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Wreath products

Let A, B be countable groups, and consider their wreath product
A ≀ B B

⊕
B
A⋊ B.

Here
⊕

B A = {f : B → A | f of finite support} and B acts on f ∈⊕
B A as follows: (b · f )(x) = f (b–1x), x, b ∈ B.

Random walks and the Poisson boundary

Let G be a countable group and µ a probability measure on G. Let
(gi)i≥1 be a sequence if i.i.d. random variables distributed accord-
ing to µ. The µ-random walk on G is the process W0 = eG, and
Wn = g1g2 · · · gn, for n ≥ 1.
Consider the space of infinite trajectories G∞ endowed with the
probability measure Ð, which is defined as the push-forward of µÎ
through the map

G∞ → G∞

(g1, g2, g3, . . .) ↦→ (W1,W2,W3, . . .) B (g1, g1g2, g1g2g3, . . .).
Say that two trajectories (x1, x2, . . .), (y1, y2, . . .) in G∞ are orbit
equivalent if for some p,N ≥ 0, it holds that xn = yn+p for every
n ≥ N. Consider the measurable hull of the orbit equivalence re-
lation in G∞. That is, the σ-algebra of measurable subsets of G∞
which are unions of the equivalence classes, modulo Ð-null sets.

Definition
The associated quotient of G∞ by this measurable hull is
called the Poisson boundary of the random walk (G, µ).

Question: Is the Poisson boundary of (G, µ)
non-trivial? Can we describe it explicitly (in

terms of the geometry of G)?
The Poisson boundary has been completely described (under con-
ditions on µ) for many classes of groups: free groups [Dynkin–
Maljutov, Derriennic], hyperbolic groups [Ancona, Kaimanovich,
Chawla–Forghani–Frisch–Tiozzo], discrete subgroups of semi-
simple Lie groups [Furstenberg, Ledrappier], wreath products
[Erschler, Karlsson–Woess, Sava-Huss, Lyons–Peres], Baumslag-
Solitar groups [Kaimanovich, Cuno–Sava-Huss].

Random walks on wreath products

Consider µ a probability measure on A ≀ B, and the associated ran-
dom walk {(fn, Xn)}n≥1. We call fn the lamp configuration at instant
n and Xn the position in the base group at instant n.

Definition [Stabilization]
We say that the lamp configuration stabilizes a.s. if for every
b ∈ B, there is N ≥ 1 such that fn(b) = fN(b) for all n ≥ N.

Theorem [Kaimanovich-Vershik ’83]
Suppose that µ is a non-degenerate finitely supported prob-
ability measure on A ≀B, that induces a transient random walk
onB. Then the lamp configuration stabilizes a.s., and the Pois-
son boundary is non-trivial.

The same conclusion holds for infinitely supported measures with
a finite first moment [Kaimanovich; Karlsson-Woess; Erschler].

Main Theorem [Frisch - S.]
Let A be a countable group and let µ be a probability measure on G =
A ≀ Úd, d ≥ 1. Suppose that
1.H(µ) =

∑
g∈G –µ(g) log(µ(g)) < ∞, and

2. the lamp configuration stabilizes a.s. along sample paths.
Then the Poisson boundary of (A ≀ Úd, µ) is the space of infinite lamp
configurations (AÚd, ν), where ν is the hitting measure.

Remarks and additional results

Previous results
The main theorem generalizes previous results under the following hypotheses:
• The projection of the random walk to Úd has non-zero mean and

∑
g∈G |g|µ(g) < ∞ [Kaimanovich

’01],
• d ≥ 5 and

∑
g∈G |g|3µ(g) < ∞ [Erschler ’11],

• d ≥ 3 and
∑
g∈G |g|2µ(g) < ∞ [Lyons-Peres ’21].

The two conditions of the main theorem hold in particular when
∑
g∈G |g|µ(g) and the projection to Úd

is transient. Moreover, we prove:

Theorem [Frisch - S.]
Let A,B be countable groups and let µ be a probability measure on G = A ≀ B. Suppose that
1.
∑
g∈G |g|µ(g) < ∞, and

2. the projection of the random walk to B is transient.
Then the Poisson boundary of (A ≀ B, µ) is the space of infinite lamp configurations (AB, ν), where ν is
the hitting measure.

The conditional entropy criterion

Definition
A probability space (X,λ) endowed with
a measurable G-action is called a µ-
boundary of G if there exists a measurable
map π : G∞ → X if
• π ◦ T = π , where T : G∞ → G∞ is the shift
map T{wn}n = {wn+1}n, and
•λ = π∗(Ð) (and then λ is µ-stationary, i.e.
µ ∗ λ = λ).

Remark: (X,λ) is a µ-boundary if and only if it is a
G-equivariant quotient of the Poisson boundary.

Definition
If X = (X,λ) is a µ-boundary, then for λ-a.e. ξ ∈ X
there exists the conditional probabilityÐξ, which
satisfies Ð =

∫
X Ð

ξ dλ(ξ).
Let us define

HX(wn) =
∫
X

∑
g∈G

–Ðξ(wn = g) log(Ðξ(wn = g)) dλ(ξ).

The conditional entropy criterion [Kaimanovich]

Let µ be a probability measure on G with H(µ) < ∞, and consider X = (X,λ) a µ-
boundary of G. Then

lim
n→∞

HX(wn)
n

= 0 ⇐⇒ X is the Poisson boundary of (G, µ).
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Proof of the main Theorem for a particular (degenerate) random walk on Ú/2Ú ≀ Úd
Consider A = Ú/2Ú, and µ supported on elements that move the person and/or modify lamps in the
semigroup {v ∈ Úd | vi ≥ 0, for i = 1, . . . ,d}, with H(µ) < ∞. Denote {(fn, Xn)}n the µ-random walk on
Ú/2Ú ≀ Úd. Let ε > 0.
• Abelian groups have a trivial Poisson boundary, and hence H(Xn) ≤ εn for n large enough.
•We can find R ≥ 1 and K > 0 such that the R-large increments βn(R) =

{
(Xj, gj) | if |gj| > R

}
satisfy

H(βn(R)) < εn + K, for n large enough.
• The base group Úd is partitioned into 3 sets: the first two sets are positions b where fn(b) = f∞(b) is
already stabilized, and positions b where βn(R) reveals the value fn(b).
• The third set is the positions where the lamp configuration is uncertain, which has size at most CRd.
•We conclude using the conditional entropy criterion, since

HAB(Xn, fn) ≤ H(Xn) + H(βn(R)) + HAB(fn | βn(R)) ≤ 2εn + K + CRd log(2).
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