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Symmetric spaces of non-compact type

Definition
A symmetric space is a manifold M such that for any x € M, there

exists an isometry, oy, fixing x with Tyox = — Id.
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Exemples : Euclidean space E", spheres S”, hyperbolic spaces H".

A symmetric space X is of non-compact type if it has
non-positive sectionnal curvature and no Euclidean factor.



’ X symmetric space of non-compact type ‘

I

e G = Isom(X)° is a connected semi-simple Lie group

without compact factor and trivial center.

e K = Stabg(x) is a maximal compact subgroup.

e X ~G/K.




Classical examples :

e SL,(R)/SO,(R) «+— ellipsoids centered at 0 and unit
volume.

e H” =0(1,n)/O(1) x O(n) <— upper half of the
hyperboloid.



Infinite dimension ?

Let H a Hilbert space with basis (e;)ien- (X,¥) = Xoy0 — >_jso XiVi
H>® ={x e H, (x,x) =1, et xo > 0}




Infinite dimension

Let L?(#) be the set of Hilbert-Schmidt operators of H, those
operators M with

Z(e;, I\/Iej)2 < 0.

GL*(H) = {A€GL(H), A—1 € L*(H)}

Then GL?(#)/ O%(H) is a Riemannian symmetric space of
non-positive curvature



Infinite dimension

Let us consider the quadratic form
P
2 2
QW)=Y - Y5
i=1 Jj>p

Then Ar(p,00) = {P C H,dim(P) =p, Q|p >0} isa
Riemannian symmetric space of non-positive curvature.

One has the identification

Ar(p; 00) = O(p,00)/ O(p) x O(c0).



Infinite dimension

Let us consider the following Hermitian form

p

QL) =Y Ixil* = Ixil*.

i=1 ji>p

Then Xc(p,00) = {P C H,dim(P) = p, Q|p > 0} is a Hermitian
symmetric space of non-positive curvature. One has the
identification

Xe(p,00) = U(p,0)/ U(p) x U(oc0).



Representations of SL,(R)

Let H = L2(SY). For g € SL»(R) and f € H, one define

ms(g)(f) = Jac(g)/***fog™!,

ForpeNandse (p—1/2,p+1/2), ws preserves a quadratic
form of signature (p, c0). One obtains an action of SLy(R) on

?('R(p7 OO)



Action the Cremona group

Let C be the group of birational transformations P?(C).

There exists a rich action of C on H* by isometries. Thanks to this
action, one can show that C satisfies the Tits alternative (Cantat
2012) and has many normal subgroups (Cantat-Lamy 2013).



Classification of symmetric spaces of infinite dimension

What are all symmetric spaces of infinite dimension ? Can one
classify them?

Does the strategy of Elie Cartan still work in infinite dimension ?

@There is no classification of Banach algebras.
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Classification of infinite dimensional symmetric spaces

Theorem (D. 2015)

Let (M, g) be a symmetric space with non-positive curvature
operator M, then it is isometric to the Hilbertian product

M ~ H2M,'

Where each M; is irreducible of finite dimension or isometric to one
of the following :

GL2,(R)/ 0% (0), U*?(c0)/Sp?*(0), U?(p,0)/U?(p)x U?(0),
0?(p, )/ 0%(p) x 0?(c0),

0% 2(00)/U?(00),  Sp3.(R)/U?(c0),  Sp*(p,00)/Sp*(p)x Sp*(0),
GL%(C)/U*(20),  03,(C)/0?(o0),  Sp.(C)/Sp*(0). 11



Classification of infinite dimensional symmetric spaces

The rank is the maximal dimension of a flat subspace.

Corollary

Let (M, g) be a symmetric space with non-positive curvature

operator, irreducible with rank p < oo and infinite dimension then
M is isometric to

O(p,0)/0(p) x O(0), U(p,o0)/U(p) x U(c0),
Sp(p, o)/ Sp(p) x Sp(oc).
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A citation of Gromov

“This spaces look to me as cute and sexy as their finite
dimensional siblings but they have been for years
shamefully neglected by geometers and algebraists a like.”

— Gromov, Asymptotic invariants of infinite groups.
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Margulis superrigidity

Lett G be a Lie group, a lattice of G is a discrete subgroup I of
finite covolume.

Theorem (Margulis 1974)

Let G, H be two semi-simple Lie groups with finite center and no
compact factors. Let [ < G be an irreducible lattice and

p: I — H, a representation with Zariski dense image.

If Rankgr(G) > 2 then there exists a representation p: G — H such
that p is the restriction of p to H.
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Superrigidity in infinite dimension

Theorem (D. 2015)

Let G be a semi-simple Lie group with finite center and no
compact factor with Rankg(G) > 2. Let I' be an irreducible lattice
of G without torsion. Let Y be a simply connected Riemannian
manifold with non-positive curvature and finite rank.

If T acts by isometries on ) without fixed points in ) then '
stabilizes a totally geodesic subspace of ) isometric to a product
of factors of Xg.

Ideas : Existence of a [-equivariant harmonic map X — ) then a
Bochner type inequality due to Mok-Siu-Yeung.
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Let g € Isom(X), the translation length

lx(g) = inf d(gx,x).

Theorem (Monod-Py )

For each t € (0, 1] there is, up to conjugacy, exactly one irreducible
continuous representation py: Isom(H") — Isom(H>) such that
lu=(pe(g)) = than(g).

Moreover, there is an equivariant harmonic map H" — H®® that is
totally geodesic if and only if t = 1. The group Isom(H") acts
cocompactly on the convex hull of the image if this map.
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Hermitian symmetric space

A symmetric space (M, g) is Hermitian is there is a complex
structure J that is invariant under the connected component of the
isometry group.

The Kahler form is w(X, Y) = g(X, JY).

Examples : Xc(p, 00) and Ar(2, 00) (associated to PU(p, o) and
PO™(2,00)) are Hermitian.
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Bounded cohomology

The bounded cohomology H(G, R) of a group G is the
cohomology of the complex C}(G, R)C =

f: G™! — R|f is G-invariant, sup |f(go,---,&n)| < o0
(g0,--,gn)EG

whose coboundary operator is defined by the formula

n+1

df (8o, -+ 8nt1) = D (~1)F(g0,- - &ir- - 8nt1)-
i=0

If G is a locally compact group, one defines the continuous
bounded cohomology H2,(G,R).
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Continuous bounded of simple Lie groups

Let G be a simple Lie group of non-compact type and finite
center. Then H2,(G,R) # 0 if and only G is Hermitian and in that

case

HZ,(G,R) = R&Z

Where m%b is the bounded Kahler class.
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The bounded Kahler class

The bounded Kahler class of an Hermitian simple Lie group G is
the class k2 € H2(G,R) defined by the cocycle

1
c B
(80, &1, 82) ™ /A(g0X7g1X7g2X) i

where x is any base point in the corresponding symmetric space
Xg.
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Continuous bounded cohomology and lattices

Let ' be a lattice in SU(1, n).
The restriction map i* : H2,(SU(1, n), R) — H3(T', R)

The transfer map T} : H3(T', R) — H2,(SU(1, n),R)
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The bounded Kahler class

The bounded Kahler class of the groups G = PU(p, o) and
G = PO™(2,00) is the class k2 € H2(G,R) defined by the cocycle

1
CX = —
(80, 81, 82) 7T /A(gox,glxa 2X) )

where x is any base point in the corresponding symmetric space X.

I5&lloc = rank(X)
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Toledo invariant and maximal representations

Let G be a lattice in SU(1, n) and let k$° be the bounded Kihler
class of SU(1, n).

Definition
Let G € {PO(2,0),PU(p,00)} and let p: T — G be an
homomorphism. The Toledo invariant of the representation p is the

number i, such that

cb

* % b __
prKIG—/pKJn

Milnor-Wood inequality : |i,| < rank(X). The representation is
maximal when there is equality.
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A bit of history

Let I < SU(1,n) and p: I — G be a maximal representation
where G is Hermitian.

e [Goldman 1988]l" is cocompact, n =1, G = SU(1,1). Then
maximal representations are Fuchsian.

[Toledo 1989 is cocompact, n =1, G = SU(1, n). Then
there is an invariant complex geodesic line.
[Burger-lozzi-Wienhard 2003] n = 1. Then the Zariski closure
is of tube type (e.g. SU(k, k)).

[Pozzetti 2015] G = SU(k, /). Then the image is not
Zariski-dense for k # I.

[Koziarz-Maubon 2017] I is cocompact. Necessarily
G = SU(k, ) with | > kn and the representation is rigid.
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One example

A maximal representation is obtained this way :

I — SU(1, n) — SU(p, pn)

where SU(1, n) — SU(p, pn) is the diagonal inclusion.
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Rigidity for maximal representations

Theorem (D.-Lécureux-Pozzetti)

Let T be a lattice of SU(1,n) with n > 1 and p: I — PU(p, o) be
a maximal representation. If p < 2 then there exists a finite
dimensional totally geodesic subspace Y C Xc(p, o0) that is
["-invariant.

More generally, there is no Zariski-dense maximal representation
I — PU(p, c0).

26



Steps of the proof

Steps :

1. Existence of a boundary map 0X¢(1, n) — 9Xc(p, c0).
2. This boundary map sends chains to chains.

3. Geometry of chains.
Difficulties :

1. The space is no more locally compact.

2. There is no Zariski topology.
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Geometrically dense maximal representations

Let > be a torus with one puncture and l's.
Theorem (BLP)

There are geometrically dense maximal representations
p: Ty — POR(2,00).
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Boundaries at infinity

Let X' a symmetric space of non-positive curvature. The boundary
at infinity OX is the set of classes of geodesic rays that are at
bounded distance.

For HE = Xc(1, n), OHE ~ {isotropic lines}.

For Xc(p, ), 0Xc(p,o0) has a structure of spherical building.
Each cell corresponds to a flag of isotropic subspaces.

Let Z, = {maximal isotropic subspaces}.
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Existence of boundary map

Theorem (BLP)

Let I < SU(1,n) be a countable subgroup, B = OHZ and p € N.

If T acts geometrically densely on Xk(p, o0) with p < 2, then there
is @ measurable -equivariant map ¢: B — I,. Moreover, for
almost all pair (b, b') € B?, ¢(b) and ¢(b') are transverse.

If T — POk(p, 00) is a representation with a Zariski-dense image,
then there is a measurable '-equivariant map ¢: B — I,.
Moreover, for almost all pair (b, b') € B2, ¢(b) and ¢(b') are
transverse.
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Chains at infinity

A chain in OH¢ is the boundary of a complex geodesic.

A chain in Z, corresponds to the boundary of a totally geodesic
copy of Xc(p, p).
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Cartan and Bergmann invariants

The Cartan invariant is a map c: (OHZ)® — [—1, 1] such that
|c(&1,&2,&3)| is maximal iff &1, &2, &3 lie in a common complex
geodesic.

The Bergmann invariant is a map f3: Ig — [—p, p] such that
18(&1,&2,&3)| is maximal iff &1, &2, &3 lie in a common copy of
dXc(p; p)-

Lemma

For every V € I, the cocycle Cﬁ\/ defined by

Cy (g0, 81.82) = Be(goV. &1V, 82V)

represents the bounded Kahler class. 2



Chains to chains

Theorem

Let T < SU(1,n) be a lattice. Assume that a representation
p: T — PU(p,c0) is maximal and admits an equivariant boundary

map ¢ : 0Xc(1,n) — Zp(p,00). Then the boundary map ¢ almost
surely maps chains to chains.
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Geometry of chains

Theorem

Let n> 2 and let T < SU(1, n) be a complex hyperbolic lattice,
and let p : T — POc(p, >0) be a maximal representation. If there is
a p-equivariant measurable map ¢: OHZ — 1, then there is a
finite dimensional totally geodesic Hermitian symmetric subspace
Y C X(p,o0) that is invariant by I'. Furthermore, the
representation I — Isom()) is maximal.

Idea : One can reconstruct dHZ with finitely many chains. So, the
same is true for the essential image of ¢.
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