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Dead ends on groups

Fix a group G and a finite generating set S. Denote by | · |S the
associated word length.

Definition
An element g ∈ G is called a dead end of depth≥ M if for every
s1, . . . , sM ∈ S ∪ S−1 ∪ {eG},

|g · s1 · · · sM|S ≤ |g|S.

Example

▶ (Z, {1}) does not have dead ends.

▶ (Z, {2, 3}) has 1 and−1 as dead ends (of depth 1).
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Dead ends on groups

Definition
We say that (G, S) has unbounded depth if for any n ∈ N, there exists a
dead end of depth≥ n. Otherwise, we say that (G, S) has uniformly
bounded depth.
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Groups with unbounded depth

Unif. bounded depth for all gensets Unbounded depth for some gensets

Unbounded depth for all gensets

Hyperbolic groups [Bogopolski ’97]

Abelian groups [Šunić ’08, Lehnert ’09]

Groups with≥ 2 ends [Lehnert ’09]

Any (G,S) with a regular language
of geodesics [Warshall ’10]

Virtually abelian groups [Warshall ’10]
The discrete Heisenberg group

[Warshall ’11]

The lamplighter group Z/2Z ≀ Z
[Cleary & Taback ’05]

Many groups of the form K ⋊ Z
with K abelian [Warshall ’08]

(in particular Baumslag-Solitar groupsBS(1, n), n ≥ 2.)

Houghton’s group H2 = Sym(Z) ⋊ Z
[Lehnert ’09]
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Wreath products

The wreath product of A and B is

A ≀ B :=
⊕
B

A⋊ B,

where
⊕

B A = {f : B → A | f of finite support} and B acts by
translations on f ∈

⊕
B A:

(b · f)(x) = f(b−1x), x, b ∈ B.

Lamplighter interpretation

Multiplying (f, x) ∈ A ≀ B on the right by elements of A changes the
lamp configuration f at the current position x, while multiplying by
elements of b changes said current position.
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Word length on wreath products

Given finite gensets SA, SB of A, B, respectively, then SA ∪ SB is called a
standard generating set for A ≀ B.

For b, b′ ∈ B, and F ⊆ B finite, denote by TS (b, b′, F) the length of a
shortest path in Cay(B, SB) starting at b, finishing at b′ and visiting all
elements of F.

Lemma (Parry ’92)

The word length of an element g = (f, x) ∈ A ≀ B with respect to
SA ∪ SB is

|g|SA∪SB =
∑

y∈supp(f)

|f(y)|SA + TS (eB, x, supp(f)) .
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Dead ends on lamplighter groups

▶ Cleary & Taback’s Theorem generalizes to A ≀ F(S) where (A, SA)

has unbounded depth (in particular any finite group) and F(S) is
the free group on the set S.

▶ The argument strongly relies on the fact that the TSP has explicit
solutions on a tree (i.e. the Cayley graph Cay(F(S), S))

Question: Does A ≀ B have unbounded depth for other base groups B?
or for non-free generating sets of F(S)?
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Dead ends on lamplighter groups

Fix a lamps group (A, SA) with unbounded depth (e.g. any finite group).

Theorem (S. ’22)
▶ For every finitely generated B, there exists a finite genset SB such

that (A ≀ B, SA ∪ SB) has unbounded depth.

▶ When B is abelian, any SB works.
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Lamplighter groups with uniformly bounded depth

Theorem (S. ’22)
For every finitely generated B, there exists a finite genset SB such that
(A ≀ B, SA ∪ SB) has unbounded depth.
When B is abelian, any SB works.

Question: Can we strengthen the second statement to hold for any
non-abelian B?

No!
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Lamplighter groups with uniformly bounded depth

Proposition (S. ’22)
Consider m, n ≥ 2 such that m+ n ≥ 10. Then

(A ≀ (Z/mZ ∗ Z/nZ), SA ∪ {[1]m, [1]n})

has uniformly bounded depth.
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