorphic to

B × R2 \ {0}
/

SL2(Z) ,

where the action of SL2(Z) is defined on B×R2 \ {0} by extending its action using
the formulae given by (3.6). This would be a satisfactory algebraic description of
D as it would make of B × R2 \ {0} and SL2(Z) its fundamental group.

3.3. The SL2(R)-action. The following proposition corresponds to the first half
of our main theorem. We say that a dilation structure D is irrational if the
pair of dilation parameters given by any room representing D are not rationally
proportional.
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Proposition 3.9. The SL2(R)-orbit of any irrational dilation structure is dense
in D.

In particular, almost every dilation structure of D (both in the measurable and in
the topological sense) has a dense SL2(R)-orbit.

Proof. We shall use the dilation torus parametrisation of D given by Proposi-
tion 3.7. Since the dilation torus parametrisation is equivariant with respect to
the SL2(R)-actions and since P is continuous and onto one would get the desired
conclusion if one would be able to prove that the SL2(R)-orbit of any irrational

room R0 = (B0, µ0) is dense in the space of rooms B × R2
+ /∼ . Which could be

rephrased as to show that the image of the set of rooms ∼equivalent to R0 in the
quotient space

SL2(R)�
B × R2

+

is dense.

Since the SL2(R)-action defined on the set of rooms does not affect the log-dilations
parameters and is transitive on B, one is left to show that the image in R2

+ of the
set of rooms ∼equivalent to R0 is dense. We will slightly abuse the notation in
keeping denoting by ∼ the relation in R2

+ defined as x ∼ y if and only if there is
two rooms ∼equivalent for which x and y are the log-dilation parameters.

The key remark is that an admissible path between two ∼equivalent rooms projects
on R2

+ as a path from which two successive points are related if and only if they
are image of one another by an element of

(3.10)

(
1 1
0 1

)±1 (
1 0
1 1

)±1
.

Therefore, the question under investigation turns out to be very similar to the
more classic fact that the SL2(Z)-orbit of any point in the place with rationally
independent coordinates µ0 is dense in R2

+, expect that we are only allow to use
matrices which can be decomposed in the Cayley graph of SL2(Z) (with respect to
the generating set (3.10)) in a way that all the matrices obtained along this path
send µ0 to R2

+.

We split the proof into three steps: first we show that this set accumulates to 0R2

from which we will deduce that it also accumulates to (R+, 0) and we will conclude
by showing that it implies that it is dense in R2

+.

Note first that Gauss’ algorithm gives rise to an admissible path: given any µ0 =
(x0, y0) such that x0/y0 /∈ Q one can construct an infinite sequence µn ∈ R2

+

inductively as follows. If µi = (xi, yi) with xi > yi (the other case being treated
symmetrically) we define ki as the larger integer such that xi − kiyi > 0. We then
defined µi+1 = (xi − kiyi, yi). Note that the algorithm is well defined and that
µn −→

n→∞
0R2

since we suppose x0/y0 /∈ Q. Note also that one can rewrite µn as the

projection on the log-coordinates of the element

τ
−kj
ij
◦ ... ◦ τ−k1i1

(R0) ,

where the index ij ∈ {1, 2} is defined depending on whether xi > yi or xi < yi. To
sum up, we just showed that the set {µ ∈ R2

+ , µ ∼ µ0} accumulates to 0R2 .
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Given µ = (ε1, ε2) ( ε1 and ε2 are thought of very small, as the output of Gauss’
algorithm after a large number of steps) one can construct an admissible path from
µ to (ε1, ε2 + nε1) in applying τ1 n-consecutive times. As a consequence, the set
{µ ∈ R2

+ , µ ∼ µ0} accumulates on the line (R+, 0) since it accumulates to 0R2 .

To conclude, let us remark that any element of SL2(N) can be decomposed in
positive powers of the two following matrices (using the fact that the coefficients of
same columns and lines are relatively prime numbers and in using Gauss’ algorithm
again) (

1 1
0 1

) (
1 0
1 1

)
,

Any sequence of powers of these two matrices always gives rise to an admissible
path for starting point µ0 (of positive coordinates) since all product of such matrices
have positive entries. As a consequence the set {µ ∈ R2

+ , µ ∼ µ0} accumulates on
SL2(N) · (R+, 0), which is dense in R2

+, concluding. �

4. The directional foliations on the torus with boundary

In the present section Σ is a fixed dilation torus with boundary.

4.1. From directional foliations to maps of the interval. Recall that Σ car-
ries a family Fθ of transversally affine foliations indexed by angle θ ∈ S1. In this
paragraph we discuss how, in the case of tori with boundary, the study of these fo-
liations can be reduced to that of certain piecewise continuous maps of the interval.

We say that a direction θ ∈ S1 is pointing inwards if no trajectory in direction θ
meets the interior of the door of the room. Concretely, if the door is in the vertical
direction and if the room is lying on the right of the door, the set of direction
pointing inwards is ]− π

2 ,
π
2 [. The directions of the door we call the door direction.

Recall that, by Lemma 3.1, a (triangulable) dilation torus with boundary can be
recovered from the gluing of a pentagonal model. Choose such a model for Σ. Up
to an extra sequence of gluing and pasting triangles, this model can be assumed to
be convex, as in the Figure 8 below;
Consider the diagonals of this pentagon (there are 5 such diagonals). These project
onto closed curves in the Σ. For any θ pointing inwards we have the following
properties:

(1) at least one of these curves is transverse to θ;
(2) the first-return map of Fθ to this curve is well-defined;
(3) this first-return map is piecewise continuous with exactly one discontinuity

point;
(4) this first-return map is orientation preserving and affine restricted to its

interval of continuity.

We introduce the following definition:

Definition 4.1. Let ρA and ρB two positive number not simultaneously larger
than 1. A (ρA, ρB)-map of the interval I = [0, 1] is a map T satisfying the following
conditions:

• T has exactly one discontinuity point xT ∈]0, 1[;
• T is injective
• T is affine with slope ρA restricted to A = [0, xT [ and limx→x−T

T (x) = 1;

• T is affine with slope ρB restricted to B =]xT , 1] and limx→x+
T
T (x) = 0.
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x

x

T (x−)T (x+)

T (x)

T (x)

Figure 8. Here, T denotes the first return map on the blue-orange
segment associated to the foliation represented by dashed black
lines. The point x splits the segment in two pieces (corresponding
to the colors) on which the map T acts by dilation. On the right,
the associated affine interval exchange representation: on the bot-
tom we represented the partition of the segment with respect to
which the map is piecewise affine and on the top the image of such
a partition under the map T . Note that x is a continuity point of
T (as a map from the circle to itself) in this example but not as a
map from the segment to itself.

Such an (ρA, ρB)-map is uniquely determined by the point xT and can therefore
be parametrised canonically by an affine parameter that we can normalise to take
values in [0, 1].

Reducing the problem to (ρA, ρB)-maps. The discussion above should have
convinced the reader that to each directional foliation we can associate a map T
that is close to being a (ρA, ρB)-map, but which isn’t always one. The two last
conditions of the definitions are not always satisfied. However, one can move from
a piecewise affine and continuous map with one discontinuity to a (ρA, ρB)-map by
considering the smallest connected interval containing the image of T . It is stable,
T restricted to such an interval (an suitably rescaled) is a (ρA, ρB)-map and it sees
all the dynamics as all the points excluded are mapped by T to it after a single
iteration.

x

T (x−)

x

T (x+) = T (x)

T (x+) = T (x)

T (x−)

Figure 9. This picture is analogous to Figure 8 but with a dif-
ferent cross-section. The associated interval exchange is not a
(ρA, ρB) map but becomes one in restriction to the image, as shown
in Figure 10.
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Figure 10. We chop off the interval with respect to the black
dotted line (according to the image of T ). The resulting map, for
which the affine interval exchange representation is drawn on the
right, is a (ρA, ρB)-map.

In a sense that we are going to make precise, the study of the directional foliations
(Fθ) reduces exactly to that of (ρA, ρB)-maps. We introduce

E = EρA,ρB = {(ρA, ρB)-maps}
which naturally identifies to an interval, since for example the length of A com-
pletely determined the map, which we will consider normalised to be [0, 1]. If the
first-return map of Fθ0 on a diagonal D yields a (ρA, ρB)-map T (θ) for certain
positive numbers ρA and ρB it is also the case for a U neighbourhood of θ0 ∈ S1.
The induced map

U −→ EρA,ρB
is smooth. Therefore the analysis of the dynamical behaviour of foliations in the
family (Fθ)θ∈S1 can be reduced to that of countably many families EρA,ρB .

4.2. Rauzy induction for contracting maps. In this paragraph we introduce
a renormalisation scheme to describe the dynamics of (ρA, ρB)-maps.

We introduce a renormalisation scheme that we call Rauzy induction although it is
not strictly speaking the standard Rauzy induction used for the study of interval
exchange transformation, see Figure 11. We start with T a (ρA, ρB)-map.

(1) if xT belongs to T (A), then the algorithm returns the first return
map on A and we say that A is the winner ;

(2) if xT belongs to T (B), then the algorithm returns the first return
map on B and we say that B is the winner ;

(3) if xT does not belong to T ([0, 1]) then the algorithm stops.

A B

T (B) T (A)

xT

yT

xR(T ) = T−1(yT )

A′ B′

R(T )(B′) R(T )(A′)

B

Figure 11. Here xT belongs to T (B), so that B wins and we
consider the first return map on the interval B. The affine interval
transformation corresponding to the resulting map R(T ) is drawn
on the right part of the above picture. In this case the algorithm
stops after only one iteration since xR(T ) does not belong neither
to R(A′) nor to R(B′).
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Suppose we are in one of the first two cases. We denote by R(T ) the induced
first-return maps. We have the following properties

• if A is the winner then R(T ) is (ρA, ρAρB)-map;
• if A is the winner then R(T ) is (ρAρB , ρB)-map;
• if xT does not belong to T ([0, 1]) then T has an attracting orbit of period

2.

We explain in the following paragraphs how this algorithm allows for a complete
description of the dynamics of elements of EρA,ρB .

The case ρA, ρB < 1. Recall that EρA,ρB identifies naturally with [0, 1]. We can
look at the subset of this interval corresponding to the three possible outcomes of the
above induction. The set EρA,ρB is split into three connected intervals corresponding
to the following situations

(1) the interval on the left EρA,ρB (L) corresponding to B being the winner;
(2) the interval on the right EρA,ρB (R) corresponding to A being the winner;
(3) the interval in the middle EρA,ρB (H) corresponding to the case when the

algorithm stops.

The latter corresponds to the case where the associated (ρA, ρB)-maps have an
attracting periodic orbit of order 2. In that case the basin of attraction of this
attracting orbit is the whole interval.

In the two other cases, the algorithm defines two one-to-one maps

EρA,ρB (L) −→ EρAρB ,ρB
and

EρA,ρB (R) −→ EρA,ρAρB
and the analysis of the dynamics of elements of EρA,ρB (L) and EρA,ρB (R) reduces
to that of their images via the above identifications.

This short discussion provides in this case the inductive step for the construction of
a Cantor set. Indeed both EρA,ρB (L) and EρA,ρB (R) can be subdivided further into
three subintervals. In both case the subinterval in the middle corresponds to the
existence of an attracting periodic orbit whereas the left and right interval corre-
sponds to element for which the algorithm can be continued and these subinterval
identify with entire parameters spaces Eρ′A,ρ′B for new values (ρ′A, ρ

′
B). This way we

get

• each finite word W in the alphabet {R,L} corresponds to a subinterval of
EρA,ρB (W ) which identifies via the algorithm to an entire parameter space
EρA(W ),ρB(W ) for a certain pair (ρA(W ), ρB(W ));
• the intersection of all the possible EρA,ρB (W ) forms a Cantor set RρA,ρB ;
• elements in the complement of this Cantor set all have a unique attracting

periodic orbit whose basin of attraction is the entire interval;
• all but countably many elements of RρA,ρB are infinitely renormalisable

(meaning that they can be applied the induction algorithm infinitely many
times).

This discussion is a summary of a more detailed analysis carried out in the article
[1][Section 4 5]. Therein is proved the following theorem.

Theorem 4.2 ([1][Section 4 5). Assume ρA, ρB < 1.

(1) The subset of EρA,ρB of infinitely renormalisable maps is contained in a
certain Cantor set of Lebesgue measure 0.
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(2) The complement of this Cantor set in made of (ρA, ρB)-maps which have a
unique attracting periodic orbit.

For the proof of this Theorem we refer to the article [1]. Therein the theorem is only
proved for ρA = ρB = 1

2 but the proof generalises verbatim to the case ρA, ρB < 1.

The general case. One can try to implement the same algorithmic procedure to
analyse EρA,ρB either ρA or ρB is larger than 1. Then main difference in this case is
that out of the three possible cases for the first step of the algorithm, one need not
necessarily occur. Indeed, if ρA > 1 and ρAρB > 1, A cannot be the winner. For
if it were, the algorithm would yield a (ρA, ρAρB)-map which cannot be, as both
ρA and ρAρB would be larger than 1. We leave it to the reader to check that the
following Proposition holds true

Proposition 4.3. Assume ρA > 1. We have the following alternative.

• Either ρAρB < 1 in which case EρA,ρB (L), EρA,ρB (R) and EρA,ρB (H) are
non-empty.

• Or ρAρB > 1 in which case EρA,ρB = EρA,ρB (L).

With the Proposition at hand, we can derive a picture for the iteration of the
induction algorithm very similar to that of the case ρA, ρB < 1.

• Assume ρA > 1 and ρAρB < 1. In that case EρA,ρB is split into three
subintervals. One of which (the middle one) corresponds to periodic orbits
and for whose elements the algorithm stops. Elements of EρA,ρB (R) identify
via the algorithm to EρAρB ,ρB and we are reduced to the case ρA and ρB < 1.
Finally EρA,ρB (L) is still of the form ρA < 1.
• If ρAρB > 1 we can apply the algorithm a finite number of steps until EρA,ρB

identifies to Eρ′A,ρ′B for ρ′Aρ
′
B < 1 (each step decreases ρA by multiplying it

by ρB). We are thus reduced to the step above.

Note that up to the acceleration of the second case, the picture is exactly the same
as in the case (ρA, ρB). After n steps of induction, there are 2n subintervals left
(by that we mean that we have chucked out intervals corresponding to periodic
orbits). These correspond to n-times renormalisable elements of EρA,ρB and each of
them identifies with a set EρA(W ),ρB(W ) where W is the word in L and R to which
it corresponds. Furthermore, the only interval in this collection for which ρA(W )
is larger than one is the leftmost one, and within the others can be replicated the
picture of the case ρA, ρB < 1. From this description we deduce that the conclusions
of Theorem 4.2 still hold true in this case:

Proposition 4.4. Assume ρA > 1 and ρB < 1.

(1) The subset of EρA,ρB of infinitely renormalisable maps is contained in a
certain Cantor set of Lebesgue measure 0.

(2) The complement of this Cantor set in made of (ρA, ρB)-maps which have a
unique attracting periodic orbit.

4.3. Estimates on the size of the hole. In order to prove convergence or diver-
gence of orbits of the geodesic flow, we will some quantitative estimates on the size
of intervals of parameters corresponding to periodic orbits of a given combinatorics.

Lemma 4.5. We have

• |EρA,ρB (R)| = ρA
1+ρA

;

• |EρA,ρB (L)| = ρB
1+ρB

;

• EρA,ρB (H) is non-empty if and only if ρAρb < 1 in which case |EρA,ρB (H)| =
1−ρAρB

(1+ρA)(1+ρB) .
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The important information that this Lemma tells us, beyond the formulae is the
following

• if ρA and ρB are simultaneously very small, then the ”hole” is very big (its
size in [0, 1] is about 1− ρAρB);
• if ρA and ρB are both very close to 1, then the hole is very small (again, its

size is proportional to 1− ρAρB), its position is close to 1
2 and is therefore

negligible before both EρA,ρB (L) and EρA,ρB (R).

4.4. Door directions and Herman’s family. The analysis of door directions is
reduced by means of first return maps to the special family of piecewise affine circle
diffeomorphisms with two discontinuities of the derivative and such that one of these
two discontinuity is mapped to the other. Such a map is completely determined by
the data ρA, ρB) and corresponds to an extremal point of EρA,ρB .
This family has appeared in [13, p79, Section 7.3]. In [14], the authors prove that
the map which associate to (ρA, ρB) the rotation number of the associated circle
homeomorphism is analytic. This implies that for almost every surface in D, the
flow in the door direction is minimal (because the associated first return map has
irrational rotation number). Moreover, it is explained in [?] that in this family
every element is conjugate to the rotation of same rotation number via a piecewise
analytic map. This strongly suggests that orbit of the Teichmüller flow of an
element of D in the door direction should accumulate a moduli space of translation
tori (which lies in the boundary of D and which corresponds to collapsing the
boundary component).

5. The Teichmüller flow

The goal of this Section is to establish the following Theorem

Theorem 5.1. For any T in D we have that gt(T ) diverges.

5.1. Two divergence criteria. In this paragraph we give two criteria to establish
divergence of a sequence in D.

Proposition 5.2. Let (Tn) be a subsequence of D such that

Θ(Tn) −→ 0 or π

as n goes to infinity. Then Tn diverges.

Proof : This is a simple consequence of the fact that the function Θ is continuous on D
an takes its values in ]0, π[.

Proposition 5.3. Let (Tn) be a subsequence of D such that each Tn contains a
cylinder Cn such that there exists ε > 0 such that the following holds:

(1) for all n ∈ N, Θ(Cn) > ε;
(2) ρ(Cn) −→ +∞ as n goes to infinity.

Then (Tn) diverges.

Proof : Recall that a given dilation surface has only finitely many cylinders of angle
greater than a fixed positive constant ε. If a sequence satisfying the hypothesis of the
Proposition had a convergent subsequence, (up to extracting a subsequence) the cylinder
Cn should converge to a cylinder in the limit surface of angle larger than ε (since there are
only finitely such cylinders). Which would imply convergence of ρ(Cn) to the multiplier
of the cylinder in the limit surface, hence contradicting the fact that ρ(Cn) −→ +∞.
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5.2. Action of gt on S1. The Teichmüller flow gt acts of the set of directional
foliations of a given dilation tori in a natural way. Indeed, there is a natural action
of SL2(R) on S1 (which is the projective action on the set of semi-lines of R2 which
identifies with S1), and if Fθ(T ) denotes the foliation in direction θ on T we have
that for any A ∈ SL2(R),

Fθ(T ) ' Fg·θ(A · T ).

In particular we have the following property: if T has a cylinder covering the interval
of directions [θ1, θ2], then A · T has a cylinder of same multiplier covering the set
of directions [A · θ1, A · θ2].

We now restrict our attention to the action of gt =

(
e−

t
2 0

0 e
t
2

)
)t∈R. The projective

action of this one-parameter family preserves the interval of directions [−π2 ,
π
2 ]. For

t > 0, 0 is a repelling fixed point of gt and π
2 . We give a distortion Lemma which

we will use later on.

Lemma 5.4. There exists a constant C > 1 such that for any t > 0 the follow-
ing holds. Denote by I the preimage of [−π4 ,

π
4 ] by gt thought of as a Moebius

diffeomorphism of [−π2 ,
π
2 ]. Then for any x and y in I we have

C−1 ≤ D(gt)(x)

D(gt)(y)
≤ C.

In other words, for any t the distortion of gt on g−1t ([−π4 ,
π
4 ]) is uniformly bounded.

Proof : Up to a fixed change of coordinates, the family gt is smoothly conjugate away
from π

2
and −π

2
to the family x 7→ λx which has uniformly bounded distortion.

5.3. Divergence under the geodesic flow. We now turn to proving the main
theorem of this Section.

Theorem 5.5. Let T ∈ D. The orbit of T under the action of the Teichmuller
flow gt eventually leaves all compact sets of D.

We distinguish three cases for the proof:

(1) directions for which trajectories are ultimately trapped within a dilation
cylinder and accumulate on a periodic orbit (cylinder directions);

(2) directions which accumulate on a transversally Cantor set (Cantor direc-
tions);

(3) directions parallel to the door (Door directions).

We have proven in Section 4 that these three cases exhaust the dynamical possibil-
ities.

Cylinder directions. We consider T such that all orbits of the directional foliation
in the horizontal direction accumulate onto an attracting periodic orbit, which is to
say that the associated first return (rhoA, rhoB)-map has a stopping-in-finite-time
renormalisation scheme.
This periodic orbit is contained in a cylinder C0 which comprises the horizontal
direction. The image of a cylinder containing the horizontal direction in its inte-
rior under the action of the geodesic flow is a sequence of cylinders whose angles
converge to π. Using Proposition 5.2 we see that gt(T ) diverges.
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gtθ

gt(θ)

Figure 12. On the left, a fundamental domain for the actior of
z 7→ 2z of the angular sector of angle θ. On the left, its image
under the linear matrix gt, which is again a fundamental domain
for z 7→ 2z but on the angular sector gt(θ), where we abused the
notation in also denoting by gt the projective action.

Cantor directions. Cantor directions are slightly more complicated to analyse.
Consider T such that its horizontal foliation as an invariant Cantor set. We can
choose a small neighbourhood of 0 ∈ S1 for which the corresponding foliations can
be identified by means of a first return map to an interval of a family EρA,ρB as we
have done in Section 4, with both ρA and ρB strictly smaller than 1.

Now, consider the action of the geodesic flow gt. It induces an action on the set of
directions which has the following properties: 0 ∈ S1 (the horizontal direction) is
a repelling fixed point of gt for t > 0 and the derivative at 0 is exp(t). Thus, if one
wants to understand the behaviour of the sequence gt · T , one has to understand
the dynamics of the foliations of angle very close to 0. This is achieved using
the induction introduced in Section 4. We now work with a small interval I of
parameters in EρA,ρB which identifies to a neighbourhood of the horizontal direction
in S1. Let e0 the point in EρA,ρB corresponding to T . The Rauzy induction provides
us with a sequence of nested intervals (In)n∈N with the following properties

(1) In+1 is defined inductively by choosing the left or right interval defined
by Rauzy induction to which e0 is the parameter corresponding to the
horizontal foliation on T belongs.

(2) For all n, In ⊂ EρA,ρB ;
(3) In+1 ⊂ In;
(4) In is an interval corresponding to a step in the Rauzy induction;
(5)

⋂
n In = e0.

Lemma 4.5 shows that because the multipliers associated to the families of intervals
EρA,ρB exhausted by the induction tend to 0, the proportional size of the hole
contained within In tends to 1 as n goes to infinity.

Consider the interval g−1t ([−π4 ,
π
4 ]) = [−α(t), α(t)] with α(t) → 0 when t → +∞.

On this interval, gt acts with bounded distortion. For any t there exists n(t) that
In(t)+1 ⊂ [−α(t), α(t)] ⊂ In(t).

Thus for t large enough, [−α(t), α(t)] contains a cylinder of angle θ(t) such that the
ratio

θ(t)

|[−α(t), α(t)]|
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is uniformly bounded from below (this cylinder is either the one whose correspond-
ing angular sector is contained within In(t) \ In(t)+1 or within In(t)+1 \ In(t)+2.
Lemma 5.4 ensures that the ratio

θ̃(t)
π
2

where θ̃(t) is the angle of the image of thus cylinder in the surface gt(T ) is also
uniformly bounded. We have therefore established that any time t > 0 there is a
cylinder in T whose angular sector is contained in a neighbourhood of zero which is
zoomed out by gt to a cylinder of angle uniformly bounded below. But when t tends
to infinity, the multiplier of such a cylinder tends to infinity (this is a consequence
of the discussion about the Rauzy induction on EρA,ρB for ρA and ρB < 1). Lemma
5.3 therefore implies that the sequence gt(T ) diverges.

Door direction. Recall that the ”door direction” is the direction of the boundary
component of T . We assume in this paragraph that it is the horizontal direction.
We identify a neighbourhood on the right of 0 ∈ S1 to a neighbourhood of the
leftmost point in EρA,ρB ' [0, 1] for a ρA > 1 and ρB < 1. The discussion on Rauzy
induction yields the following fact

Proposition 5.6. Let leftmost point in EρA,ρB (corresponding to the door direction)
is accumulated by a sequence of nested intervals (Jn)n∈N such that each Jn identifies
with a EρnA,ρnB with (ρnA, ρ

n
B)→ (1, 1) when n→ +∞.

Applying Lemma 4.5 to pairs (ρA, ρB) close to (1, 1) we can deduce the following:

Proposition 5.7. For any ε > 0, there exists a neighbourhood Uε of 0 ∈ S1 such
that for any cylinder whose angular sector is [θ1, θ2] ⊂ Uε we have

|[θ1, θ2]|
[0, θ2]|

≤ ε.

Applying Lemma 5.4, we obtain that Θ(gt(T )) −→ 0 when t tends to +∞. By
Proposition 5.2 we get that the sequence gt(T ) diverges. This concludes the proof
of Theorem

6. Comments and open problems

We conclude this article with a few discussions on related problems and open prob-
lems.

The SL2(R)-action. Understanding the dynamical properties of the action of SL2(R)
is key to the understanding of fine geometric properties of dilation surfaces. For in-
stance, it is expected that closed, connected and SL2(R)-invariant sets corresponds
to dilation surfaces sharing special geometric properties.

We know of two sources of remarkable SL2(R)-invariant sets:

(1) triangulability and its variations, which gives rise to natural open SL2(R)-
invariant sets;

(2) linear holonomy with value in a discrete subgroup of (R+,×) which defines
closed invariant sets.

We also know of non-trivial ”Veech surfaces” (see [1]) and it seems reasonable to
suspect the existence of other type of SL2(R)-orbit closures. A first vague open
problem is
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Problem 1. Classify SL2(R)-orbit closures for the SL2(R)-action on the moduli
space of dilation surfaces.

A more particular problem that we think to be of interest is that of the existence
of a dense orbit. Of course, the SL2(R)-action preserves triangulability and the
singularity type. Bearing this in mind, we formulate the following conjecture:

Conjecture 1. Let T be the open subset of a stratum of dilation surfaces of genus
at least 2, consisting of triangulable dilation surface. Then there exists a Σ ∈ T
such that

SL2(R) · Σ = T .
It might be that in some cases, this conjecture has to be slighted modified to
take into account the existence of invariant open sets based on refinement of the
trinagulability property as [19] indicates.

Degenerations. Another direction of research we think is interesting is that of
degenerations of dilation surfaces. We know of three different ways for a sequence
of dilation surfaces to degenerate. Consider a sequence of dilation surfaces (Σn)n∈N.

(1) There is a ”door” which is collapsed;
(2) Each Σn contains a cylinder Cn of angle θn ≥ ε and multiplier ρn →∞;
(3) Each Σn contains a cylinder Cn of modulus (see [12]) which tends to ∞.

We pose the following problem:

Problem 2. Are there other ways to degenerate that the three listed above?

Genus 2 surfaces. It is possible to glue two dilation tori with boundary as con-
sidered in this article to form a genus 2 surface with one singularity of cone angle
6π. The space R of all such surfaces actually forms a connected components on the
stratum of dilation surfaces of genus with one singular point. Such surfaces appear
in [7, 2]. R is actually isomorphic to the product of two copies of the moduli space
of the one-holed tori. Two easy corollary of the results of the present article are
the following:

(1) all orbits of Teichmüller flow in R are divergent;
(2) a complete description of the dynamics of the directional foliations on those

surfaces.

An interesting question an answer to which would further our understanding of
dilation surfaces is that of describing the SL2(R)-action on R. In this case, it can
be reduced to studying the diagonal action of triangular matrices on a product of
two moduli spaces of one-holed tori for which the boundary direction is horizontal.
The existence of a dense SL2(R)-orbit on R is equivalent to proving the topological
mixing of the SL2(R)-action on D. It would be a good test of Conjecture 1.

Invariant measure. We end this series of comments by mentioning a structural
question that is of importance to the authors. In [11], the second author draws an
analogy between moduli spaces of dilation surfaces and infinite volume hyperbolic
manifolds. This analogy is supported by the existence in some low-dimensional
cases of a SL2(R)-invariant measure, of infinite volume, which is equivalent to the
Lebesgue measure. The existence (or non-existence) of such a measure is still un-
known. We believe the existence of such a measure to be of capital importance
as it would make the aforementioned analogy robust enough to prove interesting
theorems about the dynamics of the Teichmüller flow, and would give an ergodic-
theoretic framework for the study of the SL2(R)-action.
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