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Lampshuffler groups

Let H be a countable group and denote FSym(H) the group of fini-
tary permutations of H. We define the lampshuffler group

Shuffler(H) = FSym(H) ⋊ H,
where for every h ∈ H and f ∈ FSym(H), we have (h · f )(x) = hf (h–1x),
for x ∈ H.

Random walks and the Poisson boundary

Let G be a countable group and µ a probability measure on G. Let
(gi)i≥1 be a sequence if i.i.d. random variables distributed accord-
ing to µ. The µ-random walk on G is the process W0 = eG, and
Wn = g1g2 · · · gn, for n ≥ 1.
Consider the space of infinite trajectories G∞ endowed with the
probability measure Ð, which is defined as the push-forward of µÎ
through the map

G∞ → G∞

(g1, g2, g3, . . .) ↦→ (W1,W2,W3, . . .) B (g1, g1g2, g1g2g3, . . .).
Say that two trajectories (x1, x2, . . .), (y1, y2, . . .) in G∞ are orbit
equivalent if for some p,N ≥ 0, it holds that xn = yn+p for every
n ≥ N. Consider the measurable hull of the orbit equivalence re-
lation in G∞. That is, the σ-algebra of measurable subsets of G∞
which are unions of the equivalence classes, modulo Ð-null sets.

Definition
The associated quotient of G∞ by this measurable hull is
called the Poisson boundary of the random walk (G, µ).

Question: Is the Poisson boundary of (G, µ)
non-trivial? Can we describe it explicitly (in

terms of the geometry of G)?
The Poisson boundary has been completely described (under
conditions on µ) for many classes of groups. Notably: free
groups [Dynkin–Maljutov, Derrienic], hyperbolic groups [Ancona,
Kaimanovich, Chawla–Forghani–Frisch–Tiozzo], discrete subgroups
of semi-simple Lie groups [Furstenberg, Ledrappier], wreath
products [Erschler, Karlsson–Woess, Sava-Huss, Lyons–Peres],
Baumslag-Solitar groups [Kaimanovich, Cuno–Sava-Huss].

Entropy and non-triviality of the boundary

The entropy of µ is defined as H(µ) = –
∑
g∈G µ(g) log µ(g). The Avez

asymptotic entropy of (G, µ) is defined as hµ B limn→∞
H(µ∗n)
n .

The Entropy Criterion [Derrienic, Kaimanovich-Vershik]

The Poisson boundary of (G, µ) is trivial if and only if hµ = 0.

Using this together with methods of [Erschler ’04], we prove:

Proposition

Consider H a f.g. group and let µ be a non-degenerate prob-
ability measure on Shuffler(H). Suppose that H(µ) < ∞ and
that µ induces a transient random walk onH. Then the Pois-
son boundary of (Shuffler(H), µ) is non-trivial.

Stabilization of the permutation coordinate

Let G be a f.g. group and µ a probability measure on G. Recall that
µ has finite first moment if for some (equivalently, every) word
length ℓ on G, it holds that

∑
g∈G ℓ (g)µ(g) < ∞.

Denote by (Fn, Sn) the µ-random walk on Shuffler(H). We refer to
(Fn)n≥0 as the permutation coordinate.

Proposition

Let H be a f.g. group and consider the random walk
(Shuffler(H), µ). Suppose that µ has finite first moment and that µ
induces a transient random walk onH. Then a.s. the permutation
coordinate Fn, n ≥ 1, stabilizes to a limit function F∞ : H→ H.

Main Theorem: description of the boundary for Shuffler(Ú)

Consider a random walk
(
Shuffler(Ú), µ

)
, such that µ has finite first moment and in-

duces a transient random walk on Ú. Then the space of limit functions F∞ completely
describes the Poisson boundary of

(
Shuffler(Ú), µ

)
.

The conditional entropy criterion

There is a conditional version of the entropy
criterion, due to Kaimanovich. This allows not
only to determine the (non-)triviality of the
Poisson boundary, but also provide complete
descriptions of it.
Let G be a group and µ a probability measure
on G. Let us denote by I the sub-σ-algebra of
shift-invariant events of G∞.

Definition
A measure space (B,A,λ) endowed with a measurable
G-action is called a µ-boundary of G if there exists a
G-equivariant measurable map π : G∞ → B such that
• π–1(A) ⊆ I modulo Ð-null sets, and
•λ = π∗(Ð) satisfies µ∗λ = λ (that is, λ is µ-stationary).

The conditional entropy criterion [Kaimanovich]

Let µ be a probability measure on G with finite entropy, and consider B = (B,A, ν) a µ-
boundary of G. Suppose that for every ε > 0 there exists a random sequence of finite
subsets {Qn,ε}n≥1 of G such that
1. the random set Qn,ε is a measurable function with respect to A, for every n ≥ 1;

2. lim sup
n→∞

1
n

log |Qn,ε| < ε almost surely; and

3. lim sup
n→∞

Ð
(
Wn ∈ Qn,ε

)
> 0, where {Wn}n≥1 is the trajectory of the µ-random walk.

Then B coincides with the Poisson boundary of (G, µ).

The displacement of a permutation

Definition
Let σ ∈ FSym(Ú). The displacement of σ
is defined as Disp(σ) =

∑
k∈Ú |σ(k) – k|.

We will need the following lemma.
Lemma
Let ε > 0 and C > 0. Consider for n ≥ 1,
Dn B

{
σ ∈ FSym(Ú) |supp(σ) ⊆ [–εn, εn]

and Disp(σ) < Cεn
}
.

Then there is K ≥ 0 such that
lim sup
n→∞

1
n

log |Dn| < Kε.

Proof: Let us denote Jnε B [–εn, εn].
• For σ ∈ Dn and k ∈ Jnε, define

dk B |σ(k) – k| and sk =
{

1, if σ(k) ≥ k, and
–1, if σ(k) < k.

•Note that σ is completely determined by the values
{dk, sk | k ∈ Jnε}.
• There are 22εn+1 possible values for {sk | k ∈ Jnε}.
•On the other hand, the values {dk | k ∈ Jnε} satisfy∑

k∈Jnε dk < Cεn. Counting the possible values of {dk}
is equivalent to distributing identical balls into distin-
guishable boxes.

•We conclude that |Dn| ≤ 22εn+1 ·
(
(C + 2)εn + 1

Cεn

)
, and the

lemma follows from Stirling’s approximation.

Proof of the main theorem

• Let us assume that µ(f , x) > 0 implies x = +1 ∈ Ú.
That is, every increment adds 1 to the Ú coordi-
nate.
• Let ε > 0 and condition on the limit function
F∞. Denote by (Fn, Sn) the µ-random walk on
Shuffler(Ú).
•Our assumption on µ implies that Sn = n a.s.
Thus, we just need to estimate the value of Fn.
• The first moment hypothesis guarantees that
the permutation increments σn belong to
Sym([–εn, εn]), for large enough n. This implies
that the permutation coordinate Fn satisfies

Fn(x) =
{
x, if x > (1 + ε)n, and
F∞(x), if x < (1 – ε)n.

•Denote by ϕn the restriction of Fn to the inter-
val [(1 – ε)n, (1 + ε)n]. A rough estimate for the

possible values of ϕn is (2εn + 1)!. However, this
is not good enough to apply the conditional en-
tropy criterion.
• Solution: the displacement Disp(σn) of the per-
mutation increments σn has finite first moment
(as a random variable on Ú).
•Using this together with the law of large num-
bers, we get that Disp(ϕn) < Cεn, for some fixed
C > 0. This allows us to use the lemma above and
hence apply the conditional entropy criterion.
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