The Poisson boundary of wreath products

Eduardo Silva (eduardo.silva@ens.fr) YGGT XII – University of Bristol, 2024 École Normale Supérieure de Paris, France

Wreath products

Let A, B be countable groups, and consider their wreath product

 $A \wr B := \bigoplus A \rtimes B.$

Here $\bigoplus_B A = \{f : B \to A \mid f \text{ of finite support}\}$ and *B* acts on $f \in \bigoplus_B A$ as follows: $(b \cdot f)(x) = f(b^{-1}x), x, b \in B$.

Random walks and the Poisson boundary

Main Theorem [Frisch - S.]

Let A be a countable group and let μ be a probability measure on G = $A \wr \mathbb{Z}^d$, $d \ge 1$. Suppose that 1. $H(\mu) = \sum_{g \in G} -\mu(g) \log(\mu(g)) < \infty$, and 2.the lamp configuration stabilizes a.s. along sample paths. Then the Poisson boundary of (A $\wr \mathbb{Z}^d, \mu$) is the space of infinite lamp configurations ($A^{\mathbb{Z}^d}$, v), where v is the hitting measure.

Let G be a countable group and μ a probability measure on G. Let $(g_i)_{i>1}$ be a sequence if i.i.d. random variables distributed according to μ . The μ -random walk on G is the process $W_0 = e_G$, and $W_n = g_1 g_2 \cdots g_n$, for $n \ge 1$.

Consider the space of infinite trajectories G^{∞} endowed with the probability measure \mathbb{P} , which is defined as the push-forward of $\mu^{\mathbb{N}}$ through the map

 $G^{\infty} \rightarrow G^{\infty}$

 $(g_1, g_2, g_3, \ldots) \mapsto (W_1, W_2, W_3, \ldots) := (g_1, g_1g_2, g_1g_2g_3, \ldots).$

Say that two trajectories (x_1, x_2, \ldots) , (y_1, y_2, \ldots) in G^{∞} are **orbit equivalent** if for some $p, N \ge 0$, it holds that $x_n = y_{n+p}$ for every $n \geq N$. Consider the measurable hull of the orbit equivalence relation in G^{∞} . That is, the σ -algebra of measurable subsets of G^{∞} which are unions of the equivalence classes, modulo \mathbb{P} -null sets.

Definition

The associated quotient of G^{∞} by this measurable hull is called the **Poisson boundary** of the random walk (G, μ) .

Question: Is the Poisson boundary of (G, μ) non-trivial? Can we describe it explicitly (in terms of the geometry of G)?

The Poisson boundary has been completely described (under con-

Remarks and additional results

Previous results

The main theorem generalizes previous results under the following hypotheses: • The projection of the random walk to \mathbb{Z}^d has non-zero mean and $\sum_{g \in G} |g| \mu(g) < \infty$ [Kaimanovich '01], • $d \ge 5$ and $\sum_{g \in G} |g|^3 \mu(g) < \infty$ [Erschler '11],

• $d \ge 3$ and $\sum_{g \in G} |g|^2 \mu(g) < \infty$ [Lyons-Peres '21].

The two conditions of the main theorem hold in particular when $\sum_{q \in G} |g| \mu(g)$ and the projection to \mathbb{Z}^d is transient. Moreover, we prove:

Theorem [Frisch - S.]

Let A, B be countable groups and let μ be a probability measure on G = A \wr B. Suppose that

1. $\sum_{g \in G} |g| \mu(g) < \infty$, and

2. the projection of the random walk to B is transient.

Then the Poisson boundary of (A \wr B, μ) is the space of infinite lamp configurations (A^B, v), where v is the hitting measure.

ditions on μ) for many classes of groups: free groups [Dynkin-Maljutov, Derriennic], hyperbolic groups [Ancona, Kaimanovich, Chawla-Forghani-Frisch-Tiozzo], discrete subgroups of semisimple Lie groups [Furstenberg, Ledrappier], wreath products [Erschler, Karlsson–Woess, Sava-Huss, Lyons–Peres], Baumslag-Solitar groups [Kaimanovich, Cuno–Sava-Huss].

Random walks on wreath products

Consider μ a probability measure on $A \wr B$, and the associated random walk $\{(f_n, X_n)\}_{n>1}$. We call f_n the lamp configuration at instant *n* and X_n the position in the base group at instant *n*.

Definition [Stabilization]

We say that the lamp configuration stabilizes a.s. if for every $b \in B$, there is $N \ge 1$ such that $f_n(b) = f_N(b)$ for all $n \ge N$.

Theorem [Kaimanovich-Vershik '83]

Suppose that μ is a non-degenerate finitely supported probability measure on A ≥ B, that induces a transient random walk on B. Then the lamp configuration stabilizes a.s., and the Poisson boundary is non-trivial.

The same conclusion holds for infinitely supported measures with a finite first moment [Kaimanovich; Karlsson-Woess; Erschler].

The conditional entropy criterion

Definition

A probability space (X, λ) endowed with a measurable G-action is called a μ **boundary** of *G* if there exists a measurable map $\pi: G^{\infty} \to X$ if

- $\pi \circ T = \pi$, where $T : G^{\infty} \to G^{\infty}$ is the shift map $T\{w_n\}_n = \{w_{n+1}\}_n$, and
- $\lambda = \pi_*(\mathbb{P})$ (and then λ is μ -stationary, i.e. $\mu * \lambda = \lambda$).

Remark: (X, λ) is a μ -boundary if and only if it is a G-equivariant quotient of the Poisson boundary.

Definition

If **X** = (X, λ) is a μ -boundary, then for λ -a.e. $\xi \in X$ there exists the conditional probability \mathbb{P}^{ξ} , which satisfies $\mathbb{P} = \int_{X} \mathbb{P}^{\xi} d\lambda(\xi)$.

Let us define

$$H_{\mathbf{X}}(w_n) = \int_X \sum_{g \in G} -\mathbb{P}^{\xi}(w_n = g) \log(\mathbb{P}^{\xi}(w_n = g)) d\lambda(\xi).$$

The conditional entropy criterion [Kaimanovich]

Let μ be a probability measure on G with $H(\mu) < \infty$, and consider **X** = (X, λ) a μ boundary of G. Then

$$\lim_{n\to\infty}\frac{\pi \mathbf{X}(w_n)}{n} = 0 \iff \mathbf{X} \text{ is the Poisson boundary of } (G,\mu).$$

Acknowledgments: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie

Skłodowska-Curie grant agreement N^o 945322, and from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement N^o 725773). This poster is based on joint work with Joshua Frisch.

Proof of the main Theorem for a particular (degenerate) random walk on $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z}^d$

- Consider A = $\mathbb{Z}/2\mathbb{Z}$, and μ supported on elements that move the person and/or modify lamps in the semigroup { $\mathbf{v} \in \mathbb{Z}^d \mid v_i \geq 0$, for i = 1, ..., d}, with $H(\mu) < \infty$. Denote { (f_n, X_n) }, the μ -random walk on $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z}^d$. Let $\varepsilon > 0$.
- Abelian groups have a trivial Poisson boundary, and hence $H(X_n) \leq \varepsilon n$ for n large enough.
- We can find $R \ge 1$ and K > 0 such that the *R*-large increments $\beta_n(R) = \{(X_j, g_j) \mid if |g_j| > R\}$ satisfy $H(\beta_n(R)) < \varepsilon n + K$, for *n* large enough.
- The base group \mathbb{Z}^d is partitioned into 3 sets: the first two sets are positions b where $f_n(b) = f_{\infty}(b)$ is already stabilized, and positions b where $\beta_n(R)$ reveals the value $f_n(b)$.
- The third set is the positions where the lamp configuration is uncertain, which has size at most CR^d .
- We conclude using the conditional entropy criterion, since

 $H_{A^B}(X_n, f_n) \leq H(X_n) + H(\beta_n(R)) + H_{A^B}(f_n \mid \beta_n(R)) \leq 2\varepsilon n + K + CR^d \log(2).$

