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Abstract. We study the coarse geometry of the moduli space of dilation
tori with two singularities and the dynamical properties of the action of the
Teichmüller flow on this moduli space. This leads to a proof that the vertical
foliation of a dilation torus is almost always Morse-Smale. As a corollary, we
get that the generic piecewise affine circle homeomorphism with two break
points -with respect to the Lebesgue measure- is Morse-Smale.

1. Introduction

This article is concerned with generic dynamical properties in families of piece-
wise affine circle homeomorphisms and closely related transversally affine folia-
tions of tori.

There are two competing notions of genericity in dynamical systems, the topo-
logical one and the probabilistic one. For a given finite-dimensional family of
dynamical systems, one says a given property is

• topologically generic if it is satisfied by a dense Gδ of the family;
• probabilistically generic or generic in measure if it is satisfied by a set of

parameters whose complement has Lebesgue measure equal to zero.

The second notion is stronger than the first as it usually implies it. It is natural
when given a family of dynamical systems to ask what dynamical behaviour is to
be observed generically, in both existing sense of the term. The general setting in
which we want to ask this question is the one of piecewise continuous bijections of
the interval (including circle homeomorphisms) and foliations on surfaces (these
two are to be thought of as the two sides of the same coin).

Foliations on surfaces satisfy the following trichotomy: it is either1

• Morse-Smale, meaning roughly that every regular leaf accumulates to a
closed attracting leave;

• minimal and is a measured foliation;
• or it has a closed invariant set which is locally the product of a Cantor set

with an interval.

1We have voluntarily ignored the case of foliations having saddle connections as they are easily
shown to form a negligible subset of the set of foliations.

1
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We refer to the series of articles [Lev82a, Lev82b, Lev87] where Levitt gives a nice
classification of foliations on surfaces.
In his seminal work [Pei59, Pei62], Peixoto proved that Morse-Smale foliations
form a dense open subset of the (infinite dimensional) set of smooth foliations on
a closed oriented surface of genus g for any g ∈ N, settling the question of the
topological genericity for flows on surfaces. We would also like to mention [Lio95]
where similar results for transversally affine foliations are proven.

The set of smooth foliations on a given smooth surface (alternatively of smooth
generalised interval exchange maps of the S1) is an infinite dimensional space
and it is therefore not clear what would be a good measure to put on it in order
to create a framework to study probabilistic genericity. A way to bypass this
difficulty is to ask the question for finite dimensional families of such maps and
use the Lebesgue measure in the parameters. It is in this spirit that Arnold
introduced the following family of circle diffeomorphisms (which is usually referred
to as ’Arnold’s tongues’)

rα,ǫ : x 7→ x + α + ǫ sin(2πx)

and proved that the set of parameters (α, ǫ) for which rα,ǫ is minimal is of positive
measure - in spite of his complement containing a dense open set (made of Morse-
Smale circle diffeomorphisms). This result was later generalised by Herman who
went on to prove the following

Theorem 1 (Herman, [Her77]). Let (ft)t∈[0,1] be a smooth family of C3 circle
diffeomorphisms. Assume that the rotation number of f0 is different from that of
f1. Then the set

{

t ∈ [0, 1 | ft is minimal
}

has positive measure.

It is a remarkable feature of families of (sufficiently regular) circle diffeomorphisms
that the notions of topological and probabilistic genericity do not agree. An equiv-
alent statement for foliations would be the following: in one-parameter families
of smooth foliations on the torus, there is a set of parameters of positive measure
for which the foliation is minimal.

We put forward in this article an investigation of the case of piecewise affine
homeomorphisms of the circle and equivalently of transversally affine foliations
on the torus. In his celebrated article [Her79] Herman opens a discussion on the
family of piecewise affine circle homeomorphisms with two discontinuities of the
derivative. This family can easily be parametrised by 4 real parameters (the dis-
continuity points of the derivative and their images characterising completely such
a piecewise affine map of the circle) and is therefore endowed with the standard
Lebesgue measure. Our main theorem is the following
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Theorem 2. Almost every piecewise affine circle homeomorphism with two break
points is dynamically Morse-Smale.

This theorem is a corollary of the study of geometric objects which we call dilation
surfaces. These are singular structures on surfaces modelled on C through the
group of dilations (maps of the form z 7→ az+b with a real and positive). They are
typically the surfaces one gets when gluing parallel sides of a Euclidean polygon
along dilations, see Figure 1 below.

Figure 1. A hexagonal model whose sides of same colour are
glued together to get a dilation torus.

These surfaces come with directional foliations whose first return maps are piece-
wise affine. For a rigorous introduction to this material we refer to Section 2.
This change of viewpoint, analogous in many ways to the linear interval exchange
transformations/translation surfaces duality, is very fruitful in the sense that the
geometric properties of their moduli spaces encode the way the geometry of these
surfaces can degenerate; these possible degenerations relating in a subtle way to
the dynamical properties of their directional foliations by means of a renormal-
isation procedure acting upon the moduli space of dilation surfaces called the
Teichmüller flow. We believe this article draws a clear analogy between the ac-
tion of this flow and the action of the geodesic flow on hyperbolic manifolds of
infinite volume. As we will see

• Morse-Smale foliations corresponds to orbits of the Teichmüller flow es-
caping in a ’funnel’ (non-compact part of the moduli space of infinite
volume);

• minimal foliations corresponds to recurrent orbits of the Teichmüller flow;
• totally periodic foliations corresponds to orbits of the Teichmüller flow es-

caping in a ’cusp’ (non-compact part of the moduli space of finite volume).

In this setting Theorem 2 becomes the direct analogue of Alfohrs theorem stat-
ing that the limit set of a (sufficiently well-behaved) Kleinian group of infinite
covolume has measure zero.
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Outline of the article. In Section 2 and 3 we gather elementary material on
dilation surfaces and their moduli spaces MD(λ) (the λ in the notation simply
corresponds to fixing the singularity type). Notably we introduce the notion of
dilation cylinder which is the affine structure on a cylinder one gets by making
the quotient of an angular sector of C by a dilation centred at the vertex of this
angular sector. For any dilation surface Σ, we define Θ(Σ) to be the angle of the
largest cylinder contained in Σ; Θ defines a continuous function on the moduli
space of dilation surfaces. This function is going to be crucial in the description
of the coarse geometry of MD(λ).
Another key ingredient that we introduce is an action of SL(2,R) on MD(λ).
The Teichmüller flow is the restriction of this action to the subgroup of diagonal
matrices. We show the existence of an invariant measure µ for this SL(2,R)-
action which is equivalent to Lebesgue measure. The existence of such a measure
is crucial to the proof of our main result.
In Section 4 and 5 we study in detail the geometric properties of dilation tori
with two singularities. We prove a battery of technical results that allows us to
get a good understanding of the way the geometry of such a dilation torus can
degenerate.
In Section 6 we give a proof that subsets of MD(λ) on which the function Θ does
not exceed π

4 have finite µ-volume. This is in a sense the technical heart of the
proof as everything follows quite smoothly from this point. This calculation relies
on the work performed in Section 5.
Finally in Section 7 we give a proof of the fact that minimal foliations (thought
of as points of MD(λ)) form a subset of measure zero of MD(λ), see Theorem
17. The proof relies on a simple criterion for a minimal foliation in MD(λ) to be
a density point of the set of minimal foliations. This criterion is given in terms of
the evolution of the function Θ along the Teichmüller flow.

2. Dilation surfaces

We begin with a formal definition of the notion of dilation surface.

Definition 1. A dilation surface is a geometric structure on a surface modelled
on the complex plane C through the subgroup of complex affine transformations
R

∗
+ ⋉C whose elements have real positive linear part and with a finite number of

singular points of dilation-conical type.

A singular point of dilation-conical type is a slight variation on usual Euclidean
cone singularities of angle 2kπ: there is (possibly) an additional dilation factor
when one computes the parallel transport around the singular point. If Σ is a
dilation surface, we denote by S(Σ) or simply S the set of its singular points.

A typical example of dilation surface is the structure one gets when identifying
pairs of parallel sides of a polygon in the plane. Translation surfaces are particular
examples of dilation surfaces.
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Directional foliations. The foliations by straight lines of fixed slope of the com-
plex plane C are preserved by the subgroup R

∗
+⋉C. This allows to define on every

dilation surface a family of directional foliations which are simply the trace of the
aforementioned foliations. Each of these individual foliations comes with an extra
transversally affine structure (see [Lio95] for a detailed discussion of this notion).

We say that a foliation is Morse-Smale when there exists a finite number of closed
repelling or attracting leaves for which the following holds: the α-limit and ω-limit
of every regular leaf is one of these closed leaves.

2.1. Dilation cylinders. Let Sθ be an angular sector in C of angle θ ∈]0, 2π[
based at 0 ∈ C. We denote by Cθ,λ the quotient of Sθ by the action of z 7→ λz
where λ > 1. We call this surface the dilation cylinder of angle θ and of multiplier
λ. It is a dilation surface homeomorphic to a cylinder S1 × R whose boundary is
totally geodesic.

A (dilation) cylinder of angle θ and multiplier λ > 1 in a dilation surface Σ is
a maximal affine embedding of Cθ,λ in Σ. We say that a dilation surface has a
cylinder in direction α ∈ S1 if the directional foliation in direction α has a closed
leaf contain in a cylinder.

Proposition 3. Let Σ be a dilation surface of genus g with n singular points and
let α be a direction in S1. Then Σ has at most 3g − 3 + n cylinders in direction
α.

Proof. Cylinders in a given direction are pairwise disjoint and any pair of bound-
ary curves of two different cylinders are not free-homotopic in the punctured
surface. It is an elementary fact of topology of surfaces that their cannot be more
than 3g − 3 + n such disjoint non-free-homotopic cylinders. �

2.2. Triangulations and large cylinders. In order to study geometric prop-
erties of a given dilation surface, it is often convenient to have a polygonal rep-
resentation of this surface. It is natural to ask in that context what are the
surfaces that can be represented as a polygon. A related question is the one of
the existence of triangulations whose set of vertices is exactly the set of singular
points and whose edges a regular geodesic segments. We call such a triangulation
a geodesic triangulation.

There is a natural obstruction to the existence of such a triangulation: if a dilation
surface contains a cylinder of angle greater or equal to π, it cannot have a geodesic
triangulation. A theorem of Veech shows that it is the only obstruction.

Theorem 4 (Veech, [Vee08]). Let Σ be a dilation surface of genus g with n
singular points. Assume 2 − 2g − n < 0. Then Σ admits a geodesic triangulation
if and only if Σ does not contain any cylinder of angle larger than π.

We will make use of this fact when defining moduli spaces of dilation surfaces.
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2.3. The invariant Θ. A given dilation surface can contain an infinity of different
cylinders. However it cannot contain cylinders of arbitrarily large angle. Actually
we have the stronger statement:

Proposition 5. Let Σ be a dilation surface and let θ0 be a positive number. Then
there are only finitely many cylinders in Σ of angle larger than θ0.

Proof. This proposition is a consequence of Proposition 3. Indeed, assume there
are infinitely many cylinders of angle larger than a given θ0. Then, by compactness
of S1 there is a direction α which is contained in infinitely many of these cylinders
which contradicts Proposition 3. �

We denote by Θ(Σ) the angle of the largest cylinder of Σ. This number is well
defined thanks to Proposition 5. We will see later on that Θ actually defines a
very useful function on the moduli space of dilation surfaces.

2.4. Linear holonomy. We end this section by a short discussion about the no-
tion holonomy. Dilation surfaces are a particular occurrence of a (G, X)-structure
with singularities where X is a model space and G a group acting in a rigid way
on X. In our case, X = C and G = R

∗
+ ⋉ C. In this setting, it is possible(see

[Gha]) to produce an algebraic invariant called the holonomy which a (class of)
representation π1(Σ \ S) −→ R

∗
+ ⋉C.

To our purpose it is convenient to consider only the projection of this representa-
tion onto the factor R

∗
+ to get by this mean a representation ρ : π1(Σ \ S) −→ R

∗
+

which factors through ρ : H1(Σ \ S,Z) −→ R
∗
+. We can therefore think of ρ as an

element of H1(Σ \ S,R∗
+). We call ρ the linear holonomy of Σ.

This representation has the following geometric meaning. Consider a closed loop
γ on Σ. The parallel transport defined by the affine structure along γ is a dilation
by a certain factor which is exactly ρ(γ).

3. Moduli spaces and action of SL(2,R)

We define in this section moduli spaces of dilation structures. For the rest of
the section

• g and n be integers such that 2 − 2g − n < 0;
• λ = (λ1, · · · , λn) are positive numbers such that

∏

λi = 1;
• Σg,n is topological surface with n marked points that we denote by {p1, · · · , pn}.

We define

T D∗
g,n =

{

dilation structure on Σg,nwith singularities at the marked points
}

/isotopies

MD∗
g,n =

{

dilation structure on Σg,nwith singularities at the marked points
}

/diffeomorphisms

Both T D∗
g,n and MD∗

g,n can be partitioned according to both the dilation factor
and the angle (which is always an integer multiple of 2π) around its singular
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points. In order to keep this section readable, we are not going to introduce any
notation yet for the moduli spaces induced by this partition.

Another important remark is that within both T D∗
g,n and MD∗

g,n lie a remarkable
locus which is the set of dilation surfaces admitting geodesic triangulations. For
some reasons of a dynamical nature, we believe that this locus is more interesting
to study. We therefore define

T Dg,n =
{

dilation structure on Σg,nwith singularities at the marked points

admitting a geodesic triangulation
}

/isotopies

MDg,n =
{

dilation structure on Σg,nwith singularities at the marked points

admitting a geodesic triangulation
}

/homeomorphisms

It is immediate from the definition that MDg,n(resp. MD∗
g,n) is the quotient of

T Dg,n (resp. T D∗
g,n) by the action of the pure mapping class group MCG(g, n).

All these moduli spaces are orbifolds, as ensured by a theorem of Veech.

Theorem 6 (Veech, [Vee93]). T Dg,n and T D∗
g,n (MDg,n and MD∗

g,n) are ana-
lytic manifolds (resp. orbifolds) of dimension 6(g − 1) + 3n.

3.1. Isoholonomic foliation. Since T Dg,n is a set of marked dilation structures,
the following linear holonomy map

H : T Dg,n −→ H1(Σg,n,R∗)
Σ 7−→ ρ(Σ)

is well defined. It is a submersion according to a theorem of Veech ([Vee93],
p.625 Theorem 7.4) hence its level sets define a trivial foliation of T Dg,n. Since
the map H is equivariant for the mapping class group action on T Dg,n with
respect to its linear action on H1(Σg,n,R∗), this foliation passes to the quotient
T Dg,n/Mod(Σg,n) = MDg,n. This foliation we call the isoholonomic foliation.

3.2. Action of SL(2,R). We define in this paragraph an action of SL(2,R) on
T Dg,n and MDg,n. Consider a dilation atlas (U, ϕU )U∈U on Σg,n where U is a
collection of open subsets of Σg,n and for all U ∈ U , ϕU : U → C is a homeo-
morphism defining the dilation structure. Let A be an element of SL(2,R). One
easily verifies that (U, A ◦ ϕU )U∈U also define a dilation atlas and hence a new
dilation structure on Σg,n. By this mean, we define an action of SL(2,R) on both
T D∗

g,n and MD∗
g,n.

• The image of geodesic triangulation by the action of an element of SL(2,R)
is a geodesic triangulation. This action therefore preserves T Dg,n ⊂ T D∗

g,n

and MDg,n ⊂ MD∗
g,n and defines by restriction an action on both T Dg,n

and MD(λ). We will only be concerned with this action in the sequel.
• This action on T Dg,n and MDg,n is locally free (but is not on T D∗

g,n and
MD∗

g,n, see [DFG]).
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• It preserves the isoholonomic foliation.

This action restricted to the subgroup of diagonal matrices
{

(

et 0
0 e−t

)

| t ∈ R
}

defines a flow that we call Teichmüller flow.

3.3. Θ seen as a function on the moduli space. The invariant Θ of a dilation
surface defined in Section 2.3 actually defines a continuous function:

Θ : MD∗
g,n −→ R+.

A rigorous proof of the continuity would deserve a general discussion on the topol-
ogy of MD∗

g,n which one will find in [Vee93]. The idea though is rather simple.
There exists natural coordinates on MD∗

g,n (that one should probably call ’pe-
riod coordinates’ in reference to the case of translation surfaces) which make the
natural (local) identification of MD∗

g,n with spaces of polygons continuous. From
such polygonal representations it is easy to see that any embedded cylinder in a
dilation surface survives small deformations of such a surface and that the an-
gle varies continuously. We nonetheless spare the reader a detailed discussion on
the topology of MD∗

g,n as in the case of dilation tori with two singularities, this
topology is completely explicit.

4. Tori with two singularities

From now on and until the end of this article we will only work with T Dg,n and
MDg,n and forget about non-triangulable dilation surfaces. We will also restrict
our attention to the case g = 1 and n = 2, namely to tori with two singularities.

For the remainder of the article, T is a torus (thought of as a topological surface),
p1 and p2 two marked points on T and T ∗ is T \ {p1, p2}. All dilation structures
will be thought of as structures on the underlying surface T with singularities
at p1 and p2. For any dilation structure on T , the angle around any singular
point is necessary 2π. Thus the singularity type of a dilation torus is completely
determined by the dilation factor around p1 and p2 which we denote by λ1 and
λ2 ∈ R

∗
+. Since λ1λ2 = 1 we only need to know λ1 = λ. Without loss of generality

we can suppose that λ > 1.

As of now we denote by

T D(λ) ⊂ T D1,2 (resp. MD(λ) ⊂ MD1,2)

the set of triangulable dilation tori with two singularities whose dilation factor
at p1 is λ > 1. Note that both T D(λ) and MD(λ) are saturated sets of the
isoholonomic folation and are SL(2,R)-invariant so we can freely speak of these
two objects restricted to T D(λ) and MD(λ) .
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4.1. Invariant measure on the moduli space. In this particular case, it hap-
pens that the isoholonomic foliation and the one induced by the SL(2,R) agree,
simply because the leaves have same dimension. This fact makes it easy to build
an invariant measure for the SL(2,R)-action.

Consider (a, b) a symplectic basis of T . We can complete it into a basis of
H1(T ∗,Z) by adding c the class of a loop turning around p1. The linear holonomy
of a dilation structure in T D(λ) is a group homomorphism ρ : H1(T ∗,Z) −→ R

∗
+

such that ρ(c) = λ. We denote by ρa and ρb the value of ρ on a and b. The
symplectic form

ω = d log ρa ∧ d log ρb

defines a volume on the affine subspace of H1(T ∗,R∗
+) of elements ρ such that

ρ(c) = λ. This form is invariant by the action of the pure mapping class group
and hence defines a symplectic2 form transverse to the isoholonomic foliation of
MD(λ).

On each leaf of the isoholonomic foliation we can put a measure which is the trace
of a Haar measure of SL(2,R). This family of measure coupled to the transverse
structure form a measure µ on the total space MD(λ) which is by definition
SL(2,R)-invariant. This measure is in the same class as the Lebesgue measure.

4.2. Polygonal models. We made the hypothesis that we are working exclu-
sively with triangulable dilation tori. From any triangulation we can extract a
pseudo-polygonal model of a given dilation surface Σ (a torus as it happens). In
order to achieve this one has to consider a sub-graph Γ in the 1-skeleton of this tri-
angulation which is maximal with respect to the property that Σ\Γ is connected.
For such a Γ, Σ \ Γ is simply connected and one can consider

D : Σ \ Γ −→ C

the developing map of the dilation structure. It is a pseudo-polygon, an immer-
sion of the disk which extends to its boundary and which is piecewise geodesic
restricted to this boundary. Moreover, since this pseudo-polygon comes from a
dilation structure, sides of the boundary that are identified in Σ must be parallel.

Because of Euler characteristic considerations, the number of sides of pseudo-
polygons only depends on g and n. In the particular case of a torus T with two
singularities, an associated pseudo-polygon must have six sides which project onto
a graph Γ ⊂ T with three edges.
To every such pseudo-polygonal model is associated a gluing pattern which is
the datum of the sides which are glued together. On the Figure 2 below are
represented the two possible gluing patterns for a dilation torus.

2This form is not symplectic in the usual sense of the term. It is a closed 2-form vanishing
when restricted to the isoholonomic foliation and which is symplectic on two manifold which is
transverse to the foliation
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Figure 2

By cutting a triangle and pasting it using one of the identifications, one can easily
move from Pattern 2 of Figure 1 to Pattern 1. We have the following

Lemma 7. A pseudo-polygon with six sides such that each side is parallel to an-
other one is actually a regular polygon (meaning that the immersion in definition
is actually an embedding).

Proof. We first give the proof for Pattern 1. We are going to prove that the image
the developing map D of the boundary of Σ \ Γ is a non-degenerated polygon
which implies the Lemma. Pick the two sides which are paired and opposite to
each other. Their image under D are two parallel segments A and A′. The two
sides issued from each of these sides are parallel (say B and B′ are issued from
the extremities of A and C and C ′ are issued from the extremities of A′). The
sides B and C must meet and if they do so must B′ and C ′ since B and B′ are
parallel and C and C ′ are parallel. But in that case A ∪ A′ ∪ B ∪ B′ ∪ C ∪ C ′ is
the boundary of a non-degenerated polygon.
A cut and paste operation transforms and pseudo-polygonal model with Pattern
2 to one with Pattern 1. One can apply what we have just proved in the preceding
paragraph to get that this new pseudo-polygonal model is non-degenerated. We
get back to Pattern 2 doing the opposite cut and paste operation. Just note that
cutting and pasting any triangle from a hexagonal model whose paired sides are
parallel gives rise to a non-degenerated polygonal model.

�

Lemma 7 therefore ensures that any torus with two singularities is built out of a
proper hexagon. This fact is going to be used extensively in the sequel.

4.3. Decompositions in cylinders. Informally, a decomposition in cylinders
is a way to build a dilation torus by gluing two dilation cylinders along their
boundaries. As it would be a bit painful to give a precise description of the gluing
operation that one needs to perform to obtain a well-defined dilation surface, we
will use another definition.
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Definition 2. A decomposition in cylinders of dilation torus with two singularities
is the datum of two disjoint closed saddle connections.

It would be a good exercise of affine geometry to show that the complement in a
dilation torus of two such saddle connections is actually the union of two dilation
cylinders of same angle.

Proposition 8. (1) Every element of MD(λ) can be decomposed into cylin-
ders.

(2) The dynamics in every direction belonging to one of the two cylinders is
Morse-Smale.

(3) Conversely, every Morse-Smale direction corresponds to such a cylinder
decomposition.

Proof. Let T be an element of MD(λ). The points (2) and (3) are a direct
consequence of the first one hence we only prove (1). Consider H a hexagonal
model for T with Pattern 1. There is a unique pair of identified sides which project
onto a closed saddle connection. Consider the two other pairs of identified sides.
Each of these bound a quadrilateral in H which project onto a cylinder in T . We
get by this mean two cylinders which form a cylinder decomposition of T .

�

Another consequence of the form of the decomposition in cylinders is the following:

Lemma 9. For every T ∈ MD(λ), the multiplier of any embedded cylinder be-
longs to ]1, λ[.

Proof. Any cylinder participate to a decomposition in cylinders. One can take a
curve along which one can compute the linear holonomy of the first cylinder and
slide it over one of the singular points to get a curve along which one compute
the inverse of the holonomy of the second cylinder. The multipliers ρa and ρb of
the two respective cylinders Ca and Cb thus satisfy the following

ρaρb = λ.

The fact ρa and ρb are by definition greater or equal to 1 implies the Lemma. �

The canonical polygonal model for a decomposition. We define in this
subsection a polygonal model associated to a decomposition in cylinders of dilation
torus T which is in a sense of "minimal complexity".

Let T be a dilation torus. We consider a cylinder decomposition of T .

• Ca and Cb are the two cylinders;
• l1 (respectively l2) the closed saddle connection based at p1 (respectively

p2);
• ρa (respectively ρb) is the dilation factor of Ca (respectively Cb).

Without loss of generality, we can suppose that ρa < ρb. Choosing a polygonal
model with Pattern 1 associated with this decomposition amounts to choosing



12 SELIM GHAZOUANI

two saddle connections la and lb joining p1 and p2 whose interiors are respectively
contained in Ca and Cb. We give a canonical way to choose such a pair of saddle
connections.
Let v be the unique segment issued from p1 in the direction perpendicular to the
one of l1, whose end point is on l2 and whose interior is contained in Ca. There
is a unique saddle connection s1 in Ca from p1 to p2 which does not intersect v
and such that the angle between v and s1 is non-negative. Similarly we consider
v′ the unique segment issued from p2 in the direction perpendicular to the one
of l2, whose end point is on l1 and whose interior is contained in Cb. There is a
unique saddle connection s2 in Cb from p2 to p1 which does not intersect v′ and
such that the angle between v′ and s2 is non-negative.

 

 
v'

p1

p1p1

p1

p1
p2

p2

p2

s1

s1

s2

s2

v′

Figure 3. A canonical model associated to a decomposition

Definition 3. We call canonical polygonal model associated to the decomposition
in cylinders associated to Ca and Cb the one given by cutting along l1, s1 and s2.

Such a decomposition has the pleasant property that the dilation gluing factor
between the two sides of the associated hexagon that project onto l1 is bounded
above by ρa < λ and below by ρ−1

b > λ−1.

4.4. Directional foliations and piecewise affine homeomorphisms of the
circle. We give a classification of the possible dynamical behaviours for the di-
rectional foliations of dilation tori with two singularities.

Proposition 10. The vertical foliation of a triangulable dilation tori with two
singularities is of one the following type:

(1) It has one attracting leaf and one repelling leaf which are respectively the
ω-limit and the α-limit of every other leave.
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(2) It has one attracting closed saddle connection and one repelling closed
saddle connection which are respectively the ω-limit and the α-limit of
every other leaf.

(3) It is completely periodic.
(4) It is minimal.

Proof. If T is endowed with a triangulable dilation structure, then its vertical
foliation does not have any Reeb component for otherwise it would contain a
cylinder of angle at least π. Hence there exists a simple closed curve in T which
is transverse to the vertical foliation and the first return map to this curve defines
a piecewise affine homeomorphism of the circle f : S1 −→ S1. We distinguish on
whether the rotation number of f is irrational or not.
If it is irrational, f is semi-conjugated to the a minimal rotation. Since f is
piecewise affine, its derivative has bounded variations and Denjoy theorem applies:
the semi-conjugation is an actual conjugation. Hence f is minimal and so is the
vertical foliation.
Otherwise, the rotation number of f is rational and f has a periodic orbit. Assume
the closed leaf associated with this periodic orbit does not meet any singular point.
This leaf is either hyperbolic or parabolic (meaning that the derivative of the first
return map of the flow near this periodic is either different or equal to 1). In
the first case, this leaf is contained in a cylinder itself being part of a cylinder
decomposition in which case we are in case (1).
Finally if the foliation has a closed saddle connection then it bounds a cylinder
which is either flat and in which case the foliation is totally periodic(this case is
the same as above) or it is a dilation cylinder in which case we are in case (2).

�

5. The geometry of dilation tori

5.1. Dilation modulus of a dilation cylinder. We introduce another geomet-
ric quantity associated to a cylinder which we call its dilation modulus.

Definition 4. Let C be a dilation cylinder of angle θ < π
2 and of dilation factor

ρ > 1. Its dilation modulus (or simply modulus) is the quantity

tan θ

ρ − 1
.

If we are dealing with a flat cylinder, we will use the standard notion of modulus
that is the ratio between its length and width.
The dilation modulus measures how ’long and thin’ a cylinder is. Indeed assume
you form a cylinder by gluing two opposite sides A and A′ of a quadrilateral and
that one of the two sides which are not glued together, say B, is perpendicular to
A and A′. Assume that A is shorter that A′. Then the modulus of this cylinder
is equal to the length of B divided by the length of A. Note that this notion of
modulus is only defined for cylinders whose angle is less than π

2 . Hence this ’long
and thin’ heuristic only applies when the angle is less than π

2 .
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The reason why we care about this quantity is because cylinders of large modulus
force the function Θ to be small. Indeed we have the following lemma:

Lemma 11. Let T be a dilation torus with two singular points. There exists a
constant κ such that the following holds: assume T has a cylinder C of modulus
M and of angle θ then

Θ(T ) ≤ max
{

θ,
κ

M

}

Proof. We give a quick sketch of a proof as it is very elementary. Consider any
other cylinder D in T of angle α. Either it is the other cylinder of the decomposi-
tion to which C participate in or D must intersect C. Both boundary components
of D must intersect one of the boundary component of C (they ’enter’ C) and one
sees an ’angular strip’ (the two lines on the boundary of this strip form an angle α
entering C by one of its boundary component and exiting through the other). This
strip does not contain any singular point in its interior. If the modulus is large
this forces α to be very small (less than arctan 1

M
) and a compacity argument

plus the fact that arctan(ǫ) ∼ ǫ when ǫ << 1 imply the Lemma. �

5.2. Convex polygonal models. The rest of this Section is dedicated to prove
a weak converse to Lemma 11: tori T for which Θ(T ) is small must contain a
cylinder of not too small modulus. The precise statement is the one of Lemma
14. To get to this point we prove the existence of well-behaved polygonal models.

Lemma 12. Every dilation torus in MD(λ) can be represented by a convex
hexagon with Pattern 2.

Proof. Start with any polygonal model with Pattern 1. First we point out that a
hexagonal model with Pattern 1 for a dilation torus can hardly ever be convex.
Indeed the two angles at vertices projecting onto p2 (see Figure 4) add up to 2π
and therefore the only way it can be convex is if those angles are both equal to π.

We describe an algorithm where each step consists in cutting a triangle from the
hexagon and gluing it elsewhere and which produces in finitely many step the
required convex model.
The Figure 4 above displays a hexagon H for which vertices of same color (blue or
yellow) project onto the same singular point and sides of same color are parallel
and identified. Form a triangle T whose vertices are the blue vertex at which
the interior angle is greater than π and two consecutive yellow vertices (there are
essentially two choices for such a triangle). Without loss of generality suppose
that one of the green sides of H is a side of T . We cut T and are left with a
pentagon. At this point it can be that the angle at the blue vertex is still larger

than π. In that case we glue T to the other green side and we get a new polygonal
model for our torus with Pattern 1. We repeat this operation until this angle is
less than π. When we have achieved this, we simply glue the triangle T to the
other black side. We get a new polygonal model with Pattern 2 and we claim
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p1p1

p1
p1

p2

p2

T

Figure 4. A hexagonal model with Pattern 1.

that this one is convex. Indeed, the construction ensures that three consecutive
angles are less than π. Because identified sides are parallel, opposites angles for
a hexagonal model with gluing pattern 2 are equal hence every interior angle is
less than π thus this hexagon is convex.

�

We now exploit the existence of such convex hexagonal models to prove that we
can find a hexagonal model for which at least two pairs of identified sides are not
too large. In the sequel we consider convex hexagonal models with Pattern 2 (see
Section 4.2) of area 1. We will also denote by l1, l2 and l3 the respective lengths
of the shortest of each pair of sides identified.

Lemma 13. There exists a constant Kλ such that every dilation torus in MD(λ)
can be represented by a convex hexagon of area 1 with Pattern 2 and such that l1
and l2 are less than Kλ.

Proof. Start with a convex polygonal model H given by Lemma 12. We first need
to make two preliminary remarks.

(1) By virtue of H being convex, the quadrilateral formed by joining the ends
of two sides identified by the gluing is contained within H hence projects
onto a cylinder in the associated torus. Such a cylinder has dilation factor
at most λ hence the ratio between side glued together is at most λ.

(2) Consider any pair of opposite vertices q anr r. The segment l joining these
two cuts H into two quadrilaterals Q1 and Q2. Call a and b the two sides
of Q1 which are adjacent to l. Both of them are identified to a′ and b′

in Q2. We claim that gluing Q1 and Q2 along either a and a′ or b and
b′ yields a convex hexagonal model with gluing pattern 2. The fact that
the gluing pattern is number 2 is straightforward. Let us denote by α
the angle of H at r and β the angle at q. The segment l cuts α into two
angles α1 and α2 and β into two angles β1 and β2. Up to relabelling we
can assume one of the new angle induced by the two suggested gluing are
respectively α1 + β1 and α2 + β2. Since α + β ≤ 2π at least one of these
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two is less than π. We choose the gluing realising this and for this one
the new hexagon is convex since it has three consecutive angles less than
π hence all of them by virtue of the symmetry in the angles discussed in
the proof of Lemma 12.

We give a proof of qualitative nature in order not to cloud the idea with too
many quantifiers. We invite the interested reader to fill in the gaps as an exercise.
Assume l1, l2 and l3 are very large. Pick any segment l joining opposite vertices in
H. It bounds a quadrilateral whose area is less than 1 and whose three other sides
are very long. It therefore must be small. We perform the gluing explained in the
second remark above two get a new convex hexagon with only two segment which
are very large (since the ratio between segments paired together is bounded, the
rescaling to make this new hexagon of area one is bounded as well and this does
not affect the fact that H has a pair of identified sides of moderate length).
Reiterate this procedure using the line joining the vertices at which the remaining
two long pairs of sides meet to get the desired polygonal model.

�

We end this section by proving the following Lemma which predicts the existence
of cylinders of not too small affine modulus.

Lemma 14. There exists a constant Mλ > 0 such that every dilation torus T in
MD(λ) such that Θ(T ) < π

2 contains a cylinder of modulus greater than Mλ.

Proof. Pick a polygonal model for T given by Lemma 13. If l3 the possibly very
large side is indeed very large then the cylinder one gets when projecting the
quadrilateral defined by the long sides identified has large modulus. Indeed this
cylinder is going to be very long and thin because H has fixed area 1. Since we
have assumed that Θ(T ) < π

2 being long thin implies that the modulus is large.
Precisely, there exists K > 0 such that if l3 is larger than K then it contains a
cylinder of modulus larger than a certain constant M1. Otherwise the length l1,
l2 and l3 are bounded by a simple compactness argument we get the existence of
a cylinder of modulus larger than M2. Then Mλ = min{M1, M2} works.

�

6. Volume of the cusp

We discuss in this section the geometry of MD(λ). In particular we show that
regions of MD(λ) where the angle function Θ is bounded from above have finite
volume. This section is dedicated to the proof of the following result:

Theorem 15. The volume of the ’cusp’

C =
{

T ∈ MD(λ)
∣

∣ Θ(T ) ≤ π

4

}

is finite.



TEICHMÜLLER DYNAMICS AND DILATION TORI 17

6.1. Haar measure of SL(2,R). We first recall an explicit description of the
Haar measure of SL(2,R). We denote by N the subgroup of SL(2,R) of unipo-
tent lower triangular matrices, A the subgroup of diagonal matrices and K the
subgroup of orthogonal matrices.

Lemma 16. Every element m ∈ SL(2,R) can be decomposed in a unique way as
a product of the form

m = k · n · a

where n =

(

1 0
t 1

)

∈ N , a =

(

ν 0
0 ν−1

)

∈ A and k =

(

cos θ − sin θ
sin θ cos θ

)

∈ K.

We leave the proof of this classical Lemma to the reader. This gives us local co-
ordinates (t, ν, θ) on SL(2,R). In these coordinates, the Haar measure of SL(2,R)
is up to multiplication to a positive constant

dmSL(2,R) =
dν

ν
dtdθ.

We will make extensive use of this fact in the sequel.

6.2. Computation of the volume. In this section we consider hexagonal mod-
els with gluing pattern 1. Fix 1 < ρa < λ, λ−1 < ρb < 1 and ρb < ρc < ρa. We
use the notation ρ = (ρa, ρb, ρc). There is a unique hexagonal model Hρ,M with
gluing pattern 1 such that

• the associated cylinders Ca and Cb have multipliers ρa and ρb respectively;
• the modulus of Ca is exactly M ;
• the unique pair of sides which project onto a closed saddle connection are

glued along a dilation of factor ρC .

The idea that is going to drive the computation to come is that every canonical
hexagonal model can be obtained from a Hρ,M after applying a matrix in SL(2,R)

of the form

(

µ 0
t µ−1

)

with t.

Consider the 1-parameter (semi-simple) subgroup of SL(2, R) which preserves
the two directions of the boundary components of the cylinder decomposition
corresponding to Hρ. Without loss of generality, we can suppose that the direction
of the pair of sides glued along the dilation of factor ρC is the vertical one. In
this case this one parameter subgroup is

{

qt =

( √
ρaet 0

ρae2t−1√
ρaet tan θa

−2
√

ρae−t

)

| t ∈ R
}

where θa is the angle of Ca. The image of Ca under the action of q1 is represented
on Figure 5 below: plain lines in green and blue are mapped by q1 to the dashed
ones of same colour. Formally q1 realises a Dehn twist in the only essential simple
closed curve of Ca.
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1

ρ

Figure 5. The image of a polygonal model for Ca by the action of q1.

Building on these remarks we notice that {qt ·Hρ | t ∈ [0, 1]} contains all canonical
hexagonal models with gluing pattern 1, gluing factors ρ and whose cylinder Ca

has modulus M .

Note that

(

e
t

2 0

0 e− t

2

)

· Hρ,M = Hρ,etM . As a consequence of these two facts

{

( √
ρaet 0

ρae2t−1√
ρaetν(ρa−1)Mλ

−2
√

ρae−t

)(√
ν 0

0
√

ν
−1

)

· Hρ,Mλ
| t ∈ [0, 1] and ν ∈ [1, +∞[

}

contains every possible canonical hexagonal model with gluing factors ρ and whose
cylinder Ca has modulus less than Mλ.
In particular there exists a constant K > 0 depending only on λ such that

(1)
{

(

1 0
t 1

)

(√
ν 0

0
√

ν
−1

)

· Hρ,Mλ
| ν ∈ [1, +∞[ and t ≤ K

ν

}

also contains every possible canonical hexagonal model with gluing factors ρ and
whose cylinder Ca has modulus less than Mλ.

We recall that every dilation tori whose angle is less than π
4 can be represented

by an canonical hexagonal model. For such a canonical model we have seen
(see Section 4.3) that 1 ≤ ρa ≤ λ and λ−1 ≤ ρc ≤ λ. Recall that C =

{

T ∈
MD(λ)

∣

∣ Θ(T ) ≤ π
4

}

. Let us denote by Hρ the set of hexagonal models whose
cylinder Ca has modulus larger than Mλ. Every set Hρ naturally projects to
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MD(λ). Every such projection is a local diffeomorphism onto a leaf of the iso-
holonomic foliation. Moreover, each Hρ naturally identifies with an open subset
of SL(2,R) to give local coordinates

(2)
[λ−1, λ] × [λ−1, λ] × SL(2,R) −→ MD(λ)

(ρa, ρc, A) 7−→ A · Hρ

where ρ = (ρa, ρaλ−1, ρc) and where we identified A · Hρ with the torus obtained
after gluing the corresponding hexagonal model. The volume form dµ writes in
these coordinates

dµ = d log ρa ∧ d log ρc ∧ dmSL(2,R)

where dmSL(2,R) is the Haar measure on SL(2,R). We have that

vol(C) ≤
∫

modulus≤Mλ

dµ

By 1 and 2 we get that

vol(C) ≤
∫ λ

λ−1

∫ λ

λ−1

∫

ν≥1, t≤ K

ν
,
dmSL(2,R)(

(

cos θ − sin θ
sin θ cos θ

)(

1 0
t 1

)

(√
ν 0

0
√

ν
−1

)

)d log ρad log ρc

The Haar measure of SL(2,R) in these coordinates is dν
ν

dtdθ and this integral
becomes

vol(C) ≤
∫ λ

λ−1

∫ λ

λ−1

(

∫

ν≥1, t≤ K

ν2
, θ∈S1

dν

ν
dtdθ

)

d log ρad log ρc

thus making the change of variable s = ν
K

t we get

vol(C) ≤ 4π log(λ)K

∫ +∞

1

dν

ν3
.

This proves that the volume of C is finite and completes the proof of Theorem 15.

7. Dynamics of the Teichmüller flow

In this section we explain how to exploit the finiteness of the volume of the cusp
proved in the previous section to show that the set E ⊂ MD(λ) of dilation tori
whose vertical foliation is minimal has measure zero. The strategy we follow is
the following:

• we first prove that points in E for which the function Θ does not tend to
zero along the orbit of the Teichmüller flow are not density point in the
intersection of E with the set of directions of the associated dilation torus;

• we then show that the set of points in E for which Θ tends to zero along
the orbit of the Teichmüller flow has measure zero - this is a consequence
of the finiteness of the volume of the cusp C.
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These two points together imply (not completely directly)

Theorem 17. The set of Morse-Smale points in MD(λ) has full measure. Equiv-
alently, E has measure zero.

The equivalence between these two statement is ensured by Proposition 10.

7.1. Density points in the set of exceptional directions. Recall that if A
is a Lebesgue-measurable subset of Rn, x ∈ A is said to be a density point of A if

lim
r→0

Leb
(

A ∩ B(x, r)
)

Leb
(

B(x, r)
) = 1.

This definition also makes sense for any measure on a smooth manifold which
is absolutely continuous with respect to the Lebesgue measure. We recall the
following lemma

Lemma 18 (Lebesgue regularity Lemma). Let A be a Lebesgue-measurable subset
of a smooth manifold M . If A does not have measure zero, then almost every point
in A is a density point of A.

We now move on to give a criterion for a point in MD(λ) to be a density point
of the set of exceptional direction. For a dilation torus T we denote by ET ⊂ S1

the set of minimal directions on T .

Lemma 19. Let T be a dilation torus whose vertical foliation is minimal (meaning
that π

2 ∈ ET ). Suppose that Θ(gt · T ) does not converge to 0 as t tends to +∞.
Then π

2 is not a density point in ET .

Proof. First notice that ET is invariant by the rotation of angle π (a foliation
which is minimal induces two exceptional directions: the ones corresponding to
the two possible orientations). Hence a point p ∈ ET is a density point if and
only if −p = p + π is a density point. More generally, in this particular case of
tori with two singular points directions have same dynamical behaviour as their
opposite and we might as well think of ET as a subset of RP1.

The action of gt on RP
1 is of North-South type: the vertical direction is a repulsive

fixed point and the horizontal one is an attracting one. The idea behind this proof
is that the Teichmüller flow gt allows us as we are making t larger and larger to
zoom in close to the vertical direction. Directions in RP

1 that participate to a
cylinder decomposition lie in the complement of ET .

By hypothesis there exists a sequence tn → +∞ such that gtn
·T has a cylinder of

angle greater than a fixed ǫ > 0. Without loss of generality (up to making ǫ a bit
smaller) we can assume that the directions having a closed leave in this cylinder
are direction between θ1(n) and θ2(n) with 0 < θ1(n) < θ2(n) ≤ π

2 −ǫ. Notice that
the projective action of gt on [0, π

2 ] is a convex map which fixes 0 and π
2 . It implies

that the ratio θ2(n)−θ1(n)
π

2
−θ1(n) is less that g

−tn(θ2(n))−g
−tn (θ1(n))

π

2
−g

−tn(θ1(n)) . But the former is less
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than 2ǫ
π

and the latter is less than the proportion of Morse-Smale direction in a
ball of radius less than g−tn

(π
2 − ǫ). Picking tn large enough this latter quantity

can be made arbitrarily small. Since the proportion of Morse-Smale directions in
balls centred at π

2 does not tend to zero, π
2 is not a density point in ET . This

proves the Lemma. �

Lemma 20. The set D ⊂ E of dilation tori T whose vertical direction is a density
point in ET has measure zero.

Proof. We simply prove that the set of tori such that Θ(gt · T ) tends to zero as
t tends to infinity has measure zero. This set containing D, it will imply the
Lemma. We assume by contradiction that such a set has positive measure A > 0.
By Theorem 15, the set of tori T such that Θ(T ) ≤ π

2 has finite volume. In turn
we have that there exists θA such that

F =
{

T ∈ MD(λ)
∣

∣ Θ(T ) ≤ θA

}

has measure less that A
3 . Also there exists t0 such that the set

D′ =
{

T ∈ D
∣

∣ ∀t ≥ t0 Θ(T ) < θA

}

has measure more than 2A
3 . But by definition gt(D

′) ⊂ F which implies µ(gt(D
′)) ≤

µ(F ). The action of gt being measure-preserving we get that µ(D′) ≤ µ(F ) which
is a contradiction. �

7.2. Proof of the main theorem. We prove here Theorem 17.

Proof of Theorem 17. Assume by contradiction that µ(E) > 0 is positive. We
introduce M(λ) the moduli space of dilation with no marked direction (we identify
in MD(λ) those elements which are image of one another by a rotation in SO(2)).
There is a natural projection

π : MD(λ) −→ M(λ)

which is a fibration whose fiber are circle. For each T in MD(λ), π−1(π(T )) ≃ S1

naturally identifies to the set of directions on T . In turn it makes sense for any
T ∈ M(λ) to talk of ET its set of exceptional directions. This projection being
smooth and the measure µ in the same class as the Lebesgue measure, Fubini
theorem ensures that the set of T ∈ M(λ) such that ET has positive measure has
positive measure itself. By Lebesgue regularity lemma, for each of these T the
set of density points in ET has positive measure which in turn implies that the
set of elements T ∈ MD(λ) whose vertical foliation is a density point in ET has
positive measure. This contradicts Lemma 20 and thus terminates the proof of
Theorem 17.

�
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8. Further comments/open questions

We make a few comments and single out questions that seem to be worth further
investigation.

The analogy with hyperbolic manifolds of infinite volume. We believe
that there is a interesting analogy to be drawn between moduli spaces of dilation
surfaces and hyperbolic manifolds of infinite volume. The table below gives pairing
between features of both worlds that support this analogy.

Moduli space of dilation tori Hyperbolic manifold of infinite volume
Teichmüller flow Geodesic flow
Mapping class group MCG(T ∗) Γ an infinite covolume Kleinian group
{T | θ(T ) ≥ π

2 } Funnel (infinite volume)
{T | θ(T ) ≤ π

4 } Cusp (finite volume)
Measure µ Liouville measure
{tori with minimal vertical foliation} Limit set of Γ

General case. We do hope that Theorem 17 generalises to higher dimensional
moduli spaces. We formulate the following two-legged conjecture

Conjecture. • Fix g and n such that MDg,n is non-empty. The vertical
foliation of almost every dilation surface in MDg,n is Morse-Smale.

• Fix k ≥ 3. Almost every k-affine interval exchange transformation is
Morse-Smale. In particular, almost every piecewise affine circle homeo-
morphism is Morse-Smale.

A feature of the general case that is to complicate matters is that contrary to
the torus case, there are foliations which are neither minimal nor Morse-Smale
but of ’exceptional’ type, meaning that they have closed invariant sets which
are transversally Cantor sets (we refer to [Lev87], [BHM10] and [BFG] for the
existence of such foliations). One would need to understand how these fit in the
geometrical picture to be drawn.

Invariant measures. One of the key ingredients of the proof of Theorem 17 is
the existence of a measure that satisfies the three following criteria

(1) it is invariant under the action of the Teichmüller flow;
(2) it is equivalent to the Lebesgue measure;
(3) it relates in a sensible way to the geometry of the underlying dilation

surfaces (giving finite mass to subset on which the function Θ is bounded
for instance).

The existence of such a measure is in our case a sort of ’low dimensional’ miracle.
This leads us to ask the following question

Question 1. Do strata of moduli spaces of dilation surfaces always have a measure
satisfying the three condition above?
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Another range of questions concerns invariant probability measures. In particular
it would be interesting to know if there exists an invariant probability measure(for
the Teichmüller flow) of maximal complexity i.e. whose support contains all
minimal points in MD(λ). The same question would also be very interesting
in the general setting but seems a bit fanciful as long as the basic topological
dynamics of Teichmüller flow are not understood.

Question 2. Do Patterson-Sullivan-Bowen-Margulis type of measure exist for the
action of the Teichmüller flow on MD(λ)? What would their dynamical properties
be?

Particular surfaces. A given surface gives rise to an interesting one-parameter
family of foliations.

Question 3. Is it true that for each dilation surface which is not a translation
surface the set of Morse-Smale directions in S1 has full measure?

The fact that dilation tori with two singularities have cylinders is a relatively
easy consequence of the existence of convex polygonal models. It does not seem
obvious how to generalise this statement to higher genus.

Question 4. Does every dilation surface which is not a translation surface have
a dilation cylinder?

Hausdorff dimension. We have proved that the set of minimal direction has
measure zero. What about its Hausdorff dimension? It is easy to prove that
every dilation torus has at least one minimal direction and this implies that the
Hausdorff dimension of E is at least dim(MD(λ)) − 1 = 4

Question 5. Is the Hausdorff dimension of E less than dim(MD(λ)) = 5? Is
the Hausdorff dimension of E more than dim(MD(λ)) − 1 = 4?

Again this question would be interesting in a more general setting but it seems a
bit nonsensical to venture to ask questions about the Hausdorff dimension as long
as Conjecture 8 remains open.
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