The Poisson boundary of lampshuffler groups

Eduardo Silva (eduardo.silva@ens.fr) – GAGTA 2023 École Normale Supérieure de Paris, France

Lampshuffler groups

Let H be a countable group and denote FSym(H) the group of finitary permutations of *H*. We define **the lampshuffler group** Shuffler(H) = FSym(H) \rtimes H,

where for every $h \in H$ and $f \in FSym(H)$, we have $(h \cdot f)(x) = hf(h^{-1}x)$, for $x \in H$.

Random walks and the Poisson boundary

Main Theorem: description of the boundary for $Shuffler(\mathbb{Z})$

Consider a random walk (Shuffler(\mathbb{Z}), μ), such that μ has finite first moment and induces a transient random walk on \mathbb{Z} . Then the space of limit functions F_{∞} completely describes the Poisson boundary of $(Shuffler(\mathbb{Z}), \mu)$.

The conditional entropy criterion

Let G be a countable group and μ a probability measure on G. Let $(g_i)_{i>1}$ be a sequence if i.i.d. random variables distributed according to μ . The μ -random walk on G is the process $W_0 = e_G$, and $W_n = g_1 g_2 \cdots g_n$, for $n \ge 1$.

Consider the space of infinite trajectories G^{∞} endowed with the probability measure \mathbb{P} , which is defined as the push-forward of $\mu^{\mathbb{N}}$ through the map

 $G^{\infty} \rightarrow G^{\infty}$

 $(g_1, g_2, g_3, \ldots) \mapsto (W_1, W_2, W_3, \ldots) := (g_1, g_1g_2, g_1g_2g_3, \ldots).$

Say that two trajectories (x_1, x_2, \ldots) , (y_1, y_2, \ldots) in G^{∞} are **orbit equivalent** if for some $p, N \ge 0$, it holds that $x_n = y_{n+p}$ for every $n \geq N$. Consider the measurable hull of the orbit equivalence relation in G^{∞} . That is, the σ -algebra of measurable subsets of G^{∞} which are unions of the equivalence classes, modulo \mathbb{P} -null sets.

Definition

The associated quotient of G^{∞} by this measurable hull is called the **Poisson boundary** of the random walk (G, μ) .

Question: Is the Poisson boundary of (G, μ) non-trivial? Can we describe it explicitly (in terms of the geometry of G)?

There is a conditional version of the entropy criterion, due to Kaimanovich. This allows not only to determine the (non-)triviality of the Poisson boundary, but also provide complete descriptions of it.

Let G be a group and μ a probability measure on G. Let us denote by \mathcal{I} the sub- σ -algebra of shift-invariant events of G^{∞} .

Definition

A measure space $(B, \mathcal{A}, \lambda)$ endowed with a measurable G-action is called a μ -**boundary** of G if there exists a G-equivariant measurable map $\pi: G^{\infty} \to B$ such that • $\pi^{-1}(\mathcal{A}) \subseteq \mathcal{I}$ modulo \mathbb{P} -null sets, and

• $\lambda = \pi_*(\mathbb{P})$ satisfies $\mu * \lambda = \lambda$ (that is, λ is μ -stationary).

The conditional entropy criterion [Kaimanovich]

Let μ be a probability measure on G with finite entropy, and consider **B** = (B, \mathcal{A}, ν) a μ boundary of G. Suppose that for every $\varepsilon > 0$ there exists a random sequence of finite subsets $\{Q_{n,\varepsilon}\}_{n>1}$ of G such that

1. the random set $Q_{n,\varepsilon}$ is a measurable function with respect to \mathcal{A} , for every $n \ge 1$;

2. $\lim_{n\to\infty} \sup \frac{1}{n} \log |Q_{n,\varepsilon}| < \varepsilon$ almost surely; and

3. lim sup $\mathbb{P}(W_n \in Q_{n,\varepsilon}) > 0$, where $\{W_n\}_{n \ge 1}$ is the trajectory of the μ -random walk. $n \rightarrow \infty$

Then **B** coincides with the Poisson boundary of (G, μ) .

The displacement of a permutation

Proof: Let us denote $J_{n\varepsilon} := [-\varepsilon n, \varepsilon n]$.

The Poisson boundary has been completely described (under conditions on μ) for many classes of groups. Notably: free groups [Dynkin-Maljutov, Derrienic], hyperbolic groups [Ancona, Kaimanovich, Chawla–Forghani–Frisch–Tiozzo], discrete subgroups of semi-simple Lie groups [Furstenberg, Ledrappier], wreath products [Erschler, Karlsson–Woess, Sava-Huss, Lyons–Peres], Baumslag-Solitar groups [Kaimanovich, Cuno–Sava-Huss].

Entropy and non-triviality of the boundary

The **entropy** of μ is defined as $H(\mu) = -\sum_{g \in G} \mu(g) \log \mu(g)$. The **Avez asymptotic entropy of** (G, μ) is defined as $h_{\mu} := \lim_{n \to \infty} \frac{H(\mu^{*n})}{n}$.

The Entropy Criterion [Derrienic, Kaimanovich-Vershik]

The Poisson boundary of (G, μ) is trivial if and only if $h_{\mu} = 0$.

Using this together with methods of [Erschler '04], we prove:

Proposition

Consider H a f.g. group and let μ be a non-degenerate probability measure on Shuffler(H). Suppose that $H(\mu) < \infty$ and that μ induces a transient random walk on H. Then the Pois-

Definition

Let $\sigma \in FSym(\mathbb{Z})$. The **displacement** of σ is defined as $Disp(\sigma) = \sum_{k \in \mathbb{Z}} |\sigma(k) - k|$.

We will need the following lemma.

Lemma
Let ε > 0 and C > 0. Consider for $n \ge 1$,
$D_n\coloneqq \Big\{\sigma\in FSym(\mathbb{Z})\ supp(\sigma)\subseteq [-arepsilon n,arepsilon n]$
and $Disp(\sigma) < C \varepsilon n$
Then there is $K \ge 0$ such that
$\limsup_{n\to\infty}\frac{1}{n}\log D_n < K\varepsilon.$

• For $\sigma \in D_n$ and $k \in J_{n\varepsilon}$, define $d_k := |\sigma(k) - k| \text{ and } s_k = \begin{cases} 1, & \text{if } \sigma(k) \ge k, \text{ and} \\ -1, & \text{if } \sigma(k) < k. \end{cases}$

• Note that σ is completely determined by the values $\{d_k, s_k \mid k \in J_{n\varepsilon}\}.$

- There are $2^{2\varepsilon n+1}$ possible values for $\{s_k \mid k \in J_{n\varepsilon}\}$.
- On the other hand, the values $\{d_k \mid k \in J_{n\varepsilon}\}$ satisfy $\sum_{k \in J_{n\varepsilon}} d_k < C\varepsilon n$. Counting the possible values of $\{d_k\}$ is equivalent to distributing identical balls into distinguishable boxes.

• We conclude that $|D_n| \le 2^{2\varepsilon n+1} \cdot \binom{(C+2)\varepsilon n+1}{C\varepsilon n}$, and the lemma follows from Stirling's approximation.

Proof of the main theorem

- Let us assume that $\mu(f, x) > 0$ implies $x = +1 \in \mathbb{Z}$. That is, every increment adds 1 to the \mathbb{Z} coordinate.
- Let $\varepsilon > 0$ and condition on the limit function F_{∞} . Denote by (F_n, S_n) the μ -random walk on

possible values of φ_n is $(2\varepsilon n + 1)!$. However, this is not good enough to apply the conditional entropy criterion.

• Solution: the displacement $Disp(\sigma_n)$ of the permutation increments σ_n has finite first moment

son boundary of (Shuffler(H), μ) is **non-trivial**.

Stabilization of the permutation coordinate

Let G be a f.g. group and μ a probability measure on G. Recall that μ has **finite first moment** if for some (equivalently, every) word length ℓ on G, it holds that $\sum_{g \in G} \ell(g) \mu(g) < \infty$. Denote by (F_n, S_n) the μ -random walk on Shuffler(H). We refer to $(F_n)_{n>0}$ as the **permutation coordinate**.

Proposition

Let H be a f.g. group and consider the random walk (Shuffler(H), μ). Suppose that μ has finite first moment and that μ induces a transient random walk on *H*. Then a.s. the permutation coordinate F_n , $n \ge 1$, stabilizes to a limit function $F_{\infty} : H \rightarrow H$.

Shuffler(\mathbb{Z}).

- Our assumption on μ implies that $S_n = n$ a.s. Thus, we just need to estimate the value of F_n .
- The first moment hypothesis guarantees that the permutation increments σ_n belong to Sym($[-\varepsilon n, \varepsilon n]$), for large enough *n*. This implies that the permutation coordinate F_n satisfies

$$F_n(x) = \begin{cases} x, & \text{if } x > (1 + \varepsilon)n, \text{ and} \\ F_\infty(x), & \text{if } x < (1 - \varepsilon)n. \end{cases}$$

• Denote by
$$\varphi_n$$
 the restriction of F_n to the interval $[(1 - \varepsilon)n, (1 + \varepsilon)n]$. A rough estimate for the

(as a random variable on \mathbb{Z}).

• Using this together with the law of large numbers, we get that $Disp(\varphi_n) < C \varepsilon n$, for some fixed C > 0. This allows us to use the lemma above and hence apply the conditional entropy criterion.

Acknowledgments: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement N^o 945322. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement N^o 725773).