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Introduction

The goal of these notes is to explain how the space of reparametrizations of
the geodesic flow of a hyperbolic surface can be seen both as the Teichmüller
space of the weakly unstable foliation and as a subset of the character variety
of the fundamental group of the surface into the group of diffeomorphisms
of the circle. This work stemed out of many discussions Bertrand Deroin,
who I warmly thank here.

0.1. Higher Teichmüller theory. Our main motivation is do develop a
framework in which we hope to study higher Teichmüller theory with the
tools of classical Teichmüller theory. Before we get more precise, let us
briefly recall what these two terms cover.
Classical Teichmüller theory. Let Σ be a closed oriented surface of genus
g ≥ 2. The Teichmüller space of Σ is the space T (Σ) of complex structures
on Σ up to isotopy. It carries a properly discontinuous action of the mapping
class group of Σ, and the quotient under this action is the moduli space of
Riemann surfaces of genus g.

Teichmüller theory in a broad sense refers to the study of the geometry of
the Teichmüller space, which can be traced back to the XIXth century and
continued throughout the XXth century, with the works of Ahlfors, Bers, or
Wolpert among many others. In a more restrictive sense it could refer to
the work of the nazi mathematician Oswald Teichmüller, who proved that
T (Σ) is homeomorphic to R

6g−6 and constructed its complex structure by
studying optimal quasi-conformal maps between Riemann surfaces.

We know since Gauss that a complex structure on Σ is equivalent to a
conformal class of Riemannian metrics, and since Poincaré that every such
conformal class contains a unique metric of curvature −1. Thus the space
T (Σ) is canonically identified with the Fricke space F(Σ) of hyperbolic met-
rics on Σ up to isotopy.

Now, a hyperbolic metric on Σ gives an isometry from the universal cover

Σ̃ to the Poincaré half plane H
2 which is equivariant with respect to some

representation of the fundamental group Γ of Σ which is Fuchsian (i.e. dis-
crete and faithful). This gives an identification between F(Σ) and the space
Xfuchs(Γ,PSL(2,R) of Fuchsian representations up to conjugation.

What makes Teichmüller theory so rich is that the three avatars of the
Teichmüller space: T (Σ), F(Σ) and Xfuchs(Γ,PSL(2,R)) carry different geo-
metric structures that “miraculously” combine together. A stricking exam-
ple is the fact that Goldman’s symplectic form on Xfuchs(Γ,PSL(2,R) com-
bines with the complex structure of T (Σ) to form the Weil–Petersson metric,
which lives naturally on F(Σ).

Let us point out that some aspects of Teichmüller theory have been gen-
eralized to several infinite dimensional contexts, such as Teichmüller theory
of surface of infinite type, Teichmüller theory of foliations and universal Te-
ichmüller theory.
Higher Teichmüller theory. In the 90’s, Hitchin discovered that the space
X(Γ,PSL(n,R)) of representations of Γ into PSL(n,R) had a distinguished
connected component, that we will denote Xhit(Γ,PSL(n,R)) which coin-
cided with the space Xfuchs(Γ,PSL(2,R)) for n = 2, and which beared some
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resemblence with a “higher rank” analog of the Teichmüller space, in par-
ticular, it contains a Fuchsian locus isomorphic to T (Σ). This analogy was
strengthed by Labourie, who proved that representations in Hitchin’ compo-
nent have a very powerful dynamical property that he called Anosov property,
showing in particular that they are all discrete and faithful. Since then other
character varieties X(Γ, G) have been shown to contain connected compo-
nents consisting only of Anosov representations. This popularized the term
Higher Teichmüller theory to refer, depending on the context, to the study
of Hitchin or related components of character varieties, of more generally o
the study of Anosov representations of surface groups.

Several authors have been working on extending Teichmüller geometry
to these higher Teichmüller spaces. An important work in this direction is
that of Bridgeman–Canary–Labourie–Sambarino, who used the thermody-
namical formalism to construct a Riemannian metric on Xhit(Γ,PSL(n,R)),
which restricts to the Weil–Petersson metric on the Fuchsian locus. Let us
briefly sketch how their construction works: they show that one can em-
bed Xhit(Γ,PSL(n,R)) into the space of Hölder reparametrizations of the
geodesic flow of a hyperbolic metric on Σ. There lives the pressure metric,
which is roughly speaking the second fundamental form of the hypersurface
formed by reparametrizations of entropy 1.

What has been missing in higher Teichmüller theory is a higher rank
analog of the complex structure of T (Σ). An important open question is
for instance whether the pressure metric of Bridgeman–Canary–Labourie–
Sambarino is Kähler for some suitable complex structure on Xhit(Γ,PSL(n,R)).

Here we construct a complex structure on the space of Hölder reparametriza-
tions of the geodesic flow, by identifying it with some foliated Teichüller
space. We also develop a representation theoretic point of view on that
space, identifying it with the space of “Anosov representations” of Γ into
the group of diffeomorphisms of the circle. This that many aspects of the
classical Teichmüller theory could be generalized to this “highest Teichmüller
space” of reparametrizations.

We hope that some of these results will descend to interesting geometric
properties of higher Teichmüller spaces after a careful understanding of how
these umbed into the space of reparametrizations.

Let us advise the reader that the results presented here are not entirely
new. For the most part they seem to be rephrasings of results well-known
from hyperbolic dynamists. In particular, the general idea that certain mod-
uli spaces of dynamical systems could be identified with Teichmüller spaces
of foliations was introduced by Sullivan in []. In [], Cawley studies introduces
the Teichmüller space of Anosov automorphisms of the torus and carries a
study which is essentially covers what we do here when replacing the geodesic
flow of a hyperbolic surface by the suspension flow of a linear automorphism
of the torus. It was however very useful to the author writing the many
details of these correspondance that he couldn’t find elsewhere, and we hope
it will be useful to some readers too.
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0.2. Three avatars of a highest Teichmüller space. Let us now state
our results with more precision. We first introduce three avatars of what our
“highest Teichmüller space” will be.

0.2.1. Parametrizations of the geodesic foliation. Let Σ be a closed hyper-
bolic surface of genus at least 2. In the sequel, we denote by Γ its fundamental
group and by MΓ its unit tangent bundle. The geodesic flow of Σ is a flow
on MΓ. It turns out that the topological manifold MΓ and the foliation G
given by the orbits of the geodesic flow are “independent” of the choice of
the hyperbolic structure on Σ. We call G the geodesic foliation.

Closed leaves of the geodesic foliation correspond to closed geodesics on
Σ and are in one to one correspondance with conjugacy classes of primitive
elements in Γ. We denote by [Γ] this set.

A reparametrization of the geodesic flow is a continuous flow on MΓ which
is orbit equivalent to the geodesic flow. To avoid as much as possible refer-
ences to a background hyperbolic metric, we call such flows parametrizations
of the geodesic foliation.

Two parametrizations of the geodesic foliation are conjugate if they are
conjugate by a homeomorphism preserving each geodesic leaf. This equiva-
lence relation is not closed on the space of reparametrizations. We call two
parametrizations weakly conjugate if one is the uniform limit of conjugates
of the other. The space of parametrizations of the geodesic foliation modulo
weak conjugation is denoted

Par(G) .

The subset of equivalence classes of parametrizations which are Hölder reg-
ular is denoted by

Parh(G) .

If ϕ is a parametrization of the geodesic foliation, the period map of ϕ is
the function

Lϕ : [Γ] → R>0

associating to a closed geodesic γ the time ϕ takes to run through γ.
There is a natural “scaling” action of R>0 on Par(G). The topological

entropy htop(ϕ) of a flow ϕ provides a way to normalize parametrizations.
Indeed, the function htop is well-defined on Par(G), continuous, positive and
homogeneous of degree −1 with respect to the scaling action. Thus every
parametrization ϕ admits a unique scaling of entropy 1. We denote by

Par1(G)

the space of parametrizations of entropy 1 up to weak equivalence, and by
Parh1(G) its intersection with Parh(G).

0.2.2. Anosov actions on the circle. Recall that the hyperbolic surface Σ
is isometric to the quotient j(Γ)\D where D denotes Poincaré’s hyperbolic
disc and j : Γ → Isom+(D) is a Fuchsian representation (i.e. discrete and
faithful). The representation j provides an analytic action of Γ on the unit
circle S1 = ∂D. This action has maximal Euler class, i.e. the twisted product
bundle Σ×j S

1 is isomorphic to the unit tangent bundle of Σ.
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Let Diff(S1) denote the group of diffeomorphisms of S
1 of class C1 and

Diffh(S1) the subgroup of diffeomorphisms with Hölder derivatives. We en-
dow Diff(S1) with the C1 topology. By a theorem of Matsumoto, a morphism
ρ : Γ → Diff(S1) has maximal Euler class if and only if it is semi-conjugate
to a Fuchsian representation j. We call ρ an Anosov representation into
Diff(S1) or an Anosov action on S

1 if it is conjugate to a Fuchsian repre-
sentation j via a bi-Hölder homeomorphism. We will see in Section ?? that
this is equivalent for the action of ρ to be topologically conjugated to j and
expanding (see for instance [1] for the relevance of expanding properties in
one dimensional dynamics).

Let ρ be an Anosov action on the circle. for every γ ∈ Γ, the diffeo-
morphism ρ(γ) has a unique attracting fixed point on S

1 that we denote
abusively γ+. The derivative of ρ(γ) at its attracting fixed point is less than
1 and is invariant by conjugation of γ by a diffeomorphism. We define the
period map of ρ as the map

Lρ : [Γ] → R>0

[γ] 7→ − log (ρ(γ)′(γ+)) .

The space Hom(Γ,Diff(S1)) of morphisms from Γ to Diff(S1) inherits a
topology from that of Diff(S1). The group Diff(S1) acts continuously on
Hom(Γ,Diff(S1)) by conjugation. This action may not be proper. We denote
by X(Γ,Diff(S1)) the largest Hausdorff quotient of Hom(Γ,Diff(S1))/Diff(S1).
We also denote by Xan(Γ,Diff(S1)) the open subset of equivalence classes of

Anosov representations, and by Xan(Γ,Diffh(S1)) the subset of equivalence

classes of Anosov representations with values in Diffh(S1).

0.2.3. Teichmüller space of the weakly stable foliation. The geodesic flow of a
hyperbolic surface is a well-known example of an Anosov flow. In particular,
it has a weakly unstable foliation Wu of dimension 2, which contains the ge-
odesic foliation. This foliation is “independent” of the choice of a hyperbolic
structure.

A foliated Riemannian metric g on Wu is the data of a scalar product
on each tangent space to Wu which is of class C∞ along the leaves and
varies transversally continuously for the C∞ topology. We call it transversally
Hödler if there exists α > 0 such that the metrics on two ε-close leaves are
εα-close for the C∞ topology.

Two metrics g and h are conformally equivalent if there is a continuous
function σ on MΓ such that h = eσg. A foliated conformal structure on
Wu is a conformal equivalence class of Riemannian metrics on Wu. It is
transversally Hölder if it admits a transversally Hölder representative.

A foliated homotopy (ht)0≤t≤1 is a continuous family of continuous self
maps of MΓ preserving the leaves of Wu and such that h0 = Id. Two
foliated conformal structures [g1] and [g2] are homotopic if there exists a
foliated homotopy (ht) such that h∗1[g2] = g1.

Let [g] be a conformal structure on Wu, and let [γ] be a closed geodesic.
The weakly unstable leaf containing [γ] is conformally equivalent (for the
conformal structure [g]) to l\D for some hyperbolic isometry l. The period
map of [g] is the map

L[g] : [Γ] → R>0
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associating to γ the translation length of l. The period map is homotopy
invariant.

The Teichmüller space of the foliation Wu is the space of foliated con-
formal structures on Wu modulo homotopy. We denote it by T (Wu). We
denote by T h(Wu) the subset of homotopy classes of transversally Hölder
conformal structures.

Teichmüller spaces of 2-dimensional foliations were introduced by Sullivan
in []. There, he proves that those Teichmüller spaces (in particular T (Wu)
have the geometry of a (possibly infinite dimensional) complex manifold
biholomorphic to a bounded domain in a complex Banach space.

Note that we could imagine several variations in the definition of a Te-
ichmüller space. For instance, replacing homotopy equivalence by isotopy
equivalence, or weakening the leafwise regularity of our conformal struc-
tures. In the classical theory, all these definitions are equivalent thanks to
the following classical theorems:

Theorem 0.1. Any two smooth structures on a topological surface are iso-
topic.

Theorem 0.2. Two homeomorphisms of a surface which are homotopic are
isotopic.

We do not know whether the equivalent results exist for 2-dimensional
foliations and try to avoid entering into those details here.

0.3. Main results. The purpose of these notes is to clarify the relation be-
tween the three spaces described above. This is summarized in the following
theorems:

Theorem 0.3. There exists a continuous map

DF : Xan(Γ,Diff(S1)) → Par1(G)

such that

LDF(ρ) = Lρ

for all ρ. This map is a surjective and restricts to a bijection between
Xan(Γ,Diffh(S1)) and Parh1(G).

Theorem 0.4. There exists a continuous map

CF : T (Wu) → Par1(G)

such that

LCF([g]) = L[g]

for all [g]. This map restricts to a bijection between T h(Wu) and Parh1(G).

Note that the sets Parh1(G) and T h(Wu) are respectively dense in Par1(G)
and T (Wu). By Theorem 0.4, one can thus see Par1(G) and T (Wu) as two
natural completions of the space of Hölder parametrizations. We do not
know whether the two completions coincide (i.e. whether CF is a bijection).
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1. Cocycles, cohomology and parametrizations

In this section, we gather some classical results about cocycles along a con-
tinuous flow and their relation with reparametrizations of that flow. This
leads to the description of the space Par(G) as a convex cone in an infinite
dimensional Banach space. This description seems to date back to Bowen.

In order to stick to our objective, we restrict ourselves to reparametriza-
tions of the geodesic flow of a closed negatively curved surface. However, all
the results here could work in the very general setting of parametrizations
of a 1-dimensional lamination, except for a few results which use the density
of closed orbits and hold for any topologically transitive Anosov flow.

1.1. Geodesic, stable and unstable foliation. In all the paper, Σ de-
notes a closed oriented surface of genus at least 2 and Γ its fundamental
group. Recall that Γ is hyperbolic in the sense of Gromov. its boundary at
infinity ∂∞Γ is a topological circle with a canonical Hölder structure. Let

M̃Γ denote the set of cyclically oriented triples of distinct points of ∂∞Γ.

The group Γ acts properly discontinuously and cocompactly on M̃Γ. We
denote the quotient by MΓ.

For every y 6= z ∈ ∂∞Γ, let us denote by W̃ s(z) the set {(x−, xt, x+) ∈

M̃Γ | x+ = z}, by W̃ u(y) the set {(x−, xt, x+) ∈ M̃Γ | x− = y} and by

G̃(y, z) the set W̃ u(y) ∩ W̃ s(z). Note that the cyclic order on ∂∞Γ induces

an order on G̃(y, z) given by

(y, t, z) ≤ (y, s, z) ⇐⇒ (y, t, s, z) are cyclically ordered.

The sets G̃(y, z) are the leaves of a one dimensional Hölder foliation G̃ of

M̃Γ which is preserved by the action of Γ and thus induces a Hölder foliation

G of MΓ that we call the geodesic foliation. Similarly, the sets W̃s(z) and

W̃u(y) respectively induce Hölder foliations of MΓ of dimension 2 called the
weakly stable and weakly unstable foliations and denoted Ws and Wu.

Remark 1.1. If x is a point in MΓ, we will denote by G(x), Ws(x) and Wu(x)
the geodesic, stable and unstable leaves passing through x.

We can now define a (continuous) parametrization of the geodesic foliation
to be a continuous flow on MΓ whose orbits are the leaves of the geodesic
foliation. More precisely:

Definition 1.2. A continuous parametrization of the geodesic foliation G
on MΓ is a continuous continuous flow (ϕt)t∈R on MΓ whose orbits are the
leaves of the foliation G and which respects the orientation of G.

The parametrization (ϕt) is Hölder if each ϕt is bi-Hölder the map (t, x) →
(t, ϕt(x)) is a Hölder homeomorphism of MΓ × R.

Remark 1.3. A parametrization ϕ lifts to a Γ-equivariant flow on M̃Γ that
we still denote ϕ. More generally, any object on MΓ which lifts naturally

to M̃Γ will called the same when lifted. This will avoid some unnecessarily
heavy notations.
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Every non-trivial element γ ∈ Γ has a unique attracting fixed point γ+ ∈
∂∞Γ and a unique repelling repelling fixed point γ− ∈ ∂∞Γ\{γ+}.

Let x ∈ ∂∞Γ be a point on the geodesic G(γ−, γ+). We define Lϕ(γ) as
the positive number t such that

(γ−, γ · x, γ+) = ϕt(γ−, x, γ+)) .

One easily verifies that Lϕ̃(γ) does not depend on the choice of x, is invariant
by conjugation of γ and verifies Lϕ(γ

n) = nLϕ(γ).

Definition 1.4. Let ϕ be a continuous parametrization of the geodesic fo-
liation. The map

Lϕ : [Γ] → R>0

is called the period map of ϕ.

Definition 1.5. Two continuous parametrizations (ϕt) and (ψt) of the ge-
odesic foliation are called conjugate if there exists a continuous function
f : MΓ → R such that the flows (ϕt) and (ψt) are conjugated by the home-
omorphism

h : x 7→ ϕf(x)(x).

One can provide the space of all parametrizations of the geodesic folia-
tion with the topology of uniform convergence on compact sets of MΓ × R.
Conjugation of flows defines an equivalence relation on this space. We define
Par(G) as the quotient of the space of all parametrizations by the closure of
this equivalence relation. The main purpose of this section is to describe the
geometry of Par(G).

1.1.1. Main example: geodesic flow of a negatively curved surface. Assume
Σ is endowed with a Riemannian metric of negative curvature. Then there
is a well-known identification of MΓ with T1Σ, the unit tangent bundle to
Σ, through which the geodesic flow is a parametrization of the geodesic
foliation. The geodesic flow is Anosov and the foliations Ws and Wu are
precisely the weakly stable and unstable foliations of this Anosov. Though
different negatively curved metrics give rise to different flows [2], these flows
are orbit equivalent and have the same weakly stable and unstable foliations.

Instead of considering parametrizations of the geodesic foliation, we could
have fixed a negatively curved metric on Σ and considered reparametriza-
tions of its geodesic flow (this approach is more common in the litterature).
However, for our purpose, we prefer to emphasize that we have no privi-
leged choice of a negatively curved metric or parametrization of the geodesic
foliation.

1.2. Cocycles. Let us fix a continuous parametrization ϕ of the geodesic
foliation. We recall here a few classical facts about continuous cocycles
along ϕ.

Definition 1.6. A continuous cocycle along ϕ is a continuous function

c :MΓ × R → R

such that
c(x, t+ s) = c(x, t) + c(ϕtx), s)
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for all x ∈MΓ and all t, s ∈ R.

The following examples relate cocycles to continuous functions on one side
and to reparametrizations of ϕ on the other side.

Example 1.7. Let f :MΓ → R be a continous function. Then the function

cf : MΓ × R → R

(x, t) 7→
∫ t
0 f(ϕ(u, x))du

is a cocycle. We call such a cocycle an integral cocycle.

Example 1.8. Let ψ be another parametrization of the geodesic foliation.
One can associate to the pair (ϕ,ψ) the cocycle cϕ→ψ along ϕ defined by

ψcϕ→ψ(x,t)(x) = ϕt(x) .

In other words, cϕ→ψ(x, t) is the time taken by the flow ψ to move from x
to ϕt(x). We call such a cocycle a reparametrization cocycle. When the base
flow ϕ is fixed once and for all, we simply denote this cocycle by cψ.

The space Z(ϕ) of cocycles along ϕ is a Banach space for the norm

‖c‖∞ = sup
0≤t≤1

sup
x∈MΓ

|c(x, t)| .

Definition 1.9. A Livšic coboundary is a cocycle c for which there exists a
continuous function F such that

c(x, t) = F (ϕt(x))− F (x)

for all x ∈MΓ and t ∈ R. Two cocycles c1 and c2 are called Livšic cohomol-
ogous if c1 − c2 is a Livsic coboundary.

The following propositions reduce the study of cohomology classes of co-
cycles to that of integral cocycles.

Proposition 1.10. Let cf be the integral cocycle associated to a continuous
function f . Then cf is a Livsic coboundary if and only if f is a derivative
along ϕ, i.e. there exists a continuous function F : MΓ → R such that
1
ε (F (ϕε(x))− F (x)) converges uniformly to f .

Proposition 1.11. Let c be a cocycle along ϕ and let T be a positive number.
Then c is Livsic cohomologous to the integral cocycle cT associated to the
function x 7→ 1

T c(x, T ). In particular, every cocycle is Livsic cohomologous
to an integral cocycle.

Proof. Let c be a cocycle along ϕ. Define

F : x 7→

∫ T

0
c(x, u)du .
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For all x ∈MΓ and all t ∈ R, we have
∫ t

0
c(ϕu(x), T )dt =

∫ t

0
c(x, u + T )− c(x, u)du

=

∫ t+T

t
c(x, u)du−

∫ T

0
c(x, u)du

=

∫ T

0
c(x, t+ u)du−

∫ T

0
c(x, u)du

=

∫ T

0
c(x, t) + c(ϕt(x), udu−

∫ T

0
c(x, u),du

= Tc(x, t) + F (ϕt(x))− F (x) .

The integral cocycle associated to the function x 7→ c(x, T ) is thus cohomol-
ogous to Tc. �

The space of Livsic coboundaries is not closed in Z(ϕ). We call weak
coboundary a uniform limit of Livsic coboundaries and we say that two co-
cycles are weakly cohomologous if they differ by a weak coboundary. We
denote by B(ϕ) the space of weak coboundaries and by H1(ϕ) the quotient
Z(ϕ)/B(ϕ) with the Banach norm

‖[c]‖
def
= inf

c′∼c

∥∥c′
∥∥
∞

.

Let Z ′(ϕ) be the space of continuous functions on MΓ with the supremum
norm and B′(ϕ) ⊂ Z ′(ϕ) the closure of the subspace of functions which are
derivatives along ϕ. Propositions 1.10 and 1.11 imply the following

Corollary 1.12. The space H1(ϕ) is isometric to the quotient Z ′(ϕ)/B′(ϕ)
with the quotient norm

‖[f ]‖ = inf
g∈B′(ϕ)

‖f − g‖∞ .

Proof. Consider the linear maps

A : Z ′(ϕ) → Z(ϕ)
f 7→ cf

and
B : Z(ϕ) → Z ′(ϕ)

c 7→ c(·, 1) .

A and B are both continuous of operator norm at most 1, and are inverses
up to coboundaries by Propositions 1.10 and 1.11. They thus factor to
isometries between Z ′(ϕ)/B′(ϕ) and Z(ϕ)/B(ϕ). �

1.3. The dual space of invariant measures. Recall that the dual of the
space Z ′(ϕ) is the space of signed Borel measures on MΓ, i.e. linear forms
of the form

µ : f 7→

∫

MΓ

fdµ+ −

∫

MΓ

fdµ−

where µ+ and µ− are finite Borel measures on MΓ. It contains the closed
subspace of signed Borel measures invariant by the flow ϕ, which are char-
acterized by the following proposition:
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Proposition 1.13. A signed Borel measure µ on MΓ is ϕ-invariant if and
only if

µ(f) = 0

for all f ∈ B′(ϕ).

The dual statement readily follows from the Hahn–Banach theorem:

Corollary 1.14. Let f be a continuous function on MΓ. Then f belongs to
B′(ϕ) if and only if µ(f) = 0 for all invariant finite Borel measure µ.

It follows that the space of invariant signed Borel measures on MΓ is
isomorphic to the dual of H1(ϕ). This also gives a characterization of the
quotient norm on H1(ϕ). For every continuous function f and every T > 0,
define

IT f : x 7→
1

T

∫ T

0
f(ϕt(x))dt =

1

T
cf (x, T ) .

Note that IT f is Livsic cohomologous to f by Proposition 1.11. Let M1(ϕ)
denote the space of ϕ-invariant probability measures on MΓ.

Lemma 1.15. Let f be a continuous function on MΓ. Then the following
equalities hold:

inf
g∈B′

sup
MΓ

(f − g) = sup
µ∈M1(ϕ)

∫

MΓ

fdµ = lim
T→+∞

sup
MΓ

IT f .

Corollary 1.16. Let c be a continuous cocycle. Then we have the equalities

‖[c]‖ = sup
µ∈M1(ϕ)

|µ(c)| = lim
T→+∞

1

T
‖c(·, T )‖∞ ,

where µ(c) =
∫
fdµ for any function f such that c is cohomologous to cf .

Proof of Lemma 1.15. Note first that the function

T 7→ sup
x∈MΓ

∫ T

0
f(ϕt(x))dx

is subadditive. Thus supMΓ
IT f converges as T goes to +∞.

The inequality

sup
µ∈M1(ϕ)

∫

MΓ

fdµ ≤ inf
g∈B′(ϕ)

sup
MΓ

(f − g)

follows for the inequality
∫
MΓ

fdµ ≤ supMΓ
f and the fact that

∫
MΓ

gdµ = 0

for g ∈ B′(ϕ).
The inequality

inf
g∈B′(ϕ)

sup
MΓ

(f − g) ≤ lim
T→+∞

sup
MΓ

IT f

follows from the fact that IT f is cohomologous to f for all T .
Finally, let xT be a point where IT f achieves its supremum and consider

the probability measure µT defined by
∫

MΓ

gdµT =
1

T

∫ T

0
g(ϕt(xT ))dt .



12 NICOLAS THOLOZAN

Let ν be an accumulation point of µT for the vague topology. Then ν is
ϕ-invariant and we have

∫

MΓ

fdν = lim
T→+∞

IT f(xT ) = lim
T→+∞

sup
MΓ

IT f .

We conclude that

lim
T→+∞

sup
MΓ

IT f ≤ sup
µ∈M1(ϕ)

∫
fdµ .

�

Proof of Corollary 1.16. By Proposition 1.11, we can assume without loss of
generality that c is the integral cocycle associated to a continuous function cf .

Set N(f) = infg∈B′ supMΓ
(f − g). By Lemma 1.15, we have

max(N(f), N(−f)) = sup
µ∈M1(ϕ)

|µ(c)| = lim
T→+∞

1

T
‖c(·, T )‖∞ .

On one side, we have

max(N(f), N(−f)) ≤ inf
g∈B′

‖f − g‖∞ = ‖[c]‖ .

On the other side, we have

lim
T→+∞

1

T
‖c(·, T )‖∞ ≥ ‖[c]‖

since 1
T c(·, T ) is cohomologous to f . Hence ‖[c]‖ = max(N(f), N(−f)). �

1.4. Positive cocycles and reparametrizations. We still fix a parametriza-
tion ϕ of the geodesic foliation. Let ψ be another parametrization. Recall
that the reparametrization cocycle cψ along ϕ is defined by the relation

(1) ψcϕ→ψ(x,t)
(x) = ϕt(x) .

Such a cocycle is positive, i.e. cϕ→ψ(x, t) > 0 for t > 0. Conversely, if c is
a positive cocycle, then the relation (1) defines a unique parametrization ψ
such that cϕ→ψ = c.

Proposition 1.17. Two parametrizations ψ1 and ψ2 are conjugate if and
only if their reparametrization cocycles are Livsic cohomologous.

Proof. Let h be a geodesic preserving homeomorphism such that

h(ψ1(t, x)) = ψ2(t, h(x)) .

Define F (x) as the time s such that

ψ2(s, x) = h(x) .

We then have

ψ2(cψ2(x, t) + F (ϕ(t, x)), x) = ψ2(F (ϕ(t, x)), ϕ(t, x)) by definition of cΨ2

= h(ϕ(t, x)) by definition of F

= h(ψ1(cψ1(x, t), x) by definition of cψ1

= ψ2(cψ1(x, t), h(x))

= ψ2(cψ1(x, t) + F (x), x) .
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Therefore,

cψ1(x, t)− cψ2(x, t) = F (ϕ(x, t)) − F (x) .

Conversely, assume there exists a continuous function F such that

cψ1(x, t)− cψ2(x, t) = F (ϕ(x, t)) − F (x) .

Set h(x) = ψ2(F (x), x). Given x ∈ MΓ and s ∈ R, let t be such that
cψ1(x, t) = s. We then have

ψ2(s, h(x)) = ψ2(s+ F (x), x)

= ψ2(cψ1(x, t) + F (x), x)

= ψ2(cψ2(x, t) + F (ϕt(x)), x) by definition of F

= ψ2(F (ϕt(x)), ϕt(x)) by definition of cψ2

= h(ϕt(x)) by definition of h

= h(ψ1(s, x)) .

Symmetrically, the map g : x 7→ ψ1(−F (x), x) satisfies

ψ1s ◦ g = g ◦ ψ2s .

One can verify that h and g are inverses of each other. They thus provide
the required conjugation. �

Definition 1.18. We call two parametrizations ψ1 and ψ2 weakly conjugate
if ψ2 is a uniform limit of conjugates of ψ1. (Here and elsewhere, uniform
limit means limit for the compact-open topology.)

One easily verifies that the map ψ 7→ cψ is a homeomorphism from the
space of parametrizations of the geodesic foliation (with the totoplogy of
uniform convergence on compact sets) to the space of positive cocycles. Thus
Proposition 1.17 implies the following corollary:

Corollary 1.19. Two parametrizations ψ1 and ψ2 are weakly conjugate if
and only if their reparametrization cocycles are weakly cohomologous. More-
over, the map

[ψ] 7→ [cψ ]

Is a homeomorphism from the space Par(G) of weak conjugacy classes of
parametrizations to the domain H1

+(ϕ) of weak cohomology classes of positive
cocycles.

Remark 1.20. This corollary asserts in particular that weak conjugacy of
flows is indeed an equivalence relation, and that Par(G) is the largest Haus-
dorff quotient of the space of parametrizations up to (strong) conjugacy.

The domain H1
+(ψ) is a convex open cone in H1

+(ψ). The following propo-
sition gives further characterizations of it:

Proposition 1.21. Let c be a cocycle along ϕ. The following are equivalent:

(1) c is cohomologous to a positive cocycle,
(2) c is cohomologous to the integral cocycle cf associated to a positive

function f ,
(3) There exists T > 0 such that c(x, T ) is positive for all x,
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(4) There exist constants A,B > 0 such that

c(x, t) ≥ At−B

for all x ∈MΓ and all t ≥ 0,
(5) µ(c) > 0 for all µ ∈ M1(ϕ),
(6) There exists a constant A > 0 such that µ(c) > A for all µ ∈ M1(ϕ).

We call a cocycle satisfying these properties and expanding cocycle.

Proof. The equivalence between (1) and (2) follows from Proposition 1.11.
The equivalence between (2), (3) and (6) follows from applying Lemma 1.15
to the cocycle −c. The equivalence between (5) and (6) follows from the
vague compactness of M1(ϕ). Finally, the equivalence between (3) and (4)
follows from

c(x, nT ) =
n−1∑

k=0

c(ϕkT (x), T ) .

�

Corollary 1.19 gives a homeomorphism

Idϕ : Par(G) → H1
+(ϕ) ,

depending on the choice of a background parametrization ϕ. Let us now de-
scribe the coordinate changes with respect to different background parametriza-
tions.

Let ϕ1, ϕ2 be two parametrizations of the geodesic foliation. Given a
cocycle c along ϕ1, define

c ◦ cϕ2→ϕ1 : MΓ × R → R

(x, t) 7→ c(x, cϕ2→ϕ1(x, t)) .

Proposition 1.22. The following holds:

(1) If c is a cocycle along ϕ1, then c ◦ cϕ2→ϕ1 is a cocycle along ϕ2.
(3) If c and c′ are cocycles along ϕ, then c ◦ cϕ2→ϕ1 and c′ ◦ cϕ2→ϕ1 are

Livsic (resp. weakly) cohomologuous if an only if c and c′ are Livsic
(resp. weakly) cohomologuous.

(4) If ψ is another parametrization, then

cϕ1→ψ ◦ cϕ2→ϕ1 = cϕ2→ψ .

It follows that the map c 7→ c ◦ cϕ2→ϕ1 induces a map Iϕ1→ϕ2 : H1(ϕ1) →
H1(ϕ2). This map is an isomorphism of Banach spaces and maps H1

+(ϕ1)

to H1
+(ϕ2). Finally, we have

Idϕ2 ◦ Id
−1
ϕ1

= Iϕ1→ϕ2 .

In conclusion, the space Par(G) has the structure of a convex Banach cone.
More precisely, it is endowed with a family of homeomorphisms to open con-
vex cones in Banach spaces whose transition maps are linear isomorphisms.
We all the (Iϕ) the affine charts of Par(G).
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1.5. Period map for cocycles. We fix again a background parametriza-
tion ϕ. Recall that closed leaves in G are in bijection with primitive conjugacy
classes in Γ, and that for [γ] ∈ [Γ], the period Lϕ(γ) is the time taken by the
flow ϕ to go through γ.

Definition 1.23. Let c be a cocycle along ϕ. The period map of c is the
map

Lc : [Γ] → R

γ 7→ c(xγ , Lϕ(γ))

where xγ is any point on the closed geodesic γ.

Example 1.24. If cψ is the reparametrization cocycle associated to ψ, then

Lcψ = Lψ .

One easily verifies that Lc only depends on the weak cohomology class
of c. In fact, we have

Proposition 1.25. For every γ ∈ [Γ] and every c ∈ Z(ϕ),

Lc(γ) = Lϕ(γ)δγ(c)

where δγ is the ϕ-invariant probability measure supported on the closed geo-
desic γ.

The closing lemma for the geodesic flow of a hyperbolic surface has the
following consequence:

Lemma 1.26. The convex hull of the (δγ)γ∈[Γ] is dense in M1(ϕ) for the
vague topology.

Thus, Proposition 1.21 and 1.16 imply the following

Corollary 1.27 (Corollary of Proposition 1.21). A cocycle c is expanding if
and only if there exists a constant A > 0 such that

Lc ≥ ALϕ .

Corollary 1.28 (Corollary of Corollary 1.16). Two cocycles c and c′ along
ϕ are weakly cohomologous if and only if Lc ≡ 0.

Note that this last corollary is strengthened by Livšic’s theorem under a
Hölder regularity hypothesis, see Theorem 6.4.

1.6. Scaling and the space PPar(G). Let ψ be a parametrization of the
geodesic foliation and λ ∈ R>0. The scaled flow ψλ is defined by

ψλt (x) = ψt/λ(x) .

Scaling defines an action of R>0 on the space Par(G). We denote by PPar(G)
the quotient of Par(G) by this action and call it the projective space of
parametrizations.

Let ϕ be a background parametrization of G. We then have

cϕ→ψλ = λcϕ→ψ .

In other words, the affine chart Iϕ : Par(G) → H1(ϕ) conjugates the scaling
action with the scalar multiplication. The space PPar(G) is thus an open
domain in the projective space over a Banach space.
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Proposition 1.29. The domain PPar(G) ⊂ PH1(ϕ) is a weakly proper
convex domain, i.e. it intersects every projective line in a proper interval
(and interval which is not the complement of a point).

Remark 1.30. In this infinite dimensional setting, “weakly proper” is weaker
that the stronger property of being bounded in some affine chart.

Recall that a (weakly) proper convex domain Ω carries a natural projec-
tively invariant metric called the Hilbert metric, defined by

d(x, y) =
1

2
log[a, x, b, y] ,

where a and b are the endpoints of the intersection of Ω with the projective
line spanned by x and y, and [a, x, b, y] the cross-ratio of those four points.
We call the Hilbert metric on PPar(G) the Hilbert–Thurston distance be-
cause, as stated in the next theorem, it is a symmetrization of the distance
introduced by Thurston on the Teichmüller space. We denote it by dHT .

Theorem 1.31. Let ϕ and ψ be two parametrizations of the geodesic foli-
ation. The Hilbert–Thurston distance between (the projective classes of) ϕ
and ψ is given by

dHT (ϕ,ψ) =
1

2

(
log sup

γ∈[Γ]

Lψ(γ)

Lϕ(γ)
+ log sup

γ∈[Γ]

Lϕ(γ)

Lψ(γ)

)
.

The proofs of both Proposition 1.29 and Theorem 1.31 follow from the
following computation:

Lemma 1.32. Let f and g be two points in H1
+(ϕ). Assume that we don’t

have Lf < Lg. Then

sup{λ ≥ 0 | (1− λ)f + λg ∈ H1
+(ϕ)} =

1

1− infγ∈Γ
Lg(γ)
Lf (γ)

.

Proof. For some λ > 0, we have

L(1−λ)f+λg = Lf + λ(Lg − λLf )

= Lf (1− λ(1−
Lg
Lf

))

Assume first that

λ ≤
1− ε

1−
Lg(γ)
Lf (γ)

for all γ ∈ [Γ] such that Lg(γ) < Lf (γ). For some γ ∈ Γ, if Lg(γ) ≥ Lf (γ),
then

L(1−λ)f+λg(γ) ≥ Lf (γ) ,

and otherwise,

L(1−λ)f+λg(γ) ≥ εLf (γ) .

In any case, we get

L(1−λ)f+λg ≥ εLf ≥ ε′Lϕ ,

hence (1− λ) + λg belongs to H1
+(ϕ) by Corollary 1.27.
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Assume now that there exists γ such that Lg(γ) < Lf (γ) and

λ >
1

1−
Lg(γ)
Lf (γ)

.

For this γ we then have

L(1−λ)f+λg(γ) < 0 .

Thus (1− λ)f + λg does not belong to H1
+(ϕ). We conclude that

sup{λ | (1− λ)f + λg ∈ H1
+(ϕ)} = inf

γ∈[Γ],Lg(γ)<Lf (γ)

1

1−
Lg(γ
Lf (γ)

=
1

1− infγ∈[Γ]
Lg(γ)
Lf (γ)

.

�

Proof of Proposition 1.29. Let [f ] and [g] be two distinct points in Par(G).
Then Lf is not a multiple of Lg. We thus have

inf
Lf
Lg

< sup
Lf
Lg

.

Up to multiplying f by a scalar, we can assume that

inf
Lf
Lg

< 1 < sup
Lf
Lg

.

The set I = {λ ∈ R | (1 − λ)f + λg ∈ H1
+(ϕ)} is an open interval since

H1
+(ϕ) is open and convex. By Lemma 1.32, it is bounded from above and

from below by inverting the roles of f and g. This shows that PPar(G) is
weakly proper. �

Proof of Theorem 1.31. Let [f ] and [g] be two distinct points in Par(G). As-
sume again that

inf
Lf
Lg

< 1 < sup
Lf
Lg

.

By Lemma 1.32, we have

{λ ∈ R | (1− λ)f + λg ∈ H1
+(ϕ)} = (λ−, λ+) ,

where

λ+ =
1

1− infγ∈[Γ]
Lg(γ)
Lf (γ)

and

λ+ =
1

1− infγ∈[Γ]
Lf (γ)
Lg(γ)

− 1 .
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By definition of the Hilbert distance, we have

dHT (f, g) =
1

2
log

(
λ+

λ+ − 1

λ− + 1

λ−

)

=
1

2
log


 1

infγ∈[Γ]
Lg(γ)
Lf (γ)

1

infγ∈[Γ]
Lf (γ)
Lg(γ)




=
1

2

(
log

(
sup
γ∈[Γ]

Lf (γ)

Lg(γ)

)
+ log

(
sup
γ∈[Γ]

Lg(γ)

Lf (γ)

))
.

�

In Section ?? we will introduce a positive continuous function htop on
Par(G) which is homogeneous of degree −1 (i.e. htop(ϕ

λ) = 1
λhtop(ϕ)). Ex-

perts will recognize the topological entropy of a flow. We will denote by
Par1(G) set of parametrization ϕ ∈ Par(G) such that htop(ϕ) = 1. By homo-
geneity of htop every parametrization ϕ admits a unique scaling of entropy
1. Thus Par1(G) can be identified with PPar(G).

2. Buseman cocycles, foliated 1-forms, and horocycles

2.0.1. Buseman cocycles. Let Ñ s
Γ (resp. Ñu

Γ ) denote the space of pairs of

points (x, y) ∈ M̃2
Γ such that x and y are contained in the same stable (resp.

unstable) leaf.

Definition 2.1. A stable Buseman cocycle (resp. unstable Buseman cocycle)

on MΓ is a Γ-invariant continuous function B on Ñ s
Γ (resp. Ñu

Γ ) such that for

all x, y, z ∈ M̃Γ belonging to the same weakly stable (resp. weakly unstable)
leaf, we have

B(x, z) = B(x, y) +B(y, z) .

Let ϕ be a parametrization of the geodesic flow. Then every Buseman
cocycle B on MΓ induces a cocycle along ϕ defined by

c(x, t) = B(x, ϕt(x)) .

We will say that a cocycle c is stably (resp. unstably) Buseman if it is
associated to a stable (resp. unstable) Buseman cocycle via this construction.
We have the following characterization :

Proposition 2.2. Let c be a continuous cocycle along ϕ. The following are
equivalent:

• c is stably (resp. unstably) Buseman,
• the function

(x, y) 7→ c(x, t)− c(y, t)

converges uniformly on every compact subset of Ñ s
Γ (resp. Ñu

Γ) when
t goes to +∞ (resp. −∞).

More over, the associated Buseman cocycle is determined by

B(x, y) = lim
t→±∞

c(x, t)− c(y, t) .

In particular it is unique.
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Corollary 2.3. If ϕ is a Hölder parametrization of the geodesic flow, then
every Hölder cocycle along ϕ is stably and unstably Buseman.

We leave the proofs of the previous proposition and corollary as an exer-
cise.

Definition 2.4. A stable (resp. unstable) Buseman cocycle B is a cobound-
ary if there exists a continuous function F on MΓ such that

B(x, y) = F (y)− F (x)

for all (x, y) ∈ Ñ s
Γ (resp. Ñu

Γ ). Two Buseman cocycles are Livšic cohomolo-
gous if their difference is a coboundary.

One easily verifies that two Buseman cocycles are Livsic cohomologous if
and only if their associated cocycles along ϕ are Livsic cohomologous.

2.1. Horocyclic foliations.

Definition 2.5. A parametrization ϕ of the geodesic foliation is said to
admit a stable (resp. unstable) horocyclic foliation or, for short stable (resp.
unstable) horocycles if there exists a 1-dimensional continuous foliation Hs

(resp. Hu) of MΓ such that

• Every leaf of Hs (resp. Hu) is contained in a leaf of Ws (resp. Wu),
• The foliation Hs (resp. Hu) is transverse to G in Ws (resp. in Wu),

i.e. locally, each leaf of Hs and each leaf of G contained in the same
weakly stable leaf intersect at exactly one point,

• Hs (resp. Hu) is preserved by the flow ϕ.

Example 2.6. The geodesic flow of a negatively curved metric on Σ is Anosov.
It thus admits both stable and unstable horocycles given by the strongly
stable and unstable foliations of the flow.

Remark 2.7. The subtlety of this section is that a continuous parametrization
of an Anosov flow may not admit strongly stable or unstable foliations.

The relation with Buseman cocycles is given by the following proposition:

Proposition 2.8. Let ϕ and ψ be parametrizations of the geodesic foliation.
Assume that ϕ admits stable (resp. unstable) horocycles. Then ψ admits
stable (resp. unstable) horocycles if and only if the reparametrization cocycle
cϕ→ψ is stably (resp. unstably) Buseman.

Proof. Exercise. �

Definition 2.9. Let ϕ be a parametrization of the geodesic foliation admit-
ing stable (resp. unstable) cocycles. We will say that ϕ admits a horocyclic
flow if there exists a flow h on MΓ whose orbit foliation is the stable (resp.
unstable) horocyclic foliation, and such that ϕ and h have the following
comuting property:

ϕt ◦ hs ◦ ϕ−t = he−ts

(resp.

ϕt ◦ hs ◦ ϕ−t = hets )

for all (s, t) ∈ R
2.
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The pair (ϕ, h) gives a locally free action of the affine group on MΓ whose
orbit foliation is Ws (resp. Wu). We call it a stable (resp. unstable) affine
action.

Example 2.10. The geodesic and horocyclic flows of a hyperbolic metric on
Σ give a stable affine action.

A stable (resp. unstable) affine action (ϕ, h) induces in particular a foliated
smooth structure (i.e. a transversally continuous family of smooth structures
on the leaves of) Ws (resp. Wu) as well as two vector fields X and Y tangent
to Ws (resp. Wu) that generate respectively the flow ϕ and h and satisfy
the comutation relation

[X,Y ] = −Y

(resp.
[X,Y ] = Y ) .

We will come back extensively on stable affine actions and their relation
to foliated hyperbolic structures in Section 4. For now, we only need the
existence of a stable affine action and its associated foliated smooth structure.

2.2. stable 1-forms. In this section, we assume that the weakly stable
(resp. unstable) foliation is provided with an affine action (ϕ, h). One can
take ϕ and h to be respectively the geodesic and horocyclic flow of a hyper-
bolic metric on Σ. In particular, the weakly stable (resp. unstable) leaves
carry a smooth structure. Let X and Y be the vector fields on Ws (resp.
Wu) generating the flows ϕ and h respectively.

Definition 2.11. A stable 1-form (resp. unstable 1-form) of class Ck on MΓ

is a family of 1-forms of class Ck on the leaves of W̃s (resp. W̃u), preserved
by Γ, and depending continuously on the leaf for the Ck topology. It is called
closed if it is closed on each leaf.

(Recall that a continuous 1-form is closed if it is locally the differential of
a C1 function.)

A closed stable (resp. unstable) 1-form α gives rise to a stable (resp.
unstable) Buseman cocycle Bα defined by

Bα(x, y) =

∫ y

x
α .

The associated cocycle cα along ϕ is the integral cocycle associated to the
function α(X) (i.e. cα(x, t) is the integral of α from x to ϕ(t, x)).

Proposition 2.12. Every (stable or unstable) Buseman cocycle is Livsic co-
homologous to the Buseman cocycle associated to a closed (stable or unstable)
1-form of class C∞.

Proof. Let B be a stable Buseman cocycle. We construct α by “smoothening”
B. To do so, we can for instance choose a probability law ν on R

2 with
smooth density with respect to Lebesgue and compact support. For (x, y) ∈

Ñ s
Γ, define

ν∗B(x, y) =

∫

R2

B(x, exp(tX) ◦ exp(sY ) · y)dν(t, s) .
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(Watch out that ν∗B is not a Buseman cocycle.) The function ν∗B(x, ·) is
smooth on each stable leaf. Moreover, for x1 and x2 in the same stable leaf,
we have

ν∗B(x1, ·) = ν∗B(x2, ·) +B(x1, x2) ,

so the 1-form α = dν∗B(x, ·) does not depend on x. This defines a closed
foliated 1-form of class C∞ on MΓ.

Let Bα be the Buseman cocycle associated to α. For x0, x and y in the
same stable leaf, we have

Bα(x, y) = ν∗B(x0, y)− ν∗B(x0, x)

= B(x0, y)−B(x0, x) + ν∗B(y, y)− ν∗B(x, x)

= B(x, y) + ν∗B(y, y)− ν∗B(x, x) .

The function

x 7→ ν∗B(x, x) =

∫

R2

B(x, exp(tX) ◦ exp(sY ) · x)dν(t, s)

is continuous and Γ-invariant. Therefore, B and Bα are cohomologous. �

Let Z(Ws) denote the space of foliated closed 1-forms of class C0. We
provide Z(Ws) with the supremum norm:

‖α‖∞ = sup
M

max{|α(X)|, |α(Y )|} .

Let B(Ws) denote the closure of the subspace of exact 1-forms. Finally,
let H1(Ws) denote the quotient Z(Ws)/B(Ws), provided with the quotient
norm.

The map
Z(Ws) → C0(M,R)
α 7→ α(X)

induces a linear map Π : H1(Ws) → H1(ϕ).

Proposition 2.13. The map Π is an isometric bijection.

Proof. Let us prove that Π preserves the norm. Since by Proposition 2.12,
every Hölder function f is in the image of Π, we obtain that Π has dense
image. Since the domain of Π is a Banach space, we will conclude that Π is
an isomorphism.

Let α be a closed foliated 1-form on Ws. Then, by definition of the norms,
one clearly has

‖α‖∞ ≥ sup
M

|α(X)| .

It follows that
‖Π([α])‖ ≤ ‖[α]‖ .

To prove the converse inequality, let us define

αT =
1

T

∫ T

0
ϕ∗
tαdt .

The form αT is cohomologous to α.
Now, one has

αT (X)(x) =
1

T

∫ T

0
α(X)(ϕt(x)) .
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By Corollary 1.16, we thus have

‖αT (X)‖∞ −→
T→+∞

‖[α(X)]‖ = ‖Π(α)‖ .

Meanwhile, since ϕt∗Y = e−tY , one has

|αT (Y )(x)| ≤
1

T

∫ T

0
e−t ‖α(Y )‖∞ dt ≤

1

T
normα(Y )∞ −→

T→+∞
0 .

We conclude that

‖αT ‖∞ −→
T→+∞

‖Π([α])‖ .

Therefore, ‖[α]‖ = ‖Π([α])‖.
�

Proposition 2.13 says in particular that every continuous cocycle is weakly
cohomologous to one which is stably Buseman. As a corollary, we obtain the
following theorem:

Theorem 2.14.
Every continuous parametrization of the geodesic foliation is weakly conjugate
to a parametrization admitting a stable horocyclic foliation.

3. Anosov groups of diffeomorphisms of the circle

In this section, we associate to certain well-behaved circle actions of a
surface group a parametrization of the geodesic foliation, unique up to Livsic
equivalence. Moreover, these parametrizations admit stable horocycles, and
come with a family of measures on unstable leaves with nice properties with
respect to the stable horocycles.

3.1. Expanding actions. We denote by S
1 the unit circle, by Diff(S1) the

group of diffeomorphisms of S1 of class C1 and by Diffh(S1) the subgroup of
diffeomorphisms whose derivatives are Hölder regular.

A homomorphism ρ from Γ to Diff(S1) is called a C1 action of Γ on S
1.

Let ρ be a C1 action which is topologically conjugate to the action of Γ on
∂∞Γ. In particular, every element γ ∈ Γ acts on S

1 with an attracting fixed
point and a repelling fixed point. When this does not bring any confusion,
we denote these points respectively by γ+ and γ− (omitting the dependence
in ρ).

Definition 3.1. We define the period map of ρ as the function

Lρ : [Γ] → R+

[γ] 7→ − log (ρ(γ)′(γ+)) .

This definition is motivated by the proposition:

Proposition 3.2. Let ρ be a C1 action of Γ on S
1 topologically conjugate

to a Fuchsian action. Let ϕ be a parametrization of the geodesic foliation.
Then there exists a cocycle cρ along ϕ such that

Lρ = Lcρ .
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Proof. Let h : ∂∞Γ → S
1 be the homeomorphism conjugating the action ρ

with the action of Γ on its boundary. Let Ẽρ be the continuous line bundle

over M̃Γ defined by

(Ẽρ)(x,y,z) = Th(z)S
1 ,

and let Eρ be the line bundle over M obtain by quotienting by the action
of Γ.

The flow ϕt on MΓ lifts to a flow ϕ̂t on the total space of Eρ which is
linear in the fibers, induced by the transformation

((x, y, z), v) 7→ (ϕt(x, y, z), v)

on Ẽρ.
Let | · | be a continuous norm on Lρ. We define the cocycle cρ by

cρ(x, t) = log
|ϕ̂t(v)|

|v|

where v is any vector in (Eρ)x\{0}.

The norm | · | lifts to a Γ-invariant norm on Ẽρ that we still denote by | · |.
Let γ be an element of Γ and let (γ−, y, γ+) be a point on the axis of γ. Let
v be a tangent vector to h(γ+). Then, by definition of cρ, we have

Lcρ(γ) = log
|v|(γ−,γ·y,γ+)

|v|(γ− ,y,γ+)

= log
|dρ(γ−1)(v)|(γ− ,y,γ+)

|v|(γ− ,y,γ+)

= log ρ(γ−1)′(h(γ+))

= Lρ(γ) .

�

Remark 3.3. The cocycle cρ above is well-defined up to a Livsic coboundary.
Indeed, it only depends on the choice of a metric on the line bundle Lρ, and
one easily checks that changing this metric will modify cρ by a coboundary.

Definition 3.4. A C1 action ρ of Γ on S
1 is expanding if for every x ∈ S

1,
there exists γ ∈ Γ

|ρ(γ)′(x)| > 1 .

By a straightforward application of Borel–Lebesgue’s characterization of
compactness, every expanding action satisfies the stronger property:

Proposition 3.5. Let ρ : Γ → Diff(S1) be an expanding action. Then there
exists g1, . . . , gk ∈ Γ, a covering of S1 by open intervals I1, . . . Ik, and ε > 0
such that

ρ(gj)
′(x) ≥ 1 + ε

for all x ∈ Ij .

Theorem 3.6. Let ρ be a C1 action of Γ on S
1 topologically conjugate to the

action of Γ on ∂∞Γ. Then the following are equivalent:

(i) The action ρ is expanding,
(ii) The cocycle cρ is expanding,
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(iii) The action ρ is bi-Hölder conjugate to the action of Γ on ∂∞Γ.

Proof. (i) ⇒ (iii).
We prove more generally that if two dilating C1 actions ρ1 and ρ2 are

conjugated by a homeomorphism h, then h is bi-Hölder continuous. In par-
ticular, a dilating C1 action topologically conjugate to the action of Γ on
∂∞Γ is bi-Hölder conjugate to any Fuchsian action of Γ on S

1.

Let g1, . . . , gk be elements in Γ, I1, . . . , Ik be open intervals covering S
1

and ε be positive such that ρ1(gj)
′ > 1 + ε on Ij. Let 0 < η < 1 be such

that ρ2(gj)
′ > η on Ij for all j ∈ {1, . . . , k}.

Let a > 0 be such that, for all interval J ∈ S
1, if J has length less or equal

to a, then there exists j ∈ {1, . . . , k} such that J ⊂ Ij.
Let us now fix x 6= y ∈ S

1. By the expanding property and the definition
of a, one can find n ∈ N and and i1, . . . , in ∈ {1, . . . , k} such that

• For all 0 ≤ l < n,

|ρ1(gil . . . gi1) · x− ρ1(gil . . . gi1) · y| < a ,

• For all 0 ≤ l < n,

gil . . . gi1 · [x, y] ⊂ Iil+1
,

•

|ρ1(gin . . . gi1) · x− ρ1(gin . . . gi1) · y| ≥ a .

Note that, since gj multiplies the length of every interval contained in Ij by
at least 1 + ε, we have

(2) (1 + ε)n−1|x− y| < a .

Now, let h : S1 → S
1 be the homeomorphism conjugating ρ1 and ρ2 and

let b > 0 be the infimum of lengths of images by h of an interval of length
at least a.

We then have

|ρ2(gin . . . gi1) · h(x)− ρ2(gin . . . gi1) · h(y)| ≥ b

and therefore

(3) |h(x) − h(y)| ≥ ηnb .

Putting (2) and (3) together, and setting α = log(1+ε)
log(1/η) > 0, we get

|x− y| <
a

(1 + ε)n−1

< aη(n−1)α

<
a

(bη)α
(bηn)α

<
a

(bη)α
|h(x)− h(y)|α .

Since this is true for all x 6= y, we conclude that h−1 is α-Hölder. We
obtain simimarly that h is Hölder by switching the roles of ρ1 and ρ2.

(iii) ⇒ (ii)
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Let ρ : Γ → Diff(S1) be a C1 action on S
1 which is bi-Hölder conjugate to

a Fuchsian action j. Let h : S1 → S
1 be the homeomorphism conjugating j

and ρ and α > 0 such that h is α-Hölder.
Fix γ ∈ Γ. Let γ+ be the attracting fixed point of j(γ) and denote

λ = j(γ)′(γ+) < 1. Let y be a point in S
1 distinct from γ− and γ+. Then

when n goes to +∞,

log |j(γn) · y − x| ∼ log(λ)n .

Since h is α-Hölder, we thus have

log |ρ(γn) · h(y)− h(γ+)| = O(α log(λ)n) ,

which implies that
ρ(γ)′(h(γ+)) ≤ λα .

We thus have
Lcρ(γ) ≥ −α log(λ) = αLj(γ) .

By proposition 1.21, the cocycle cρ is thus expanding.

(ii) ⇒ (i)

Let Ẽρ be the line bundle over M̃Γ defined in the proof of Proposition 3.2.

Let us denote by | · |0 the continuous metric on L̃ρ induced by the metric on

S
1 and by | · |1 a Γ-invariant continuous metric on L̃ρ.
By construction, the metric | · |0 is invariant under the flow ϕ̂. Let K be a

compact set in M̃Γ such that
⋃
γ∈Γ γ ·K covers M̃Γ and such that the image

of K by the projection π : (x, y, z) 7→ z is the whole circle. Finally, let A > 1

be such that for all x ∈ K and all u ∈ (Ẽρ)x\{0},

1

A
<

|u|1
|u|0

< A .

Let z be any point in S
1. Choose a point x ∈ K such that π(x) = z and

a non-zero vector u ∈ L̃ρ(x) = TzS
1.

Since the cocycle cρ is expanding, there exists a time t > 0 such that

|ϕ̂t(u)|1
|u|1

> A2 .

Let γ ∈ Γ be such that γ · ϕt(x) ∈ K and let v ∈ (L̃ρ)γ·x be the image of
u by γ. We then have

ρ(γ) · z = π(γ · x)

and

ρ(γ)′(z) =
|v|0

|ϕ̂t(u)|0

=
|v|0
|u|0

since | · |0 is ϕ̂-invariant

>
1

A2

|v|1
|u1|

>
1

A2

|ϕ̂t(u)|1
|u|1

since | · |1 is Γ-invariant

> 1 .
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We conclude that the C1 action ρ is expanding. �

3.2. The space Xan(Γ,Diff(S1)) and the map DF.

Definition 3.7. Let ρ : Γ → Diff(S1) be a homomorphism. We will say that
ρ is an Anosov action on S

1 or an Anosov representation into Diff(S1) if ρ
is Hölder conjugate to a Fuchsian action.

Proposition 3.8. Let ρ be an Anosov action on S
1. Then there exists a

norm | · | on Eρ such that

|ϕ̂t(u)| > |u|

for all t > 0 and all u 6= 0 ∈ Lρ.

Proof. Let | · |0 be a continuous metric on Eρ. Since the cocycle cρ is ex-
panding, we can find constants K > 1 and a > 0 such that

|ϕ̂−t(u)|0
|u|0

≤ Ke−at

for all u 6= 0 ∈ Eρ. We can thus define a new continuous metric | · |1 on Eρ
by

|u|1 =

∫ +∞

0
|ϕ̂−s(u)|0ds .

We now have

|ϕ̂t(u)|1 =

∫ +∞

0
|ϕ̂t−s(u)|0ds

=

∫ +∞

−t
|ϕ̂−s(u)|0ds

> |u|1

�

Corollary 3.9. Let ρ be an Anosov action on S
1. Then there exists a con-

tinuous parametrization ψρ of G and a continuous norm | · | on Eρ such
that

|ψ̂ρ(t, u)| = et|u|

for all u ∈ Eρ.
Moreover, ψρ is unique up to conjugation and | · | is uniquely determined

by ψρ up to a multiplicative constant.

Proof. Let |·| be a continuous metric on Eρ such that |ϕ̂t(u)| > |u|. Then the
cocycle cρ associated to this norm is positive. It is thus the reparametrization
cocycle of a flow ψρ. For x ∈ MΓ and t ∈ R, let s be such that c(x, s) = t.
Then for any u ∈ Lρ(x)\{0}, we have

|ψ̂ρt (u)| = |ϕ̂s(u)|

= ecρ(x,s)|u|

= et|u| .

This proves the existence of ψρ.
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Asume now that there are two norms | · |1 and | · |2 on Lρ and two
reparametrizations ψ1 and ψ2 of ϕ such that

|ϕ̂i(t, u)|i = et|u|i

for i = 1, 2.
Let c be the reparametrization cocycle of ψ2 along ψ1. Let x be a point

in MΓ, u ∈ (Lρ)x\{0}, t ∈ R and set v = ψ̂1(t, u). We then have

t = log
|v|1
|u|1

and

c(x, t) = log
|v|2
|u|2

.

It follows that

c(x, t)− t = F (ψ1(t, x)) − F (x) ,

where

F =
| · |2
| · |1

.

The cocycle c is thus Livsic cohomologous to the tautological cocycle
c0(x, t) = t, and ψ2 is thus equivalent to ψ1.

Finally, fix ψρ a reparametrization of ϕ. Assume that | · |1 and | · |2 are
two continuous metrics on Lρ such that

|ψ̂ρ(t, u)|i = et|u|i

for i = 1, 2.

Then the function |·|2
|·|1

on MΓ is continuous and invariant by ψρ. It is thus

constant by topological transitivity of the geodesic foliation. �

Recall that Diffh(S1) denotes the set of diffeomorphisms of the circle with
Hölder derivatives.

Proposition 3.10. If ρ takes values in Diffh(S1), then the associated parametriza-
tion ψρ is conjugate to a Hölder continuous reparametrization.

Proof. Exercise. �

Let us now see how Corollary 3.9 defines a continuous map from the space
of Anosov representations to the space Par(G).

Let us provide the group Diff(S1) with the C1 topology. Since Γ is finitely
generated, the space Hom(Γ,Diff(S1)) of homomorphisms from Γ to Diff(S1)
embeds in a product of finitely many copies of Diff(S1) and inherits its
topology.

The group Diff(S1) acts continuously on Hom(Γ,Diff(S1)) by conjugation.
Its orbit equivalence relation has a priori no reason to be Hausdorff, so we
define

X(Γ,Diff(S1))

as the largest Hausdorff quotient of Hom(Γ,Diff(S1))/Diff(S1) (i.e. the quo-
tient of Hom(Γ,Diff(S1)) by the smallest closed equivalence relation contain-
ing the conjugation).
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The set Homan(Γ,Diff(S1)) of Anosov actions is open in Hom(Γ,Diff(S1))
and invariant under conjugation. We denote by

Xan(Γ,Diff(S1))

its image in X(Γ,Diff(S1)).

Corollary 3.9 associates to each Anosov action ρ a parametrization ψρ of
the geodesic foliation such that Lψρ = Lρ. This defines a map

D̃F : Homan(Γ,Diff(S1)) → Par(G) .

Here we prove the following:

Theorem 3.11. The map D̃F factors to a continuous map

DF : Xan(Γ,Diff(S1)) → Par(G) ,

which maps X
h
an(Γ,Diff(S1)) into Parh(G).

Let us first see that D̃F factors to Xan(Γ,Diff(S1)).

Proposition 3.12. For every γ ∈ Γ, the function

χγ : Homan(Γ,Diff(S1)) → R

ρ 7→ Lρ(γ)

is continuous and invariant by conjugation.

Proof. The conjugation invariance is easy. The continuity follows from the
stability of contracting dynamics. �

By universal property of the largest Hausdorff quotient, the functions
χγ factor to continuous functions on Xan(Γ,Diff(S1)). In other words, two
Anosov actions in the same equivalence class in Xan(Γ,Diff(S1)) have the

same period map. Since the map D̃F preserves period maps and since points
in Par(G) are uniquely determined by their period map, we conclude that

the map D̃F factors to a map

DF : Xan(Γ,Diff(S1)) → Par(G) .

Let us now prove the continuity of DF. Note that it is not sufficient
to know that Lρ(γ) varies continuously with ρ for each γ: one needs some
uniformity in γ.

Lemma 3.13. Let (ρn) be a sequence of Anosov actions on the circle con-
verging to ρ ∈ Homan(Γ,Diff(S1)). let hn and h denote the homeomorphisms
from ∂∞Γ to S

1 conjugating the action of Γ with ρn and ρ respectively. Then
hn converges uniformly to h.

Proof. For each γ ∈ Γ\{Id}, the homeomorphism hn maps γ+ to the attract-
ing fixed point of ρn(γ). By stability of contracting dynamics, we deduce
that hn(γ+) converges to h(γ+). Since attracting fixed points of elements in
Γ\{Id} are dense in ∂∞Γ we obtain that hn converges pointwise to h on a
dense subset. Now, hn and h are locally given by continuous and monoto-
nous maps of a compact interval, so Dini’s second theorem implies tha hn
converges uniformly to h. �
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From here, one could argue that the whole construction of the flat line
bundle and corresponding cocycle associated to ρ vary continuously with ρ.
Alternatively, one can prove in a more down to earth way the following:

Proposition 3.14. Let (ρn) be a sequence of Anosov actions on the circle

converging to ρ ∈ Homan(Γ,Diff(S1)). Then
Lρn
Lρ

converges uniformly to 1.

Since DF preserves period maps, this shows that dHT (DF(ρn),DF(ρ))
converges to 0, concluding the proof of the continuity of DF.

Proof. Fix ε > 0 and choose a finite generating set S of Γ. Let η be such
that for all s ∈ S,

| log ρ′(s)(x)− log ρ′(s)(y)| ≤ ε

whenever |x− y| ≤ η. Choose n large enough so that

| log ρn(s)
′(x)− log ρ(s)′(x)| ≤ ε

for all x ∈ S
1 and all s ∈ S, and

|hn(x)− h(x)| ≤ η

for all x ∈ ∂∞Γ.
Fix [γ] ∈ [Γ] and choose γ a representative of [γ] of minimal length k

with respect to the generating set S. Write γ = s1 . . . sk with si ∈ S. Since
ρ is Anosov, there exists a constant λ > 0 independent of [γ] such that
Lρ(γ) ≥ λk. Let us now compute:

|Lρn(γ)− Lρ(γ)|

Lρ(γ)
=

1

Lρ(γ)

∣∣log ρn(γ)′(hn(γ+))− log ρ(γ)′(h(γ+))
∣∣

=
1

Lρ(γ)

∣∣∣∣∣
k∑

i=1

log ρp(si)
′(hn(si+1 . . . sk · γ+))−

k∑

i=1

log ρ(si)
′(h(si+1 . . . sk · γ+))

∣∣∣∣∣

≤
1

λk

k∑

i=1

| log ρn(si)
′(hn(si+1 . . . sk · γ+))− ρ(si)

′(hn(si+1 . . . sk · γ+))|

+|ρ(si)
′(hn(si+1 . . . sk · γ+))− ρ(si)

′(h(si+1 . . . sk · γ+))|

≤
2ε

λ
.

�

3.3. Anosov actions and stable measures. Here we investigate further
properties of the flow ψρ associated to an Anosov action: we show that ψρ

admits stable horocycles, and that the metric | · | on Lρ which is scaled by ϕ
induces a family of measures on the leaves of Wu with nice properties with
respect to the horocycles.

Let us start with the first point.

Proposition 3.15. The flow ψρ associated to an Anosov representation into
Diff(S1) admits stable horocycles.
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Proof. Let | · | be the metric on Eρ satisfying

|ψ̂ρt (u)| = et|u| .

Let x and y ∈ M̃Γ be two points belonging to the same stable leaf W̃s(p).
Let u be a non-zero vector in TpS

1. We define

B(x, y) = log
|u|y
|u|x

,

where |u|x and |u|y denote respectively the norm of u seen as a vector in Eρx
and in Eρy. It is clear that this definition does not depend on u.

One easily verifies that B is a Buseman cocycle. Moreover, for any x ∈ M̃Γ

and any u ∈ Eρx\{0}, we have

B(x, ψt(x)) = log
|ψ̂ρt (u)|

|u|
= t .

The sets
Hs(x) = {y ∈ Ws(x) | B(x, y) = 0}

thus define stable horocycles for the flow ψρ. �

We now turn to the construction of unstable measures which are scaled
by the flow. Let us start with some definitions.

Definition 3.16. An unstable (resp. stable) measure on MΓ is a collection

of Radon measures on the leaves of W̃u (resp. W̃s) which is preserved by Γ.

Let ϕ be a parametrization of the geodesic foliation. One can naturally
push forward or pull back an unstable measure by ϕt.

Definition 3.17. We say that an unstable measure µ is scaled by ϕ if for
every t ∈ R,

ϕt
∗µ = c(t)µ

for some constant c(t). Since ϕ is a flow, we necessarily have c(t) = eat for
some a ∈ R. We call a the scaling factor.

Let us now assume that ϕ admits a stable horocyclic foliation Hs. Let

p and q be two points in ∂∞Γ, labelling two unstable leaves W̃u(p) and

W̃u(q). Then, for every point x ∈ W̃u(p)\G(p, q), the stable horocycle pass-

ing through x intersects W̃u(q) in a unique point.

Definition 3.18. The map

Tp,q : W̃
u(p)\G(p, q) → W̃u(q)\G(q, p)

sending x to the unique intersection between H̃s(x) and W̃u(q) is called the
holonomy of the stable horocyclic foliation.

Definition 3.19. An unstable measure µ is called invariant under horocyclic
holonomy if

Tp,q
∗µq = µp

for all p, q ∈ ∂∞Γ. An unstable (resp. stable) measure which is invariant
under horocyclic holonomy and scaled by the flow ϕ is called an unstable
(resp. stable) Margulis measure.



HIGHST TEICHMÜLLER 31

Let now ψρ be the flow associated to an Anosov action ρ. Let ∂∞Γ → S
1

be the homeomorphism conjugating the action of Γ on its boundary with ρ.
Let | · | be the metric on Eρ such that

|ψ̂ρt (u)| = et|u| .

We define an unstable measure µρ in the following way: let q be a point
∂∞Γ. Choose s 7→ p(s) a homeomorphism from (0, 1) to ∂∞Γ\{q} such that
h ◦ p : (0, 1) → S

1\{h(q)} is a diffeomorphism, and choose continuously x(s)

in G̃(q, p(s)). For a continuous function f on W̃u(q) with compact support,
define ∫

fdµρq =

∫ 1

0

∫ +∞

−∞
f(ψρt (x(s))e

−t|(h ◦ p)′(s)|x(s)dtds .

Proposition 3.20. The family of measures µρq defines an unstable Margulis
measure with scale factor 1.

Proof. Let us first remark that the measure µρq defined above does not depend
on the choice of x(s). Indeed, for another choice x′(s), we can write x′(s) =
ψρu(s)(x(s)) for some u(s) ∈ R. We then have
∫ 1

0

∫ +∞

−∞
f(ψρt (x

′(s))e−t|(h ◦ p)′(s)|x′(s)dtds =

∫ 1

0

∫ +∞

−∞
f(ψρt+u(s)(x(s))e

t|(h ◦ p)′(s)|ψρu(s)(x(s))dtds

=

∫ 1

0

∫ +∞

−∞
f(ψρt+u(s)(x(s))e

t+u(s)|(h ◦ p)′(s)|x(s)dtds

=

∫ 1

0

∫ +∞

−∞
f(ψρt (x(s))e

t|(h ◦ p)′(s)|x(s)dsdt ,

showing that µρq does not depend on the choice of x(s). Now, the fact
that µρq does not depend on the choice of p(s) either is just the change of
variable formula for the integration in s. We conclude that µρq is well-defined.
Moreover, by Γ-Invariance of the metric |·|, we easily verify that γ∗µ

ρ
q = µργ·q.

Hence (µρq)q∈∂∞Γ defines an unstable measure on Wu.
From the definition of µρq one easily proves that

ψρt
∗
µρq = etµρq .

Thus µρ is scaled by ψρ with scale factor 1.
It remains to prove that µρ is invariant by holonomy along the horocycles

of ψρ. We leave that as an exercise to the reader. �

4. Foliated affine, hyperbolic and complex structures

In this section, we show that the foliated affine actions introduced in
Section 2.1 can be recovered from a foliated conformal structure. This allows
us to construct the map CF.

4.1. Affine actions and affine charts. Let us first recall the definition of
a foliated affine action.

Definition 4.1. A foliated affine action on MΓ is a Γ-equivariant pair of

continuous flows ((ϕt), (hs)) on M̃Γ such that

• (ϕt) is a parametrization of G,
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• the map (t, s) 7→ ϕt(hs(x)) is a covering from R
2 to the stable leaf

Ws(x),
• ϕ−t ◦ hs ◦ ϕt = hets.

It is called Hölder continuous if the flows (ϕt) and (hs) are Hölder continuous.

Two foliated affine actions (ϕt, hs) and (ϕ′
t, h

′
s) are conjugated if there

exists a homeomorphism of MΓ preserving the leaves of G and conjugating
(ϕt) to (ϕ′

t) and (hs) to (h′s).

As we will see, the data of a foliated affine action is essentially the same
as what we call an equivariant family of affine charts:

Definition 4.2. An equivariant family of affine charts on ∂∞Γ is the data,

for any x = (x−, x0, x+) ∈ M̃Γ, of a homeomorphism mx : ∂∞Γ\{x+} → R

such that:

• mx(x0) = 0 and mx(x1) = 1,
• mx depends continuously on x for the compact open topology
• mγ·x = mx ◦ γ

−1 for all γ ∈ Γ,
• if x and x′ belong to the same stable leaf, then mx′ ◦m

−1
x is an affine

transformation of R.

It is called Hölder continuous if the homeomorphisms mx are bi-Hölder con-
tinuous and vary Hölder continuously for the compact open topology.

From an equivariant family of affine charts, one gets a foliated affine action
by setting

• ϕt(x−, x0, x+) = (x−,m
−1
x (et), x+) (where x = (x−, x0, x+),

• hs(x−, x0, x+) = (m−1
x (s),m−1

x (s + 1), x+).

Note that this affine action has the following property: for every x =

(x−, x0, x+) ∈ M̃Γ,
h1(x) ∈ G(x0, x+) .

We call such a foliated affine action normalized.
From a normalized foliated affine action, one gets an equivariant family of

affine charts by setting mx(y−) = s where s is the unique real number such
that the hs(x) belongs to the geodesic G(y−, x+). One can verify that the
construction is inverse of the previous one. There is thus a bijection between
normalized foliated affine actions and equivariant families of affine charts.
Finally, we have the following:

Proposition 4.3. Every foliated affine action is conjugated to a unique nor-
malized one.

Proof. Let (ϕt, hs) be a foliated affine action. Define F (x) = (x−, x1, x+),
where x1 is such that h1(x) belongs to G(x1, x+). Then F descends to a
homeomorphism of MΓ preserving the leaves of G.

Set ϕ′
t = F ◦ ϕt ◦ F

−1 and h′s = F ◦ hs ◦ F
−1. Then (ϕ′

t, h
′
s) is a foliated

affine action. Let (x−, x1, x+) be a point in M̃Γ. Then

h′1(x−, x1, x+) = F ◦ h1 ◦ F
−1(x)

∈ F (G(x1, x+)) by definition of F

∈ G(x1, x+) .
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Hence (ϕ′
t, h

′
s) is normalized.

Assume now that two normalized affine actions (ϕt, hs) and (ϕ′
t, h

′
s) are

conjugated via F : x 7→ ϕT (x)(x). Then we have

h′1(x−, x0, x+) = F−1 ◦ h1 ◦ ϕT (x)(x)

∈ F−1(G(xT (x), x+)) = G(xT (x), x+) ,

where ϕT (x)(x) = (x−, xT (x), x+). However, since h′ is also normalized,

h′(x−, x0, x+) belongs to G(x0, x+). We conclude that F (x) = ϕT (x)(x) = x
for all x. Thus F is the identity. �

4.2. Foliated hyperbolic structures.

Definition 4.4. A foliated hyperbolic structure on MΓ is the data, for each

z ∈ ∂∞Γ, of a homeomorphism mz : W̃
s(z) → H

2 such that:

• mz varies continuously with z for the compact open topology,
• For every γ ∈ Γ,

mγ·z ◦ γ ◦m−1
z ∈ Isom+(H2) .

Two foliated hyperbolic structures (mz) and (m′
z) are equivalent if m′

z ◦
m−1
z ∈ Isom+(H2) for all z.
A foliated hyperbolic structure is transversally Hölder if mz varies Hölder

continuously with z for the compact open topology.

Let (mz) and (m′
z) be two foliated hyperbolic structures. By compactness

of MΓ, there exists a constant C > 1 such that for all z ∈ ∂∞Γ and all

x, y ∈ W̃s(z),

dH(mz(x),mz(y)) = 1 ⇒ 1/C ≤ dH(m
′
z(x),m

′
z(y)) ≤ C .

Extending this globally, we get:

Proposition 4.5. Let (mz) and (m′
z) be two foliated hyperbolic structures.

Then there exist constants C > 1 and K ≥ 0 such that m′
z ◦ m−1

z is a
(C,K)-quasi-isometry for all z.

Recall that the affine group is the group of orientation preserving isome-
tries of the upper half-space H

2 fixing infinity. One can thus associate to a
foliated affine action the foliated hyperbolic structure that conjugates those
affine actions.

To be more precise, let (ϕt, hs) be a foliated affine action on MΓ. Choose

in a continuous way a point xz in each stable leaf W̃s(z).

Proposition 4.6. The family of maps (mz) defined by

mz(ϕt(hs(xz)) = s+ eti ,

is a foliated hyperbolic structure. Moreover, a different choice of (xz) defines
a foliated hyperbolic structure which is equivalent.

The main claim of this section is that, conversely, every foliated hyperbolic
structure comes from a foliated affine action.



34 NICOLAS THOLOZAN

Theorem 4.7. Let (mz) be a foliated hyperbolic structure. Then each mz

extends continuously to a bi-Hölder homeomorphism m̄z : ∂∞Γ → ∂∞H
2.

For every x = (x−, x0, z) ∈ F(z), define gx as the unique isometry of H
2

mapping (m̄z(x−), m̄z(x0), m̄z(x+)) to (0, 1,∞). Then the family (gx ◦ m̄z)
is an equivariant family of affine charts on ∂∞Γ.

Most of the proof of the theorem is straightforward once we know that
quasi-isometries of H

2 extend to homeomorphisms of the boundary. The
main technical difficulty is to control that this extension varies continuously
with z. This is dealt with in the next subsection.

4.3. boundary extension of quasi-isometries. Let us first recall the
classical Morse lemma for quasi-geodesics in the hyperbolic plane states
that every quasi-geodesic ray of H

2 (i.e. every quasi-isometric embedding
f : R+ → H

2) is at bounded distance from a geodesic ray.

Proposition 4.8. Let f : R+ → H
2 be a C-quasi-geodesic ray. Then f(t)

converges as t goes to +∞ to a point f(∞) in ∂∞H
2, and there exists a

constant D depending only on C such that any f(t) is at distance at most D
from the geodesic ray [f(0), f(∞)].

Moreover, the point f(∞) varies continuously with f for the compact open
topology. More precisely, we have

Proposition 4.9. Let f : and g : R+ → H
2 be two C-quasi-geodesics

with f(0) = g(0). Let f(∞) and g(∞) denote there respective endpoints
in ∂∞H

2. Then there exists a constant K depending only on C such that, if
dH(f(t), g(t)) ≤ 1 for some t ≥ 1, then

df(0)∞ (f(∞, g(∞)) ≤ Ke−t/C ,

where d
f(0)
∞ denotes the visual distance from f(0) on ∂∞H

2.

As a corollary, one obtains that the boundary map induced by a quasi-
isometry varies continuously for the compact-open topology:

Corollary 4.10. Let f : H2 → H
2 be a C-quasi-isometric homeomorphism.

Then f extends to a 1
C -bi-Hölder homeomorphism ∂∞f : ∂∞H

2 → ∂∞H
2.

Moreover, let g : H2 → H
2 be another C-quasi-isometric homeomorphism.

Then there is a constant K depending only on C such that, if R ≥ 1 and
dH(f(x), g(x)) ≤ 1 for all x in B(o,R), then

df(o)∞ (∂∞f(x), ∂∞g(x)) ≤ Ke−R/C

for all x ∈ ∂∞H
2.

Proof. Exercise. �

We can now turn to the

Proof of Theorem 4.7. Let us fix a background hyperbolic metric on Σ. This
provides us with an identification of ∂∞Γ with ∂∞H

2.

Using the identification of M̃Γ with T1H
2, one also obtains a reference

foliated hyperbolic structure on Ws, which simply projects every leaf T1H
2

to H
2. We see this reference foliated structure as an identification of each

leaf of W̃s with H
2.
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Let now (mz) be another foliated hyperbolic structure. Then

mz : W̃
s(z) ≃ H

2 → H
2

is a C-quasi-isometry for some C independent of z. It thus extends to a
bi-Hölder hoemomorphism ∂∞mz : ∂∞H

2 ≃ ∂∞Γ → ∂∞H
2. Moreover, for

every x = (x−, x0, z) ∈ Fs(z), there is a unique hyperbolic isometry gx such
that m̄x = gx ◦ ∂∞mz maps x− to 0, x0 to 1 and z to ∞. By restriction, m̄x

defines a bi-Hölder continuous homeomorphism from ∂∞Γ\{z} to R.
By Corollary 4.10, since mz varies continuously with z for the compact-

open topology, so does the family of maps (m̄x). One easily checks that (m̄x)
also satisfies the other properties of an equivariant family of affine charts.

�

4.4. Smoothening foliated hyperbolic structures. So far we associated
to every foliated affine action a foliated hyperbolic structure. This hyper-
bolic structure, however, has rather low regularity (the developping map of
each leaf is only continuous, and varies transversally continuously for the C0

topology. Foliated Teichmüller theory, on the other side, has been developed
mainly for leafwise smooth foliated structures. This section is thus devoted
to the proof of the following lemma:

Lemma 4.11. Let ((ϕt), (hs)) and ((ϕ′
t), (h

′
s)) be two foliated afine actions

on MΓ. Let (mz) and (nz) be the foliated hyperbolic structures associated
respectively to affine actions (mz) and (nz) as in Proposition 4.6. Then (nz)
is isotopic to a foliated hyperbolic structure (n′z) such that n′z ◦mz−1 is a C∞

diffeomorphism that varies continuously with z for the C∞ topology.

Proof. One easily goes from C1 regularity to C∞ regularity by a standard
smoothening argument. We focus here on isotoping nz to a hyperbolic struc-
ture with C1 regularity. Recall first that, by Proposition 1.11, we can assume
without loss of generality that (ϕ′

t) is a reparametrization of (ϕt) which is
C1 along the orbits.

For ε small enough (to be chosen later), define (nεz) by

nεz(x) =
1

ε

∫ ε

0
nz(hs(x))ds ,

where nz is seen as a map to the upper-half space inside the complex plane.
Recall that for every γ ∈ Γ, we have

nγ·z = g ◦ nz ◦ γ
−1

for some affine transformation g of H2. This induces the same property for
nεz. It remains to see that nεz◦m

−1
z is a C1 diffeomorphism for ε small enough.

Since both mz and nz map geodesics in M̃Γ to vertical geodesics in H
2,

we can write F = nz ◦m
−1
z in the form

F (x+ iy) = f(x) + ig(x, y) ,

where f : R → R is an increasing homeomorphism, and where g(x, ·) : R>0 →
R>0 is a C1 diffeomorphism varying continuously with x for the C1 topology.
Writing Gε = nεz ◦m

−1
z , we have

Gε(x+ iy) =
1

εy

∫ εy

0
F (x+ s+ iy)ds .
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An elementary computation shows that Gε is C1 and that

∂

∂x
Gε(x+ iy) =

1

εy
(F (x+ εy + iy)− F (x+ iy))

=
1

εy
(f(x+ εy)− f(x))︸ ︷︷ ︸

A(ε)

+i ·
1

εy
(g(x+ εy, y)− g(x, y))︸ ︷︷ ︸

B(ε)

,

∂

∂y
Gε(x, y) =

−1

y
Gε(x+ iy) +

1

y
F (x+ εy + iy) +

1

εy

∫ εy

0

∂

∂y
F (x+ s+ iy)ds

=
1

y

(
f(x+ εy)−

1

εy

∫ εy

0
f(x+ s)ds

)

︸ ︷︷ ︸
C(ε)

+i ·
1

y

(
g(x+ εy, y)−

1

εy

∫ εy

0
g(x+ s, y)ds

)

︸ ︷︷ ︸
D(ε)

+i ·
1

εy

∫ εy

0

∂

∂y
g(x + s, y)ds

︸ ︷︷ ︸
D′(ε)

.

Note that, since f is an increasing homeomorphism, we have

0 < C(ε) < A(ε) .

Let us compute the determinent of dGε. We have

Jac Gε(x+ iy) =
1

yε

(
A(ε)(D(ε) +D′(ε)) −B(ε)C(ε)

)

=
A(ε)

yε

(
D(ε) +D′(ε)−

C(ε)

A(ε)
B(ε)

)
.

By continuity of g, the terms B(ε) and D(ε) go to 0 as ε goes to 0, while

D′(ε) −→
ε→0

∂

∂y
g(x, y) > 0 .

Thus Jac Gε(x + iy) is positive for ε small enough depending only on the
(local) module of continuity of F . By compactness of MΓ and the equivari-
ance of nεz, we deduce the existence of η such that nεz is a diffeomorphism
for all z and all for ε < η.

Hence, for ε small enough, (nεz) is a foliated hyperbolic structure isotopic
to (nz) and such that nεz ◦m

−1
z is C1 for all z.

�

4.5. The space T (Ws) and the map CF. Teichmüller spaces of 2-dimensional
foliations (or, more generally, of 2-dimensional laminations) were introduced
by Sullivan in [3]. Building on the works of Ahlfors and Bers, he pointed out
that large aspects of classical Teichmüller theory extended to the context of
foliated conformal structures.

Definition 4.12. A smooth foliated conformal structure on Ws is a family
of conformal classes of metrics on the leaves of Ws which vary continuously
with the leaf for the smooth topology. Two foliated conformal structures are
homotopic if one is the pull-back of the other by a leafwise homotopy of Ws.
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The Teichmüller space of the foliation Ws, denoted T (Ws), is the set of
homotopy classes of smooth foliated conformal structures on Ws.

Candel’s theorem, the foliated analog of Poincaré’s uniformization, shows
that one can alternatively see T (Ws) as the space of homotopy classes of
foliated hyperbolic structures.

Theorem 4.13 (Candel). Let [g] be a smooth foliated conformal structure
on Ws. Then [g] contains a unique foliated Riemannian metric of curvature
−1.

Given [g1] and [g2] two foliated conformal classes, define the conformal
dialation dil([g1], [g2]) as the infimum of the constants K ≥ 1 such that
there exists g1 ∈ [g2] and g2 ∈ [g2] with

1

K
g1 ≤ g2 ≤ Kg1 .

Definition 4.14. The Teichmüller distance between [g1] and [g2] is defined
as

dT ([g1], [g2]) = inf{log dil([g′1], [g
′
2]), [g

′
1] homotopic to [g1], [g

′
2] homotopic to [g2]} .

By definition, the Teichmüller distance is well-defined on T (Ws). Sullivan
proves in [] that it is indeed a distance. Moreover the space T (Ws) with the
induced topology has a structure of complex Banach manifold:

Theorem 4.15 (Sullivan). The space (T (Ws), dT ) is homeomorphic to a
Banach manifold such that, for every foliated conformal structure [g], there
is a biholomorphism from T (Ws) to a bounded open domain in the space
QD(Ws, [g]) of foliated quadratic differentials which are holomorphic with
respect to the conformal structure [g].

Let [g] be a foliated conformal structure on Ws and let γ ∈ [Γ] be a
closed leaf of G. This leaf is contained in a unique leaf Ws(γ) which is
homeomorphic to a cylinder.

Definition 4.16. The period map L[g] of the conformal structure [g] asso-

ciates to γ ∈ [Γ] the translation length of lγ , where lγ is an isometry of H2

such that (Ws(γ), [g]) is conformal to lγ\H
2.

We can now turn to the proof of Theorem 0.4. We start with the first
part:

Theorem 4.17. There exists a map CF : T (Ws) → Par(G) such that

LCF([g]) = L[g] .

Proof. Let [g] be a foliated conformal structure on Ws. By Candel’s theorem,
the conformal class [g] contains a unique foliated hyperbolic metric ghyp,
which can be seen as a smooth foliated hyperbolic structure. One then
associates to ghyp a family of affine charts (mg) on ∂∞Γ via Theorem 4.7.

If [g′] is homotopic to [g] then g′hyp is homotopic to ghyp. In particular, the

developments of a given leaf into H
2 associated respectively to ghyp and g′hyp

remain at bounded distance from each other. They thus induce the same
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boundary maps, and therefore the same families of affine charts on ∂∞Γ. In
conclusion, the map

[g] 7→ (mg)

is well defined from T (Ws) to the space of equivariant families of affine
charts. Finally, the family of affine charts (mg) defines a foliated affine
action (ϕgt , h

g
s), and we define

CF : T (Ws) → Par(G)
[g] 7→ [ϕg] .

Let us prove that CF preserves the period maps. Let γ be an element
in Γ\Id. Fix a point x = (γ−, x0, γ+) and let m be the isometry from

(W̃s(γ+), ghyp) to H
2 whose extension to the boundary maps γ+ to ∞, γ−

to 0 and x0 to 1.
Since γ acts on (W̃s(γ+), ghyp) as an isometry of translation length l =

L[g]([γ]) and fixes γ− and γ+, we have

m ◦ γ ◦m−1 : z 7→ elz .

On the other side, by definition of the affine action associated to mg, we
have ϕgt (x) = (γ−, xt, γ+), where m(xt) = et. We deduce that ϕgl (x) = γ · x,
hence l = Lϕg([γ]). �

It remains to prove the continuity of the map CF. We actually prove a
stronger result:

Theorem 4.18. The map CF : (T (Ws), dT ) → (PPar(G), dHT ) is Lipschitz
continuous.

Proof. Let [γ] be a closed leaf of G and [g] a foliated conformal structure on
Ws. Recall that the hyperbolic length L[g](γ) is proportional to its extremal
length, defined as

EL[g](γ) = sup
g′

inf
γ′

lengthg(γ
′)2

area(g)
,

where the infimum is taken over all curves γ′ freely homotopic to γ in Ws(γ)
and the suppremum is taken over all metrics g′ on Ws(γ) in the conformal
class of [g] and of finite area.

Now, one easily verifies that, if dil([g1], [g2]) = K, then

1

K2
EL[g1](γ) ≤ EL[g2](γ) ≤ K2EL[g2](γ) .

We deduce that∣∣∣∣log
(
L[g2](γ)

L[g1](γ)

)∣∣∣∣ =
∣∣∣∣log

(
EL[g2](γ)

EL[g1](γ)

)∣∣∣∣ ≤ dT ([g1], [g2]) ,

and therefore

dHT (CF([g1]),CF([g2])) =
1

2

(
sup
γ∈[Γ]

log

(
L[g1](γ)

L[g2](γ)

)
+ sup
γ∈[Γ]

log

(
L[g2](γ)

L[g1](γ)

))

≤ dT ([g1], [g2]) .

�
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5. Construction of Margulis measures

In his thesis, Margulis constructed the measure of maximal entropy of an
Anosov flow by first constructing what we called Margulis measures along
stable and unstable leaves. Here we reproduce his argument to prove the
following theorem:

Theorem 5.1 (Margulis). Let ϕ be a parametrization of the geodesic foli-
ation which admits stable (resp. unstable) horocycles. Then ϕ admits an
unstable (resp. stable) Margulis measure.

The starting point of Margulis’s consruction is a family of unstable mea-
sures (νp) which are “almost preserved” by the horocycle holonomy. These
measures are gven by the volume form associated to some Riemannian met-
ric on unstable leaves. Since we work in low regularity here, one needs an
additional argument to find such a family of measures.

5.1. Almost invariant unstable measures.

Definition 5.2. An unstable measure µ is called almost holonomy invariant
if for every p, q ∈ ∂∞Γ, we have

Tp,q
∗µq = fp,qµp

where fp,q is continuous on W̃u(p), depends continuously on p and q and
satisfies

|fp,q(x)− 1| ≤ η(d(x, Tp,q(x)))

where d is a Γ-invariant distance on M̃Γ and η : R+ → R+ is a function such
that η(s) −→

s→0
0.

Our argument here to construct an almost holonomy invariant unstable
measure slightly more elaborate than that of Margulis due to the a priori
weak regularity of ϕ and Hs.

Let us start by fixing a hyperbolic metric on Σ and denote by ϕ0 and
Hs

0 the associated geodesic flow and stable horocyclic foliation. We provide
MΓ with the smooth structure and the Riemannian metric induced by the
identification MΓ ≃ T1Σ. We denote by X0 the vector field generating ϕ0.

Each unstable leaf W̃u(p) is identified with the hyperbolic plane, and we
provide it with the hyperbolic area form λp. These area forms thus give rise
to an unstable measure λ. The following is a good exercise:

Proposition 5.3. The unstable measure λ is a Margulis measure for ϕ0.

Let now ϕ be another parametrization of the geodesic foliation which
admits a stable horocyclic foliation Hs. We want to find an unstable measure
which is almost invariant by the holonomy along Hs.

By Proposition 2.12, without loss of generality, we can assume that the
reparametrization cocycle cϕ0→ϕ is the stable Buseman cocycle B associated
to a closed stable 1-form α that is smooth on each stable leaf. Let p, q be

two points in ∂∞Γ and let Tp,q and T 0
p,q denote the holonomies from W̃u(p)

to W̃u(q) along Hs and Hs
0 respectively.
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Proposition 5.4. There is a constant C (independent of p and q) such that

for all x ∈ W̃u(p),

T 0
q,p ◦ Tp,q(x) = ϕ0(x, s(x)) ,

where

• s is continuous and

|s(x)| ≤ Cd(x, Tp,q(x)) ,

• s is differentiable along ϕ0, X0 · s is continuous and

|X0 · s(x)| ≤ Cd(x, Tp,q(x)) .

Define X0

Corollary 5.5. The stable measure λ is almost invariant under the holo-
nomy of Hs.

Proof of Proposition 5.4. By construction, Tp,q and T 0
q,p map a geodesic to a

geodesic. Indeed, if x and y belong to a geodesic contained in W̃u(p), then

Tp,q(x) and Tp,q(y) belong to the same unstable leaf W̃u(q) and to the same

stable leaf W̃s(x) = W̃s(y) (since Tp,q “follows” stable horocycles). The same
holds for T 0

q,p. Therefore, for x and T 0
q,p◦Tp,q(x) belong to the same geodesic.

Let s(x) be such that T 0
q,p ◦ Tp,q(x) = ϕ0(x, s(x)). Let α0 be the smooth

closed stable 1-form such that
∫ ϕ0(y,t)
y = t. By definition of T 0

q,p, we have
∫ T 0

q,p◦Tp,q(x)

Tp,q(x)
α0 = 0 and thus

s(x) =

∫ ϕ0(x,s(x))

x
α0

=

∫ Tp,q(x)

x
α0 .

By continuity of α0 and Tp,q, we have

|s(x)| ≤ Cd(x, Tp,q(x)) ,

where C is a uniform bound on α0.

Let us now prove the derivability of s along ϕ0. Recall that ϕ0 and ϕ are
respectively generated by the vector fields X0 and X, tangent to the geodesic
foliations, such that α0(X0) = α(X) = 1.

By construction, we have Tp,q(ϕ(x, ε)) = ϕ(Tp,q(x), ε). Thus

s(ϕ(x, ε)) − s(x) =

∫ Tp,q(ϕ(x,ε))

ϕ(x,ε)
α0 −

∫ Tp,q(x)

x
α0

=

∫ ϕ(x,ε)

x
α0 −

∫ ϕ(Tp,q(x),ε)

Tp,q(x)
α0 .

It follows that s is derivable along ϕ and

X · s(x) = α0(X)x − α0(X)Tp,q(x) .
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Since α(X) = α0(X0) = 1, we have X0 = fX where f = α(X0) = 1
α0(X) .

Hence s is derivable along ϕ0 and

X0 · s(x) = 1−
αx(X0)

αTp,q(x)(X0)
.

Since α(X0) is continuous, positive and smooth in restriction to weakly stable
leaves, we deduce the existence of a constant C such that

|X0 · s(x)| ≤ Cd(x, Tp,q(x)) .

�

Let us now deduce Corollary 5.5. Set σ(x) = T 0
q,p ◦ Tp,q(x) = ϕ0(x, s(x)).

Since T 0
p,q

∗
λp = λq, we have

T ∗
p,qλq = σ∗λp .

Now, there are coordinates (u, v) on W̃u(p) with respect to which ϕ0((u, v), t) =
(u + t, v) and such that λp = e−ududv. Corollary 5.5 thus follows from the
following computation:

Lemma 5.6. Let σ : R2 → R
2 be a homeomorphism given by

σ(u, v) = (u+ s(u, v), v) ,

where s is continuous and differentiable with respect to u with continuous
partial derivative. Then

σ∗(e−udu dv) = e−s(1 +
∂s

∂u
)dudv .

Proof. Exercise. �

5.2. Margulis measures on unstable leaves. To construct an unstable
measure which is holonomy invariant and scaled by ϕ, Margulis’s approach
is roughly to “pull back” the measure λ by ϕt for large t and suitably rescale
it. The crucial point of this approach is the following lemma, which gives a
“uniform way” to rescale ϕ∗

tλ. Let us first set some terminology.
We call a subset K of MΓ a compact subset of Wu if it is a finite union of

subsets Ki which are each contained in a single unstable leaf and compact
for the topology of the leaf.

Given a compact subset K of Wu, we call a function f : MΓ → R a
continuous function on Wu with support in K if f is continuous in restric-
tion to each leaf and vanishes outside K. We denote by C(K) the space of
continuous functions on Wu with support in K, and by denote by Cc(W

u)
the vector space of continuous functions on Wu with compact support. We
endow this space with the norm

‖f‖∞ = sup
MΓ

|f | .

Lemma 5.7. There exists a non-negative function f0 ∈ Cc(W
u) such that,

for every compact subset K of Wu, there is a constant C = C(K, f0) such
that for every f ∈ C(K) and all t ≥ 0, we have

∣∣∣∣
∫
f ◦ ϕ−tdλ

∣∣∣∣ ≤ C ‖f‖∞

∫
f0 ◦ ϕ−tdλ .
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Proof. Given an open subset U of Wu, denote by Hs(U) the union of all the
leaves of Hs intersecting U . We first claim that we can find U with compact
closure and large enough so that Hs(U) =MΓ.1 Indeed,

Hs

(⋃

t∈R

ϕt(U)

)
=
⋃

t∈R

Hs(ϕt(U))

is a non empty open set saturated by the leaves of Wu. It is thus equal to the
whole MΓ by minimality of the weakly unstable foliation. By compactness
of MΓ, there is T > 0 such that

Hs


 ⋃

−T≤t≤T

ϕt(U)


 =MΓ .

Let us hence fix an open subset U0 of Wu with compact closure such
that every horocycle intersects U0, and let f0 be a continuous non-negative
function on Wu with compact support such that f0 = 1 on U0. Let now
K be a compact subset of Wu. Let us lift K and U0 to compact and open

sets K̃ and Ũ0 respectively contained in W̃u(p) and W̃u(q) for some p, q ∈

∂∞Γ, and lift f0 to a continuous Γ-invariant function on W̃u (that we still
denote f0). By construction of U0, we can find a covering of K by finitely
many open subsets (Vi)1≤i≤k and γ1, . . . , γk ∈ Γ such that Vi is contained
in Tγi·q,p(γi · U0). Let f be a continuous function with support in K. Using
partitions of unity, we can assume without loss of generality that f has
support in one of the Vi’s, say V1. We can also assume that γ1 = Id.

For all t ≥ 0, we have
∣∣∣∣
∫
f ◦ ϕ−tdλp

∣∣∣∣ ≤ ‖f‖∞ λ(ϕt(V1))

= ‖f‖∞

∫

Tp,q(ϕt(V1))
Tq,p∗λp

≤ Cst ‖f‖∞ sup
x∈ϕt(V1)

d(x, Tq,p(x))λq(Tp,q(ϕt(V1)))

≤ Cst ‖f‖∞ sup
x∈ϕt(V1)

d(x, Tq,p(x))

∫
f0 ◦ ϕ−tdλq since f0 ◦ ϕ−t is positive and equal

Finally, since Tq,p is the holonomy along the stable horocycles of ϕ, we
have that d(ϕt(x), Tp,q(ϕt(x)) goes to 0 as t goes to +∞, from which we
deduce that supx∈ϕt(V1) d(x, Tq,p(x)) is bounded uniformly in t, giving the
inequality ∣∣∣∣

∫
f ◦ ϕ−tdλ

∣∣∣∣ ≤ Cst′ ‖f‖∞

∫
f0 ◦ ϕ−tdλ .

�

Let L = R
Cc(Wu) denote the space of all functions on Cc(W)u, provided

with the product topology (i.e. the topology of pointwise convergence). We

1Note that any U would suit if we knew that the horocycle foliation was minimal. We
believe it is true but could not easily adapt Hedlund’s theorem in our setting.
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see an unstable measure µ as an element of L by setting

µ(f) =

∫
fdµ .

For t ∈ R+, define λt(f) =
∫
f◦ϕ−tdλ∫
f0◦ϕ−tdλ

. For each T ≥ 0, let ΩT denote the

convex hull of {λt, t ≥ T} in L = R
Cc(Wu).

By Lemma 5.7, for every f ∈ Cc(W
u), there is a constant Cf such that

|λt(f)| ≤ Cf for all t ∈ R+. Thus

ΩT ⊂ {α ∈ L | α(f) ≤ Cf for all f ∈ Cc(W)u}

and the closure of ΩT is compact for all T .
For each s ≥ 0, there is a constant As such that

λt(f0 ◦ ϕ−s) ≥ As .

thus, α→ α(f0 ◦ ϕ−s) is positive on Ω0. Since it is continuous, we conclude
that the operator

ϕ̂∗
s : Ω0 → Ωs ⊂ Ω0

α 7→ ϕ̂∗
sα : f 7→ α(f◦ϕ−s)

α(f0◦ϕ−s)

is continuous. The following proposition concludes the proof of Theorem 5.1.

Proposition 5.8. There exists a point in Ω0 which is fixed by ϕ̂∗
s for all s.

This point is associated to an unstable Margulis measure for ϕ.

Proof. The Tychonoff fixed point theorem implies that each ϕ̂∗
1
2n

has a fixed

point µn in Ω0. Let µ be an accumulation point of (µn). Then µ is fixed by
ϕ̂∗
s for every diadic s.
Let K be a compact subset of Wu. By Lemma 5.7, for every f ∈ C(K),

we have λt(f) ≤ C(K, f0) ‖f‖∞ for all t ≥ 0. Passing to the convex hull and
then to the limit, we deduce that µ is linear on C(K), continuous, and non
negative on positive functions. Riesz’s representation theorem then implies
that µ is an unstable measure. We also get that µ is fixed by ϕ̂∗

s for all s by
continuity. Thus µ is scaled by ϕ.

It remains to prove that µ is holonomy invariant. Let f be a continuous

function on W̃u with compact support K ⊂ W̃u(p) for some p ∈ ∂∞Γ, and
let q be another point in ∂∞Γ. We have

|λt(f ◦ Tp,q)− λt(f)| =

∣∣∣∣
∫
f ◦ ϕ−t ◦ Tp,qdλq −

∫
f ◦ ϕ−tdλp∫

f0 ◦ ϕ−tdλ

∣∣∣∣

=

∣∣∣∣∣

∫
f ◦ ϕ−tdT

∗
q,pλq −

∫
f ◦ ϕ−tdλp∫

f0 ◦ ϕ−tdλ

∣∣∣∣∣

≤ Cst sup
x∈ϕt(K)

d(x, Tp,q(x))

∫
|f ◦ ϕ−t|dλ∫
f0 ◦ ϕ−tdλ

≤ Cst′(f) sup
x∈ϕt(K)

d(x, Tp,q(x)) .

Since Tp,q is the holonomy along the horocyclic foliation of ϕ, we have that
d(ϕt(x), Tp,q(ϕt(x))) −→

t→+∞
0 uniformly on K. Passing to the convex hull
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and to the limit, we deduce that
∫
f ◦ Tp,qdµ =

∫
fdµ .

Thus µ is invariant under horocyclic holonomy. �

5.3. Scaling factor and entropy. In general, we don’t know whether un-
stable Marguils measure is unique (see Section 6.2). Nonetheless, we prove
here that the scaling factor of any such measure is the same, and that this
scaling factor defines in fact a continuous function htop on Par(G). Experts
will have recognized the topological entropy. More precisely we could prove
the following:

Theorem 5.9. Let ϕ be a parametrization of G with stable horocycles, and
let µ be an unstable Margulis measure for ϕ with scale factor a. Then:

• a is the topological entropy of ϕ,
• There exists a ϕ-invariant probability measure ν on MΓ which disin-

tegrates to µ along stable horocycles,
• The measure ν has metric entropy equal to a (equivalently, ν is a

measure of maximal entropy).

Since we try to avoid introducing the entropy here, we content ourselves
with the following theorem:

Theorem 5.10. Let exists a function

htop : Par(G) → R>0

such that if ϕ is a parametrization of G with stable (resp. unstable) horocycles
and µ is an unstable (resp. stable) Margulis measure for ϕ, then the scale
factor of µ equals htop([ϕ]) (resp. −htop([ϕ])).

To prove this, we describe a standard procedure to combine a stable and
an unstable measure into a measure on MΓ.

Let µ be a stable measure on Ws and let c be a continuous curve contained
in a leaf of Wu and transverse to G inside that leaf. We define the projection
of µ to c as the measure µc defined by

µc(I) = µ


⋃

t≥0

ϕt(I)


 ,

where I is some interval in c and ϕ is any parametrization of G.
Let now ϕ be a parametrization of G admitting a stable horocyclic foliation

H. We call a family of measures on the leaves of H a horocyclic measure.
Given a stable measure µ, we get an horocyclic measure µH by projecting µ
onto the leaves of H.

Proposition 5.11. Let ϕ and ψ be two parametrizations of G such that

• ϕ admits a stable horocyclic foliation H,
• there is a locally finite stable measure µ which is scaled by ψ with

scale factor b.
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Then the horocyclic projection µH is locally finite and stafisfies

ϕ∗
tµH = e−bc(t,·)µH ,

where c is the reparametrization cocycle of ψ with respect to ϕ.

Proof. Let H(x) be some horocycle of ϕ and identify the weakly stable leave

W̃s(x) containing H(x) with Hh(x)× R via the map

(y, t) 7→ ψt(y) .

Since the measure µ is scaled by ψ, it can be written in those coordinates in
the form

dµ = dν ⊗ e−btdt ,

where ν is a locally finite measure on H(x). An easy computation then shows
that

µH(x) =
1

b
ν .

Let I be an interval in H(x). Withe respect to the coordinates above, we
have

ϕt(I) = {(y, c(y, t)), y ∈ I} .

We thus have

µH(ϕt(I)) =

∫

y∈I

∫ +

s=c(y,t)
∞e−bsdsdν(y)

=

∫

y∈I
e−bc(y,t)dµH(y) .

This concludes the proof. �

Now, if ϕ is a parametrization of G with stable horocycles, ν a locally
finite horocyclic measure and µ an unstable measure which is invariant under
horocycle holonomy, one obtains a finite measure µ ⋊ ν on MΓ by setting
locally ∫

fdµ⋊ ν =

∫

y∈Wu(x)

∫

z∈H(y)
f(z)dν(z)dµ(y) ,

where x is any point on MΓ and f a continuous function supported in a
neighbourhood of x. (The holonomy invariance of µ guaranties that the
measure is well-defined independently of x.)

Using the fact that the total mass of µ must be preserved by the flow ϕ,
we prove the following:

Lemma 5.12. Let ϕ1 and ϕ2 be a parametrizations of G admitting respec-
tively stable and unstable horocycles. Let µ1 (resp. µ2) be an unstable (resp.
stable) Margulis measure for ϕ1 (resp. ϕ2) with scale factor a (resp. −b).
Then

inf
γ∈[Γ]

Lϕ2(γ)

Lϕ1(γ)
≤
a

b
≤ sup

γ∈[Γ]

Lϕ2(γ)

Lϕ1(γ)
.

Proof. Let H be the stable horocyclic foliation of ϕ1 and consider the finite
measure

ν = µ1 ⋊ µ2H
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on MΓ. By Proposition ?? and since µ1 is scaled by ϕ1, we have

ϕ1
t
∗
ν = eat−bc(·,t) .

Since the total mass of the measure µ must be preserved, we must have

inf
x∈MΓ

eat−bc(·,t) ≤ 1 ≤ sup
x∈MΓ

eat−bc(·,t) ,

which rewrites

inf
x∈MΓ

c(x, t)

t
≤
a

b
≤ sup

x∈MΓ

c(x, t)

t
.

Taking the limit as t goes to +∞ and applying Lemma 1.15, we get the
conclusion. �

We can now deduce Theorem 5.10 from Lemma 5.12.

Proof of Theorem 5.10. Let [ϕ] be a point in Par(G). By Theorem 2.14,
there exists ϕ1 in [ϕ] which admits stable horocycles. By Theorem 5.1 there
exists an unstable Margulis measure µ1 for ϕ1 with scale factor a1. We want
to set

htop([ϕ]) = a1 .

To see that this is well-defined, let (ϕ2, µ2) be another such pair, with ϕ2 ∈
[ϕ] and µ2 scaled by ϕ2 with scale factor a2. There also exists ψ ∈ [ϕ] which
admits unstable horocycles, and a stable Margulis measure ν for ψ with
scale factor −b. Since ϕ1, ϕ2 and ψ all have the same period map, applying
Lemma 5.12 gives

a1
b

=
a2
b

= 1 ,

hence a1 = a2 = b. Thus htop is well-defined.

Similarly, the continuity of htop follows from Lemma 5.12 and the conti-
nuity of

([ϕ], [ψ]) 7→ sup
Lϕ
Lψ

.

�

Note that the function htop satisfies

htop(ϕ
λ) =

1

λ
htop(ϕ) .

Therefore, every flow ϕ admits a unique scaling of entropy 1. This gives an
isomorphism between PPar(G) and the hypersurface

Par1(G) = {[ϕ] ∈ Par(G) | htop([ϕ]) = 1 .

Finally, by construction of the maps DF and CF, we have

Proposition 5.13. The maps DF and CF take values into the set Par1(G).
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5.4. Surjectivity of the map DF. In Section ??, we associated to an
Anosov representation of Γ into Diff(S1) a parametrization ϕ of G with sta-
ble horocycles and a unstable Margulis measure with scale factor 1. Here we
explain how to recover a C1 action from the data of the flow and its Margulis
measure.

Let ϕ be a parametrization of G with stable horocycles and µu an unstable
Margulis measure for ϕ. We want to integrate the projections of the Margulis
measure on unstable paths transverse to G. We first need the following
lemma:

Lemma 5.14. Let ϕ be a parametrization of G with stable horocycles, let
µu be an unstable Margulis measure, and c an unstable path transverse to G.
Then the projection µuc of µu to c has full support and no atom.

Proof. Let Supp(µu) denote the union of the supports of µu on each leaf.
Since µu is scaled by ϕ and holonomy invariant, Supp(µu) is a union of
weakly stable leaves. Moreover, the complement of Supp(µu) intersects each
unstable leaf in an open set. The holonomy invariance thus implies that
Supp(µu) is closed. Therefore Supp(µu) = MΓ by minimality of the weakly
unstable foliation (which follows from instance from the minimality of the
action of Γ on ∂∞Γ). We easily deduce that the projections of µu have full
support.

Assume now that some projections have atoms. Let us first bound the size
of these atomes. For this, let U be a relatively compact unstable open domain
such that every stable horocycle intersects U , and take V =

⋃
t≥0 ϕ−t(U).

By local finiteness and scaling property of µu, we have µu(V ) = A < +∞.
Therefore, for every x ∈ U ,

µu({ϕ−t(x), t ≥ 0}) ≤ A .

Since µu is holonomy invariant and since every stable horocycle intersects
U , the same conclusion holds for every x ∈MΓ.

Applying this to ϕs(x) with large s, one gets

µu({ϕs−t(x), t ≥ 0}) = esµu({ϕ−t(x), t ≥ 0}) ≤ A ,

which implies that µu({ϕ−t(x), t ≥ 0}) has no atom. Thus, the projections
of µu have no atom. �

Let us now use these projections to form a C1 atlas on ∂∞Γ. Let I = [q1, q2]
be an interval in Γ, p a point in ∂∞Γ that does not belong to I, an c a

continuous map from I to the unstable leaf W̃u(p) such that c(q) belongs to
the geodesic G(p, q) for all q ∈ [q1, q2]. Define

hp,c : I → R

q 7→ µuc (I)(c([q1, q])) .

By Lemma 5.14, hp,c is a homeomorphism from I to [0, hp,c(q2)].

Proposition 5.15. Let hp,c and hp′,c′ be two homeomorphisms constructed
as above. Then hp′,c′ ◦ h

−1
p,c is a C1 diffeomorphism.
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Proof. Let (p′, c′) be another choice of (p, c). The holonomy invariance of µu

implies that
hp′,c′ = hp,c′′ ,

where c′′ = Tp′,p ◦ c. Now, c(q) and c′′(q) belong to the same geodesic, so we
can write

c′′(q) = ϕt(q)(c(q))

for some continuous function t. The scaling property of µu gives

hp,c′′(q) =

∫ hp,c(q)

0
et(h

−1
p,c(s)ds .

(See the proof of Proposition 5.11.)
It follows that hp′,c′ ◦ h

−1
p,c = hp,c′′ ◦ h

−1
p,c is a C1 diffeomorphism. �

By Proposition 5.15, the family of charts (I, hp,c) define a C1 atlas on ∂∞Γ.
Since this family is globally Γ-invariant, the associated C1 structure on ∂∞Γ
is Γ-invariant.

Let h be a homeomorphism from ∂∞Γ to S1 which is a diffeomorphism
in the local charts hp,c. Then h conjugates the action of Γ on ∂∞Γ to a C1

action ρ on S
1.

Proposition 5.16. We have

Lρ = htop(ϕ)Lϕ .

Proof. Exercise. �

Corollary 5.17. The map DF : Xan(Γ,Diff(S1)) → Par1(G) is surjective.

Proof. Let [ϕ] be a point in Par1(G). By Theorem 2.14, there exists a flow
ϕ in [ϕ] which admits stable horocycles. By Theorem 5.1, the exists an
unstable Margulis measure µu for ϕ with scale factor 1. Let ρ : Γ → Diff(S1)
be constructed as above. Then ρ is topologically conjugate to the action of
Γ on ∂∞Γ. The equality Lρ = Lϕ implies that ρ is Anosov by Proposition
1.21, and gives

DF([ρ]) = [ϕ] .

�

Remark 5.18. Though we did not explicitly proved it, the reader can convince
himself that the construction of ρ from (ϕ, µu) is inverse of the construction

of (ϕ, µu) from ρ. There is thus a bijection D̂F between the set of conjugacy
classes of Anosov representations into Diff(S1) and the set of pairs (ϕ, µu)
up to conjugacy. This bijection factors to the map DF when forgetting the
second coordinate and passing to Hausdorff quotients.

The question of whether DF is injective is thus deeply related to the
question of whether the instable Margulis measure of a flow is unique. We
prove uniqueness Hölder parametrizations in the next section.

6. Constructing inverses of DF and CF

In this section, we construct inverses of DF and CF in restriction to the
set of Hölder parametrizations of entropy 1. The Hölder assumption is nec-
essary to guaranty that the flow considered admits both stable and unstable
horocycles.
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6.1. Anosov parametrizations. Let us first gather the various results pre-
sented above and specialize them to the case of Anosov parametrization.

Definition 6.1. A parametrization of the geodesic foliation is Anosov if it
admits both stable and unstable horocycles.

This is verified for instance by the geodesic flow ϕ0 of a hyperbolic metric.

Proposition 6.2. Let c be a Hölder cocycle along ϕ0. Then c is both stably
and unstably Buseman.

Proof. Up to a coboundary, we can assume c is the integral cocycle associated
to a Hölder function f . If x and y belong to the same stable leaf, then
ϕ0
t (x) and ϕt(y) get exponentially close for t→ +∞, and so do f(ϕ0

t (x)) and

f(ϕ0
t (y)) since f is Hölder. We deduce that

∫ t

0
f(ϕ0

s(x))− f(ϕ0
s(y))ds

converges as s goes to +∞. One proves with a little extra care that the
convergence is uniform on every compact. Thus cf is stably Buseman. The
same argument with x and y in the same unstable leaf and t → −∞ shows
that cf is also unstably Buseman. �

Now, if ϕ is a Hölder parametrization of G, then the reparametrization
cocycle of ϕ with respect to ϕ0 is Hölder. One thus obtains the following
(well-known) corollary:

Corollary 6.3. Every Hölder parametrization of G is Anosov.

A variant of Livsic theorem asserts that Anosov parametrizations are char-
acterized up to conjugacy by their periods.

Theorem 6.4 (Livšic). Let ϕ and ψ be two Anosov parametrizations of G.
If Lψ ≡ Lψ, then ϕ and ψ are conjugate.

Proof. Exercise. �

Let us denote by Paran(G) the of Anosov parametrizations of G. It is
a dense convex subcone of Par(G) which contains Parh(G). We denote
Paran1 (G) its intersection with Par1(G) and by PParan(G) its projection to
PPar(G).

Let ϕ be an Anosov parametrization of the geodesic foliation. Let Hs and
Hu denote respectively the stable and unstable horocyclic foliations of ϕ.
Let µs and µu denote respectively some stable and unstable measures scaled
by ϕ and invariant under horocyclic holonomy and denote by νs and νu their
respective projections to Hs and Hu. In the next sections, we explain how to
recover from these data an Anosov action on the circle and a foliated affine
action.

6.2. Inverses of DF and CF. This inverse has essentially been constructed
in Section 5.4 if we are given an unstable Margulis measure. Similarly, we
construct the inverse of CF via projections of a stable Margulis measure.



50 NICOLAS THOLOZAN

Let ϕ be an Anosov parametrization of G with htop(µ) = 1, and let µs be
a stable Margulis measure. recall that µsH denotes its projection onto the
horocyclic foliation of ϕ.

Proposition 6.5. There exists a stable horocyclic flow (hs) for ϕ such that

µsH([x, hs(x)]) = s

for all s ≥ 0.

Proof. Given x ∈MΓ, let fx be the primitive of µs on Hs(x) vanishing at x.
By Proposition ??, the measure µs on Hs(x) has full support and is atome
free, by compactness of MΓ, one can fine some uniform ε > 0 such that the
total mass µs(Hs(x)) is at least ε. Applying this to ϕt(x), one obtains that

µs(Hs(x)) = etµs(Hs(ϕt(x))) ≥ etε .

Thus µs(Hs(x)) is infinite and fx is a global homeomorphism.
We can now set hs(x) = f−1

x (s). It is clear that hs is a flow. The holo-
nomy invariance of µs give the continuity of hs when moving in directions
transverse to the stable leaves, and the scaling property gives the relation

ϕt ◦ hs ◦ ϕ−t = he−ts .

�

To conclude the construction of the inverses of DF and CF we need the
following:

Proposition 6.6. Let ϕ be parametrization of the geodesic foliation with
stable (resp. unstable) horocycles. Assume there exist (hs) and (h′s) two
stable (resp. unstable) horocyclic flows. Then there is a constant λ 6= 0 such
that

h′s = hλs .

Proof. Exercise. �

Corollary 6.7. Let ϕ be an Anosov parametrization of G. Then the sta-
ble and unstable Margulis measures of ϕ are unique up to a multiplicative
constant.

Proof. Let µs1 and µ2s be two stable Margulis measures. By Proposition ??,
the projections of µs1 and µs2 on Hs differ by a multiplicative constant. Hense
so do µs1 and µs2. �

We can now finally define a map

DF−1 : Paran1 (G) → Xan(Γ,Diff(S1))

in the following way: for [ϕ] ∈ Paran1 (G), let ϕ ∈ [ϕ] be the parametrization of
G which admits both stable and unstable horocycles (ϕ is unique by Livsic’s
theorem). Let µu be the stable Margulis measure of ϕ (which is unique by
Corollary 6.7) and define DF−1([ϕ]) to be the class of the Anosov C1 action
associated to (ϕ, µu) in Section 5.4. It follows from the results of Section 5.4
that

DF ◦DF−1 = IdParan1 (G) .

Similarly, we can construct a map

CF−1 : Paran1 (G) → T (Ws)
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in the following way: for [ϕ] ∈ Paran1 (G), let ϕ ∈ [ϕ] be the parametrization of
G which admits both stable and unstable horocycles (ϕ is unique by Livsic’s
theorem). Let (hs) be the horocycle flow of ϕ constructed in Proposition
6.5. By Proposition 6.6, the flow (hs) is well-defined up to a scaling. Note
however that ϕa centralizes ϕ and conjugates hs to he−as . Thus the foliated
affine action (ϕ, h) is well-defined up to conjugation, and thus defines a point
CF−1([ϕ]) ∈ T (Ws) by the results of Section 4, which satisfies

CF ◦CF−1([ϕ]) = [ϕ] .

6.3. Hölder regularity. Recall that, by Corollary 6.3, Parh1(G) is contained
in Paran1 (G). To conclude the proof of Theorems 0.4 and 0.3, we just need
the following Proposition:

Proposition 6.8. The maps DF−1 and CF−1 map Parh1(G) respectively to

Xan(Γ,Diffh(S1)) and to T h(Ws).

Proof. Exercise. �
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