
Hermitian symmetric spaces of infinite

dimension and maximal representations

Bruno Duchesne

Institut Élie Cartan



Symmetric spaces of non-compact type

Definition

A symmetric space is a manifold M such that for any x ∈ M, there

exists an isometry, σx , fixing x with Txσx = − Id.

y
x

σx(y)

σx

Exemples : Euclidean space En, spheres Sn, hyperbolic spaces Hn.

A symmetric space X is of non-compact type if it has

non-positive sectionnal curvature and no Euclidean factor.
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A dictionnary

X symmetric space of non-compact type

• G = Isom(X )◦ is a connected semi-simple Lie group

without compact factor and trivial center.

• K = StabG (x) is a maximal compact subgroup.

• X ' G/K .
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A dictionnary

Classical examples :

• SLn(R)/ SOn(R) ←→ ellipsöıds centered at 0 and unit

volume.

• Hn = O(1, n)/O(1)× O(n) ←→ upper half of the

hyperbolöıd.
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Infinite dimension ?

Let H a Hilbert space with basis (ei )i∈N. (x , y) = x0y0 −
∑

i>0 xiyi

H∞ = {x ∈ H, (x , x) = 1, et x0 > 0}

e0

O

H−
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Infinite dimension

Let L2(H) be the set of Hilbert-Schmidt operators of H, those

operators M with ∑
i ,j

〈ei ,Mej〉2 <∞.

GL2(H) =
{

A ∈ GL(H), A− I ∈ L2(H)
}

Then GL2(H)/O2(H) is a Riemannian symmetric space of

non-positive curvature
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Infinite dimension

Let us consider the quadratic form

Q(x) =

p∑
i=1

x2
i −

∑
j>p

x2
j .

Then XR(p,∞) = {P ⊂ H, dim(P) = p, Q|P > 0} is a

Riemannian symmetric space of non-positive curvature.

One has the identification

XR(p,∞) = O(p,∞)/O(p)× O(∞).
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Infinite dimension

Let us consider the following Hermitian form

Q(x) =

p∑
i=1

|xi |2 −
∑
j>p

|xi |2.

Then XC(p,∞) = {P ⊂ H, dim(P) = p, Q|P > 0} is a Hermitian

symmetric space of non-positive curvature. One has the

identification

XC(p,∞) = U(p,∞)/U(p)× U(∞).
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Representations of SL2(R)

Let H = L2(S1). For g ∈ SL2(R) and f ∈ H, one define

πs(g)(f ) = Jac(g)1/2+s f ◦ g−1.

For p ∈ N and s ∈ (p − 1/2, p + 1/2), πs preserves a quadratic

form of signature (p,∞). One obtains an action of SL2(R) on

XR(p,∞).
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Action the Cremona group

Let C be the group of birational transformations P2(C).

There exists a rich action of C on H∞ by isometries. Thanks to this

action, one can show that C satisfies the Tits alternative (Cantat

2012) and has many normal subgroups (Cantat-Lamy 2013).
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Classification of symmetric spaces of infinite dimension

What are all symmetric spaces of infinite dimension ? Can one

classify them ?

Does the strategy of Élie Cartan still work in infinite dimension ?

�

There is no classification of Banach algebras.
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Classification of infinite dimensional symmetric spaces

Theorem (D. 2015)

Let (M, g) be a symmetric space with non-positive curvature

operator M, then it is isometric to the Hilbertian product

M '
∏
i

2
Mi

Where each Mi is irreducible of finite dimension or isometric to one

of the following :

GL2
∞(R)/O2

∞(∞), U∗ 2(∞)/Sp2(∞), U2(p,∞)/U2(p)×U2(∞),

O2(p,∞)/O2(p)× O2(∞),

O∗ 2(∞)/U2(∞), Sp2
∞(R)/U2(∞), Sp2(p,∞)/Sp2(p)×Sp2(∞),

GL2
∞(C)/U2(∞), O2

∞(C)/O2(∞), Sp2
∞(C)/Sp2(∞). 11



Classification of infinite dimensional symmetric spaces

The rank is the maximal dimension of a flat subspace.

Corollary

Let (M, g) be a symmetric space with non-positive curvature

operator, irreducible with rank p <∞ and infinite dimension then

M is isometric to

O(p,∞)/O(p)× O(∞), U(p,∞)/U(p)× U(∞),

Sp(p,∞)/Sp(p)× Sp(∞).
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A citation of Gromov

“This spaces look to me as cute and sexy as their finite

dimensional siblings but they have been for years

shamefully neglected by geometers and algebraists a like.”

– Gromov, Asymptotic invariants of infinite groups.
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Margulis superrigidity

Lett G be a Lie group, a lattice of G is a discrete subgroup Γ of

finite covolume.

Theorem (Margulis 1974)

Let G ,H be two semi-simple Lie groups with finite center and no

compact factors. Let Γ < G be an irreducible lattice and

ρ : Γ→ H, a representation with Zariski dense image.

If RankR(G ) ≥ 2 then there exists a representation ρ : G → H such

that ρ is the restriction of ρ to H.
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Superrigidity in infinite dimension

Theorem (D. 2015)

Let G be a semi-simple Lie group with finite center and no

compact factor with RankR(G ) ≥ 2. Let Γ be an irreducible lattice

of G without torsion. Let Y be a simply connected Riemannian

manifold with non-positive curvature and finite rank.

If Γ acts by isometries on Y without fixed points in ∂Y then Γ

stabilizes a totally geodesic subspace of Y isometric to a product

of factors of XG .

Ideas : Existence of a Γ-equivariant harmonic map XG → Y then a

Bochner type inequality due to Mok-Siu-Yeung.
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In rank 1

Let g ∈ Isom(X ), the translation length

`X (g) = inf
x∈X

d(gx , x).

Theorem (Monod-Py )

For each t ∈ (0, 1] there is, up to conjugacy, exactly one irreducible

continuous representation ρt : Isom(Hn)→ Isom(H∞) such that

`H∞(ρt(g)) = t`Hn(g).

Moreover, there is an equivariant harmonic map Hn → H∞ that is

totally geodesic if and only if t = 1. The group Isom(Hn) acts

cocompactly on the convex hull of the image if this map.
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Hermitian symmetric space

A symmetric space (M, g) is Hermitian is there is a complex

structure J that is invariant under the connected component of the

isometry group.

The Kähler form is ω(X ,Y ) = g(X , JY ).

Examples : XC(p,∞) and XR(2,∞) (associated to PU(p,∞) and

PO+(2,∞)) are Hermitian.
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Bounded cohomology

The bounded cohomology Hn
b(G ,R) of a group G is the

cohomology of the complex Cn
b(G ,R)G ={

f : Gn+1 → R|f is G -invariant, sup
(g0,...,gn)∈Gn+1

|f (g0, . . . , gn)| <∞

}

whose coboundary operator is defined by the formula

df (g0, . . . , gn+1) =
n+1∑
i=0

(−1)i f (g0, . . . , ĝi , . . . , gn+1).

If G is a locally compact group, one defines the continuous

bounded cohomology H2
cb(G ,R).
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Continuous bounded of simple Lie groups

Let G be a simple Lie group of non-compact type and finite

center.Then H2
cb(G ,R) 6= 0 if and only G is Hermitian and in that

case

H2
cb(G ,R) = RκcbG

Where κcbG is the bounded Kähler class.
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The bounded Kähler class

The bounded Kähler class of an Hermitian simple Lie group G is

the class κbG ∈ H2
b(G ,R) defined by the cocycle

C x
ω(g0, g1, g2) =

1

π

∫
∆(g0x ,g1x ,g2x)

ω

where x is any base point in the corresponding symmetric space

XG .
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Continuous bounded cohomology and lattices

Let Γ be a lattice in SU(1, n).

The restriction map i∗ : H2
cb(SU(1, n),R)→ H2

b(Γ,R)

The transfer map T ∗b : H2
b(Γ,R)→ H2

cb(SU(1, n),R)
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The bounded Kähler class

The bounded Kähler class of the groups G = PU(p,∞) and

G = PO+(2,∞) is the class κbG ∈ H2
b(G ,R) defined by the cocycle

C x
ω(g0, g1, g2) =

1

π

∫
∆(g0x ,g1x ,g2x)

ω

where x is any base point in the corresponding symmetric space X .

‖κbG‖∞ = rank(X )
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Toledo invariant and maximal representations

Let G be a lattice in SU(1, n) and let κcbn be the bounded Kähler

class of SU(1, n).

Definition

Let G ∈ {PO(2,∞),PU(p,∞)} and let ρ : Γ→ G be an

homomorphism. The Toledo invariant of the representation ρ is the

number iρ such that

T ∗b ρ
∗κbG = iρκ

cb
n

Milnor-Wood inequality : |iρ| ≤ rank(X ). The representation is

maximal when there is equality.
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A bit of history

Let Γ < SU(1, n) and ρ : Γ→ G be a maximal representation

where G is Hermitian.

• [Goldman 1988]Γ is cocompact, n = 1, G = SU(1, 1). Then

maximal representations are Fuchsian.

• [Toledo 1989]Γ is cocompact, n = 1, G = SU(1, n). Then

there is an invariant complex geodesic line.

• [Burger-Iozzi-Wienhard 2003] n = 1. Then the Zariski closure

is of tube type (e.g. SU(k, k)).

• [Pozzetti 2015] G = SU(k, l). Then the image is not

Zariski-dense for k 6= l .

• [Koziarz-Maubon 2017] Γ is cocompact. Necessarily

G = SU(k, l) with l ≥ kn and the representation is rigid.
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One example

A maximal representation is obtained this way :

Γ→ SU(1, n)→ SU(p, pn)

where SU(1, n)→ SU(p, pn) is the diagonal inclusion.
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Rigidity for maximal representations

Theorem (D.-Lécureux-Pozzetti)

Let Γ be a lattice of SU(1, n) with n ≥ 1 and ρ : Γ→ PU(p,∞) be

a maximal representation. If p ≤ 2 then there exists a finite

dimensional totally geodesic subspace Y ⊂ XC(p,∞) that is

Γ-invariant.

More generally, there is no Zariski-dense maximal representation

Γ→ PU(p,∞).
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Steps of the proof

Steps :

1. Existence of a boundary map ∂XC(1, n)→ ∂XC(p,∞).

2. This boundary map sends chains to chains.

3. Geometry of chains.

Difficulties :

1. The space is no more locally compact.

2. There is no Zariski topology.
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Geometrically dense maximal representations

Let Σ be a torus with one puncture and ΓΣ.

Theorem (BLP)

There are geometrically dense maximal representations

ρ : ΓΣ → POR(2,∞).
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Boundaries at infinity

Let X a symmetric space of non-positive curvature. The boundary

at infinity ∂X is the set of classes of geodesic rays that are at

bounded distance.

For Hn
C = XC(1, n), ∂Hn

C ' {isotropic lines}.

For XC(p,∞), ∂XC(p,∞) has a structure of spherical building.

Each cell corresponds to a flag of isotropic subspaces.

Let Ip = {maximal isotropic subspaces}.
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Existence of boundary map

Theorem (BLP)

Let Γ < SU(1, n) be a countable subgroup, B = ∂Hn
C and p ∈ N.

If Γ acts geometrically densely on XK(p,∞) with p ≤ 2, then there

is a measurable Γ-equivariant map φ : B → Ip. Moreover, for

almost all pair (b, b′) ∈ B2, φ(b) and φ(b′) are transverse.

If Γ→ POK(p,∞) is a representation with a Zariski-dense image,

then there is a measurable Γ-equivariant map φ : B → Ip.

Moreover, for almost all pair (b, b′) ∈ B2, φ(b) and φ(b′) are

transverse.
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Chains at infinity

A chain in ∂Hn
C is the boundary of a complex geodesic.

A chain in Ip corresponds to the boundary of a totally geodesic

copy of XC(p, p).

31



Cartan and Bergmann invariants

The Cartan invariant is a map c : (∂Hn
C)3 → [−1, 1] such that

|c(ξ1, ξ2, ξ3)| is maximal iff ξ1, ξ2, ξ3 lie in a common complex

geodesic.

The Bergmann invariant is a map β : I3
p → [−p, p] such that

|β(ξ1, ξ2, ξ3)| is maximal iff ξ1, ξ2, ξ3 lie in a common copy of

∂XC(p, p).

Lemma

For every V ∈ Ip, the cocycle CV
β defined by

CV
β (g0, g1, g2) = βC(g0V , g1V , g2V )

represents the bounded Kähler class.
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Chains to chains

Theorem

Let Γ < SU(1, n) be a lattice. Assume that a representation

ρ : Γ→ PU(p,∞) is maximal and admits an equivariant boundary

map φ : ∂XC(1, n)→ Ip(p,∞). Then the boundary map φ almost

surely maps chains to chains.

33



Geometry of chains

Theorem

Let n ≥ 2 and let Γ < SU(1, n) be a complex hyperbolic lattice,

and let ρ : Γ→ POC(p,∞) be a maximal representation. If there is

a ρ-equivariant measurable map φ : ∂Hn
C → Ip then there is a

finite dimensional totally geodesic Hermitian symmetric subspace

Y ⊂ X (p,∞) that is invariant by Γ. Furthermore, the

representation Γ→ Isom(Y) is maximal.

Idea : One can reconstruct ∂Hn
C with finitely many chains. So, the

same is true for the essential image of φ.
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