
Département de Mathématiques et Applications
École Normale Supérieure – Université PSL

Habilitation à Diriger les Recherches

Discipline :

Mathématiques

présentée et soutenue le 12 mars 2021 par

Nicolas Tholozan

Compact quotients of reductive homogeneous
spaces and Surface group representations

Rapporteurs :

William Goldman, François Labourie et Anna Wienhard

Jury :

Yves Benoist Examinateur

Nicolas Bergeron Correspondant

François Labourie Rapporteur

Gabriele Mondello Examinateur

Jean-Marc Schlenker Examinateur

Anna Wienhard Rapportrice





Remerciements

Je voudrais profiter de ce mémoire d’habilitation pour remercier de fa-
çon générale la communauté mathématique dans laquelle je gravite pour sa
générosité, sa bienveillance et sa sympathie envers moi et plus généralement
envers les jeunes, grâce auxquelles j’ai pu m’épanouir dans la recherche de-
puis maintenant 10 ans.

Je souhaite remercier en premier lieu William Goldman, François Labou-
rie et Anna Wienhard qui suivent ma recherche avec intérêt depuis longtemps
et qui ont accepté avec enthousiasme de rapporter ce long mémoire d’habi-
litation. Sans leur soutien je ne serais sans doute jamais arrivé au bout de
ce processus. Leurs travaux mathématiques sont depuis toujours une source
d’inspiration qui a contribué significativement à orienter ma recherche.

Je remercie également Yves Benoist, Gabriele Mondello et Jean-Marc
Schlenker d’avoir accepté de faire partie du jury de ma soutenance. Sachez
que j’apprécie beaucoup la générosité avec laquelle vous discutez de mathé-
matiques et que je me réjouis par avance des nombreuses autres occasions
que nous aurons de le faire.

Je suis également reconnaissant envers Nicolas Bergeron, dont le sou-
tien et les conseils pendant l’élaboration de ce mémoire m’ont été précieux.
Depuis qu’il est arrivé au DMA, il a beaucoup oeuvré pour faire de ce la-
boratoire un environnement de travail agréable, en fournissant notamment
café et chocolat, ce pourquoi on ne pourra jamais le remercier assez.

Je souhaite remercier aussi tous mes collègues et amis avec qui j’ai plaisir
à discuter de mathématiques tout en buvant des bières ou en mangeant des
chouquettes. La liste en est trop longue pour que je puisse tous les citer ici,
mais j’aimerais au moins remercier (en vrac) Sorin, figure paternelle digne
de Laïos, Jérémy, pour son cassoulet ou sa cochinita pibil, Selim, avec qui
j’espère refaire un jour le triathlon de Lacanau, Bertrand, même s’il a attendu
10 ans pour me faire découvrir Marletti, et Olivier, qui est dispo pour un
café à toute heure du jour et de la nuit. Je m’excuse par avance auprès de
ceux que j’oublie.

Enfin, je remercie Marie et Fanny, qui illuminent ma vie.

3





Contents

Introduction (française) 7
Géométriser les variétés . . . . . . . . . . . . . . . . . . . . . . . . 7
Ramifications d’un parcours de recherche . . . . . . . . . . . . . . 14

Introduction (english) 23
Geometrizing manifolds . . . . . . . . . . . . . . . . . . . . . . . . 23
Ramifications of a research trajectory . . . . . . . . . . . . . . . . 29

1 Preliminaries: discrete subgroups of Lie groups 38
1.1 Lie groups and symmetric spaces . . . . . . . . . . . . . . . . 38

1.1.1 Semisimple Lie algebras and Lie groups . . . . . . . . 38
1.1.2 Symmetric spaces of semisimple Lie groups . . . . . . 40
1.1.3 Cartan projection . . . . . . . . . . . . . . . . . . . . . 41
1.1.4 Roots, parabolic subgroups and flag varieties . . . . . 45

1.2 Subgroups of Lie groups and their deformations . . . . . . . . 48
1.2.1 Subgroups of semisimple Lie groups . . . . . . . . . . 48
1.2.2 Deformations and character varieties . . . . . . . . . . 50
1.2.3 Topological invariants . . . . . . . . . . . . . . . . . . 54
1.2.4 Dynamical invariants . . . . . . . . . . . . . . . . . . . 57
1.2.5 Rigidity . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1.3 Discreteness and the Anosov property . . . . . . . . . . . . . 60
1.3.1 Quasi-isometric embeddings in rank 1 . . . . . . . . . 60
1.3.2 Anosov properties in higher rank . . . . . . . . . . . . 63
1.3.3 Convex-cocompactness in Hilbert geometries . . . . . . 65

2 Compact quotients of reductive homogeneous spaces 68
2.1 Compact quotients of homogeneous spaces . . . . . . . . . . . 68

2.1.1 Riemannian homogeneous spaces and standard quotients 69
2.1.2 Pseudo-Riemannian geometry of reductive homogeneous

spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.1.3 Locally homogeneous manifolds and compact quotients 71

2.2 Obstructions to compact quotients . . . . . . . . . . . . . . . 73
2.2.1 Geometric obstructions . . . . . . . . . . . . . . . . . 73

5



2.2.2 Cohomologous obstructions . . . . . . . . . . . . . . . 74
2.2.3 Dynamical obstructions . . . . . . . . . . . . . . . . . 76

2.3 Construction of compact quotients . . . . . . . . . . . . . . . 76
2.3.1 Standard quotients . . . . . . . . . . . . . . . . . . . . 76
2.3.2 Non-standard quotients: rank one group spaces . . . . 78
2.3.3 Non-standard quotients: SO(2d, 2)/U(d, 1) . . . . . . . 80
2.3.4 Openness and Sharpness . . . . . . . . . . . . . . . . . 82
2.3.5 The moduli space of compact quotients of AdS3 . . . . 84

2.4 Geometry of compact quotients . . . . . . . . . . . . . . . . . 86
2.4.1 A conjectural picture . . . . . . . . . . . . . . . . . . . 86
2.4.2 Volume . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.5 Research perspectives . . . . . . . . . . . . . . . . . . . . . . 93
2.5.1 Geometry of compact quotients of SO(2d, 2)/U(d, 1) . 93
2.5.2 Quotients of finite volume . . . . . . . . . . . . . . . . 96

3 Surface group representations 99
3.1 Surface groups and their representations . . . . . . . . . . . . 100

3.1.1 Surfaces and their Teichmüller spaces . . . . . . . . . . 100
3.1.2 Character varieties and their symplectic geometry . . . 104
3.1.3 The PSL(2,R) character variety . . . . . . . . . . . . . 105
3.1.4 Higher Teichmüller spaces . . . . . . . . . . . . . . . . 109

3.2 Harmonic maps and applications . . . . . . . . . . . . . . . . 114
3.2.1 Harmonic maps, minimal surfaces, and Higgs bundles . 114
3.2.2 Application 1: representations into Lie groups of rank 1121
3.2.3 Application 2: Convex RP2-structures . . . . . . . . . 124
3.2.4 Application 3: maximal representations in rank 2 . . . 125
3.2.5 Conjectural properties of higher Teichmüller spaces . . 127

3.3 Bounded relative character varieties . . . . . . . . . . . . . . . 127
3.3.1 Relative character varieties into PSL(2,R) . . . . . . . 128
3.3.2 Higher rank Hermitian Lie groups . . . . . . . . . . . 128

3.4 Research perspectives . . . . . . . . . . . . . . . . . . . . . . 129
3.4.1 Highest Teichmüller theory . . . . . . . . . . . . . . . 129
3.4.2 Branched hyperbolic structures with prescribed holon-

omy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.4.3 Bounded mapping class group orbits . . . . . . . . . . 139

List of personal publications 146

Bibliography 161

6



Introduction

Ce mémoire a pour objet de présenter une synthèse de ma recherche,
depuis les travaux issus de ma thèse commencée en 2011 jusqu’à ses dévelop-
pements plus récents et ses perspectives futures. L’exercice n’est pas aisé en
raison de la relative diversité des thèmes que j’ai abordé et de la variété des
outils mathématiques impliqués. Dans cette introduction je m’efforcerai de
mettre en avant la cohérence de l’ensemble de mes travaux, en commençant
par un aperçu historique de ce qu’on appelle la géométrisation des varié-
tés, puis en présentant les ramifications de ma recherche à partir de cette
problématique initiale.

Géométriser les variétés

Les variétés topologiques ou différentielles sont par essence des objets
flexibles, définis « à déformation près ». Pour mieux les décrire, on est souvent
amené à les géométriser, c’est-à-dire (en un sens très large) à les munir de
structures géométriques qui reflètent par certains aspects leurs propriétés
topologiques. On peut donner plusieurs acceptions à cette notion vague de
géométrisation. Ici nous nous préoccuperons principalement de munir nos
variétés de structures localement homogènes au sens d’Ehresmann, c’est-à-
dire de les identifier localement à un certain espace homogène. Une telle
structure fait appaître naturellement une action du groupe fondamental de la
variété sur cet espace homogène, ce qui lie étroitement l’étude des structures
localement homogènes sur une variété à celle des représentations linéaires de
son groupe fondamental.

De l’uniformisation des surfaces de Riemann à l’invention du
groupe fondamental

Historiquement, la géométrisation des variétés est indissociable de l’in-
vention du groupe fondamental, et tous deux puisent leur origine dans l’uni-
formisation des surfaces de Riemann compactes.

L’essor de la théorie des fonctions analytiques de la variable complexe a
conduit les mathématiciens du XIXe siècle à accepter la notion de fonction
multivaluée (sur un domaine du plan complexe ou plus généralement sur
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une surface de Riemann). Une telle fonction possède localement plusieurs
branches, qui sont permutées par le prolongement analytique le long d’un
chemin fermé. Lorsque la fonction y est solution de certaines équations dif-
férentielles, les transformations qui permutent les branches sont parfois bien
identifiées. Par exemple, les branches d’une solution de l’équation

y′ = f

sont permutées par des translations, tandis que celles d’une solution de
l’équation

y′′′

y′
− 3

2

(
y′′

y′

)2

= f

sont permutées par des homographies. 1

En étudiant ces fonctions multivaluées, on comprend progressivement
qu’elles permettent d’uniformiser les courbes algébriques complexes, c’est-
à-dire que leur réciproque est parfois définie sur un domaine simplement
connexe et identifie la surface de Riemann de départ au quotient de ce do-
maine par le groupe de permutation des branches. Ainsi, Eisenstein, Liouville
et Weierstrass comprennent que les intégrales elliptiques permettent d’iden-
tifier les courbes elliptiques aux quotients de C par des réseaux, puis Klein
et Poincaré démontrent que les courbes algébriques de genre supérieur à 2
sont des quotients du plan hyperbolique par un groupe fuchsien. 2

Le théorème d’uniformisation est présent dans l’esprit de Poincaré lorsque,
quelques années plus tard, il invente la notion de groupe fondamental dans
l’Analysis Situs [157]. Poincaré y introduit informellement le groupe fonda-
mental d’une variété comme le groupe des permutations des branches d’une
fonction multivaluée « la plus générale possible » (autrement dit, le groupe
d’automorphismes de son revêtement universel). Il en donne pour exemple
les suspensions de difféorphismes du tore, qu’il décrit explicitement comme
des quotients de R3 par un groupe de transformations affines, et dont il écrit :

L’analogie avec la théorie des groupes fuchsiens est trop évidente
pour qu’il soit nécessaire d’insister.

Les variétés qui ont motivé l’introduction du groupe fondamental sont donc
géométriques : leur revêtement universel est un espace homogène, et leur
groupe fondamental un groupe discret de transformations de cet espace.

Les espaces localement homogènes

Géométriser une variété, en un sens plus précis, consisterait donc à « in-
carner » son revêtement universel et son groupe fondamental dans une géo-

1. Les spécialistes reconnaîtront dans le terme de gauche la dérivée schwarzienne de la
fonction y.

2. Pour plus de précisions sur l’histoire du théorème d’uniformisation, on pourra consul-
ter [54].
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métrie au sens de Klein, c’est-à-dire un espace homogène. Cette idée a été
formalisée dans un cadre général par Ehresmann [59].

Remarquant que certaines structures géométriques sur les variétés diffé-
rentielles (une métrique de courbure constante, un connection plate...) four-
nissent des identifications locales avec certains espaces homogènes, Ehres-
mann introduit la notion générale de variété localement modelée sur un
espace G-homogène X, c’est-à-dire munie d’identifications locales avec X
qui sont bien définies modulo une transformation de G. Les identifications
locales se prolongent alors analytiquement en une application multivaluée
de notre variété vers l’espace X, dont les branches sont permutées par des
transformations de G. En termes modernes, une variété M localement mo-
delée sur X est munie d’une application développante dev : M̃ → X qui
est équivariante par rapport à une représentation hol : π1(M)→ G appelée
holonomie. Ehresmann étudie alors la complétude de ces espaces localement
homogènes. Sous certaines conditions (en particulier lorsqu’M est compacte
et X un espace homogène riemannien), l’application développante est un
difféomorphisme global et la variété M est donc un quotient de X.

Si l’étude des espaces localement homogènes jusque dans les années 70
est surtout marquée par de puissants théorèmes de rigidité (Calabi–Weil,
Mostow, Margulis...), à la fin des années 70, Thurston reprend les travaux
d’Ehresmann et démontre un théorème très général de déformation : si
hol : π1(M) → G est l’holonomie d’une structure localement modelée sur
un espace G-homogène X, alors tout morphisme suffisemment proche de
hol est l’holonomie d’une structure localement homogène proche de la struc-
ture initiale. Ce principe d’Ehresmann–Thurston 3 et l’utilisation qu’en fera
Thurston dans ses travaux de géométrisation des 3-variétés conduisent à un
regain d’intérêt pour la géométrisation des variétés, intérêt encore accru au
cours de la dernière décennie avec la découverte des représentations Anosov,
source de nombreux nouveaux exemples de géométrisation.

Avant de préciser un peu cette notion, je voudrais présenter quelques
problèmes de géométrisation spécifiques qui ont contribués à l’essor de ce
domaine de recherche.

Groupes kleinéens et hyperbolisation des 3-variétés

Rappelons que le groupe de Lie PSL(2,C) est le groupe des isométries
directes de l’espace hyperbolique H3. Il agit par homographies sur la sphère
de Riemann, qui s’identifie au bord à l’infini de H3.

Les groupes kleinéens sont les sous-groupes discrets de PSL(2,C), et leur
classification revient donc essentiellement à classifier les 3-variétés hyperbo-
liques complètes. Une sous-classe importante des groupes kleinéens, stable
par petites déformations, est celle des groupes kleinéens convexe-cocompacts,

3. Cette terminologie est due à Bergeron et Gelander [24], d’après qui le théorème peut
être lu entre les lignes des travaux d’Ehresmann [60].
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qui sont les groupes fondamentaux de 3-variétés hyperboliques compactes à
bord convexe.

Si les premiers exemples de groupes kleinéens apparaissent dans les tra-
vaux de Schottky et Klein en lien avec l’uniformisation des surfaces de Rie-
mann, leur étude systématique commence en 1960 avec les travaux d’Ahlfors
et Bers [3]. En résolvant l’équation de Beltrami sous des hypothèses de régu-
larité très faibles, ces derniers démontrent que les déformations d’un groupe
kleinéen convexe-cocompact sont paramétrées par les structures conformes
sur le bord de la variété hyperbolique associée.

Une quinzaine d’année plus tard, Thurston énonce sa conjecture de géo-
métrisation des 3-variétés, qui prédit que toute 3-variété compacte sans bord
asphérique et atoroïdale possède une structure hyperbolique. En s’appuyant
sur les travaux d’Ahlfors et Bers, il démontre cette conjecture pour les va-
riétés Haken, qui peuvent être découpées le long de surfaces incompressibles
[195]. En simplifiant beaucoup, sa preuve consiste à hyperboliser les variétés
à bord obtenues en découpant le long d’une surface incompressible, puis à
déformer convenablement les structures hyperboliques sur chaque morceau
(grâce au théorème d’Ahlfors–Bers) de façon à pouvoir les recoller. La preuve
nécessite une compréhension fine des représentations fidèles et discrètes de
groupes de surfaces, pour laquelle Thurston développe considérablement la
théorie de Teichmüller.

Ces résultats conduisent Thurston à formuler un certain nombre de grandes
conjectures – outre la conjecture d’hyperbolisation, on peut citer la conjec-
ture virtuellement Haken et la conjecture des laminations terminales – dont
la résolution (respectivement par Perelman [156], Agol [2], et Brock–Canary–
Minsky [33]) a abouti à une compréhension profonde de la topologie et géo-
métrie des variétés de dimension 3.

Convexes divisibles

Au XIXe, l’essor de la géométrie hyperbolique et de la géométrie pro-
jective remettent en cause le caractère absolu de la géométrie euclidienne et
conduisent Klein, dans son célèbre programme d’Erlangen [104], à définir la
géométrie comme l’étude des espaces homogènes. Lorsqu’Ehresmann intro-
duit ensuite la notion de variété localement homogène, il est alors conduit
naturellement à s’intéresser plus spécifiquement aux variétés localement mo-
delées un l’espace projectif.

Une sous-classe intéressante de telles variétés est formée par les quo-
tients compacts d’ouverts convexes. Les convexes possédant de telles actions
cocompactes sont appelés convexes divisibles. Cette notion a été introduite
par Kuiper dans [115], et étudiée plus avant par Benzécri dans sa thèse [22].
Benzécri pense que les convexes divisibles sont des objets rigides, et démontre
effectivement un théorème de rigidité sous une hypothèse de régularité : les
convexes divisibles à bord C2 sont projectivement équivalents au modèle de
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Klein de l’espace hyperbolique. Mais quelques années plus tard, Katz et
Vinberg construisent des convexes divisibles dont le bord est C1 mais pas C2

[100], tandis que Koszul démontre un principe d’Ehresmann–Thurston pour
les convexes divisibles [114] : si Γ ⊂ PSL(n,R) divise un convexe de RPn,
les petites déformations de Γ continuent à diviser un convexe. 4 On peut en
particulier obtenir des familles continues de convexes divisibles en déformant
un réseau uniforme de SO(d, 1) ' Isom(Hd) à l’intérieur de SL(d+ 1,R).

Enfin, Choi et Goldman [43] (en dimension 2) puis Benoist [19] (en toute
dimension) démontrent que le fait de diviser un convexe est aussi une condi-
tion fermée. Ainsi, toute déformation continue d’un réseau hyperbolique uni-
forme de SO(d, 1) ' Isom(Hd) dans SL(d+ 1,R) divise un convexe. Le théo-
rème de Choi–Goldman aboutit en un certain sens à une classification des
convexes divisibles de dimension 2. En revanche, les espaces de déformation
des convexes divisbles de dimension 3 et leurs liens avec la géométrisation
des 3-variétés restent encore incompris, malgré les travaux de Benoist [20]
et, plus récemment, de Ballas–Danciger–Lee [12].

Espaces-temps de courbure constante

Une autre motivation de l’étude des espaces localement homogènes prend
sa source dans la théorie de la relativité. Aux alentours de 1900, Lorentz,
Poincaré et Einstein comprennent progressivement que le groupe des symé-
tries des lois de la physique n’est pas le groupe des transformations « galli-
léennes » mais le groupe de Lorentz SO(3, 1), qui préserve les équations de
Maxwell. Quelques années plus tard, Einstein intègre les relations entre gra-
vitation et accélération dans la courbure de l’espace-temps : selon la théorie
de la relativité générale, l’espace-temps est une variété lorentzienne dont la
courbure est reliée aux tenseur énergie impulsion par l’équation d’Einstein.

Si on lui postule une certaine homogénéité 5, l’espace-temps devrait res-
sembler à grande échelle à une variété lorentzienne de courbure constante.
Le signe de cette courbure, qui dépend de la valeur de la constante cosmo-
logique et conditionne les propriétés d’expansion de l’univers, a fait l’objet
de plusieurs controverses dans l’histoire de la relativité générale. L’étude de
la forme de l’univers soulève donc un problème de géométrisation : quelles
sont les variétés localement modelées sur un espace homogène lorentzien de
courbure constante ?

Les mathématiciens s’emparent de ce problème à la fin des années 50
tout en s’éloignant un peu des préoccupations physiques qui l’ont motivé.

4. N’ayant pas connaissance du principe d’Ehresmann–Thurston, Koszul démontre en
fait seulement que les structures projectives convexes forment un ouvert de toutes les
structures projectives.

5. C’est le principe cohomologique parfait, introduit par Bondi en 1950 et dont la per-
tinence peut-être discutée, ce pour quoi je ne suis pas compétent et que je m’abstiendrai
donc de faire.
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Markus, avec Calabi [39] et Auslander [11], initie notamment l’étude des
variétés lorentziennes compactes de courbure constante, qui connaîtra de
nombreux développements sur lesquels nous reviendrons en détail dans le
chapitre 2.

Cette hypothèse de compacité est toutefois peu plausible d’un point de
vue physique car elle implique une « récurrence temporelle » qui viole le
principe de causalité. Une hypothèse plus réaliste est celle d’un espace-temps
Globalement Hyperbolique Cauchy compact (GHC), c’est-à-dire, très schéma-
tiquement, d’un espace-temps compact dans les directions d’espace mais qui
vérifie une condition de causalité.

Dans un article remarquable [145], Mess décrit les variétés lorentziennes
GHC de courbure constante en dimension 3, et exhibe les liens étroits entre
leurs espaces de déformations et l’espace de Teichmüller de leur surface de
type espace. Certains de ses résultats seront étendus par la suite à la dimen-
sion supérieure. Dans le cas de courbure négative, en particulier, les variétés
lorentziennes GHC de dimension d + 1 sont (sous une hypothèse supplé-
mentaire de convexité) des quotients d’un ouvert de l’espace anti-de Sitter
AdSd+1 par le groupe fondamental d’une variété compacte de courbure né-
gative de dimension d. Barbot démontre dans [13] que toute déformation
continue de ce groupe dans le groupe de isométries de l’espace anti-de Sitter
est encore le groupe fondamental d’un espace-temps anti-de Sitter GHC.

Le paradigme des groupes Anosov

La notion de sous-groupe Anosov d’un groupe de Lie semisimple G ou de
représentation Anosov d’un groupe de type fini Γ à valeurs dans G a été intro-
duite par Labourie au tournant du siècle [118], et rapidement développée par
Guichard et Wienhard [84] ainsi que plusieurs autres auteurs. Pour reprendre
une expression d’Anna Wienhard, la théorie des représentations Anosov est
à l’origine d’un « changement de paradigme » dans l’étude des sous-groupes
discrets des groupes de Lie : alors que la géométrie au XXe siècle est marqué
par les théorèmes de rigidité (de Mostow et Margulis notamment), au milieu
desquels les rares familles de groupes discrets non rigides (les groupes klei-
néens, les groupes de symétries de convexes divisibles...) semblent quelques
contre-exemples disparates, le formalisme des groupes Anosov a transformé
cette vision des choses en révélant toute la richesse des déformations de
groupes discrets et en fournissant un cadre général à leur étude.

Précisons un peu. Considérons un groupe de Lie semisimple réel G (par
exemple SO(p, q) ou SL(n,R)). Les espaces G-homogènes compacts sont es-
sentiellement les variétés de drapeaux 6 G/P , où P est un sous-groupe para-
bolique. Disons qu’une suite (gn)n∈N ∈ GN est P -proximale si elle possède un

6. Lorsque G = SL(n,R), ce sont effectivement les ensembles de drapeaux de Rn d’un
certain type.
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point fixe attractif dans G/P . Informellement, un sous-groupe discret Γ de
G est P -Anosov s’il vérifie une propriété de P -proximalité uniforme.

Cette propriété (énoncée précisément au chapitre 1, Section 1.3.2) a de
nombreuses conséquences géométriques et dynamiques remarquables. Elle
implique que le groupe Γ est hyperbolique au sens de Gromov [95], et que
son bord à l’infini s’identifie à un fermé Γ-invariant de G/P . Guichard et
Wienhard montrent également qu’un groupe P -Anosov Γ agit proprement
discontinument et cocompactement sur un ouvert d’une autre variété de dra-
peaux G/Q [84], enrichissant ainsi considérablement les exemples de variétés
compactes localement modelées sur des variétés de drapeaux.

La principale vertu de la propriété Anosov est sa stabilité structurelle :
les petites déformations d’un groupe P -Anosov restent P -Anosov. Lorsque G
est le groupe des isométries d’un espace hyperbolique (ou plus généralement
lorsque G est de rang 1), son unique variété de drapeaux est le bord à l’infini
de l’espace hyperbolique, et la propriété Anosov est alors équivalente à la pro-
priété de convexe-cocompacité. La principale source d’exemples de groupes
Anosov consiste alors à déformer ces sous-groupes convexe-cocompacts dans
des groupes de Lie de rang supérieur. Ainsi, les déformations de réseaux
uniformes de SO(d, 1) dans SL(d+ 1) ou SO(d, 2) (et, plus généralement, les
groupes qui divisent un convexe strict d’un espace projectif et les groupes fon-
damentaux d’espaces-temps anti-de Sitter GHC convexes) sont des exemples
de groupes Anosov. Récemment, Zimmer [209] et Danciger–Guéritaud–Kassel
[52] on montré que la propriété Anosov pouvait toujours se ramener à une
propriété de convexe-cocompacité projective introduite par Crampon–Marquis
[50], qui synthétise la théorie des groupes convexe-cocompacts en rang 1 et
celle des convexes divisibles.

Outre le fait qu’elle fournit un cadre unifié à divers exemples de struc-
tures géométriques flexibles, le plus grand succès de la théorie des groupes
Anosov est la description des propriétés géométriques de certaines familles
de représentations de groupes de surfaces. Rappelons qu’une surface com-
pacte Σ de genre supérieur à 2 possède des structures hyperboliques, et
que l’holonomie de chaque structure hyperbolique fournit une représenta-
tion injective d’image discrète de son groupe fondamental Γ dans PSL(2,R)
appelée représentation fuchsienne. Les représentations fuchsiennes modulo
conjugaison forment une composante connexe de la variété des caractères
X(Γ,PSL(2,R)) qui s’identifie d’après le théorème d’uniformisation à l’espace
de Teichmüller de Σ. Dans [118], Labourie montre que les représentations de
Hitchin, qui forment une composante connexe de la variété des caractères
X(Γ,PSL(n,R)), sont toutes Anosov. Avec Burger, Iozzi et Wienhard, ils
démontrent ensuite le même résultat pour les représentations maximales à
valeurs dans des groupes hermitiens [35]. Ces exemples donnent naissance
à la théorie de Teichmüller supérieure, qui étudie les composantes de repré-
sentations Anosov dans les variétés de caractères de groupes de surfaces et
leurs similarités avec l’espace de Teichmüller. Une part importante de ma
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recherche se situe dans ce domaine.

Ramifications d’un parcours de recherche

Mes travaux de recherche trouvent leur motivation initiale dans des pro-
blèmes de géométrisation, et les représentations Anosov y jouent un rôle pré-
pondérant. Dans la suite de ce mémoire, j’ai choisi d’organiser mes travaux
selon deux thèmes traités de façon à peu près indépendante : les quotients
compacts d’espaces homogènes réductifs d’une part, et les représentations de
groupes de surfaces d’autre part.

Dans cette introduction, je propose de raconter mon parcours de re-
cherche d’une façon plus chronologique que logique, afin d’illustrer comment
ma problématique initiale (l’étude des variétés pseudo-riemanniennes com-
pactes localement homogènes) a ramifié dans plusieurs directions autonomes.
Chaque section ci-dessous présente une de ces branches.

Espaces pseudo-riemanniens localement symétriques

J’ai commencé ma thèse en m’intéressant aux variétés compactes locale-
ment modelées sur des espaces pseudo-riemanniens symétriques. Une ques-
tion centrale dans leur étude est celle de leur complétude : ces espaces sont-
ils nécessairement des quotients de leur modèle symétrique ? J’abordai cette
question dans le cas des variétés localement modelées sur un groupe de Lie
de rang 1 muni de sa métrique de Killing, un choix motivé entre autres par
le fait que les quotients compacts de ces espaces étaient en passe d’être très
bien compris grâce aux les travaux en cours de Guéritaud–Guichard–Kassel–
Wienhard [81, 80], et qu’il est frustrant de ne pas savoir si l’on décrit ainsi
toutes les variétés compactes localement modelées sur ces espaces. J’obtins
le théorème suivant :

Théorème 1. Soit G un groupe de Lie de rang 1 muni de l’action de G×G
par multiplication à gauche et à droite, et U un ouvert de G. Supposons
qu’il existe un sous-groupe de G×G agissant proprement discontinûment et
cocompactement sur U . Alors U = G.

Ce résultat très partiel a néanmoins le mérite d’impliquer que les quo-
tients compacts de G ne peuvent pas être déformés continûment en des struc-
tures incomplètes.

Après m’être un peu cassé les dents sur la question de la complétude, je
décidai de m’intéresser à la seule géométrie de rang 1 où elle est résolue : le cas
de G = PSL(2,R), qui s’identifie à l’espace anti-de Sitter AdS3. Les quotients
compacts de PSL(2,R) par un sous-groupe de PSL(2,R) × PSL(2,R) sont
décrit très précisément par les travaux de Kulkarni–Raymond [117] et Kassel
[96] : ils sont (à revêtement fini près) de la forme

j × ρ(Γ)\PSL(2,R) ,
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où Γ est le groupe fondamental d’une surface compacte de genre supérieur
à 2, j est une représentation fuchsienne et ρ une représentation dominée par
j au sens où il existe f : H2 → H2 qui est (j, ρ)-équivariante et contractante.
Il restait à décrire l’ensemble de ces couples (j, ρ). Notamment, est-ce que
toute représentation non-fuchsienne ρ : Γ → PSL(2,R) peut être dominée
par une représentation fuchsienne ?

Cette question intéressait Bertrand Deroin par son lien avec une autre
question ouverte : quelles représentations ρ : Γ → PSL(2,R) sont l’holono-
mie d’une structure hyperbolique branchée ? Pour aborder ces deux questions,
nous commençâmes par développer une approche basée sur des applications
harmoniques discrètes, qui permet de voir ρ comme l’holonomie d’une struc-
ture hyperbolique “pliée” avec des singularités coniques d’angles supérieurs à
2π. Cette approche (récemment menée au bout par Florestan Martin–Baillon
[142]) fournit rapidement une réponse positive à la première question si l’on
sait traiter un certain nombre de triangulations dégénérées. Mais nous com-
prîmes au bout d’un moment qu’au prix d’un peu d’analyse, ces difficultés
techniques disparaissent si l’on remplace les applications harmoniques dis-
crètes par de véritables applications harmoniques. En outre, on contrôle ainsi
mieux les paramètres de la construction : chaque choix de structure complexe
sur Σ fournit une représentation fuchsienne qui domine ρ, et je démontrai
enfin qu’on obtient ainsi toutes les représentations qui dominent ρ.

Théorème 2 (Deroin–Tholozan [55, 189]). Soit ρ une représentation non
fuchsienne de Γ dans PSL(2,R) (ou même dans n’importe quel groupe de Lie
de rang 1). Alors l’ensemble des représentations fuchsiennes qui dominent ρ
modulo conjugaison est non vide et homéomorphe à l’espace de Teichmüller
de Σ.

Ce théorème permet donc de décrire l’espace des modules des variétés
anti-de Sitter compactes de dimension 3.

Pour conclure mon étude de ces variétés, je cherchais à calculer leur
volume. Grâce aux travaux de Guéritaud–Kassel [81], on sait que ces variétés
fibrent en géodésiques de type temps au dessus d’une surface compacte. En
intégrant le long des fibres, j’obtins l’expression suivante pour leur volume :

Théorème 3 (Tholozan [191]). Soit Γ un groupe de surface, j : Γ →
PSL(2,R) une représentation fuchsienne et ρ : Γ → PSL(2,R) une repré-
sentation dominée par j. Alors

Vol (j × ρ(Γ)\PSL(2,R)) =
π2

2
|eu(j) + eu(ρ)| ,

où eu désigne la classe d’Euler.

Ce résultat s’étend aisément aux quotients de SO(d, 1), toujours en s’ap-
puyant sur leur structure de fibré fournie par Guéritaud–Kassel.
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Le fait surprenant que le volume d’une variété de dimension 3 soit calculé
par une « classe caractéristique » appelait une explication plus conceptuelle
qu’un simple calcul. Je finis par comprendre qu’on peut contourner l’utilisa-
tion des travaux de Guéritaud–Kassel en raisonnant « à homotopie près » ce
qui me permis de généraliser le théorème précédent de la façon suivante :

Théorème 4 (Tholozan [191]). Soit Γ\G/H le quotient compact d’un espace
homogène réductif. Alors

Vol(Γ\G/H) =

∫
[Γ]
i∗ωG/H

où ωG/H est une classe de cohomologie continue de G dépendant uniquement
de H, i est l’inclusion de Γ dans G et [Γ] est une « classe fondamentale »
dans l’homologie de Γ.

Je déterminai également à quelle condition la classe ωG/H est une classe
caractéristique (impliquant la rationalité du volume) et déduisis de ce théo-
rème une formule explicite pour le volume des quotients de SU(d, 1). Surtout,
je trouvai plusieurs critères d’annulation de ωG/H , qui fournissent une puis-
sante obstruction à l’existence de quotients compacts de certains espaces
homogènes réductifs.

Représentations de groupes de surfaces et applications har-
moniques

Le théorème de domination des représentations de groupes de surface
en rang 1 obtenu avec Bertrand Deroin ouvrait une nouvelle perspective de
recherche : nous nous sommes naturellement demandé ce qu’il advenait de
ce résultat pour des représentations en rang supérieur, à commencer par les
représentations de Hitchin dans PSL(3,R).

Soit donc Σ une surface compacte de genre supérieur à 2 et Γ son groupe
fondamental. Chaque représentation de Hitchin ρ : Γ→ PSL(3,R) agit pro-
prement discontinûment et cocompactement sur un ouvert convexe Ωρ du
plan projectif en préservant sa métrique de Hilbert, dont les propriétés mé-
triques capturent les propriétés algébro-géométriques de ρ. Des résultats de
Crampon [49] et Nie [153] sur l’entropie de ces convexes montre qu’on ne
peut pas espérer dominer uniformément ces représentations par des repré-
sentations fuchsiennes. En m’intéressant au sujet, j’appris l’existence d’une
métrique riemannienne naturelle sur chaque convexe, la métrique de Bla-
schke, issue de la théorie des sphères affines. Cette métrique est uniformé-
ment comparable à la métrique de Hilbert et de courbure supérieure à −1, ce
qui suggère qu’à l’inverse du rang 1, les représentations de Hitchin dominent
toujours une représentation fuchsienne. Pour affiner ce résultat, il manquait
une comparaison précise entre la métrique de Blaschke et celle de Hilbert, ce
que j’obtins dans [190].
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Théorème 5 (Tholozan [190]). Soit ρ une représentation de Hitchin d’un
groupe de surface Γ à valeurs dans PSL(3,R). Il existe une représentation
fuchsienne j telle que

Lρ(γ) ≥ Lj(γ)

pour tout γ ∈ Γ.

Ici, Lj(γ) désigne la longueur de translation de j(γ) dans le plan hyperbo-
lique et Lρ(γ) cette de ρ(γ) dans Ωρ muni de sa métrique de Hilbert. Ce nou-
veau résultat de comparaison fine entre représentations d’un groupe de sur-
face utilise encore une fois des outils d’analyse harmonique. La métrique de
Blaschke de Ωρ est en effet liée à l’unique application harmonique conforme
ρ-invariante de Σ̃ à valeurs dans l’espace symétrique PSL(3,R)/PSO(3).

Encouragé dans l’idée que les applications harmoniques tordues peuvent
fournir des informations précises sur les représentations de groupes de sur-
faces, je m’intéressai ensuite aux représentations maximales à valeurs dans
le groupe de Lie hermitien SO(2, d). Il devenait alors difficile de contour-
ner la théorie des fibrés de Higgs, ces objets holomorphes qui capturent
les propriétés algébriques des applications harmoniques tordues à valeurs
dans les espaces symétriques. En étudiant en détail la structure de ces fi-
brés de Higgs, nous montrâmes avec Brian Collier et Jérémy Toulisse que si
ρ : Γ→ SO(2, d) est une représentation maximale, toute application harmo-
nique conforme ρ-equivariante à valeurs dans l’espace symétrique de SO(2, d)
est l’application de Gauss d’une surface maximale de type espace dans l’es-
pace pseudo-riemannien H2,d−1. En donnant à cette surface maximale le rôle
de la sphère affine pour les représentations de Hitchin dans PSL(3,R), nous
obtînmes de nombreuses propriétés géométriques de ces représentations :

Théorème 6 (Collier–Tholozan–Toulisse [45]). Soit ρ : Γ → SO(2, d) une
représentation maximale. Alors :

— Il existe une unique application harmonique conforme ρ-equivariante
de Σ̃ dans l’espace symétrique de SO(2, d), et cette application est un
plongement.

— Il existe une représentation fuchsienne j telle que Lρ ≥ Lj.
— Le domaine de discontinuité Ωρ de Guichard–Wienhard dans l’espace

des plans isotropes de R2,d admet une fibration ρ-équivariante sur Σ̃
dont les fibres sont des sous-variétés de drapeaux.

(Ici, Lρ(γ) désigne le logarithme du rayon spectral de ρ(γ).)
Ces propriétés diverses et leurs importance dans la théorie de Teichmüller

supérieure sont discutées plus amplement dans la section 3.2.

Théorie de Teichmüller suprême

La principale raison pour laquelle les applications harmoniques permettent
de décrire aussi finement les représentations de Hitchin et les représentations

17



maximales en rang 2 tient à une coincidence : les fibrés de Higgs associés
aux applications harmoniques conformes sont alors cycliques, une propriété
de structure très forte qui simplifie beaucoup l’étude de ces applications har-
moniques. À partir du rang 3, les fibrés de Higgs cycliques ne paramètrent
qu’une sous-variété de la variété des caractères, et il semble difficile d’extraire
de l’analyse harmonique des propriétés géométriques précises sur toutes les
représentations.

Pour poursuivre l’étude des représentations Anosov de groupes de sur-
faces au-delà du rang 2, il semble alors préférable de les approcher avec les
outils de dynamique hyperbolique. Schématiquement, cette approche – qu’on
peut attribuer en premier lieu à Sambarino [171] – consiste à associer à une
représentation Anosov ρ un spectre des longueurs Lρ : [Γ]→ R+ (où [Γ] dé-
signe les classes de conjugaisons d’éléments de Γ) qu’on peut voir comme la
fonction des périodes d’une reparamétrisation höldérienne du flot géodésique
de Σ. Les travaux de Bowen, Margulis ou Ruelle sur la dynamique des flots
d’Anosov fournissent alors des informations précises sur le comportement
asymptotique de Lρ. L’entropie topologique de ces flots, qui mesure le taux
de croissance exponentielle de Lρ, joue ici un rôle prépondérant.

Si ρ : Γ → PSL(d,R) est une représentation de Hitchin, on peut par
exemple lui associer un flot dont les périodes sont données par

Lρ(γ) = λ1(ρ(γ))− λ2(ρ(γ)) ,

où λi désigne le logarithme de la i-ème valeur propre [32]. Bertrand Deroin
me fit remarquer un jour que l’entropie d’un telle flot doit être égale à 1
puisque que Lρ se lit sur le cocycle des dérivées d’une action action de Γ
de classe C1 sur le cercle (voir aussi [158]). En essayant de préciser cette
remarque, je compris qu’il existe une correspondance bi-univoque entre les
trois espaces suivants :

(1) L’espace des reparamétrisations höldériennes du flot géodésique de
Σ d’entropie 1, modulo équivalence de Livšic,

(2) L’espace des actions de Γ de classe C1+Hölder sur le cercle qui sont
Hölder conjuguées à une action fuchsienne, modulo conjugaison C1,

(3) les métriques hyperboliques sur le feuilletage faiblement stable du
flot géodésique de Σ, transversalement Hölder, modulo isotopie.

Cette correspondance préserve en outre trois notions naturelles de fonction
des périodes de [Γ] dans R+.

Je présente cette correspondance dans des notes en cours d’élaboration
[192]. Son intérêt est de multiplier les points de vue sur ce que j’aime appeler
prétentieusement l’espace de Teichmüller suprême. 7 Sa construction n’est
que le début d’un programme de recherche qui ambitionne de décrire la

7. Pour ma défense, il existe déjà un « espace de Teichmüller universel » et un « super-
espace de Teichmüller ».
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géométrie de cet espace de dimension infinie, dans l’espoir d’en déduire des
propriétés géométriques des espaces de Teichmüller supérieurs. Le point de
vue (3) permet en effet de réintroduire la théorie de Teichmüller classique
dans la théorie de Teichmüller supérieure, tandis que le point de vue (2)
fournit une analogie entre les représentations Anosov et les représentations
maximales dans Diff(S1). Nous donnons plus de détails sur ce projet et ses
développements à venir dans la section 3.4.1.

Géométries de Hilbert

L’étude des représentations de Hitchin dans PSL(3,R) me permis d’ap-
profondir ma compréhension des géométries de Hilbert. En particulier, mon
théorème de comparaison entre la métrique de Balschke et la métrique de
Hilbert, valable en toute dimension, se trouva répondre à une conjecture de
Colbois et Verovic sur la croissance du volume des géométries de Hilbert :

Théorème 7. Soit Ω un convexe propre de l’espace projectif RPd−1. Alors
l’entropie volumique de Ω :

H (Ω)
def
= lim sup

R→+∞

1

R
(logVol(B(o,R)))

est inférieure à d− 2.

(B(o,R) désigne ici la boule de centre un point o quelconque de rayon R
pour la métrique de Hilbert, et Vol désigne son volume pour la mesure de
Hausdorff associée.)

Lorsque le convexe Ω est divisé par un groupe Γ, l’entropie volumique
coïncide avec l’exposant critique de Γ :

δ(Γ) = lim
R→+∞

1

R
log ]{γ ∈ Γ | dHilb(o, γ · o) ≤ R} .

Dans ce cas, le théorème 7 a d’abord été prouvé par Crampon par des mé-
thodes dynamiques [49]. Crampon démontre de plus un théorème de rigidité :
si l’entropie est égale à d−2, alors le convexe est un ellipsoïde (et sa métrique
de Hilbert est la métrique hyperbolique). 8

Ces résultats invitaient à se demander ce qu’il advient de cet exposant
critique lorsque Γ agit seulement convexe-cocompactement sur Ω. L’exposant
critique de Γ est alors égal à la croissance du volume du coeur convexe et,
lorsqu’Ω est une boule, il est égal à la dimension de Hausdorff de l’ensemble
limite de Γ dans ∂∞Ω, d’après un célèbre théorème de Sullivan [181]. Daniel
Monclair, qui travaillait avec Olivier Glorieux sur ces exposants critiques
dans le cas de groupes agissant sur l’espace pseudo-riemannien Hp,q [70],

8. Crampon suppose a priori que Ω est Gromov hyperbolique, mais son résultat a été
amélioré par Barthelmé–Marquis–Zimmer [15] en utilisant le théorème 7.
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m’expliqua que la théorie de Patterson–Sullivan (et sa généralisation aux es-
paces Gromov hyperboliques par Coornaert [46]) donne en fait l’égalité entre
l’exposant critique de Γ et la dimension de Hausdorff de l’ensemble limite
pour la métrique de Gromov sur le bord. Il suffisait donc de comparer cette
métrique de Gromov à une métrique riemannienne pour obtenir une inégalité
sur la dimension de Hausdorff géométrique. Nous avons ainsi obtenu :

Théorème 8 (Glorieux–Monclair–Tholozan [71]). Soit Γ un groupe agissant
de façon convexe-cocompacte sur un ouvert convexe propre et Gromov hyper-
bolique Ω de l’espace projectif P(V ). Soit ΛΓ l’ensemble limite de Γ dans
∂∞Ω et posons

Λ̂Γ = {(x, Tx(∂∞Ω)), x ∈ ΛΓ} ⊂ P(V )×P(V ∗) .

Alors l’exposant critique de Γ pour la métrique de Hilbert est inférieur à la
dimension de Hausdorff de Λ̂Γ.

Ce théorème est présenté plus en détails dans la section 1.3.3, où nous le
replaçons dans le cadre général de l’étude des exposants critiques de groupes
Anosov.

Orbites bornées du groupe modulaire

Avec Bertrand Deroin, nous avons continué à nous intéresser aux repré-
sentations de groupes de surfaces à valeurs dans PSL(2,R), et plus particu-
lièrement à la question mentionnée précédemment : Quelles représentations
ρ : Γ→ PSL(2,R) sont les holonomies de structures hyperboliques branchées
(c’est-à-dire de métriques hyperboliques possédant des singularités coniques
d’angles multiples de 2π) ? Les résultats préliminaires que nous avons ob-
tenu (voir Section 3.4.2) nécessitent de découper la surface, d’hyperboliser
les morceaux et de les recoller, ce qui conduit naturellement à considérer
aussi le problème de géométrisation des surfaces à bord.

Soit Σg,n une surface de genre g avec n composantes de bord et Γg,n
son groupe fondamental. La variété de caractères X(Γg,n, G) est (à peu de
choses près) l’espace des représentations de Γg,n dans G modulo conjugaison.
Elle est feuilletée par les variétés de caractères relatives, où les classes de
conjugaison des images des courbes de bord sont fixées, et le groupe modulaire
pur MCGg,n de Σg,n (le groupe des classes d’isotopie d’homéomorphismes
fixant le bord) agit sur X(Γg,n, G) en préservant les variétés de caractères
relatives.

En développant une notion de classe d’Euler relative pour les représenta-
tions de Γg,n dans PSL(2,R), nous découvrîmes un peu par hasard l’existence
de représentations de Γ0,n dont les propriétés surprenantes sont liées au fait
qu’elles forment des composantes connexes compactes de certaines variétés
de caractères relatives. Au même moment, Gabriele Mondello décrivait la
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topologie de toutes les variétés de caractères relatives dans PSL(2,R) en
termes de fibrés de Higgs paraboliques [150]. Cela nous encouragea, Jérémy
Toulisse et moi, à essayer de construire des variétés de caractères relatives
compactes dans des groupes de Lie de rang supérieur en exploitant la corres-
pondance de Hodge non-abélienne parabolique. Nous obtînmes en définitive
le théorème suivant :

Théorème 9 (Deroin–Tholozan [56], Tholozan–Toulisse [193]). Soit G l’un
des groupes de Lie PU(p, q), Sp(2k,R) ou SO∗(2k). Pour tout n ≥ 4, il existe
un ouvert Ω ⊂ X(Γ0,n, G) qui est la réunion de composantes compactes de
variétés de caractères relatives. De plus, les représentations ρ dans Ω ont les
propriétés suivantes :

(1) L’orbite de [ρ] sous l’action de MCG0,n est bornée,
(2) L’image par ρ de n’importe quelle courbe fermée simple sur Σ0,n a

toutes ses valeurs propres de module 1,
(3) Pour tout ensemble D de n points dans la sphère de Riemann S2,

l’application harmonique ρ-équivariante de S̃2\D dans l’espace symé-
trique de G est holomorphe.

Ce théorème fournit en particulier de nombreuses familles d’orbites bor-
nées du groupe modulaire et permet de formuler des conjectures sur les pro-
priétés générales de ces orbites bornées. Cela ouvre tout un programme de
recherche, dont nous espérons qu’il permettra de comprendre en particulier
les orbites finies de MCGg,n, qui sont liées aux représentations linéaire de
MCGg,n+1. Ce programme et quelques résultats préliminaires sont présentés
dans la section 3.4.3.

Structure du mémoire

Le premier chapitre de ce mémoire est une introduction très générale à
l’étude des sous-groupes discrets des groupes de Lie semisimples et leurs dé-
formations. Nous commencerons par quelques rappels sur les groupes de Lie
semisimples, leurs espaces symétriques, leurs variétés de drapeaux et l’im-
portance de la projection de Cartan dans leur géométrie (Section 1.1). Nous
mentionerons ensuite quelques résultats sur les groupes linéaires et introdui-
rons leurs variétés de caractères (Section 1.2). Enfin, nous présenterons les
propriétés générales des groupes Anosov et mentionnerons au passage nos
résultats sur les géométries de Hilbert (Section 1.3).

Le reste de mes travaux sera présenté au sein de deux chapitres essentiel-
lement indépendants. Le chapitre 2 donne un état des lieux de la recherche
sur les quotients compacts d’espaces homogènes réductifs. Nous mentionne-
rons les diverses obstructions à leur existence (Section 2.2) et les quelques
constructions connues de tels quotients (Section 2.3), puis nous discuterons
d’une conjecture sur la géométrie de ces quotients, en expliquant notamment
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comment elle a inspiré mes résultats sur le volume de ces espaces (Section
2.4).

Le chapitre 3, quant à lui, est consacré aux représentations de groupes
de surfaces. Après quelques précisions sur leurs variétés de caractères où
nous introduirons notamment les espaces de Teichmüller supérieurs (Section
3.1), j’introduirai les applications harmoniques, leurs liens avec les surfaces
minimales et les fibrés de Higgs, et j’expliquerai le rôle qu’elles jouent dans
mes principaux résultats (Section 3.2). Dans la section 3.3, je présenterai
mes constructions de composantes bornées dans les variétés de caractères
relatives. Enfin, la section 3.4 esquissera mes projets de recherche en cours
autour des représentations de groupes de surfaces : la « théorie de Teichmüller
suprême », les métriques hyperboliques branchées et les orbites bornées du
groupe modulaire.
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Introduction

The purpose of this memoir is to present the results of my research, from
my thesis started in 2011 to its more recent and future developments. This is
a difficult exercise due to the relative diversity of topics I have worked on and
the variety of mathematical tools involved. In this introduction, I will try to
put forward the coherence of my works by first giving a historical overview
of what we call geometrizing manifolds, then describing the ramifications of
my research from this initial motivation.

Geometrizing manifolds

Topological or diferentiable manifolds are flexible objects in essence, de-
fined “up to deformations”. To understand them better, one is often brought
to geometrize them, that is (in a very broad sense), to endow them with ge-
ometric structures that reflect some of their topological properties. Various
significations can be given to this vague notion of geometrization. Here we
will be concerned with endowing our manifolds with locally homogeneous ge-
ometric structures in the sens of Ehresmann, that is, identifying them locally
with a certain homogeneous space. Such a structure naturally gives rise to
an action of the fundamental group of the manifold on this homogeneous
space, so that locally homogeneous structures on a manifold are intimately
related to linear representations of their fundamental group.

From the Uniformization of Riemann surfaces to the invention
of the fundamental group

Historically, the geometrization of manifolds is inseparable from the in-
vention of the fundamental group, and both take their source in the Uni-
formization of Riemann surfaces.

The development of the theory of analytic functions of a complex vari-
able lead XIXth century mathematicians to accept the notion of multivalued
function (on a complex domain of more generally on a Riemann surface).
Such a function locally has several branches that are permuted by analytic
continuation along a closed path. When the function y is a solution of some
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differential equation, the transformations permuting the branches are some-
times well-identified. For instance, the branches of a solution of the equation

y′ = f

are permuted by translations, while those of a solution of the equation

y′′′

y′
− 3

2

(
y′′

y′

)2

= f

are permuted by homographies. 9

While studying these multivalued functions, mathematicians progres-
sively understood that they can uniformize complex algebraic curves, mean-
ing that the inverse function is defined on a simply connected domain and
identifies the initial Riemann surface with a quotient of this domain under
the group of permutation of the branches. First, Eisenstein, Liouville and
Weierstrass understood that elliptic integrals identify the elliptic curves to
quotients of C by lattices, then Klein and Poincaré prove that algebraic
curves of higher genus are quotients of the hyperbolic plane by a Fuchsian
group. 10

Poincaré has in mind his uniformization theorem when, a few years later,
he invents the notion of fundamental group in his Analysis Situs [157]. There,
he introduces the fundamental group of a manifold informally as the group of
permutations of the branches of the “most general multivalued function”. (in
modern words, the automorphism group of its universal covering). He gives
as an example the suspensions of diffeomorphisms of the torus, which he de-
scribes explicitely as quotients of R3 under a group of affine transformations.
He even writes:

The analogy with the theory of Fuchsian groups is too obvious
for us to need emphasizing it

We see that the manifolds which motivated the introduction of the funda-
mental group are geometric: their universal cover is a homogeneous space,
and their fundamental group is a discrete group of transformations of this
space.

Locally homogeneous spaces

Geometrizing a manifold, in a more precise sense, would thus consist in
“incarnating” its universal cover and its fundamental group in a geometry in

9. Experts will have recognized that the left term is the Schwarzian derivative of the
function y.
10. For more details about the History of the Uniformization theorem, I encourage you

to read the book Uniformization of Riemann surfaces – Revisiting a hundred year old
theorem [54].
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the sense of Klein, that is, a homogeneous space. This idea was formalized
in a general context by Ehresmann [59].

After pointing out that some geometric structures on differentiable man-
ifolds (constant curvature metrics, flat connections...) provide local identifi-
cations with certain homogeneous spaces, Ehresmann introduces the general
notion of manifold locally modelled on a G-homogeneous space X, that is,
endowed with local identifications with X which are well-defined modulo a
transformation of G. The local identifications then extend analytically to
a multivalued function from our manifold to the space X, the branches of
which are permuted by transformations of G. In modern terms, a manifold
M locally modelled on X has a developing map dev : M̃ → X which is
equivariant with respect to a representation hol : π1(M) → G called the
holonomy. Ehresmann investigates the question of completeness of those lo-
cally homogeneous spaces. Under some conditions (in particular, when M is
compact an X is a Riemannian homogeneous space), the developing map is
a global diffeomorphism and the manifold M is therefore a quotient of X.

While the study of local homogeneous spaces until the 70s was mostly
marked by powerful rigidity theorems (Calabi–Weil, Mostow, Margulis...),
at the end of the seventies, Thurston resumes Ehresmann’s work and proves
a very general deformation theorem: if hol : π1(M) → G is the holon-
omy of structure locally modelled on a G-homogeneous space X, then every
morphism close enough to hol is the holonomy of a locally homogeneous
structure close to the initial one. This Ehresmann–Thurston principle 11

and the use Thurston will make of it in his work on geometrization of 3-
manifolds renewed the interest for the geometrization of manifolds. This
interest will grow even more during the last decade after the discovery of
Anosov representations, which are the source of many new examples of lo-
cally homogeneous spaces.

Before we precise this notion, I would like to present a few specific ge-
ometrization problems that contributed to the development of this research
field.

Kleinian groups and hyperbolization of 3-manifolds

Recall tha the Lie group PSL(2,C) is the group of orientation preserv-
ing isometries of the hyperbolic space H3. It acts by homographies on the
Riemann sphere, which identifies with the boundary at infinity of H3.

The Kleinian groups are the discrete subgroups of PSL(2,C), and their
classification is therefore essentially the classification of complete hyperbolic
3-manifolds. An important subclass, stable under small deformations, is the
class of convex-cocompact Kleinian groups, which are the fundamental groups
of compact hyperbolic 3-manifolds with convex boundary.

11. This terminology is due to Bergeron and Gelander [24], according to whom the
theorem can be read between the lines in Ehresmann’s work [60].
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While the first examples of Kleinian groups appear in the works of Schot-
tky and Klein in relation to the Uniformization of Riemann surfaces, their
comprehensive study begins in 1960 with the work of Ahlfors and Bers [3].
In resolving the Beltrami equation under weak regularity hypotheses, they
prove that deformations of a convex-cocompact Kleinian group are parame-
terized by conformal structures on the boundary of the associated hyperbolic
manifold.

Some 15 years later, Thurston states his geometrization conjecture for
3-manifolds, which predicts that every closed aspherical and atoroidal 3-
manifold has a hyperbolic structure. Building on the work of Ahlfors–Bers,
he proves this conjecture for Haken manifolds, which can be cut along in-
compressible surfaces. To simplify a lot, his proof consists in hyperbolizing
the manifolds with boundary obtained after cutting along an incompress-
ible surface, then suitably deform the hyperbolic structures on each piece
(thanks to the Ahlfors–Bers theorem) in order to glue them together. The
proof requires a refined understanding of discrete and faithful surface group
representations, for which Thurston develops considerably the Teichmüller
theory.

Those results brought Thurston to formulate a number of important con-
jectures – besides the Hyperbolization conjecture, one can cite the Virtually
Haken conjecture and the Ending lamination conjecture – the resolution of
which (respectively by Perelman [156], Agol [2], and Brock–Canary–Minsky
[33]) lead to a profound understanding of the topology and geometry of 3-
manifolds.

Divisible convex sets

The development of hyperbolic and projective geometry during the XIXth

put an end to the supremacy of Euclidean geometry and brought Klein, in
his renowned Erlangen program [104], to define geometry as the study of
homogeneous spaces. When Ehresmann later introduces the notion of locally
homogeneous space, he his thus naturally lead to consider more specifically
manifolds locally modelled on a homogeneous space.

An interseting subclass of such manifolds is formed by compact quo-
tients of open convex domains in projective spaces. The convex domains
with such a cocompact action are called divisibles. This notion was in-
troduced by Kuiper on [115], and studied further in Benzécri’s thesis [22].
Benzécri thinks that divisble convex sets are rigid objects, and he indeed
proves a rigidity theorem under some regularity hypothesis: divisible convex
sets with C2 boundary are projectively equivalent to the projective model of
the hyperbolic space. However, a few years later, Katz and Vinberg buid
divisible convex sets whose boundary is C1 but not C2 [100], while Koszul
proves an Ehresmann–Thurston principle for divisble convex sets [114]: if
Γ ⊂ PSL(n,R) divides a convex in RPn, then small deformations of Γ keep
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dividing a convex. 12 One can in particular obtain continuous families of
divisible convex sets by deforming a uniform lattice of SO(d, 1) ' Isom(Hd)
inside SL(d+ 1,R).

Finally, Choi and Goldman [43] (in dimension 2) and then Benoist [19]
(in all dimensions) prove that dividing a convex set is also a closed condition.
Therefore, every continuous deformation of a uniform hyperbolic lattice of
SO(d, 1) into SL(d+1,R) divides a convex domain. Choi–Goldman’s theorem
leads in some sense to a classification of divisible convex sets in dimension 2.
In contrast, deformation spaces of divisble convex sets in dimension 3 and
their relations with the geometrization of 3-manifolds are still obscure, de-
spite the work of Benoist [20] and, more recently, of Ballas–Danciger–Lee
[12].

Spacetimes of constant curvature

Another motivation to the study of locally homogeneous spacetimes orig-
inates from the theory of relativity. Around 1900, Lorentz, Poincaré and Ein-
stein progressively discover that the symmetry group of the laws of physics
is not the group of “gallilean” transformations, but rather the Lorentz group
SO(3, 1), which preserves Maxwell’s equations. A few years later, Einstein
incorporates the relations between gravitation and acceleration in the curva-
ture of spacetime: according to the theory of general relativity, our spacetime
is a Lorentz manifold whose curvature is related to the stress-energy tensor
by Einstein’s equation.

If one postulates a certain homogeneity to the spacetime 13, it should look
like a Lorentzian manifold of constant curvature at large scale. The sign of
this curvature, which depends on the value of the cosmological constant and
conditions the expansion properties of the universe, has been the topic of
more than one controversy in the history of general relativity.

Studying the shape of the universe hence raises a geometrization prob-
lem: what are the manifolds locally modelled on a homogeneous Lorentzian
manifold of constant curvature? When mathematicians start addressing this
question at the end of the 50s, they drift slightly from the physical preoc-
cupations that motivated it. Markus, with Calabi [39] and Auslander [11],
initiates in particular the study of closed Lorentzian manifolds of constant
curvature. We will come back to the many developments of this topic in
Chapter 2.

However, the closedness assumption is not very plausible from a physical
point of view because it implies a “time recurrence” that violates the causality

12. Actually, Koszul does not know the Ehresmann–Thurston principle and proved an
a priori weaker statement that convex projective structures are open in all projective
structures.
13. This is the perfect cosmological principle, introduced by Bondi in 1950 and whose

relevance can be discussed, which I am not competent for.

27



principle. It has more sense in physics to think of a Globally Hyperbolic
Cauchy compact (GHC) spacetime, meaning, very roughly, a spacetime that
is compact in space directions bu still satisfies a causality condition.

In his remarkable paper [145], Mess describes the Lorentzian GHC 3-
manifolds of constant curvature, and exhibits the deep connections between
their deformation spaces and the Teichmüller space of a spacelike surface.
Some of these results were later generalized to higher dimensions. In the case
of negative curvature, in particular, the GHC manifolds of dimension d + 1
are (under an additional convexity hypothesis) quotients of an open domain
in the anti-de Sitter space AdSd+1 by the fundamental group of a closed
negatively curved manifold of dimension d. Barbot proves in [13] that every
continuous deformation of such a group in the isometry group of AdSd+1 is
again the fundamental group of a GHC anti-de Sitter spacetime.

The paradigm of Anosov groups

The notion of Anosov subgroup of a semisimple Lie group G or of Anosov
representation of a finitely generated group Γ with values in G was intro-
duced by Labourie at the turn of the century [118], and quickly developed
by Guichard and Wienhard [84] and many other authors. To paraphrase
words that I heard from Anna Wienhard, the theory of Anosov representa-
tions provoked a “change of paradigm” in the study of discrete subgroups of
Lie groups: while the XXth century geometry was marked by rigidity theo-
rems (in particular, those of Mostow and Margulis), next to which the few
examples of flexible discrete groups (Kleinian groups, symmetries of divis-
ble convex sets...) seemed like disparate counter-examples, the formalism of
Anosov groups has transformed this point of view by revealing the richness of
flexible discrete groups and by providing a unified framework to their study.

Let us give some precisions. Consider a semisimple Lie group G (SO(p, q)
or SL(n,R), for instance). The compact G-homogeneous spaces are essen-
tially the flag varieties 14 G/P , where P is a parabolic subgroup. Let us say
that a sequence (gn)n∈N ∈ GN is P -proximal if it has an attracting fixed point
in G/P . Informally, a discrete subgroup Γ of G is P -Anosov if it satisfies
some form of uniform P -proximality.

This property (which we state precisely in Chapter 1, Section 1.3.2) has
many remarkable geometric and dynamical consequences. It implies that
the group Γ is hyperbolic in the sense of Gromov [95], and that its boundary
at infinity idenfies with a closed Γ-invariant subset of G/P . Guichard and
Wienhard also show that a P -Anosov group Γ acts properly discontinuously
and cocompactly on and open domain in another flag variety G/Q [84],
expanding considerably the list of closed manifolds locally modelled on flag
varieties.

14. When G = SL(n,R), these are indeed the spaces of flags in Rn of a fixed type.
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The main virtue of the Anosov property is its structural stability : small
deformations of a P -Anosov group remain P -Anosov. When G is the group
of isometries of a hyperbolic space (or more generally when G has rank
1), his unique flag variety is the boundary at infinity of the hyperbolic
space, and the Anosov property is then equivalent to convex-cocompactness.
The main source of examples of Anosov groups hence consists in deform-
ing convex-cocompact subgroups in rank 1 into higher rank Lie groups. For
instance, the deformations of uniform SO(d, 1) lattices inside SL(d + 1,R)
or SO(d, 2) (and, more generally, the groups dividing a strictly convex pro-
jective domain and the fundamental groups of anti-de Sitter convex-GHC
spacetimes) are examples of Anosov groups. Recently, Zimmer [209] and
Danciger–Guéritaud–Kassel [52] have proven that the Anosov property al-
ways reduced to a projective convex-cocompactness property introduced by
Crampon–Marquis [50], which unifies convex-cocompact groups in rank 1
and divisble convex sets.

Besides the fact that it provides a unified framework to diverse exam-
ples of flexible geometric structures, the main achievement of the theory of
Anosov groups is the description of the geometric properties of certain fami-
lies of surface group representations. Recall that a closed surface Σ of genus
at least 2 carries hyperbolic metrics, and that the holonomy of each hyper-
bolic metric gives a discrete and faithful representation of its fundamental
group Γ into PSL(2,R) called a Fuchsian representation. Fuchsian represen-
tations modulo conjugation form a connected component of the character
variety X(Γ,PSL(2,R)) which identifies to the Teichmüller space of Σ by
the Uniformization theorem. In [118], Labourie showed that Hitchin rep-
resentations, which form a connected component of the character variety
X(Γ,PSL(n,R)), are all Anosov. With Burger, Iozzi and Wienhard, they
also proved the same result for maximal representations with values in Her-
mitian Lie groups [35]. These examples gave birth to the higher Teichmüller
theory, which studies components of Anosov representations inside character
varieties of surface groups and their similarities with the Teichmüller space.
This field is one of my main research areas.

Ramifications of a research trajectory

My reasearch is initially motivated by geometrization problems, and
Anosov representations play a significant role in it. Further on, I chose
to organize my work in two themes treated mostly independently: compact
quotients of reductive homogeneous spaces on one side and surface group
representations on the other.

In this introduction I would like to tell about my work in a chronological
rather than logical manner, in order to illustrate how my initial topic of
interest (closed locally homogeneous pseudo-Riemannian manifolds) ramified
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in several autonomous directions. Each paragraph below presents one of
these branches.

Pseudo-Riemannian symmetric spaces

I started by thesis by looking at closed manifolds locally modelled on
pseudo-Riemannian symmetric spaces. A central question in their study is
the question of completeness: are those spaces necessarily quotients of their
symmetric model? I addressed this question in the case of manifolds locally
modelled on a rank 1 Lie group endowed with its Killing metric. This choice
was motivated in particular by the fact that compact quotients of those
spaces where about to be well understood thanks to the incoming works of
Guéritaud–Guichard–Kassel–Wienhard [81, 80], and that it was frustrating
not to know whether they were describing in this way all the closed manifolds
locally modelled on these Lie groups. I obtained the following result:

Theorem 1 ([186]). Let G be a Lie group of rank 1 endowed with the action
of G×G by left and right multiplication, and U an open set in G. Assume
that there exists a subgroup of G × G acting properly discontinuously and
cocompactly on U . Then U = G.

This very partial result at least implies that compact quotients of G
cannot be deformed continuously into incomplete structures.

After a hard time on the problem of completeness, I decided to look at
the only rank 1 geometry where it is solved: the case of G = PSL(2,R),
which identifies with the anti-de Sitter space AdS3. The compact quotients
of PSL(2,R) by a subgroup of PSL(2,R) × PSL(2,R) are described very
precisely by the works of Kulkarni–Raymond [117] and Kassel [96]: they are
(up to a finite cover) of the form

j × ρ(Γ)\PSL(2,R)

where Γ is the fundamental group of a closed surface Σ of genus at least 2,
j is a Fuchsian representation and ρ a representation dominated by j in the
sense that there exists a (j, ρ)-equivariant map f : H2 → H2 which contracts
distances. The remaining problem was to describe the set of such pairs. In
particular, is any non-Fuchsian representation ρ : Γ→ PSL(2,R) dominated
by a Fuchsian representation ?

This question was interesting to Bertrand Deroin because of its relation
to another open question: which representations ρ : Γ → PSL(2,R) are the
holonomy of a branched hyperbolic structure? To address these two questions,
we first developed an approach based on discrete harmonic maps, which
allowed us to see ρ as the holonomy of a “folded” hyperbolic structure with
conical singularities of angle > 2π. This approach (recently completed by
Florestan Martin–Baillon [142]) quickly produces a positive answer to the
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first question if we can handle a certain number of degenerate triangulations.
However, after a while, we understood that these difficulties disappear at
the cost of a bit of analysis if one replaces discrete harmonic maps by actual
harmonic maps. Besides, we gain a better control of the parameters of the
construction: each choice of complex structure on Σ produces a Fuchsian
representation dominating ρ, and I eventually managed to prove that this
produces all dominating representations.

Théorème 10 (Deroin–Tholozan [55, 189]). Let ρ be a non-Fuchsian rep-
resentation of Γ into PSL(2,R) (actually, into any Lie group of rank 1).
Then the set of Fuchsian representations dominating ρ modulo conjugation
is non-empty and homeomorphic to the Teichmüller space of Σ.

This theorem provides a description of the moduli space of closed anti-de
Sitter manifolds of dimension 3.

To conclude the study of those manifolds, I tried to compute their volume.
Thanks to the work of Guéritaud–Kassel [81], we know that these manifolds
fiber over a closed surface with timelike geodesic fibers. By integrating along
the fibers, I obtained the following expression for their volume:

Theorem 2 (Tholozan [191]). Let Γ be a surface group, j : Γ→ PSL(2,R) a
Fuchsian representation and ρ : Γ → PSL(2,R) a representation dominated
by j. Then

Vol (j × ρ(Γ)\PSL(2,R)) =
π2

2
(eu(j) + eu(ρ)) ,

where eu denotes the Euler class.

This result extends readily to quotients of SO(d, 1), using again the fi-
bration given by Guéritaud–Kassel.

The surprising fact that the volume of a closed 3-dimensional manifold
was computed by a “characteristic class” required a more conceptual ex-
plaination than a down-to-earth computation. I eventually understood how
to bypass Guéritaud–Kassel’s work by reasoning “up to homotopy”, which
allowed me to generalize the previous theorem in the following way:

Theorem 3 (Tholozan [191]). Let Γ\G/H be the compact quotient of a
reductive homogeneous space. Then

Vol(Γ\G/H) =

∫
[Γ]
i∗ωG/H

where ωG/H is a continuous cohomology class of G depending only on H, i
is the inclusion of Γ in G and [Γ] is a “fundamental class” in the homology
of Γ.
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I also determined when the class ωG/H is a characteristic class (implying
the rationality of the volume) and deduced from this theorem an explicit
volume formula for compact quotients of SU(d, 1). More importantly, I gave
several vanishing criteria for ωG/H which produce powerful obstructions to
the existence of compact quotients of certain reductive homogeneous spaces.
All this is detailed in Chapter 2.

Surface group representations and harmonic maps

The domination theorem for surface group representations in rank 1 ob-
tained with Bertrand Deroin opened a new research perspective. We nat-
urally wondered what happened of this result for representations in higher
rank, starting with Hitchin representations into PSL(3,R).

Let Σ be a closed surface of genus at least 2 and Γ its fundamental group.
Each Hitchin representation ρ : Γ→ PSL(3,R) acts properly discontinuously
and cocompactly on a convex open domain Ωρ in the projective plane and
preserves its Hilbert metric, whose metric properties capture the algebro-
geometric properties of ρ. Results of Crampon [49] and Nie [153] on the
entropy of those convex domains prove that one cannot hope to dominate
uniformly those representations. Getting deeper into the subject, I learnt of
the existence of a natural Riemannian metric on each convex domain, the
Blaschke metric, which comes from the theory of affine spheres. This metric
is uniformly comparable to the Hilbert metric and has curvature ≥ −1,
suggesting that, contrary to the rank one, Hitchin representations always
dominate a Fuchsian one. To refine this result, a precise comparison between
Blaschke and Hilbert metrics was missing. I obtained it in [190].

Theorem 4 (Tholozan [190]). Let ρ be a Hitchin representation of a surface
group Γ into PSL(3,R). There exists a Fuchsian representation j such that

Lρ(γ) ≥ Lj(γ)

for all γ ∈ Γ.

Here, Lj(γ) denotes the translation length of j(γ) in the hyperbolic plane
and Lρ(γ) that of ρ(γ) in Ωρ with its Hilbert metric. This sharp comparison
between surface group representations used once again harmonic analysis.
Indeed, the Blaschke metric is related to the unique ρ-equivariant conformal
harmonic map from Σ̃ to the symmetric space PSL(3,R)/PSO(3).

Encouraged in the idea that twisted harmonic maps can give precise
informations on surface group representations, I then moved my interest to-
wards maximal representations into the Hermitian Lie group SO(2, d). It
was becoming impossible to avoid Higgs bundles, these holomorphic objects
that capture the algebraic properties of twisted harmonic maps into sym-
metric spaces. Studying carefully the structure of these Higgs bundles, we
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proved with Brian Collier and Jérémy Toulisse that if ρ : Γ → SO(2, d) is
a maximal representation, any ρ-equivariant conformal harmonic into the
symmetric space of SO(2, d) is the Gauss map of a maximal spacelike surface
in the pseudo-Riemannian symmetric space H2,d−1. Giving to this maximal
surface the role of the affine sphere fo Hitchin representations into PSL(3,R),
one obtains many geometric properties of these representations:

Theorem 5 (Collier–Tholozan–Toulisse [45]). Let ρ : Γ → SO(2, d) be a
maximal representation. Then:

— There exists a unique ρ-equivariant conformal harmonic map from Σ̃
to the symmetric space of SO(2, d), and this map is an embedding.

— There exists a Fuchsian representation j such that Lρ ≥ Lj.
— The domain of discontinuity Ωρ of Guichard–Wienhard in the space of

isotropic planes of R2,d admits a ρ-equivariant fibration onto Σ̃ whose
fibers are flag submanifolds.

(Here, Lρ(γ) denotes the logarithm of the spectral radius of ρ(γ).)
Those diverse properties and their relevance in higher Teichmüller theory

are discussed at length in Chapter 3, Section 3.2.

Highest Teichmüller theory

The main reason for which harmonic maps give such fine descriptions
of Hitchin or maximal representations in rank 2 lies in a coincidence: the
Higgs bundles associated to conformal harmonic maps are then cyclic, a
strong structural property that greatly simplifies there study. Starting from
rank 3, cyclic Higgs bundles only parametrize a subvariety of the character
variety, and it seems difficult to extract from harmonic analysis some precise
geometric properties for all representations.

To pursue the study of Anosov representations of surface groups beyond
rank 2, it seems more appropriate to approach them with the tools of hy-
perbolic dynamics. In rough terms, this approach – which can be attributed
first to Sambarino [171] – consists in associating to an Anosov representa-
tion ρ a length spectrum Lρ : [Γ] → R+ (where [Γ] denotes the conjugacy
classes of elements of Γ) which can be seen as the period map of a Hölder
reparametrization of the geodesic flow of Σ. The works of Bowen, Margulis
or Ruelle on the dynamics of Anosov flows then provide precise informations
on the asymptotic behaviour of Lρ. The topological entropy of these flows,
which measures the exponential growth rate of Lρ, plays a crucial role here.

If ρ : Γ → PSL(d,R) is a Hitchin representation, one can for instance
associate to it a flow whose periods are given by

Lρ(γ) = λ1(ρ(γ))− λ2(ρ(γ)) ,

where λi denotes the logarithm of the ith eigenvalue [32]. Bertrand Deroin
once pointed out to me that the entropy of such a flow must equal 1 since
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Lρ can be read on the cocycle of derivatives of a C1 action of Γ on the circle
(see also [158]).

While trying to clarify this remark, I understood that there exists a
bijective correspondance between the following three spaces:

(1) The space of Hölder reparametrizations of the geodesic flow of Σ with
entropy 1, modulo Livšic equivalence,

(2) The space of C1+Hölder actions of Γ on the circle which are Hölder
conjugate to a Fuchsian action, modulo C1 conjugation,

(3) The space of transversally Hölder foliated hyperbolic metrics on the
weakly stable foliation of the geodesic flow of Σ, modulo isotopy.

Besides, this correspondance preserves three natural notions of period map
from [Γ] to R+.

Je présente cette correspondance dans des notes en cours d’élaboration
[192]. Son intérêt est de multiplier les points de vue sur ce que j’aime appeler
prétentieusement l’espace de Teichmüller suprême. 15 Sa construction n’est
que le début d’un programme de recherche qui ambitionne de décrire la
géométrie de cet espace de dimension infinie, dans l’espoir d’en déduire des
propriétés géométriques des espaces de Teichmüller supérieurs. Le point de
vue (3) permet en effet de réintroduire la théorie de Teichmüller classique
dans la théorie de Teichmüller supérieure, tandis que le point de vue (2)
fournit une analogie entre les représentations Anosov et les représentations
maximales dans Diff(S1). Nous donnons plus de détails sur ce projet et ses
développements à venir dans la section 3.4.1.

I present this correspondance in some lecture notes [192]. The motivation
behing this correspondance is to multiply the points of view on what I like
to call pretentiously the highest Teichmüller space. 16 Its construction is
only the beginning of a program that aims at describing the geometry of
this infinite dimensional space, in hope of deducing geometric properties of
higher Teichmüller spaces. The point of view (3) allows indeed to reintroduce
classical Teichmüller theory in higher Teichmüller theory, while the point of
view (2) draws an analogy between Anosov representations and maximal
representations into Diff(S1). We give more details on this project and its
future developments in Section 3.4.1.

Hilbert Geometries

The study of Hitchin representations into PSL(3,R) allowed me to get a
deeper understanding of Hilbert geometries. In particular, my comparison
theorem between the Balschke and Hilbert metrics, valid in all dimensions,

15. Pour ma défense, il existe déjà un “espace de Teichmüller universel” et un “super-
espace de Teichmüller”.
16. For my defense, there already exists a “universal Teichmüller space” and a “super-

Teichmüller space”.
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allowed me to prove a conjecture of Colbois and Verovic on the volume
growth of Hilbert geometries:

Theorem 6. Let Ω be a proper convex domain of the projective space RPd−1.
Then the volume entropy of Ω:

H (Ω)
def
= lim sup

R→+∞

1

R
(logVol(B(o,R)))

is less than d− 2.

(Here, B(o,R) denotes the ball of radius R about a given point o for the
Hilbert metric, and Vol denotes its volume for the associated Hausdorff
measure.)

When the convex set Ω is divided by a group Γ, the volume entropy
coincides with the critical exponent of Γ:

δ(Γ) = lim
R→+∞

1

R
log ]{γ ∈ Γ | dHilb(o, γ · o) ≤ R} .

In this case, Theorem 6 has been proven first by Crampon with dynamical
methods [49]. Crampon proves moreover a rigidity statement: if the entropy
equals d−2, then the convex domain is and ellipsoid (hence its Hilbert metric
is hyperbolic). 17

These results ask for a more general study of critical exponents of groups
Γ that only act convex-cocompactly on a convex domain Ω. The critical ex-
ponent of Γ then coincides with the growth of the volume of the convex core
and, when Ω is a ball, it equals the Hausdorff dimension of the limit set of
Γ in ∂∞Ω, by a famous theorem of Sullivan [181]. Daniel Monclair, who was
working with Olivier Glorieux on critical exponents for groups acting on the
pseudo-Riemannian space Hp,q [70], explained to me that Patterson–Sullivan
theory (and its generalization to Gromov hyperbolic spaces by Coornaert
[46]) gives in fact an equality between the critical exponent of Γ and the
Hausdorff dimension of its limit set for the Gromov metric on its bound-
ary. To obtain an inequality with te geometric Hausdorff dimension, it thus
suffices to compare the Gromov metric with a Riemannian metric. We even-
tually obtained:

Théorème 11 (Glorieux–Monclair–Tholozan [71]). Let Γ be a group act-
ing convex-cocompactly on a Gromov hyperbolic proper convex domain Ω ⊂
P(V ). Let ΛΓ be the limit set of Γ in ∂∞Ω and set

Λ̂Γ = {(x, Tx(∂∞Ω)), x ∈ ΛΓ} ⊂ P(V )×P(V ∗) .

Then the critical exponent of Γ for the Hilbert metric is less than the Haus-
dorff dimension of Λ̂Γ.

This theorem is presented in more details in Section 1.3.3, where we
situate in the more general study of critical exponents of Anosov groups.

17. Crampon a priori assumes that Ω is Gromov hyperbolic, but his result has been
improved by Barthelmé–Marquis–Zimmer [15] using Theorem 7.
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Bounded mapping class group orbits

With Bertrand Deroin, we pursued our investigation of surface groups
inside PSL(2,R) and more specifically the question previously mentioned:
Which representations ρ : Γ → PSL(2,R) are the holonomies of branched
hyperbolic structures (i.e. hyperbolic metrics with cone singularities of angles
multiple of 2π)? The preliminary results that we obtained required to cut
the surface, hyperbolize the pieces and glue back, which lead us to consider
the problem of geometrizing surfaces with boundary.

Let Σg,n be a surface of genus g with n boundary components and Γg,n
its fundamental group. The character variety X(Γg,n, G) is essentially the
space of of representations of Γg,n into G modulo conjugation. It is foliated
by relative character varieties, where the conjugacy classes of the images of
the boundary curves are fixed, and the pure mapping class group MCGg,n of
Σg,n (the group of isotopy classes of homeomorphisms fixing the boundary)
acts on X(Γg,n, G) and preserves the relative character varieties.

While developing a notion of relative Euler class for representations of
Γg,n into PSL(2,R), we discovered serendipitously the existence of represen-
tations of Γ0,n whose surprising properties come from the fact that they form
compact connected components of certain relative character varieties. In the
mean time, Mondello, described the topology of all the relative character
varieties into PSL(2,R) [150]. This encouraged Jérémy Toulisse and I to
generalize Mondello’s approach via parabolic Higgs bundles to higher rank
character varieties. In the end, we obtained the following:

Théorème 12 (Deroin–Tholozan [56], Tholozan–Toulisse [193]). Let G be
one of the Lie groups PU(p, q), Sp(2k,R) or SO∗(2k). For all n ≥ 4, there
exists and open set Ω ⊂ X(Γ0,n, G) which is the union of compact connected
components of relative character varieties. Moreover, the representations ρ
in Ω have the following properties:

(1) The orbit of [ρ] under the action of MCG0,n is bounded,
(2) The image by ρ of any simple closed curve on Σ0,n has all its eigen-

values of module 1,
(3) For every set D of n points on the Riemann sphere S2, the ρ-equivariant

harmonic map from S̃2\D to the symmetric space of G is holomor-
phic.

This theorem gives in particular many families of bounded mapping class
group orbits and allows to formulate conjectures on the general properties of
these bounded orbits. This opens a research program, from which we hope
to gain in particular some information on finite orbits of MCGg,n, which
are related to linear representations of MCGg,n+1. This program and some
preliminary results are presented in Section 3.4.3.
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Structure of the memoir

The first chapter of this memoir is a very general introduction to the
study of discrete subgroups of semisimple Lie groups and their deformations.
We start by some background about semisimple Lie groups, their symmetric
spaces, their flag varieties and the importance of the Cartan projection in
their geometry (Section 1.1). We will then mention some results about linear
groups and introduce their character varieties (Section 1.2). Finally, we will
present the general properties of Anosov groups and we will state in passing
our results on Hilbert geometries (Section 1.3).

The rest of my work will be presented in two mostly independent chap-
ters. Chapter 2 surveys our current knowledge about compact quotients of
reductive homogeneous spaces. We will mention various obstructions to their
existence (Section 2.2) and a few known constructions of such quotients (Sec-
tion 2.3), then we will discuss a conjecture on their geometry, and explain
how it inspired my results on the volume of these spaces. (Section 2.4).

As to Chapter 3, it is devoted to surface group representations. After
some precisions about their character varieties where we will in particular
introduce higher Teichmüller spaces (Section 3.1), I will introduce harmonic
maps, their relation to minimal surfaces and Higgs bundles, and I will explain
the role they play in my main results (Section 3.2). In Section 3.3, I will
present my constructions of bounded components in relative character vari-
eties. Finally, Section 3.4 will sketch my current research projects regarding
surface group representations: “highest Teichmüller theory”, branched hy-
perbolic metrics and bounded mapping class group orbits.
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Chapter 1

Preliminaries: discrete
subgroups of Lie groups

This chapter tries to present in a synthetic way some classical results
about discrete subgroups of Lie groups, which give the context of this mem-
oir. The first section describes briefly the geometry of semisimple Lie groups
and their associated symmetric spaces. The second section recalls some im-
portant results about finitely generated subgroups of Lie groups and presents
the framework to study their deformations. Finally, the third section intro-
duces the Anosov property, which plays a central role in my research.

1.1 Lie groups and symmetric spaces

We begin by introducing the geometry of semisimple Lie groups their as-
sociated symmetric spaces and flag varieties. The contents of this section are
detailed in many classical books, such as Helgason’s Differential Geometry,
Lie Groups and Symmetric Spaces [87].

1.1.1 Semisimple Lie algebras and Lie groups

Let us start with very classical considerations on Lie groups, mainly to
fix some notations and conventions.

Convention 1. All Lie groups and Lie algebras we consider are real. Even
complex groups such as SL(n,C) are considered, unless other wise stated,
with their underlying real structure.

Let us thus start by recalling that a (real) Lie group G is a smooth
manifold with a compatible group structure (i.e. such that multiplication
and inverse are smooth maps). We denote by 1G its identity element. The
space of vector fields on G that are invariant under right multiplication forms
a finite dimensional Lie subalgebra of the Lie algebra of smooth vector fields,
called the Lie algebra of G. We will denote it by Lie(G) or, when it does not
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bring any confusion, by the same name as the Lie group in gothic character
(g for Lie(G), h for Lie(H)...). The evaluation at 1G canonically identifies
Lie(G) with the tangent space to G at 1G.

Most of the structure of a Lie group is captured by its Lie algebra. To
be more precise, let us call two Lie groups isogenous if their Lie algebras are
isomorphic. Then

— The connected component G0 of 1G is a normal Lie subgroup of G
isogenous to G,

— When G is connected, the universal cover G̃ of G has a unique struc-
ture of Lie group such that the covering map π : G̃ → G is a homo-
morphism. The group G̃ is isogenous to G, and the kernel of π is a
discrete central subgroup of G̃ isomorphic to the fundamental group
of G.

In particular, every Lie group is isogenous to a connected and simply con-
nected Lie group.

Let now ϕ : G → H be a smooth homomorphism between Lie groups.
The differential of ϕ at 1G is a Lie algebra homomorphism from Lie(G) to
Lie(H). Conversely, every homomorphism from Lie(G) to Lie(H) extends
uniquely to a smooth homomorphism from G̃0 to H. Of course, the mor-
phism between dϕ : Lie(G) → Lie(H) induced by ϕ : G → H does not
capture anything of the induced morphism of discrete groups ϕ̄ : G/G0 →
H/H0.

When needed, we will assume that our Lie groups are linear algebraic
groups, i.e. are closed subgroup of GL(n,R) given by polynomial equations. 1

This implies in particular that G has finitely many components. In any case,
we will make the following convention:
Convention 2. All the Lie groups we consider have finitely many connected
components.
Remark 1.1.1. It might seem that there is no loss of generality in assuming G
connected and simply connected. However, these hypotheses can be incom-
patible with the algebricity assumption, as shown by the following examples:

— The linear algebraic group PSL(2,R) has fundamental group Z, and
its universal cover is not linear.

— The linear algebraic group SO(p, q) has 2 connected components, and
its neutral component is not an algebraic subgroup.

The action of G on itself by conjugation induces a linear representation
Ad : G → GL(g) called the adjoint representation of G. Differentiating at
the identity gives the adjoint representation of g:

ad : g → End(g)
u 7→ adu : v 7→ [u, v] .

1. An algebraic geometer would more accurately speak of “the real points of a linear
algebraic group”.
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The Killing form on g is the symmetric bilinear form defined by

κ(u, v) = Tr(aduadv) .

The Killing form of g vanishes if and only if g is solvable, i.e. there exists
a finite sequence of ideals gn = {0} ⊂ gn−1 ⊂ . . . g1 ⊂ g0 = g such that the
successive quotients gi/gi+1 are abelian. At the opposite, the Killing form is
non-degenerate if and only if g is semisimple, i.e. does not have a non-trivial
solvable ideal. In that case, g decomposes as a direct sum of Lie algebras
that are simple, i.e. without non-trivial ideals. This terminology reflects
the corresponding terminology for Lie groups. Indeed, the Lie algebra of G
is solvable, simple or semisimple if and only if G is isogenous respectively
to a solvable group, a simple group or a product of simple groups. In that
case, we call G respectively a solvable Lie group, a simple Lie group or a
semisimple Lie group.

The Levi decomposition theorem states that every Lie algebra is a semidi-
rect product of a solvable ideal with a semisimple subalgebra called a Levi
factor. Consequently, every Lie group is isogenous to the semi-direct prod-
uct of a normal solvable subgroup with a semisimple subgroup. Once this
decomposition is established, Lie group theory branches off in two directions.
Here, our focus will be on semisimple Lie groups.

If G is a semisimple Lie group, then the adjoint representation is an
isogeny from G to the linear algebraic group Aut(g). This isogeny is finite
to 1 if and only if G has finite center and finitely many components, which
always holds when G is linear algebraic.

Convention 3. Unless otherwise stated, our semisimple Lie groups are as-
sumed to have finite center.

1.1.2 Symmetric spaces of semisimple Lie groups

Let G be a semisimple Lie group (with finite center and finitely many
connected components) and g its Lie algebra. In order to understand better
the structure of G, it is often useful to see G as the isometry group of its
symmetric space, which we describe here.

A Cartan involution of g is a Lie algebra automorphism σ such that
— σ2 = Idg

— κ(·, σ·) is negative definite.
The Lie algebra g decomposes under σ as

g = gσ ⊕ gσ⊥

where gσ is the subalgebra fixed by σ and gσ⊥ is its orthogonal (with respect
to the Killing form), in restriction to which σ = −Id. We denote by Gσ

the subgroup of G whose adjoint action commutes with σ. Because the
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restriction of κg to gσ is negative definite, the group Gσ is compact, with Lie
algebra gσ.

As a consequence of the structure theory of semisimple Lie algebras, Car-
tan showed that every semisimple Lie algebra g admits Cartan involutions,
which are all conjugate by an element of Aut(g)0. (See also [165] and [57]
for more direct proofs.) This leads to the following

Definition 1.1.2. The symmetric space of G is the space of Cartan involu-
tions of g.

It follows from Cartan’s theorem that the symmetric space of G is ho-
mogeneous under the adjoint action of G, and can be identified with the left
quotient G/Gσ, where σ is a chosen Cartan involution. The Killing form is
positive definite on gσ⊥ and induces a Riemannian metric on G/Gσ which is
complete and has non-positive sectional curvature. Moreover, every compact
subgroup of G fixes a point in the symmetric space and is therefore conjugate
to a subgroup of Gσ, which is thus a maximal compact subgroup of G.

The symmetric space G/Gσ is diffeomorphic to a ball. More precisely, the
exponential map exp : g→ G induces a diffeomorphism expσ : gσ⊥ → G/Gσ

which is precisely the exponential map of the geodesic flow of the symmetric
Riemannian metric at σ.

1.1.3 Cartan projection

To get a more precise understanding of the relation between the algebraic
structure of the group G and the geometry of its symmetric space, one is nat-
urally brought to determine the invariants of pairs of points of G/Gσ under
the action of G. This leads to the introduction of the Cartan projection.

Cartan subspaces and Weyl chambers

A Cartan subspace of g is a maximal abelian subalgebra whose image
under the adjoint representation is diagonalizable over R. All the Cartan
subspaces are conjugate by an element of Aut(g). More precisely, every
Cartan subspace is contained in gσ⊥ for some Cartan involution σ, and all
the Cartan subspaces contained in gσ⊥ are conjugate by an element of Gσ.
The dimension of a Cartan subspace is called the (real) rank 2 of G.

Let σ be a Cartan involution of g and a a Cartan subspace of gσ⊥. The
(restricted) Weyl group 3 of g is the quotient W = Nσ(a)/Zσ(a) where

Nσ(a) = {g ∈ Gσ | Adg(a) = a}

2. Unless otherwise precised, “rank” will always refer to the real rank
3. Since all the pairs (σ, a) are conjugate, the abstract structure of the Weyl group is

independent of the choice of such a pair.
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and
Zσ(a) = {g ∈ Nσ(a) | Adg |a = Id} .

The Weyl group is a finite Euclidean reflexion group of (a, κ) whose
fundamental polytope is a Weyl chamber. To be more precise, le us recall
the definition of the roots of G:

Definition 1.1.3. A linear form α on a is a root if there exists v ∈ g\{0}
such that

[u, v] = α(u)v

for all u ∈ a.

A vector u ∈ a is called regular if α(u) 6= 0 for all α in ∆. Each connected
component of the set of regular vectors is the interior of a closed convex cone
called a Weyl chamber. The Weyl group acts simply transitively on the set of
Weyl chambers. Moreover, each Weyl chamber is a simplicial cone, and the
Weyl group is the Coxeter group generated by the reflections on the walls
of a fixed Weyl chamber. This implies in particular that every Weyl group
orbit of a has a unique representative in a fixed Weyl chamber.

Convention 4. Whenever needed, when given a semisimple Lie group G, we
supposed that we have fixed a choice of:

— a Cartan involution σ of g,
— a Cartan subalgebra a ⊂ gσ⊥,
— a Weyl chamber a+ ⊂ a.

Gathering the above results, one can define the Cartan projection in the
following way:

Proposition-Definition 1.1.4. For every u ∈ gσ⊥, there is a unique vector
µ(u) ∈ a+, called the Cartan projection of u, such that

µ(u) = Adk(u)

for some k ∈ Gσ.
For every g ∈ G, there is a unique vector µ(g) ∈ a+, called the Cartan

projection of g, such that

g = k1 exp(µ(g))k2

for some k1 and k2 ∈ Gσ.

Geometric interpretation

Let us now reinterpretate the notions presented above in terms of the
geometry of the symmetric space. We fix a semisimple Lie group G and
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denote by X its symmetric space. We choose a basepoint o ∈ X and denote
by σ the corresponding Cartan involution 4 of g, so that StabG(o) = Gσ.

Note first that the space gσ⊥ identifies canonically with the tangent space
to X at o. Expressing the curvature tensor of X in terms of the Lie bracket
of g, one shows that Cartan subspaces of gσ⊥ are exactly the maximal sub-
spaces of ToX in restriction to which the curvature tensor vanishes. It follows
that, for any such Cartan subspace a, the set exp(a)·o is a flat totally geodesic
subspace of X. The rank of G is thus the maximal dimension of a flat totally
geodesic subspace of its symmetric space.

Now, the Cartan projection µ : ToX → a+ classifies the orbits of the
action of Gσ on ToX. Using the transitivity of the action of G, one can
extend this Cartan projection to a G-invariant function

µ : TX → a+

with the property that µ(u) = µ(v) if and only if there exists g ∈ G such
that g∗(u) = v .

Similarly, the Cartan projection µ : G → a+ factors to a function from
X = G/Gσ to a+ which classifies the orbits of the action of Gσ on X. Using
again the transitivity of the action of G one can extend µ to a G-invariant
function on X ×X with the property that µ(x, y) = µ(x′, y′) if and only if
there exists g ∈ G such that g · x = x′ and g · y = y′. The Cartan projection
on TX and X ×X correspond to one another via the geodesic flow, in the
sense that

µ(u) = µ(x, expx(u))

for all x ∈ X and all u ∈ TxX. We hope that giving the same name to these
different maps to a+ will not bring any confusion.

It is useful to interpretate the Cartan projections on TX and X ×X as
“vector valued” metrics on X. Indeed, we have the following proposition:

Proposition 1.1.5. Let ‖·‖ be a norm on a invariant under the Weyl group.
Then the function

X ×X → R+

(x, y) 7→ ‖µ(x, y)‖

is a G-invariant distance on X. It is the path distance associated to the
G-invariant Finsler metric

TX → R+

u 7→ ‖µ(u)‖ .

Conversely, every G-invariant path metric on X is the Finsler metric
associated to a W -invariant norm on a.

4. Strictly speaking, σ and o are the same thing, but it is more convenient to name
them differently when seen as an involution of g or a point in X.
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Opposition involution

The opposite of a+ is another Weyl chamber. By transitivity of the Weyl
group, there exists an element w ∈W such that

−w(a+) = a+

The involution ι = −w of a+ is called the opposition involution.
Depending on G, the opposition involution may or may not be trivial.

When it is non-trivial it captures the symmetry defect of the Cartan projec-
tion. Indeed, we have:

— For all g ∈ G,
µ(g−1) = ι(µ(g))

— For all u ∈ TX,
µ(−u) = ι(µ(u))

— For all x, y ∈ X ×X,

µ(y, x) = ι(µ(x, y)) .

The rank 1 case

When the Lie group G has rank 1, its Cartan subspace is a real line
on which the Weyl group acts by ±Id. Up to scaling, there is thus a
unique G-invariant path metric on its symmetric space which is Rieman-
nian. This distance is directly given by the Cartan projection, seen as a
function with values in R+, and the isometry group G is 2-transitive, i.e.
for any x1, x2, y1, y2 ∈ X such that d(x1, x2) = d(y1, y2), there exists g ∈ G
mapping x1 to y1 and x2 to y2.

The Lie group G has rank 1 if and only if its symmetric space has negative
sectional curvature. In fact, symmetric spaces of rank 1 are classified, and
can all be seen as “hyperbolic spaces over some division algebra”. To be more
precise, note first that a semisimple Lie group of rank 1 is isogenous to a
product of a simple Lie group of rank 1 with a compact group (of rank 0).
Let us list the simple Lie groups of rank 1 up to isogeny:

— SO(d, 1), d ≥ 1, whose symmetric space is the hyperbolic space Hd
R of

real dimension d,
— SU(d, 1), d ≥ 1, whose symmetric space is the complex hyperbolic

space Hd
C, of real dimension 2d,

— Sp(d, 1), d ≥ 1, whose symmetric space is the quaternionic hyperbolic
space of real dimension 4d,

— The exceptional Lie group F−20
4 , whose symmetric space can be seen

as the hyperbolic plane over the octonions.
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1.1.4 Roots, parabolic subgroups and flag varieties

We finish this section by recalling some further structure theory for
semisimple Lie groups, in order to introduce their parabolic subgroups and
flag varieties. These will play a central role in the study of discrete sub-
groups of Lie groups, and particularly in the notion of Anosov subgroup.

Let us fix a semisimple Lie group G and choose a Cartan involution σ of
g, a Cartan subspace a ⊂ gσ⊥ and a positive Weyl chamber a+ ⊂ a. Recall
that ∆ denotes the set of roots of g. To every root α ∈ ∆ corresponds an
root space

gα = {v ∈ g | [u, v] = α(u)v for all u ∈ a} .

In particular, the root space g0 decomposes orthogonally as a⊕m, where m
is the centralizer of a in gσ. The Cartan involution acts as −Id on a and
thus maps gα to g−α.

A non-zero root is called positive when it takes non-negative values on
the Weyl chamber a+. A positive root is called simple if it cannot be writ-
ten as the sum of two positive roots. We denote by ∆+ the set of positive
roots and by ∆S the set of simple roots. Both these sets are preserved by
the opposition involution. The set of simple roots is a basis of a∗, and the
positive Weyl chamber is exactly the cone where all the positive roots take
non-negative values. Therefore, the Weyl chamber is a simplicial cone, and
every simple root vanishes on exactly one of its walls.

Let now Θ be a subset of ∆S . A vector u ∈ a+ is called Θ-regular if
θ(u) > 0 for all θ ∈ Θ. We call it Θ-characteristic if it is Θ-regular and,
moreover, α(u) = 0 for all α ∈ ∆S \Θ.

Definition 1.1.6.
— The parabolic subalgebra associated to Θ is the Lie subalgebra

pΘ =
∑

α∈∆|α(u)≥0

gα

where u is Θ-characteristic.
— The parabolic subgroup associated to Θ is the normalizer of pΘ in G:

PΘ = {g ∈ G | Adg(pΘ) = pΘ} .

— A subgroup of G is parabolic if it is conjugate to PΘ for some Θ ⊂ ∆S

— The flag variety associated to Θ is the compact homogeneous space
G/PΘ, which can be seen as the space of parabolic subgroups of G
conjugate to PΘ.
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The parabolic subgroup associated to Θ = ∅ is the group G itself. The
other parabolic subgroups are called proper. If Θ is non-empty, we have

PΘ =
⋂
θ∈Θ

P{θ} .

The parabolic subgroups P{θ} (and their conjugates) are called maximal
parabolic subgroups. Finally, the parabolic subgroup associated to Θ = ∆S

and its conjugates are called minimal parabolic subgroups.
One defines similarly the opposite parabolic subalgebra pop

Θ as

pop
Θ =

∑
α∈∆|α(u)≤0

gα

and the opposite parabolic subgroup P op
Θ as the centralizer of pop

Θ . It is a
parabolic subgroup, conjugate to Pι(Θ).

The action of G on G/PΘ ×G/Pι(Θ) has a unique open orbit: the orbit
of (PΘ, P

op
Θ ). Pairs of parabolic subgroups in this open orbit are called

transverse.

The example of SL(n,R)

All the above definitions, which are hard to digest for someone not already
familiar with Lie theory, are meant to generalize a picture which is quite clear
for SL(n,R).

The Lie algebra of SL(n,R) is the space sl(n,R) of n × n matrices of
trace 0. A canonical choice of Cartan involution for SL(n,R) is given by
M 7→ −MT , whose stabilizer is the compact subgroup SO(n) preserving the
standard scalar product of Rn. A canonical choice of Cartan subspace a is
the space of diagonal matrices of trace 0, which has dimension n − 1. The
Weyl group acts on it by permuting the diagonal entries, and a canonical
choice of positive Weyl chamber is

a+ = {Diag(x1, . . . , xn) | x1 ≥ . . . ≥ xn} .

For u in a, define εi(u) as its ith diagonal coefficient. Then:
— The roots of sl(n,R) are the linear forms εi − εj , 1 ≤ i, j ≤ n ,
— The positive roots are the linear forms εi − εj , 1 ≤ i < j ≤ n,
— The simple roots are the linear forms θi = εi − εi+1,
— The opposition involution maps εi to −εn−i and thus θi to θn−i.
Let (e1, . . . , en) denote the canonical basis of Rn. For all 1 ≤ k ≤

n − 1, define Pk as the stabilizer of 〈e1 . . . , ek〉 and P op
k as the stabilizer

of 〈ek+1, . . . , en〉. Then Pk is the maximal parabolic subgroup P{θk} and the
associated flag variety SL(n,R)/Pk is the Grassmannian of k-planes in Rn,
that we denote Grassk(Rn). The opposite parabolic subgroup is conjugate to
Pn−k, and a pair of points in (SL(n,R)/Pk)× (SL(n,R)/Pn−k) is transverse
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if and only if the corresponding subspaces of Rn of dimension k and n − k
are in direct sum.

Let now Θ = {θk1 , . . . , θkl , k1 > . . . > kl} be a subset of ∆S . Then G/PΘ

is the space of flags of type (k1, . . . , kl), i.e. increasing chains of subspaces
of F1 ⊂ . . . ⊂ Fl ⊂ Rn with dim(Fi) = ki. The opposite flag variety is the
space flags of type (n− kl, . . . , n− k1). Finally, a flag F of type (k1, . . . , kl)
and a flag F ′ of type (n− kl, . . . , n− k1) are transverse if and only if

Fi ⊕ F ′l−i = Rn

for all 1 ≤ i ≤ l.

Geometric interpretation

When G has rank 1, the set ∆S contains a single root. There is thus up
to conjugation a unique non-trivial parabolic subgroup P . The flag variety
G/P is diffeomorphic to a sphere and can be identified with the boundary at
infinity of the symmetric space X (see Section 1.3.1).

In higher rank, though there is no canonical compactification of X, the
flag varieties of G can still be seen as “boundaries” of its symmetric space.
For instance:

— The visual boundary of X is a union of closed G orbits parametrized
by the projectivization of the positive Weyl chamber. For every
[u] ∈ P(a+), the corresponding G-orbit in the visual boundary is
G/PΘ, where Θ = {α ∈ ∆S | α(u) > 0}.

— The symmetric space of SL(n,R) identifies with the space of positive
definite quadratic forms on Rn modulo scaling, which is a proper
convex domain in P(Sym2(Rn∗)). Its boundary has a unique closed
SL(n,R)-orbit consisting of positive quadratic forms of rank 1, which
identifies with the flag variety

P(Rn∗) ' SL(n,R)/Pn−1 .

— When G is of Hermitian type, its symmetric space identifies with a
bounded domain in a complex vector space. The boundary of this
domain contains a unique closed G-orbit called the Shilov boundary
of X, which is a flag variety of G.

Dynamical interpretation

Let u ∈ a+ be a Θ-regular vector. Then, almost by construction, PΘ and
P op

Θ are respectively attracting and repelling fixed points for exp(u) in the
corresponding flag varieties.

Elaborating on this remark and using the Cartan decomposition, one can
describe the dynamical behaviour of any diverging sequence (gn) ∈ GN in
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terms of Cartan projections. More precisely, up to extracting a subsequence,
assume that

µ(gn)

‖µ(gn)‖
−→

n→+∞
v ∈ a+\{0} .

The vector v is Θ-regular for some non-empty subset Θ of ∆S . Then, up to
extracting a further subsequence, we have

Proposition 1.1.7. There exists a pair (x+, x−) ∈ G/PΘ
×GPι(Θ)

such that

gn · x −→
n→+∞

g+

for all x ∈ G/PΘ transverse to x−.

When G has rank 1, one recovers the convergence property of the action
of G on the boundary at infinity of its symmetric space.

This gives a further motivation for introducing the flag varieties of G:
they are, in some sense, the spaces where the dynamics of discrete subgroups
happen.

1.2 Subgroups of Lie groups and their deformations

In a broad sense, this memoir is concerned with the description of (finitely
generated) subgroups of Lie groups. Since subgroups of solvable groups are
themselves (virtually) solvable, they can mostly be understood with algebraic
methods. In contrast, the algebraic properties of subgroups of a semisimple
Lie groups (on which we will focus) are more ellusive, and their study belongs
to the realms of geometry and dynamics.

1.2.1 Subgroups of semisimple Lie groups

Despite what we just claimed, there are a few general and powerful alge-
braic properties that are essentially shared by all finitely generated subgroups
of a semisimple Lie group. We mention here those that are most relevant,
beginning with Malcev’s theorem and Selberg’s lemma.

Theorem 1.2.1 (Malcev’s theorem [134]). Let Γ be a finitely generated sub-
group of a linear algebraic group. Then Γ is residually finite, i.e. for all
γ ∈ Γ, there exists a finite index normal subgroup of Γ that does not con-
tain γ.

Theorem 1.2.2 (Selberg’s lemma [174]). Let Γ be a finitely generated sub-
group of a linear algebraic group. Then Γ is virtually torsion-free, i.e. there
exists a finite index normal subgroup Γ′ ⊂ Γ such that every γ ∈ Γ′\{1Γ}
has infinite order.
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When Γ is a discrete subgroup of a semisimple group G, Selberg’s lemma
has the interesting geometric interpretation that Γ is virtually the fundamen-
tal group of a complete non-positively curved manifold. More precisely, Γ
acts properly discontinuously on the symmetric space X, and is torsion-free
if and only if this action is also free. By Selberg’s lemma, one can always
find a torsion-free normal subgroup of finite index Γ′ ⊂ Γ. The group Γ′

is thus the fundamental group of the complete negatively curved manifold
Γ′\X, and Γ\X is the quotient of this manifold by the finite group Γ/Γ′.
Finally, Malcev’s theorem produces “many” finite coverings of Γ′\X.

Another spectacular property of finitely generated linear groups is the
renowned Tits alternative:

Theorem 1.2.3 (Tits). Let Γ be a finitely generated subgroup of a linear
algebraic group. Then, either Γ is virtually solvable, or Γ contains a free
group in two generators. 5

Zariski closure

The Tits alternative comforts the idea that “generic” subgroups of semisim-
ple Lie groups are necessarily complex from an algebraic, geometric and dy-
namical point of view. To make sense of this “genericity”, let us recall the
notion of Zariski closure.

Let Γ be a subgroup of a linear algebraic group G. The Zariski closure
Γ̄Zof Γ is the algebraic subset of G defined by the vanishing of all the poly-
nomial functions that vanish on Γ. It is also the smallest linear algebraic
subgroup containing Γ. Note that Γ is virtually solvable if and only if its
Zariski closure is a solvable Lie group. We call Γ Zariski dense if its Zariski
closure contains the identity component of G.

If Γ is not Zariski dense in G, then one typically wants to reduce the
study of Γ inside G to that of Γ inside its Zariski closure. Thus, in many
situations, there is no loss of generality in considering only Zariski dense
subgroups of G. With that in mind, one can for instance reformulate the
Tits alternative in the following way:

Theorem 1.2.4 (Tits). Let G be a semisimple linear algebraic group and Γ
a finitely generated Zariski dense subgroup. Then Γ contains a free group in
2 generators.

Remark 1.2.5. It might sometimes be convenient to talk about Zariski clo-
sures in a semisimple Lie group G which is not assumed algebraic. We define
it by

Γ̄Z
def
= Ad−1

(
Ad(Γ)

Z
)
,

5. Note that the free group in two generators contains a free group in k generators for
all k.
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where Ad : G→ Aut(g) is the adjoint representation.

1.2.2 Deformations and character varieties

In this memoir, we will be particularly interested in “deforming” discrete
subgroups Γ of a Lie group G. To make this notion more precise, one should
consider Γ as an abstract group that we can represent as a subgroup of
G in possibly different ways. The inclusion i : Γ ↪→ G is an example of
such a representation, which we will try to deform continuously. A first
way to construct such deformations is to conjugate the representation by a
continuous familly of transformations in G. Such deformations, however, are
somehow irrelevant both from a geometric and dynamical point of view. We
will thus call them “trivial deformations”. These considerations will lead us
to introduce the space of representations of an abstract (finitely generated)
group Γ into G and its quotient under conjugation.

Berforehand, let us settle on some more heuristic terminology which will
be used throughout the memoir. Let Γ be a finitely generated group and G
a Lie group.

— A small deformation of a representation ρ : Γ→ G is a representation
ρ′ : Γ→ G that belongs to a small neighbourhood of ρ in Hom(Γ, G)
(endowed with the topology of pointwise convergence).

— A continuous deformation of a representation ρ : Γ→ G is (depending
on the context) a representation ρ′ ∈ Hom(Γ, G) belonging to the
connected component of ρ, or a continuous path in Hom(Γ, G) starting
at ρ. It will then be called smooth if the image of each γ ∈ Γ varies
smoothly along the path.

— If Γ is a subgroup of G, a small/continuous deformation of Γ into G
is a small/continuous deformation of the inclusion i : Γ ↪→ G.

— A small/continuous deformation ρ′ of ρ is called trivial if there exists
g ∈ G such that ρ′(γ) = gρ(γ)g−1 for all γ ∈ Γ.

— A representation ρ : Γ→ G is locally rigid if every small deformation
of ρ is trivial. A subgroup Γ ⊂ G is locally rigid if the inclusion
i : Γ ↪→ G is locally rigid.

Character varieties

Let Γ be a finitely generated group (e.g. the fundamental group of a
compact manifold) and G a semisimple Lie group. We denote by Hom(Γ, G)
the set of homomorphisms – or representations – from Γ to G, endowed with
the topology of pointwise convergence. Given a finitely generating set S, the
embedding

Hom(Γ, G) → GS

ρ 7→ (ρ(s))s∈S
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identifies Hom(Γ, G) with a real anaytic subset which is a real algebraic vari-
ety when G is linear algebraic. In particular, Hom(Γ, G) is locally connected
by smooth arcs.

The group G acts on Hom(Γ, G) by conjugating representations:

g · ρ : γ → gρ(γ)g−1 .

We denote the quotient of Hom(Γ, G) under this action by X̂(Γ, G) and call it
the naïve character variety of Γ into G. It is naïve because the conjugation
action of G is typically not proper, so that the quotient X̂(Γ, G) is not a
Hausdorff topological space. We denote by X(Γ, G) the largest Hausdorff
quotient of X̂(Γ, G) and call it the character variety of Γ into G.

Though the action of G on Hom(Γ, G) is not proper, it is not too wild
either (because it is essentially algebraic), and one can understand rather
explicity which conjugacy orbits are identified in the character variety. To
state this precisely, let us introduce first some terminology. A Lie subgroup
H of G is called reductive if its Lie algebra h is non-degenerate with respect
to the Killing form of g. The Zariski closure of a representation ρ is the
Zariski closure of its image.

Definition 1.2.6. A representation ρ : Γ→ G is called reductive if its Zariski
closure is reductive. It is irreducible if it is reductive and its centralizer in G
is compact.

These definitions generalize classical definitions for linear representations.
Indeed, when G = SL(V ), irreducible representations are the ones that do
not preserve a non-trivial proper subspace of V , and reductive representa-
tions are those that decompose into direct sums of irreducible representa-
tions.

We have the following theorem:

Theorem 1.2.7.
— The closure of every conjugacy orbit contains a unique closed conju-

gacy orbit.
— The conjugacy orbit of ρ ∈ Hom(Γ, G) is closed if and only if ρ is

reductive.
— Two representations ρ and ρ′ are identified in X(Γ, G) if and only the

closures of their conjugacy orbits intersect.

Corollary 1.2.8. The character variety X(Γ, G) identifies with the set of
conjugacy classes of reductive representations.

The reductive representation contained in the closure of the orbit of ρ is
obtained in the following way. Let P be the smallest parabolic subgroup of
G containing the image of ρ, let L be a Levi factor of P and p : P → L the
projection morphism. Then p ◦ ρ is reductive and is a limit of conjugates
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of ρ. In particular, ρ is reductive if and only if it takes values in a Levi
factor of P , and ρ is irreducible if and only if its image is not contained in
a proper parabolic subgroup of G. Hence Zariski dense representations are
irreducible.

Interpretation via Geometric Invariant Theory

In this specific paragraph, G is a complex semisimple linear algebraic
group. In that case, the above construction is just the topological counter-
part of the algebraic construction of the quotient Hom(Γ, G)//G via Geo-
metric Invariant Theory.

The space Hom(Γ, G) is now a complex affine variety (which can in fact
be defined over Q). Let C[Hom(Γ, G)] denote its algebra of regular functions
and C[Hom(Γ, G)]G the subalgebra of G-invariant regular functions. Then
C[Hom(Γ, G)]G is the algebra of regular functions of a complex affine variety
called the GIT quotient of Hom(Γ, G) and denoted Hom(Γ, G) �G. It turns
out that Hom(Γ, G) � G is the character variety. More precisely, there is a
homeomorphism Φ : X(Γ, G) → Hom(Γ, G) � G (for the analytic topology)
such that the following diagram commutes:

Hom(Γ, G)

�� ((
X(Γ, G)

Φ // Hom(Γ, G) �G .

Unfortunately, this nice algebraic description does not generalize well
when the Lie group is real, for the following reason. LetGR be a real algebraic
group and GC the group of its complex points. Then the inclusion GR → GC
induces a map from X(Γ, GR) to the real points X(Γ, GC)R of the complex
character variety. Morally, if X(Γ, GR) were the nice real algebraic variety
that we hoped, then this map would be an isomorphism. However:

— It is not surjective in general, because X(Γ, GC)R contains the image
of X(Γ, G′R) for other real forms G′R of GC,

— It is not injective in general, because there might be some outer auto-
morphism τ of GR which is the restriction of an inner automorphism
of GC, so that [ρ] and [τ ◦ ρ] have the same image in X(Γ, GC).

Example 1.2.9. Let Γ be the fundamental group of a closed surface of genus
g ≥ 2. Then the real points of the character variety Hom(Γ,PSL(2,C))
consist of conjugacy classes of representations with values in PSL(2,R) or
PSU(2). The character variety Hom(Γ,PSL(2,R)) has 4g−3 connected com-
ponents that are classified by the Euler class (see Section 3.1.4). However,

the conjugation by the matrix
(
i 0
0 −i

)
∈ PSL(2,C) preserves PSL(2,R)

and reverses the Euler class so that the components of Euler class ±k are
identified in X(Γ,PSL(2,C)).
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While this example illustrates some subtleties that ought to be taken
seriously, it should not prevent us from thinking of X(Γ, GR) has a nice space.
Richardson and Slodowy [166], extending the work of Kempf and Ness [102]
to real groups, proved for instance that X(Γ, GR) is a real semi-algebraic
set and that the map X(Γ, GR) → X(Γ, GC) is finite to one and proper.
Acosta described more precisely the real points of X(Γ, GC) for classical Lie
groups [1].

Tangent space

Informally, the tangent space to X(Γ, G) at a representation ρ is the
vector space generated by first derivatives of small deformations of ρ mod-
ulo first derivatives of trivial deformations. To make this more precise, let
(ρt)t∈[0,ε) be a smooth deformation of ρ and define

u : Γ → g

γ 7→ d
dt |t=0

(
ρt(γ)ρ(γ)−1

) .

Deriving the relation ρt(γη) = ρt(γ)ρt(η) gives the following cocycle relation
for u:

u(γη) = u(γ) + Adρ(γ)u(η) .

Assume now that ρt = Adg(t) ◦ ρ0 for some smooth curve (gt) in G such that
g0 = IdG. Setting v = d

dt |t=0
gt, one finds

u(γ) = Adρ(v)− v .

Formally, the tangent space to X(Γ, G) at ρ is thus the first cohomology
group with twisted coefficients H1(Γ,Adρ). This is in fact more than a formal
computation: at a smooth point of X(Γ, G), the topological tangent space is
indeed H1(Γ,Adρ).

Note that the twisted cohomology group H1(Γ,Adρ) can be interpreted
as a character variety into an affine group. Indeed, u : Γ → g is a twisted
cocycle for Adρ if and only if the map

Γ → Aff(g)
γ 7→ [x 7→ Adρ(γ)x+ u(γ)]

is a homomorphism. Moreover, two cocycles differ by a coboundary if and
only if the corresponding affine actions on g are conjugate by a translation.
This correspondence between affine actions and infinitesimal deformations
of linear representations is at the heart of Danciger–Guéritaud–Kassel’s con-
struction of proper affine actions of non-solvable groups [51, 53].
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1.2.3 Topological invariants

In this section we assume for convenience that Γ is the fundamental group
of a manifold M . To every representation ρ : Γ → G, one can associate a
principal G-bundle

M ×ρ G
def
= (M̃ ×G)/Γ

where Γ acts on M̃ ×G by

γ · (x, g) = (γ · x, ρ(γ)g) .

This principal bundle is endowed with a flat connection, induced by the
trivial connection on M̃ ×G.

Conversely, every flat principalG-bundle overM is isomorphic toM×ρG,
where ρ : Γ → G is its holonomy. However, this holonomy is only defined
up to conjugation, and provides a bijection between isomorphism classes of
principal G-bundles over M and the naïve character variety X̂(Γ, G). This
bijection is sometimes referred to as the Riemann–Hilbert correspondence.

Now, one can forget the flat connection to obtain a map from the X(Γ, G)
to the set of isomorphism classes of principal G-bundles. The following
classical proposition states that this map is locally constant.

Proposition 1.2.10. If ρ′ is a continuous deformation of ρ, then M ×ρ G
and M ×ρ′ G are isomorphic as principal G-bundles.

This remark opens the possibility to use topological invariants of principal
G-bundles to discriminate between connected components of X(Γ, G).

Reduction of structure group

Let K be a maximal compact subgroup of G, so that X = G/K is
the symmetric space of G. One can associate to ρ : Γ → G the X-bundle
M ×ρ X = (M ×ρ G)/K. A function f : M̃ → X factors to a section of
M ×ρ X if and only if it is ρ-equivariant, i.e.

f(γ · x) = ρ(γ) · f(x)

for all γ ∈ Γ and all x ∈ M̃ .
Now, since X is contractible, such a section always exists and is moreover

unique up to homotopy. It gives a reduction of structure group from M ×ρ
G to a principal K-bundle, which is well-defined up to isomorphism. The
topological classification of G-bundles hence reduces to the classification of
principal K-bundles.
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Obstruction theory

A first family of invariants comes from trying to construct recursively
a section of the principal bundle M ×ρ G over the k-skeleton of a cellular
decomposition of M to the k + 1-skeleton. The first obstruction controls
the possiblity of finding a section over the 1-skeleton. It is simply the rep-
resentation ρ̄ : Γ → G/G0, which is trivial if and only if ρ takes values
in G0.

Assume now that the first obstruction is trivial. We can thus find a sec-
tion over the 1-skeleton. A second obstruction appears when trying to extend
this section over the 2-skeleton. This obstruction lives in H2(M,π1(G0)) and
vanishes if an only if the representation ρ can be lifted to a representation
into G̃0.

Example 1.2.11. The Lie group PSL(2,R) is connected and has fundamental
group Z. Therefore, ifM is a closed oriented surface, the only obstruction to
the triviality of a principal PSL(2,R)-bundle over M lives in H2(M,Z) = Z,
and is called the Euler class of the principal bundle. The Euler class of a
representation ρ : Γ → PSL(2,R) is, by definition, the Euler class of the
associated principal PSL(2,R)-bundle.

Example 1.2.12. For n ≥ 3, we have

π1(SL(n,R)) = π1(SO(n)) = Z/2Z .

One can thus associate to a principal SL(n,R)-bundle over M and to a con-
nected component of Hom(Γ, SL(n,R)) a cohomology class in H2(M,Z/2Z),
called its second Stiefel–Whitney class.

Characteristic classes

Another source of topological invariants is given by the theory of char-
acteristic classes.

Let H be a connected semisimple Lie group. Let EH be a contractible
space on which H acts freely and properly. Then BH = EH/H is a clas-
sifying space for H, and EH is the universal principal H-bundle over BH.
Let now E be a principal H-bundle over M . Then there exists a continuous
map f : M → BH – called a classifying map – such that E is isomorphic to
f∗EH and, moreover, this map is unique up to homotopy. The characteristic
classes of E are the pull-back of the cohomology classes of BH to M .

Certain obstruction classes can be recovered in this way. For instance,
when H = SO(2), there is a class in H2(BH,Z) whose pull-back by f gives
the Euler class of E. Similarly, when H = SO(n), the Stiefel–Whitney class
of E is the pull-back by f of a class in H2(BH,Z/2Z).

The Chern–Weil homomorphism provides a differential geometric way to
compute the characteristic classes of E with real coefficients. Recall that, if
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∇ is a principal connection on E, then its curvature F∇ is a 2-form on M
with values in the h-bundle associated to E. Now, given P a AdH -invariant
homogeneous polynomial of degree l on h, one can evaluate P on F∇ to
obtain a closed 2l-form on M . Moreover, the de Rahm cohomology class of
this form does not depend on the choice of the connection ∇.

Let R[h]H denote the algebra of AdH -invariant polynomials on h.

Theorem 1.2.13 (Chern–Weil homomorphism). There exists a homomor-
phism

CWH : R[h]H → H•(BH,R)

such that, for any principal H-bundle E over a manifold M with classifying
map f : M → BH, for any principal connection ∇ on E, and for any
homogeneous polynomial P ∈ R[h]H ,

[P (F∇)] = f∗CWH(P ) .

Moreover, if H is compact, then CWH is an isomorphism.

Remark 1.2.14. Since every principal H-bundle E admits a reduction of
structure group to a maximal compact subgroupK, the characteristic classes
of E are those of its compact reduction, which are all obtained via Chern–
Weil theory of compact groups. It is sometimes useful, however, to consider
the Chern–Weil homomorphism of a non-compact group.

Assume now that K is a maximal compact subgroup of a semisimple Lie
group G. Then G is a principal K-bundle over X = G/K which carries a
G-invariant connection ∇. Every homogeneous polynomial P ∈ R[k]K thus
defines a G-invariant closed form P (F∇) on X that we call a Chern–Weil
form. Let Ω•(X)G denote the algebra of G-invariant forms 6 on X.

Finally, Let ρ be a representation of Γ into G. The G-invariant forms on
X can be pulled-back to M by any section of the X-bundle M ×ρ X, and
the cohomology class of this pull-back is independent of the chosen section.
We denote abusively this operation by ρ∗. Let now E be the reduction of
M ×ρG to a principal K-bundle, and let f : M → BK be a classifying map
for E.

Proposition 1.2.15. The following diagram is commutative:

R[k]K //

CWK

��

Ω•(G/K)G

ρ∗

��
H•(BK,R)

f∗ // H•(M,R) .

6. By a theorem of Cartan, every invariant form on a symmetric space is closed.
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In other words, the characteristic classes of (the K-reduction of)M ×ρG
can be computed by pulling back G-invariant forms on the symmetric space.

In general, there are G-invariant forms on G/K that are not Chern–Weil
forms. These can still be pulled back under ρ to get cohomology classes
on M . Though such classes have been studied in particular cases (see for
instance [34]), it does not seem to have been established in full generality
that they are locally constant on the character variety. We found a general
proof of this fact which consists in interpreting these other classes as Chern–
Simons characteristic classes associated to pairs of connections. This will be
discussed again in Section 2.4.2.

1.2.4 Dynamical invariants

While topological invariants identify connected components of charac-
ter varieties, some refined invariants of dynamical nature can capture more
information about how the properties of a discrete group vary within a con-
tinuous family. We introduce them here in a very general context, but their
relevance will appear later on when we focus on Anosov groups.

Let us first recall some very general definitions: Let (X, dX) be a geodesic
metric space and g an isometry of X. The translation length of g is defined
by

l(g)
def
= inf

x∈X
d(x, g · x) .

When the distance dX has some good convexity properties (e.g. when X
is CAT(0)), the translation length of an isometry coincides with its stable
length:

l(g) = lim
n→+∞

1

n
d(o, gn · o) ,

where o is any point in X. Both the translation length and the stable length
are invariant under conjugation.

Now, let Γ be a finitely generated group. We denote by [Γ] the set of
conjugacy classes in Γ\{1Γ}.

Definition 1.2.16. The length spectrum of a representation ρ : Γ→ Isom(X)
is the function

Lρ : [Γ] → R+

[γ] 7→ l(ρ(γ)) .

When the representation ρ is discrete with finite kernel, we define its
entropy as the exponential growth rate of its length spectrum, namely:

Definition 1.2.17. The entropy of a representation ρ : Γ→ Isom(X) is the
quantity

H (ρ)
def
= lim sup

R→+∞

1

R
log ]{γ ∈ [Γ] | LXρ (γ) ≤ R} .
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The entropy often coincides with the critical exponent of ρ, defined has
the exponential growth rate of orbits:

δ(ρ)
def
= lim sup

R→+∞

1

R
log ]{γ ∈ Γ | d(o, γ, o) ≤ R} .

Though these quantities a priori take value in [0,+∞], we will soon focus on
situations where they are finite and non-zero.

The notions of length spectrum and entropy are motivated by the follow-
ing situation: assume Γ is the fundamental group of a closed Riemannian
manifold (M, gM ) of negative curvature, and ρ is given by the action of Γ

on the universal cover M̃ . Then the set [Γ] is in bijection with closed orbits
of the geodesic flow of M , and the length spectrum Lρ is simply given by
the length of these closed orbits. Finally, the entropy H (ρ) equals the topo-
logical entropy of this geodesic flow, and also coincides with the exponential
growth rate of the volume of balls in the universal cover:

δ(ρ) = H (ρ) = lim
R→+∞

1

R
logVol(B

M̃
(o,R)) .

Let us now consider G a semisimple Lie group, with Cartan projection
µ : G→ a+. In order to associate a length spectrum to representations into
G, it is natural to consider G as acting on its symmetric space X. Recall,
however, that X admits many G-invariant Finsler metrics which all derive
from the Cartan projection. This motivates the introduction of a “vector”
length spectrum. Let us first introduce the Jordan projection:

Definition 1.2.18. The Jordan projection on G is the function

λ : G → a+

g 7→ limn→+∞
1
nµ(gn)

where µ is the Cartan projection of G.

Example 1.2.19. When G = SL(n,C), the Jordan projection associates to a
matrix g the logarithms of the modules of its eigenvalues in decreasing order.

The Jordan projection is a conjugacy invariant. Let now ρ be a repre-
sentation of a finitely generated group Γ into G. We define its vector valued
length spectrum as the function

→
Lρ : [Γ] → a+

γ 7→ λ(ρ(γ)) .

On can compose
→
Lρ with any adequate function N on a+ to obtain some

notion of length spectrum for ρ. In particular, if N is a W -invariant norm
on a+, then the length spectrum

LN (ρ) : γ 7→ N(
→
Lρ(γ))
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is the length spectrum of ρ acting on the symmetric space equiped with the
distance associated to N . Each choice of N gives a corresponding notion
of entropy H N . Quint studied in a very general context the dependence of
H N on N when N is a positive linear form on a+ [161].

1.2.5 Rigidity

Before investigating deformations of discrete groups any further, let us
pause for a moment and ask which groups admit such deformations. This
brings the question of local rigidity of representations, which has been widely
investigated in the case of lattices. We briefly recall here those rigidity
results.

Recall that a representation ρ : Γ → G is locally rigid if every small
deformation of ρ is conjugate to ρ. When ρ is irreducible, this is equivalent to
ρ being an isolated point in X(Γ, G). The representation ρ is infinitesimally
rigid if H1(Γ,Adρ) = {0}, which implies local rigidity.

Recall that a lattice in a Lie group G is a discrete subgroup Γ such that
Γ\G has finite volume. A lattice is called uniform if Γ\G is compact. Selberg,
Calabi, Weil, Garland–Ragunathan and Margulis successively established the
infinitesimal rigidity of lattices in most simple Lie groups.

Theorem 1.2.20 (Weil[202], Garland–Ragunathan [65], Margulis [138]).
Let Γ be a lattice in a simple Lie group G. If G is not isogenous to PSL(2,R)
or PSL(2,C), then the inclusion Γ ↪→ G is infinitesimally (hence locally)
rigid.

In contrast, torsion-free lattices in PSL(2,R), which are fundamental
groups of hyperbolic surfaces of finite volume, are easily deformed by de-
forming the hyperbolic structure of the surface. The case of PSL(2,C) '
Isom(H3) is more subtle. While uniform lattices in PSL(2,C) are locally
rigid, non-uniform torsion-free lattices have a complex k-dimensional fam-
ily of deformations, where k is the number of cusps of the corresponding
quotient of H3. However, these deformations are never discrete and faith-
ful. Indeed, Mostow proved that any discrete and faithful representation
ρ : Γ→ PSL(2,C) of a lattice Γ is conjugate to the inclusion [152].

In higher rank, the infinitesimal rigidity of lattices follows from the
stronger super-rigidity theorem of Margulis, of which we cite the local version:

Theorem 1.2.21 (Margulis’s local super-rigidity [138]). Let Γ be a lattice
in a simple Lie group G of rank at least 2. Then every representation ρ of Γ
into another Lie group H is infinitesimally rigid.

This theorem was extended to lattices in Sp(n, 1) and F−20
4 by Cor-

lette [48]. It implies in particular that such lattices cannot even be deformed
inside a larger group.

59



In contrast, there exist lattices in SO(n, 1) or SU(n, 1) that can be de-
formed non-trivially into a larger group. We will come back to those examples
in Section 2.3, where they form the main source of deformations of compact
Clifford–Klein forms. Finally, lattices in PSL(2,R) have many deformations
in all semisimple Lie groups. The vast and well-developed theory of their
character varieties will occupy the third chapter of this memoir.

1.3 Discreteness and the Anosov property

In a strict sense, a “deformation of a discrete group” Γ ⊂ G should be
understood as a small deformation of the inclusion that remains discrete
and faithful. In general, however, discreteness is not an open property, This
motivates the search for sufficient (and, more difficult, necessary) conditions
which would guarantee the stability of the discreteness property.

1.3.1 Quasi-isometric embeddings in rank 1

Amap f between two metric spaces (X, dX) and (Y, dY ) is quasi-isometric
if there exists a constant C > 1 such that, for all x, y ∈ X,

1

C
dX(x, y)− C ≤ dY (f(x), f(y)) ≤ CdX(x, y) + C .

We will call it a quasi-isometry if, moreover, every y ∈ Y is at uniformly
bounded distance from a point in the image of f .

Let Γ be a group generated by a finite set S symmetric under s 7→ s−1.
The length |γ|S of an element γ is the length of the shortest word with
letters in S representing Γ. One can then define a left invariant distance on
Γ by setting dS(γ, η) = |γ−1η|. This distance is induced by the path metric
of the Cayley graph associated to S, whose vertices are the elements of Γ
and where two vertices γ and η are connected by an edge of length 1 if and
only if γ−1η ∈ S. The Cayley graphs associated to different choices of finite
generating sets are quasi-isometric.

Let now G be a semisimple Lie group and o an arbitrary basepoint in its
symmetric space X.

Definition 1.3.1. A representation ρ : Γ → G is a quasi-isometric embed-
ding if there exists a constant C > 1 such that

d(o, γ · o) ≥ 1

C
|γ|S − C

for all γ ∈ Γ. A subgroup Γ of G is quasi-isometrically embedded if the
inclusion Γ ↪→ G is a quasi-isometric embedding.

One easily verifies that:
— the definition does not depend on the basepoint o,
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— it is equivalent to ρ : (Γ, dS)→ G being quasi-isometric (for some left
invariant metric on G).

The quasi-isometric property is particularly powerful when the group G
has rank 1, which can be explained by the fact that the symmetric space
X is then Gromov hyperbolic, a notion which behaves well with respect to
quasi-isometries. 7

Let us first recall very briefly the definition of Gromov hyperbolicity:

Definition 1.3.2. A geodesic metric space (X, d) is hyperbolic (in the sense
of Gromov) if there exists δ ≥ 0 such that for any geodesic triangle T in X,
there exists a point at distance less than δ from all the sides of T .

A locally compact group Γ is hyperbolic (in the sense of Gromov) if it
admits a proper and cocompact action on a hyperbolic geodesic metric space.

Example 1.3.3. A Riemannian comparison theorem of Alexandrov, together
with an elementary property of hyperbolic geometry, implies that the sym-
metric spaces of rank 1 are Gromov hyperbolic.

A Gromov hyperbolic space X can be compactified by its boundary at in-
finity ∂∞X, which can be defined as the set of equivalence classes of geodesic
rays in X, where two rays are equivalent if they remain at bounded distance.
When X is the symmetric space of a rank one Lie group G, its boundary at
infinity is the unique non-trivial flag variety G/P .

The strength of Gromov’s notion of hyperbolicity comes from its invari-
ance under quasi-isometries. As a consequence, a finitely generated group
is hyperbolic if and only if its Cayley graph (for any finite generating set)
is hyperbolic. Moreover, quasi-isometric maps between Gromov hyperbolic
spaces extend to continuous injective maps between their boundaries at infin-
ity. In particular, one can define the boundary at infinity ∂∞Γ of a hyperbolic
group Γ as the boundary of any of its Cayley graphs. These properties have
strong consequences on quasi-isometric embeddings into rank 1 Lie groups.

Theorem 1.3.4 (See for instance [28]). Let Γ be a finitely generated group, G
a semisimple Lie group of rank 1 and ρ : Γ→ G a quasi-isometric embedding.
Then:

— [Hyperbolicity] The group Γ is Gromov hyperbolic.

— [Boundary map] The map γ 7→ ρ(γ) · o extends continuously to an
injective ρ-equivariant boundary map

ξρ : ∂∞Γ→ ∂∞X .

7. This presentation is anachronic: Gromov’s notion of hyperbolicity is in fact a way
to abstract properties of negatively curved spaces and their isometries in a purely group-
theoretic context. Nonetheless, hyperbolicity in the sense of Gromov also provides a very
practical way to understand coarse properties of negatively curved spaces.
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— [Domain of discontinuity] ρ acts properly discontinuously and cocom-
pactly on Ωρ = ∂∞X \ ξρ(∂∞Γ).

— [Convex-cocompactness] ρ acts properly discontinuously and cocom-
pactly on a non-empty closed convex subset of X.

Moreover, the quasi-isometric property is stable under deformations of
the representation.

Theorem 1.3.5. Let G be a semisimple Lie group of rank 1 and ρ0 : Γ→ G
a quasi-isometric embedding. Then there exists a neighbourhood U of ρ0 in
Hom(Γ, G) such that every ρ in U is a quasi-isometric embedding. Moreover,
for every x ∈ ∂∞Γ, the map

U → ∂∞X
ρ 7→ ξρ(x)

is analytic.

Quasi-isometrically embedded subgroups of rank one Lie groups appeared
first in the context of Kleinian groups, i.e. discrete subgroups of PSL(2,C)
(and, by extension, of any semisimple Lie group of rank 1). In the language
of Kleinian groups, quasi-isometrically embedded groups are called convex-
cocompact. When Γ is convex-cocompact, the image of its boundary map
coincides with its limit set ΛΓ, whose complement is the maximal domain of
discontinuity ΩΓ.

Let us finally mention that, for Kleinian groups in PSL(2,C) ' Isom+(H3),
Theorem 1.3.5 admits a converse:

Theorem 1.3.6 (Sullivan [182]). Let Γ be a finitely generated group and
ρ a discrete and faithful representation of Γ into G such that every small
deformation of ρ remains discrete and faithful. Then, either ρ is rigid or ρ
is a quasi-isometric embedding.

Entropy and Patterson–Sullivan theory

For convex cocompact groups in rank 1, the length spectrum and entropy
have a dynamical interpretation.

Let G be a semisimple Lie group of rank 1 with symmetric space X, and
Γ a torsion-free convex-cocompact subgroup of G. In this setting, Jordan
projections take values into R+, so that there is (up to scaling) a unique
notion of length spectrum Lρ for the inclusion ρ : Γ ↪→ G. Denote by
T1(Γ\X) the unit tangent bundle to Γ\X, endowed with the geodesic flow ϕ.
The set [Γ] is in bijection with the set of closed orbits of ϕ (with multiplicity),
and the length spectrum simply associates its length to each closed orbit.

The closure of the union of all closed orbits is the non-wandering set
RT1(Γ\X) of the geodesic flow. It is compact and its lift to T1X is the
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union of all geodesics with endpoints in the limit set ΛΓ. The works of
Bowen and Margulis on hyperbolic dynamics [29, 138] give the following
counting estimate on the growth of the length spectrum:

Theorem 1.3.7 (see for instance [171]). We have the following

]{γ ∈ [Γ] | Lρ(γ) ≤ R} ∼R→+∞
eH (ϕ)R

R
,

where H(ϕ) is the topological entropy of the geodesic flow ϕ on RT1(Γ\X).
In particular,

H (ρ) = H (ϕ) .

Patterson [155] and Sullivan [181] developed the theory of conformal
measures on the limit set ΛΓ, which provides a more geometric understanding
of the Bowen–Margulis measure of the flow ϕ. A striking consequence of their
work is the following:

Theorem 1.3.8 (Sullivan [181]). Let Γ be a convex-cocompact subgroup of
Isom(Hn). Then the entropy of Γ equals the Hausdorff dimension of ΛΓ.

Here, the metric on Hn is normalized to have curvature −1. For other
rank one Lie groups, the entropy still coincides with the Hausdorff dimension
of the limit set endowed with the Gromov metric on the boundary [46], which
does not coincide with the visual metric in variable curvature.

1.3.2 Anosov properties in higher rank

Quasi-isometric embeddedness is not as robust a notion in higher rank
(see [84] for counter-examples). On the other hand, it was discovered during
the last decades of the XXth century that, in various geometric situations,
some of the good properties of convex-compact groups in rank 1 remained
true when the group is deformed into a higher rank Lie group (see for instance
[83]). At the turn of the century, Labourie introduced the notion of Anosov
representation [118] (for a uniform lattice in a rank one Lie group), which
turned out to give a unifying point of view on those disparate situations.
His original definition was designed to deduce the stability of this property
from the topological stability of hyperbolic dynamical systems. Since then,
the notion has been extended to all Gromov hyperbolic groups [84], and
an alternative definition has been given which is more synthetic and more
geometric. Moreover, Kapovich–Leeb–Porti proved that this definition does
not a priori require the group to be hyperbolic [95]. The many recent works
on Anosov representations have contributed to comfort the idea that they
are indeed the right generalization of quasi-isometric embeddedness in higher
rank Lie groups.

Recall that a particular feature of rank 1 Lie groups is that they have a
unique flag variety G/P on which their action has fairly simple dynamics:
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every diverging sequence in G has a unique attracting point. In contrast, in
higher rank, the dynamics of a diverging sequence on the various flag varieties
depend on the asymptotic direction of the Cartan projections µ(gn). This
explains why the Anosov property is a notion relative to a choice of parabolic
subgroup, and might give an intuition of why it has to involve a precise
control on the Cartan projections.

Let G be a semisimple Lie group, Θ a non-empty subset of the set of
simple roots of g. Let also Γ be a group generated by a finite symmetric
set S.

Definition 1.3.9. A representation ρ : Γ → G is called Θ-Anosov or PΘ-
Anosov if there exists a constant C > 1 such that, for all γ ∈ Γ and all θ ∈ Θ,

θ(µ(γ)) ≥ 1

C
|γ|S − C .

A subgroup Γ of G is called Θ-Anosov if the inclusion Γ ↪→ G is Θ-Anosov.

In less precise words, the Anosov property not only assumes that the
Cartan projection of γ ∈ Γ grows linearly with γ (which would be equivalent
to quasi-isometric embeddedness); it also requires this Cartan projection to
become linearly far from the walls of the Weyl chamber defined by the simple
roots in Θ.

Using the simple fact that Γ is invariant under taking inverses, one easily
shows that ρ is Θ-Anosov if and only if it is Θop-Anosov. The following
theorem, which combines results of [118, 84, 95], asserts that Anosov rep-
resentations have properties very similar to quasi-isometric embeddings in
rank 1:

Theorem 1.3.10. Let ρ : Γ→ G be a Θ-Anosov representation. Then:
— [hyperbolicity] The group Γ is Gromov hyperbolic.

— [Boundary maps] There exist two continuous ρ-equivariant maps ξρ
and ξop

ρ from ∂∞Γ to G/PΘ and G/P op
Θ respectively, which are injec-

tive and transverse, meaning that ξρ(x) and ξop
ρ (y) are transverse for

all x 6= y.

— [Domains of discontinuity] For certain parabolic subgroups P , there
exists an open ρ-invariant domain Ωρ ⊂ G/P on which ρ acts properly
discontinuously and cocompactly.

Remark 1.3.11. An important difference with the rank one case is that the
flag varieties containing a domain of discontinuity are not necessarily the
ones in which the boundary curves live. For example, if ρ : Γ→ SL(4,R) is
P2-Anosov, then its boundary map ξρ takes values into the Grassmanian of
2-planes, but it admits a domain of discontinuity in RP3, consisting of the
complement of all the projective lines [ξρ(x)].
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The strength of the Anosov property and source of many examples is its
stability under small deformations:

Theorem 1.3.12. Let ρ0 : Γ → G be a Θ-Anosov representation. Then
there exists a neighbourhood U of ρ0 in Hom(Γ, G) such that every ρ in U is
Θ-Anosov. Moreover, for every x ∈ ∂∞Γ, the map

U → (G/PΘ)× (G/PΘop)
ρ 7→ (ξρ(x), ξop

ρ (x))

is analytic.

In particular, if Γ is quasi-isometrically embedded in a rank one subgroup
H of a higher rank groupG, then Γ is Θ-Anosov for some choice of Θ (because
the Cartan projections of Γ belong to a one dimensional ray of a higher
dimensional Weyl chamber), and remains so after a small (possibly Zariski
dense) deformation into the ambient group G. This observation has shed a
new light on some geometric constructions such as Koszul’s deformations of
divisible convex sets [114].

1.3.3 Convex-cocompactness in Hilbert geometries

The convex-cocompactness property does not extend to higher rank in
a straightforward way. Indeed, Quint [162] and Kleiner–Leeb [105] proved
that the only discrete subgroups of a higher rank simple Lie group that
act cocompactly on a closed convex subspace of its symmetric space are
the uniform lattices. Nonetheless, it was discovered recently that Anosov
groups satisfy a form of projective convex-cocompactness introduced initially
by Crampon and Marquis [50].

A proper convex domain Ω of RPn−1 is an open domain which is convex
and bounded in some affine chart. Proper convex domains carry a complete
projectively invariant Finsler metric called the Hilbert metric, for which pro-
jective segments are geodesic. When Ω is the interior of a ball, the Hilbert
metric is Riemannian of constant sectional curvature −1 and one recovers
the Klein model of the hyperbolic space. More generally, a proper convex
domain is called hyperbolic if its Hilbert metric is hyperbolic in the sense of
Gromov. (Hyperbolicity criteria for proper convex domains have been given
by Benoist in [18].)

Definition 1.3.13. A group Γ ⊂ PSL(n,R) is projectively convex-cocompact
if there exists a Γ-invariant hyperbolic proper convex domain Ω of RPn−1

and a non-empty, Γ-invariant, closed convex subset C of Ω on which Γ acts
proprely discontinuously and cocompactly. 8

8. In [52], these groups would be called strongly projectively convex-cocompact, to
make the distinction with a weaker notion that does not assume Ω to be hyperbolic. We
won’t discuss this weaker notion here.
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The following theorem was proven independently by Danciger–Guéritaud–
Kassel [52] and Zimmer [209]:

Theorem 1.3.14. Let Γ ⊂ SL(n,R) be a projectively convex-cocompact
group. Then Γ is P1-Anosov. Conversely, if Γ is P1-Anosov and preserves a
proper convex domain, then Γ is projectively convex-cocompact.

The assumption that Γ preserves a proper convex domain is not as strong
as it seems. First, it is invariant under continuous deformations withing the
set of P1-Anosov representions. Moreover, let i denote the representation
of SL(n,R) given by its action on quadratic forms of Rn. Then for every
P1-Anosov subgroup Γ of SL(n,R), the group i(Γ) is still P1-Anosov and
preserves the proper convex domain of positive definite quadratic forms. It
is thus projectively convex-cocompact. Finally, every Θ-Anosov subgroup
of G can be made P1-Anosov by composing with a well-chosen linear rep-
resentation of G (depending only on Θ). Therefore, every Anosov group or
representation can be seen as projectively convex-cocompact after compos-
ing with a well-chosen linear representation.

Length spectra and entropies

Recall that Θ-Anosov representations into higher rank Lie groups have
a vector valued length spectrum, from which one can derive various notions
of length spectrum by evaluating some nice functions on the Weyl chamber.
This includes evaluating simple roots θ ∈ Θ, which are not positive on a+ but
still grow linearly with the word length according to the Anosov property.

To be more concrete, let us specialize to P1-Anosov representations. Let
thus Γ be a finitely generated group and ρ : Γ → SL(d,R) a P1-Anosov
representation. We define the highest weight length spectrum of ρ by

Lhw
ρ : γ 7→ λ1(ρ(γ))− λd(ρ(γ))

2

and the simple weight length spectrum by

Lsw
ρ : γ 7→ λ1(ρ(γ))− λ2(ρ(γ)) .

(Here, λi = εi ◦ λ denotes the ith component of the Jordan projection.) The
highest weight length spectrum is the length spectrum corresponding to some
natural invariant Finsler metric on the symmetric space, while the simple
weight length spectrum quantifies in some sense the P1-Anosov property.
We also denote by H hw(ρ) and H sw(ρ) the corresponding entropies, which
are non-zero and finite.

Assume furthermore that ρ acts convex-cocompactly on a Gromov hy-
perbolic convex domain Ωρ ⊂ RPn−1. Then Lhw

ρ coincides with the length
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spectrum of ρ seen as a representation to Isom(Ωρ, dHilb), and H hw(ρ) equals
the topological entropy of the geodesic flow of ρ(Γ)\Ωρ restricted to its non-
wandering set.

A number of works have been devoted to understanding the relation be-
tween critical exponents and Hausdorff dimension of limit sets in this setting.
In particular, Crampon proved in [49] that, when ρ(Γ) acts cocompactly on
Ωρ, the highest weight entropy of ρ is less than d − 2, with equality if and
only if ρ is conjugate to a representation into SO(d−1, 1). In [71], Glorieux,
Monclair and I obtained the following generalization, which slightly extends
the previous work [70] of the first two authors :

Theorem 1.3.15 (Glorieux–Monclair–Tholozan [71]). Let ρ : Γ→ SL(d,R)
be a projectively convex-cocompact representation. Then

H hw(ρ) ≤ HDim((ξρ, ξ
∗
ρ)(∂∞Γ)) ≤H sw(ρ),

where (ξρ, ξ
∗
ρ)(∂∞Γ)) denotes the image of ∂∞Γ into P(Rd)×P(Rd∗) under

the boundary maps ξρ and ξ∗ρ.

The right inequality was obtained independently by Pozzetti–Sambarino–
Wienhard in [160], where they also give conditions for it to be an equality.
In their subsequent work [159], they strengthen those results and show in
particular that, when ρ(Γ) acts cocompactly on Ωρ, then

H sw(ρ) = n− 2 .

We conjecture a rigidity result analogous to Crampon’s when the left
inequality holds, but this result is out of reach so far. A more accessible
statement would be the following

Conjecture 1.3.16. If H hw(ρ) = H sw(ρ), then ρ is conjugate to a repre-
sentation into SO(d− 1, 1).

Finally, let us mentioned that Crampon’s theorem is equivalent to an
inequality on the volume growth of Hilbert geometries of divisible convex
sets, which Colbois and Verovic conjectured should hold without any group
action [44]. In [190], I proved this conjecture using a comparison lemma
between the Blaschke and Hilbert metrics (Lemma 3.2.26).

Theorem 1.3.17 (Tholozan [190]). Let Ω be a proper convex set of RPd−1.
Then there exists a constant C > 0 such that, for all x ∈ Ω and all R ≥ 1,

Vol(B(x,R)) ≤ C e(d−2)R ,

where B(x,R) denotes any ball of radius R for the Hilbert metric, and Vol
computes its volume with respect to the associated Hausdorff measure (or any
other coarsely equivalent volume form).

This result was then recovered by Vernicos and Walsh with less analytic
methods [201].
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Chapter 2

Compact quotients of reductive
homogeneous spaces

In this chapter, we investigate compact quotients of reductive homoge-
neous spaces. After reviewing the various known obstructions to their exis-
tence, we will explain how to construct some examples and describe in more
details the few examples that admit deformations. These will turn out to be
deeply connected to Anosov groups.

2.1 Compact quotients of homogeneous spaces

Let X be a smooth connected manifold endowed with a faithful and
transitive action of a Lie group G. One can identifyX with the right quotient
G/H, where H is the subgroup of G fixing a basepoint in X. A compact
quotient of X is a quotient of X under the left action of a subgroup Γ of G
acting properly discontinuously and cocompactly on X. By Selberg’s lemma,
up to taking a finite index subgroup, one can always assume that Γ acts freely
on X, so that Γ\X is a closed manifold.

Our investigation of compact quotients of homogeneous spaces is guided
by the following general questions:

Question 2.1.1. Does a given homogeneous space X admit compact quo-
tients ?

Question 2.1.2. What is the topology and geometry of the compact quotients
of X ?

Question 2.1.3. Do these quotients admit deformations, and can we de-
scribe their deformation spaces ?

We will make these questions more precise throughout this section, start-
ing with the case best understood of a Riemannian homogeneous space.
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2.1.1 Riemannian homogeneous spaces and standard quo-
tients

We call the homogeneous space X Riemannian if G preserves a Rieman-
nian metric on X. This happens if and only if the isotropy subgroup H is
compact. When X is Riemannian, the discrete surbgroups of G acting prop-
erly discontinuously and cocompactly on X are exactly the uniform lattices
of G, which have been extensively studied throughout the XXth century. In
particular, Borel and Harish-Chandra constructed uniform arithmetic lat-
tices in every semisimple Lie group G [27]. This answers Question 2.1.1 for
Riemannian symmetric spaces.

Concerning Question 2.1.2, one can remark that Γ\G/H fibers over
Γ\G/K, where K is a maximal compact subgroup of G containing H. The
quotient Γ\G/K is a closed aspherical manifold by the Cartan–Iwasawa–
Malcev theorem. A lot more can be said about the topology and geometry
of Riemannian locally symmetric spaces (see for instance [23]), which have
been and still are an active research topic. From our perspective, however,
we consider those as “well-understood”.

Finally, by Calabi–Weil’s local rigidity theorem (cf Theorem 1.2.20), al-
most all uniform lattices in semisimple Lie groups are locally rigid. The
exception to this rule is formed by the uniform lattices Γ in PSL(2,R), the
deformation spaces of which identify with the Teichmüller spaces of surfaces
(see Section 3.1.1). This essentially answers Question 2.1.3 in the Rieman-
nian setting.

Even for a non-Riemannian homogeneous space X, the existence of com-
pact quotients sometimes reduces to an existence theorem for lattices. In-
deed, if some Lie subgroup L of G acts properly and cocompactly on X,
then any uniform lattice in L will then act properly discontinuously and
cocompactly on X. This leads to the following definition:

Definition 2.1.4. A compact quotient Γ\G/H is called standard if Γ is
virtually a uniform lattice in a connected Lie subgroup L of G (which must
then act properly and cocompactly on G/H).

When G is solvable, every discrete subgroup of G is virtually a uniform
lattice in some connected Lie subgroup, hence every compact quotient of
G/H is standard. We will therefore focus on the opposite case where G is
semisimple and H is a reductive subgroup. The homogeneous space X =
G/H is then called reductive.

Remark 2.1.5. By focusing on reductive homogeneous spaces, we are deliber-
ately putting aside some geometries whereG is neither solvable nor reductive,
notably the affine geometry (where G = GL(n,R)nRn and H = GL(n,R)).
Since the incorrect proof of Auslander [10], it is conjectured that all compact

69



quotients of the affine space are standard (and more precisely, are virtu-
ally solvmanifolds). Margulis [137], and more recently Danciger–Guéritaud–
Kassel [53] have constructed many non-standard proper actions on the affine
space (which are not cocompact). They moreover uncovered some subtle
relations between quotients of the affine space and quotients of certain re-
ductive homogeneous spaces. Unfortunately, we will not discuss this topic
further.

2.1.2 Pseudo-Riemannian geometry of reductive homogeneous
spaces

From now on, G denotes a semisimple Lie group with finitely many con-
nected components, and H a reductive Lie subgroup of G which does not
contain a non-trivial normal subgroup, so that G acts faithfully on the re-
ductive homogeneous space X = G/H.

Let g and h denote respectively the Lie algebras of G and H. Recall
that H is a reductive subgroup when h is non-degenerate with respect to
the Killing form of G. The quotient space g/h thus identifies with h⊥, and
the restricted Killing form on h⊥ induces a G-invariant pseudo-Riemannian
metric on G/H. We denote by (dim+(G/H),dim−(G/H)) its signature.

There always exists a Cartan involution σ of G preserving H. We fix it
once and for all and denote by Gσ and Hσ its fixed points in G and H re-
spectively. Then dim−(G/H) = dim(Gσ)−dim(Hσ) and the quotient space
Gσ/Hσ is a closed totally geodesic negative definite subspace of maximal
dimension. moreover, all such subspaces are translates of Gσ/Hσ by some
element of G, and G/H deformation retracts to Gσ/Hσ.

First main example: pseudo-Riemannian hyperbolic spaces

A first enlightening example is the pseudo-Riemannian hyperbolic space
Hp,q. Let Rp,q+1 denote the vector space Rp+q+1 endowed with the standard
quadratic form of signature (p, q + 1):

q(x) = x2
1 + . . .+ x2

p − x2
p+1 − . . .− x2

p+q+1 .

Then the space Hp,q ⊂ P(Rp,q+1) is defined as the set of q-negative lines.
It is homogeneous under the action of the group PO(p, q + 1) of lin-

ear automorphisms of q modulo ±Id, and this action preserves a pseudo-
Riemannian metric of signature (p, q) and constant negative sectionnal cur-
vature (see for instance [204]). The stabilizer of the point [0, . . . , 0, 1] is
isomorphic to the subgroup O(p, q). The space Hp,q thus identifies with the
reductive homogeneous space

G/H = PO(p, q + 1)/O(p, q) .
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In particular, the space Hp,0 is the usual (Riemannian) hyperbolic space
Hp

R, and the Lorentzian space Hp,1 is the anti-de Sitter space, that we will
also denote AdSp+1.

Let V be a negative definite subspace of dimension q+1 in Rp,q+1. Then
P(V ) ⊂ Hp,q is a compact timelike totally geodesic subspace of Hp,q of di-
mension q. These subspaces are the translates of Gσ/Hσ introduced above.
Transversally, if W is a subspace of Rp,q+1 of signature (p, 1), then P(W )
intersects Hp,q in a totally geodesic spacelike submanifold of dimension p iso-
metric to the hyperbolic space Hp

R. This “compactness in the timelike direc-
tions” and “contractibility in the spacelike directions” gives a good first intu-
ition of the pseudo-Riemannian geometry of reductive homogeneous spaces.

Second main example: group spaces

Let H be a semisimple Lie group. The Killing form on h can be extended
to a bi-invariant pseudo-Riemannian metric κH on H. Its isometry group is
isogenous to H ×H acting on H by

(h1, h2) · x = h1xh
−1
2

and the stabilizer of 1H ∈ H is the diagonal subgroup

∆(H) = {(h, h) | h ∈ H} .

The space (H,κH) is thus the reductive homogeneous space H ×H/∆(H).
We call such a space a group space.

Let σ be a Cartan involution of H. Then the subgroup of fixed points Hσ

is a compact totally geodesic timelike subspace of H of maximal dimension,
and all the other such spaces have the form h1H

σh−1
2 for some h1, h2 ∈ H.

2.1.3 Locally homogeneous manifolds and compact quotients

Quotients of X are a priori a particular case of manifolds locally modelled
on X mentioned in the introduction of this memoir, which we call from now
on (G,X)-manifolds, following Thurstion. A (G,X)-manifold is a manifold
endowed with an atlas of charts with values in X and whose coordinate
changes are elements of G. If G is the group of diffeomorphisms of X pre-
serving some geometric structure (a metric, a connection), then one should
think of (G,X)-manifolds as manifolds carrying a geometric structure lo-
cally isomorphic to that of X. For instance, manifolds locally modelled on
Hp,q are those carrying a pseudo-Riemannian metric of signature (p, q) and
constant negative curvature.

A (G,X)-structure on a manifold M can alternatively be described as a
pair (dev,hol), where hol is a homomorphism from π1(M) to G called the
holonomy representation and dev is a hol-equivariant local diffeomorphism
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from M̃ to X called the developing map. In particular, a quotient of X is
a (G,X)-manifold. Such (G,X)-manifolds are called complete. This termi-
nology, which dates back to Ehresmann [59], comes from its close relation to
geodesic completeness. I discussed this topic extensively in my thesis [187].

The most striking result of the theory of (G,X)-structures is the Ehresmann–
Thurston principle, which states that holonomy representations are stable
under small deformations:

Theorem 2.1.6 (Ehresmann–Thurston principle [194, 24]). Let X be a G-
homogeneous space and M be a closed manifold of the same dimension as
X endowed with a (G,X)-structure with developing pair (dev,hol). Then
every small deformation of hol is the holonomy of a (G,X)-structure on
M close to the initial one. Moreover, this (G,X)-structure is unique up to
isotopy.

If X is Riemannian, then the Hopf–Rinow theorem implies that all closed
(G,X)-manifolds are complete. In contrast, if X is a flag variety of a
semisimple Lie group G, then X is compact, hence the only complete (G,X)-
manifolds are finitely covered by X. However, there are often many closed
incomplete (G,X)-manifolds, obtained for instance as quotients of open do-
mains in X. Between these extremes, there are many homogeneous spaces
for which it is unknown whether every closed (G,X)-manifold is complete.
A famous conjecture of Markus asks whether closed locally affine manifolds
with a parallel volume form are complete [141]. The analoguous question for
manifolds locally modelled on a reductive homogeneous space is also open.

Conjecture 2.1.7 (Reductive Markus Conjecture). Let X be a reductive
homogeneous space and M a closed manifold locally modelled on X. Then
M is a quotient of X.

Even though we have chosen to focus specifically on compact quotients,
the general theory of (G,X)-manifolds and the Reductive Markus conjecture
are key in understanding deformations of such quotients (see Section 2.3.4).
The reductive Markus conjecture was proved by Klingler for Lorentzian man-
ifolds of constant curvature [106], building on the arguments of Carrière in
the flat case [41]. In [186], we tried to push further these arguments and ob-
tained a partial result towards the Markus conjecture for manifolds locally
modelled on group spaces of rank 1.

Theorem 2.1.8. Let H be a semisimple Lie group of rank 1 and Γ a discrete
subgroup of H×H. Assume Γ acts properly discontinuously and cocompactly
on an open domain U ⊂ H. Then U = H.

The (G,X)-manifolds obtained as quotients of open domains in X are
sometimes called Kleinian, and Theorem 2.1.8 asserts that compact Kleinian
(H ×H,H)-manifolds are complete. As a corollary, one obtains that com-
pleteness is a closed condition in the space of (H × H,H)-structures on
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a closed manifold. Combined with an openness theorem of Guéritaud–
Guichard–Kassel–Wienhard (Theorem 2.3.21), one concludes that it is im-
possible to deform continuously a complete (H × H,H)-structure into an
incomplete one.

2.2 Obstructions to compact quotients

Let us now review the various known obstructions to the existence of
compact quotients of certain reductive homogeneous spaces. We propose
to sort them into three categories: geometric obstructions, cohomological
obstructions and dynamical obstructions.

2.2.1 Geometric obstructions

The geometric obstructions we discuss here relate to the fact that, in
order to act properly discontinuously on G/H, a discrete subgroup of G has
to move the compact subspace Gσ/Hσ “away” from itself.

The displacement of a maximal compact subspace by an element g ∈ G
is captured by the distance between the Cartan projection of g and those
of H. For instance, gGσ/Hσ intersects Gσ/Hσ in G/H if and only if there
exists h ∈ H such that

g = k1hk2

for k1, k2 ∈ Gσ, which exactly means that

µ(g) = µ(h) .

As a first consequence of this remark, one obtains a general setting for
the so called Calabi–Markus phenomenon:

Theorem 2.2.1 (Calabi–Markus phenomenon [39, 204, 107]). If G and H
have the same real rank, then any discrete subgroup of G acting properly
discontinuously on G/H is finite.

Indeed, when G and H have the same real rank, µ(H) = a+.

Corollary 2.2.2. The pseudo-Riemannian hyperbolic space Hp,q does not
admit a compact quotient when p ≤ q.

Elaborating on the previous computation, one obtains the useful proper-
ness criterion of Benoist–Kobayashi:

Lemma 2.2.3. A discrete subgroup Γ ⊂ G acts properly discontinuously on
G/H if and only if for every R > 0, the set

{γ ∈ Γ | ∃h ∈ H, ‖µ(γ)− µ(h)‖ ≤ R}

is finite.
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This criterion was exploited independently by Benoist and Kobayashi
to obtain obstructions to the existence of compact Clifford–Klein forms.
Kobayashi used the following obstruction:

Theorem 2.2.4 (Kobayashi, [108]). Assume there exists a reductive sub-
group H ′ of G such that µ(H ′) ⊂ µ(H) and dim+(G/H ′) < dim+(G/H).
Then G/H des not admit a compact Clifford–Klein form. 1

Here is one application of this theorem:

Corollary 2.2.5 (Kobayashi, [108]). For d ≥ 2, the reductive homogeneous
space SL(d,C)/SO(d,C) does not admit a compact quotient.

Benoist, on the other side, investigated further the structure of Cartan
projections of a Zariski dense subgroup of G. He proved that these are
asymptotic to a convex cone with non-empty interior, invariant under the
opposition involution. As a consequence, he obtains the following

Theorem 2.2.6 (Benoist, [17]). Assume that µ(H) contains the fixed points
of the opposition involution. Then G/H does not have any compact quotient
(unless it is itself compact).

Corollary 2.2.7 (Benoist, [17]). The space H2k+1,2k (k ≥ 1) does not admit
a compact quotient. The space SL(2k + 1,R)/SL(2k,R) (k ≥ 1) does not
admit a compact quotient.

2.2.2 Cohomologous obstructions

Our second family of obstructions uses vanishing results in cohomology
to contradict the existence of compact quotients of certain G/H, whose vol-
ume would necessarily be non-zero. The first and main example is due to
Kulkarni, who proved the following:

Theorem 2.2.8 (Kulkarni). The space Hp,q does not admit a compact quo-
tient when p and q are odd.

Proof. The pseudo-Riemannian version of the Chern–Gauss–Bonnet formula
together with the constant curvature of Hp,q imply that the volume of a
compact quotient of Hp,q is proportional to its Euler characteristic when
p+ q is even.

On the other side, the tangent space of every pseudo-Riemannian man-
ifold of signature (p, q) admits a smooth decomposition as V ⊕ V ⊥, where
V is a positive definite subbundle of rank p. If p is odd, this implies the
vanishing of the Euler characteristic, contradicting the non-vanishing of the
volume.

1. The contradiction here comes from the fact that the virtual cohomological dimen-
sion of a group Γ acting properly discontinuously and cocompactly on G/H must be
dim+(G/H). Our distinction between geometric and cohomological obstructions is thus
somewhat artificial.
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Kobayashi and Ono later gave the following interpretation of the previous
obstruction. For a subgroup L of a Lie group G, let us denote by H•((G/L)G)
the cohomology of the complex of G-invariant forms on G/L. The projection
p1 : G/Hσ → G/H induces a homomorphism

p∗1 : H•((G/H)G)→ H•((G/Hσ)G) ,

and the G-invariant volume form volG/H of G/H defines a class [volG/H ] in
H•((G/H)G).

Theorem 2.2.9 (Kobayashi–Ono [111]). If p∗1[volG/H ] = 0, then G/H does
not admit any compact quotients.

These ideas were further developed independently by Morita [151] and
myself [188]. Let us introduce the projection p2 : G/Hσ → G/Gσ, whose
fibers are compact of dimension dim−(G/H). The map p2 induces a linear
map

p2∗ : H•((G/Hσ)G)→ H•−dim−(G/H)((G/Gσ)G)

obtained by “integrating along the fibers”.

Theorem 2.2.10 (Tholozan [188]). If p2∗p
∗
1volG/H = 0, then G/H does not

admit a compact quotient.

The theorem follows from Theorem 2.4.12, which expresses the volume of
Γ\G/H as the integral of the form p2∗p

∗
1volG/H against a cycle in Hdim+(G/H)(Γ).

I developed several arguments to prove the vanishing of the above form in
some cases. This turned out to give a rather powerful obstruction to the
existence of compact Clifford–Klein forms. One of its striking consequences
is the following:

Corollary 2.2.11 (Morita [151], Tholozan [188]). The pseudo-Riemannian
hyperbolic spaces Hp,q do not admit compact quotients when p is odd.

Remark 2.2.12. Yosuke Morita proved this result using the projections p′1 :
G/TH → G/H and p′2 : G/TH → G/TG, where TH and TG are respectively
maximal tori of Hσ and Gσ. The two results are likely to be equivalent and
have so far had the same consequences.

Let us finally mention a related obstruction by Benoist–Labourie:

Theorem 2.2.13 (Benoist–Labourie [21]). Let G/H be a reductive homo-
geneous space such that the center of H contains a one parameter subgroup
whose adjoint action is diagonalizable over R. Then G/H does not admit a
compact quotient.

Their proof relies on the construction of a G-equivariant principal R-
bundle over G/H, the curvature of which defines a G-invariant closed 2-
form ω. They prove that this form divides volG/H in H•(G/HG). Though
this form is not G-equivariantly exact, it factors to an exact form on every
quotient of G/H because any principal R-bundle admits a section.
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2.2.3 Dynamical obstructions

To complete this overview of the existence problem for compact Clifford–
Klein forms, let me briefly mention a third category of obstructions revolving
around rigidity properties in homogeneous dynamics.

A first dynamical approach was developed in a series of papers by Zim-
mer, Labourie and Mozes [211, 123, 125]. Their strategy applies when the
centralizer of H in G contains a simple group Z of real rank at least 2. The
group Z acts on the right on a hypothetical compact quotient Γ\G/H. Ap-
pliying Zimmer’s cocycle rigidity [210] to the induced action on the principal
H-bundle over Γ\G/H eventually leads to a contradiction in many cases.
One of the achievements of this approach is the following:

Theorem 2.2.14 (Labourie–Zimmer [125]). If 2 ≤ m ≤ n − 3, then the
homogeneous space SL(n,R)/SL(m,R) does not admit a compact quotient.

In a similar direction, Shalom studied compact quotients of G/H where
H has a large centralizer (though not necessarily of rank ≥ 2). His obstruc-
tion appears as a consequence of his deep work extending some higher rank
rigidity results to Lie groups of rank one and their lattices. He obtains in
particular the following

Theorem 2.2.15 (Shalom [176]). If n ≥ 4, then SL(n,R)/SL(2,R) does not
admit a compact quotient.

Shalom’s approach is not unrelated to that of Margulis [139]. The latter
shows that G/H does not admit any compact quotient when H is (G,K)-
tempered – a sort of uniform Howe–Moore property for H in restriction to
unitary representations of G. This theorem applies for instance when H is
abelian by the Howe–Moore property of G. Margulis gives other interesting
examples, among which the following:

Theorem 2.2.16. Let ιn be the irreducible representation of SL(2,R) of
rank n. Then the homogeneous space SL(n,R)/ιn(SL(2,R)) does not admit
a compact quotient.

2.3 Construction of compact quotients

We exhibited many obstructions to the existence of compact quotients
of reductive homogeneous spaces. In comparison, there are few ways of
constructing such quotients.

2.3.1 Standard quotients

The first source of examples are the standard quotients. Recall that a
compact quotient Γ\G/H is called standard if Γ is virtually a uniform lattice
in a connected Lie subgroup L of G.
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Table 2.1 – List of standard triples (from [112])

G H L

SO(2d, 2) SO(2d, 1) U(d, 1)
SU(2d, 2) SU(2d, 1) Sp(d, 1)
SO(4d, 4) SO(4d, 3) Sp(d, 1)
SO(8, 8) SO(8, 7) Spin(8, 1)
SO(8,C) SO(7,C) Spin(7, 1)

The subgroup L must then act properly and cocompactly on G/H, and
conversely, if L acts properly and cocompactly on G/H, then any uniform
lattice in L gives a compact quotient. Finding such an L turns out to be
an easier problem. For a reductive L, we have for instance the following
characterization:

Proposition 2.3.1 (Kobayashi [107]). A connected reductive subgroup L of
G acts properly discontinuously on G/H if and only if µ(L) ∩ µ(H) = {0}.
If so, L acts cocompactly if and only if

dim+(L) = dim+(G/H) .

If the conditions above are satisfied, we call (G,H,L) a standard triple.
Note that standard triples have a symmetry: if L acts properly and cocom-
pactly on G/H, then H acts properly and cocompactly on G/L.

The first example of a reductive standard triple was given by Kulkarni
[116], who remarked that the group U(p, 1) ⊂ SO(2p, 2) acts properly and
transitively on AdS2p+1 = SO(2p, 2)/SO(2p, 1), thus proving the existence
of closed anti-de Sitter manifolds in all odd dimensions. Kobayashi carried
further the study of standard quotients. He gave an extended list of standard
triples (see Table 2.3.1), from which one obtains for instance that Hp,q (with
p, q ≥ 1) admits standard quotients if and only if

(p, q) ∈ {(k, 0), (2k, 1), (4k, 3), (8, 7)} .

Let us finally note that all group manifolds admit standard quotients.
Indeed the subgroup H × {Id} ⊂ H ×H acts simply transitively on H (by
left multiplication). The corresponding standard quotients are simply the
left quotients Γ\H, where Γ is a uniform lattice in H. Though these may
seem somehow trivial, they will turn out quite interesting because they are
the easiest to deform.

As we will see next, non-standard quotients, even when they exist, are
closely related to standard ones. This motivates Kobayashi’s space form
conjecture:
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Conjecture 2.3.2 (Kobayashi [107]). If a reductive homogeneous space G/H
admits a compact quotient, then it admits a standard one.

This conjecture does not claim, however, that all compact quotients are
standard. There are indeed two families of reductive homogeneous spaces
that are known to admit non-standard compact quotients: the group spaces
of rank 1 and the spaces SO(2d, 2)/U(d, 1). Their common feature is the
existence of deformations of standard quotients (while standard quotients of
other reductive spaces are rigid).

2.3.2 Non-standard quotients: rank one group spaces

Goldman [74] was the first to realize that one could obtain non-standard
quotients of group spaces by deforming standard ones. He remarked that
torsion-free cocompact lattices of PSL(2,R) × {Id} can be deformed non
trivially into PSL(2,R) × A (where A ⊂ PSL(2,R) denotes the subgroup
of diagonal matrices), and proved that such small deformations keep acting
properly discontinuously on the group space PSL(2,R), which is isomorphic
to AdS3.
Remark 2.3.3. In contrast, standard quotients of AdS2d+1, d ≥ 2 are essen-
tially rigid by a theorem of Raghunathan (see [96]).

Ghys [69] subsequently studied deformations of standard quotients of
SL(2,C) and proved that they correspond locally to deformations of the un-
derlying complex structure; while Kobayashi, pursuing the work of Kulkarni–
Raymond [117] on anti-de Sitter 3-manifolds, initiated the more systematic
study of compact quotients of group spaces of rank 1.

Let Γ be a uniform lattice in a semisimple Lie group H and ρ a homo-
morphism from Γ to H. We denote by Γρ the graph of ρ in H ×H, i.e.

Γρ = {(γ, ρ(γ)), γ ∈ Γ} .

When ρ is a deformation of the trivial representation (sending every element
to the identity), the group Γρ is a deformation of Γ× {Id} ⊂ H ×H.

Theorem 2.3.4 (Kobayashi [109]). Let H be a semisimple Lie group of
rank 1 with finite center and Γ′ a discrete subgroup of H×H acting properly
discontinuously on H. Then some finite index subgroup of Γ′ has the form
Γρ for some uniform lattice Γ ⊂ H and some ρ : Γ→ H.

Remark 2.3.5. We insist here on the hypothesis that H has finite center
because the group H = SU(d, 1) has fundamental group Z, so its universal
cover has infinite center. Whether compact quotients of H̃ are in fact covered
by a finite cover ofH is the so-called level finiteness problem. It was answered
positively by Salein for H = PSL(2,R) ' SU(1, 1) in his thesis [169]. To
my knownledge, the level finiteness problem is unsolved for SU(d, 1), d ≥ 2,
though Salein’s arguments may generalize.
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Remark 2.3.6. Theorem 2.3.4 does not generalize to higher rank. Indeed,
if a reductive homogeneous space G/H admits a compact quotient Γ\G/H,
and if Λ is a uniform lattice in H, then Γ × Λ ⊂ G × G acts properly
discontinuously and cocompactly on the group space G.

The next step would be to understand, given a uniform lattice Γ in H,
which representations ρ : Γ → H do give rise to compact quotients. This
leads to the following definition:

Definition 2.3.7. A homomorphism ρ from a uniform lattice Γ ⊂ H to H
is called admissible if Γρ acts properly discontinuously and cocompactly on
on H.

For instance, the trivial representation

ρtriv : Γ → H
γ 7→ 1H .

is admissible, since Γρtriv = Γ × {IdH}. Kobayashi, extending Ghys’s re-
sult for PSL(2,C), proved that admissible representations contain a small
neighbourhood of the trivial representation [110].

One thus obtains non-standard quotients of H as long as ρtriv admits
deformations that do not take values in a compact subgroup. Such deforma-
tions do not exist for H = Sp(d, 1) or F−20

4 , according to the superrigidity
theorem of Corlette [48]. In contrast, Kazhdan [101] and Millson [146] proved
that SU(d, 1) and SO(d, 1) admit uniform lattices with non-trivial abelian-
ization. For such a lattice, the trivial representation can be deformed into
non-compact 1-parameter subgroups of H. Some lattices have an even richer
deformation theory: one can show for instance that many uniform lattices
in SO(d, 1) surject onto a free group of rank at least 2, while Livné gave
examples of uniform lattices in SU(2, 1) that surject onto a surface group of
genus at least 2 (hence also on a free group) [131]. For such lattices, the
trivial representation can be deformed into a Zariski dense representation.
It appears to be unknown whether such deformations exist in SU(d, 1), d ≥ 3.

These deformation results motivated the search for more precise admissi-
bility criteria for representations of rank 1 lattices, which eventually lead to
the construction of exotic compact quotients of rank 1 group manifolds, i.e.
compact quotients that are not continuous deformations of standard ones.

The first such examples were constructed by Salein for PSL(2,R) '
SO(2, 1) [170] using a sufficient condition for properness that easily extends
to other rank one Lie groups. Let Γ be a uniform lattice in H and ρ a
morphism from Γ to H Let X denote the symmetric space of X.

Definition 2.3.8. The representation ρ is called uniformly contracting if
there exists a ρ-equivariant map from X to itself which is λ-Lipschitz for
some λ < 1.
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Lemma 2.3.9 (Salein, [170]). If ρ is uniformly contracting, then ρ is ad-
missible.

The converse to this lemma and its relation to Benoist–Kobayashi’s proper-
ness criterion are discussed in Section 2.3.4.

Salein then constructed examples of uniform lattices in PSL(2,R) (iso-
morphic to surface groups) admitting uniformly contracting representations
of non-zero Euler class. Since the Euler class is locally constant on the char-
acter variety, such representations are not continuous deformations of the
trivial representation.

Similarly, Lakeland and Leininger [126] recently constructed pairs (Γ, ρ)
where Γ is a uniform lattice in SO(3, 1) ' PSL(2,C) or SO(4, 1) and ρ is
a uniformly contracting representation of Γ with non-zero volume. Again,
such representations cannot be continuously deformed to the trivial repre-
sentation. Their construction exploits the existence of tilings of 3 and 4-
dimensional hyperbolic spaces by right-angled polytopes, and does not seem
to generalize to higher dimension.

Using again Salein’s properness criterion, one can construct exotic com-
pact quotients of SU(2, 1) ' Isom(H2

C). Indeed, let Γ be a torsion-free uni-
form lattice in SU(2, 1) such that Γ\H2

C admits a non-constant holomor-
phic map f to a Riemann surface Σ of genus at least 2 (as constructed by
Livné [131]). By the uniformization theorem, Σ is biholomorphic to Γ′\H1

C.
Moreover, f induces a surjective morphism f∗ : Γ → Γ′ and lifts to a f∗-
equivariant holomorphic map f̃ : H2

C → H1
C. Using the Schwarz lemma, one

shows that this map is 1-Lipschitz. Now, let ρ : Γ′ → SU(1, 1) ⊂ SU(2, 1)
be a contracting representation with non-zero Euler class (see Section 3.2.2
for its existence). Then ρ ◦ f∗ : Γ → SU(2, 1) is contracting and has non-
zero Toledo invariant. Hence it is admissible and cannot be deformed to the
trivial representation.

2.3.3 Non-standard quotients: SO(2d, 2)/U(d, 1)

The pseudo-Riemannian symmetric spaces Xd = SO(2d, 2)/U(d, 1) form
the second family of reductive homogeneous spaces that are known to admit
non-standard compact quotients.

The standard quotients of Xd have the form Γ\Xd, where Γ is vitually
a uniform lattice in SO(2d, 1). It turns out that certain such lattices can be
deformed into Zariski dense subgroups of SO(2d, 2). Those deformations are
the anti-de Sitter analog of certain deformations into SO(2d+1, 1) introduced
by Johnson and Millson in [92], which themselves generalize the well-known
“bending deformations” of Fuchsian groups into PSL(2,C) ' SO(3, 1).

To be slightly more precise, let Γ be a torsion-free uniform lattice in
SO(2d, 1) such that Γ\H2d admits a totally geodesic embedded hypersur-
face Σ. (Such Γ can be obtained for instance by taking congruence sub-
groups of arithmetic lattices.) Let i denote the inclusion of Γ into SO(2d, 2).
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This inclusion comes with a totally geodesic equivariant spacelike embed-
ding of H2d into AdS2d+1. This embedding can now be “bent” equivariantly
along the lifts of Σ to give a new piecewise totally geodesic embedding of
H2d, which is ρ-equivariant for some deformation ρ of the inclusion. Such
deformations typically have Zariski-dense image.

Kassel [97] proved in her thesis that, for ρ in a small neighbourhood of
the inclusion, the group ρ(Γ) keeps acting properly discontinuously and co-
compactly on SO(2d, 2)/U(d, 1). A stronger result was given by Guéritaud–
Guichard–Kassel–Wienhard [80], building on the work of Barbot [13].

Barbot studied deformations of the Globally Hyperbolic Cauchy Com-
pact (GHC) anti-de Sitter spacetimes associated to the above deformations.
To avoid entering into the details of the theory, we will use the following
definition:

Definition 2.3.10. A subgroup Γ of SO(d, 2) is convex-GHC if Γ acts prop-
erly discontinuously and cocompactly on a complete convex spacelike hyper-
surface H in AdSd+1.

Remark 2.3.11. This definition implies the existence of a maximal Γ-invariant
domain of discontinuity ΩΓ ⊂ AdSd+1 whose quotient by Γ is homeomorphic
to (Γ\H)×R. Those quotients are the Globally Hyperbolic Cauchy compact
AdS spacetimes mentionned in the introduction.

Barbot proved the following very strong stability theorem for convex-
GHC groups:

Theorem 2.3.12 (Barbot [13]). Let Γ be a uniform lattice in SO(d, 1) and
ρ : Γ → SO(d, 2) any continuous deformation of the inclusion. Then ρ is
injective and ρ(Γ) is convex-GHC.

He also proved with Mérigot [14] that convex-GHC groups are Anosov
with respect to the parabolic subgroup of SO(d, 2) preserving an isotropic
line in Rd,2. As a corollary, one obtains the following:

Theorem 2.3.13 (Guéritaud–Guichard–Kassel–Wienhard, [80]). Let Γ be
a convex-GHC subgroup of SO(2k, 2). Then Γ acts properly discontinuously
and cocompactly on SO(2k, 2)/U(k, 1). In particular, if Γ is a uniform lat-
tice in SO(2k, 1), then any continuous deformation of Γ into SO(2k, 2) acts
properly discontinuously and cocompactly on SO(2k, 2)/U(k, 1).

Barbot conjectured that every convex-GHC subgroup of SO(k, 2) is vir-
tually a deformation of a uniform lattice in SO(k, 1). This was recently
disproved by Lee and Marquis [128]: for 4 ≤ k ≤ 8, they exihibited examples
of convex-GHC Coxeter groups which are not isomorphic to hyperbolic lat-
tices. We construct further examples in a forthcoming work with Jean-Marc
Schlenker and Daniel Monclair [149] (see Section 2.5.1). These examples
imply the existence of exotic quotients of SO(2d, 2)/U(d, 1).
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2.3.4 Openness and Sharpness

The examples described in the previous section show that compact quo-
tients of reductive homogeneous spaces sometimes come in continuous fam-
ilies. It is thus interesting to try to describe as precisely as possible the
topology of those families.

To make the question more concrete, let us fix a finitely generated torsion-
free group Γ and consider the space

P̃DC(Γ, G/H) = {ρ : Γ→ G | ρ acts prop. disc. and cocomp. on G/H} .

Note that P̃DC(Γ, G/H) is trivially invariant under conjugation by G. We
denote by PDC(Γ, G/H) its quotient under conjugation. Note that the de-
scription of PDC(Γ, G/H) is deeply related (though not always equivalent)
to the description of the space of compact quotients of G/H homeomorphic
to a given manifold.

A first natural question is whether the space P̃DC(Γ, G/H) is open in
Hom(Γ, G). This is conjecturally always the case:

Conjecture 2.3.14 (Openness conjecture). Let Γ be a finitely generated
group and G/H a reductive homogeneous space. Then the set P̃DC(Γ, G/H)
is open in Hom(Γ, G).

Recall that the Ehresmann–Thurston principle (Theorem 2.1.6) gives the
following weaker statement: if ρ ∈ PDC(Γ, G/H) and M = ρ(Γ)\G/H
is the corresponding compact quotient of G/H, then every small enough
deformation ρ′ of ρ is still the holonomy of a (G,G/H)-structure on M . If
the reductive Markus conjecture (Conjecture 2.1.7) were true, this (G,X)-
manifold ought to be complete, hence isomorphic to the compact quotient
ρ′(Γ)\X. In conclusion:

Proposition 2.3.15. The reductive Markus conjecture implies the openness
conjecture.

While the reductive Markus conjecture is far from being resolved, the
openness conjecture 2.3.14 is known to hold in all the previously discussed
examples, where it is strongly related to the theory of Anosov subgroups via
the following sharpness conjecture.

Let | · | denote some word metric on Γ associated to a finite system of
generators. The following definition is adapted from Kobayashi.

Definition 2.3.16. We say that ρ : Γ→ G is a sharp embedding with respect
to H if there exists C > 1 such that for all γ ∈ Γ,

inf
h∈H
‖µ(ρ(γ))− µ(h)‖ ≥ 1

C
|γ| − C .
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More informally, an embedding of Γ is sharp with respect toH if the distance
of its Cartan projections to those of H increases linearly with the word-
length. Note the resemblance of the sharpness condition with the Anosov
property (see Definition 1.3.9).
Remark 2.3.17. The above definition differs from the original definition of
Kobayashi in that it includes the assumption that ρ is a quasi-isometric
embedding (i.e. the Cartan projections grow linearly with the word length).

If ρ is a sharp embedding, its kernel is finite and its image satisfies
Benoist–Kobayashi’s properness criterion. Kassel and Kobayashi conjectured
a converse to this remark for cocompact actions.

Conjecture 2.3.18 (Sharpness conjecture [98]). Every ρ ∈ P̃DC(Γ, G/H)
is a sharp embedding with respect to H.

Let us now discuss these two conjectures in the situations where the
existence of non-rigid compact quotients is known.

Group spaces of rank 1

Let H be a Lie group of rank 1. Recall that the Cartan projection µ can
be seen directly as a map from H to R+. Let Γ be a uniform lattice in H
and ρ a morphism from Γ→ H.

Proposition 2.3.19. The group Γρ ⊂ H × H is sharply embedded with
respect to ∆(H) if and only if there exists C > 1 such that

µ(ρ(γ)) ≤ Cµ(γ) + C .

Interpreting the Cartan projection as a distance in the symmetric space, one
easily deduces that Γρ is sharply embedded when ρ is uniformly contracting,
which proves Salein’s properness criterion.

In her thesis, Kassel proved a converse to Salein’s properness criterion for
the group space H = PSL(2,R), namely that admissible representations of a
lattice are uniformly contracted. This was extended to H = SO(d, 1) in [81],
thus proving both the sharpness and openness conjecture in that case.

Theorem 2.3.20 (Guéritaud–Kassel [81]). Let Γ be a uniform lattice in
SO(d, 1) and ρ a morphism from Γ into SO(d, 1). Then the following propo-
sitions are equivalent:

(i) Γρ acts properly discontinuously (and cocompactly) on SO(d, 1),
(ii) Γρ is sharply embedded with respect to ∆(SO(d, 1)),
(iii) ρ is uniformly contracting.

In particular, the openness conjecture holds for the group space SO(d, 1).

This result was partially generalized to all rank one Lie groups by Guéritaud–
Guichard–Kassel–Wienhard. In [80], they prove the sharpness conjecture in
that setting and relate it to some Anosov property, thus showing that it
implies the openness conjecture. The novelty is the case of SU(d, 1).
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Theorem 2.3.21 (Guéritaud–Guichard–Kassel–Wienhard [80]). Let Γ be
a uniform lattice in SU(d, 1) and ρ an admissible morphism from Γ into
SU(d, 1). Then Γρ is sharply embedded with respect to ∆(SU(d, 1)). More-
over, the set of admissible morphisms is open in Hom(Γ, SU(d, 1)).

Remark 2.3.22. While Guéritaud–Guichard–Kassel–Wienhard’s work could
also apply to the other rank one Lie groups Sp(d, 1) and F−20

4 , the conclusion
there follows somewhat trivially from Corlette’s superrigidity theorem [48].

Interestingly, the equivalence between properties (ii) and (iii) of Theo-
rem 2.3.20 is not known for SU(d, 1), and the methods of [81] do not seem
to generalize (see Section 2.4.1).

The space SO(2d, 2)/U(d, 1)

The sharpness conjecture is still open for compact quotients of SO(2d, 2)/U(d, 1).
For discrete subgroups of SO(2d, 2), sharpness with respect to U(d, 1) is
equivalent to the Anosov property with respect to the stabilizer of an isotropic
line, from which one deduces:

Proposition 2.3.23. Let Γ be a discrete subgroup of SO(2d, 2) acting prop-
erly discontinuously on SO(2d, 2)/U(d, 1). If Γ is sharp with respect to
U(d, 1), then Γ is convex-GHC.

By Theorem 2.3.13, sharp quotients are both open and closed in the
character variety, and proving the sharpness conjecture in this setting is
equivalent to proving that all the compact quotients of SO(2k, 2)/U(k, 1)
come from convex-GHC groups.

2.3.5 The moduli space of compact quotients of AdS3

Understanding the stability of compact quotients of G/H under defor-
mation is a first step towards the topological and geometric description of
the space PDC(Γ, G/H).

To go further, however, one would need a good understanding of the
representation variety X̂(Γ, G), which is inaccessible in most cases. The ex-
amples studied so far typically involve representations of SO(d, 1) or SU(d, 1)-
lattices, which are far from being well-understood beyond the case of SO(2, 1) '
SU(1, 1) ' PSL(2,R).

In contrast, many tools have been developed to study representations of
surface groups. We present them in more details in the third chapter of this
memoir. In my thesis, I applied some of those tools in order to describe the
space of compact quotients of the group space PSL(2,R) ' AdS3.

Recall first that, up to finite index, the groups acting properly discontin-
uously and cocompactly on the group space PSL(2,R) are torsion-free uni-
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form lattices in PSL(2,R), and are thus isomorphic to fundamental groups
of closed surfaces of genus at least 2.

Let thus Γ be the fundamental group of a closed oriented surface Σ of
genus at least 2, and let (j, ρ) be a pair of representations of Γ into PSL(2,R)
such that j is Fuchsian (i.e. j identifies Γ with a lattice in PSL(2,R)). We
will say that j dominates ρ, or that (j, ρ) is a dominating pair if there exists
a (j, ρ)-equivariant contracting map from H2 to H2. By the work of Kas-
sel mentionned previously (see Theorem 2.3.20), describing the space of all
compact quotients of AdS3 boils down to describing the space of dominating
pairs up to conjugation.

The space of discrete and faithful representations of Γ into PSL(2,R)
modulo conjugation has two components T±(Σ) which identify, via Poincaré’s
uniformization theorem, to the Teichmüller spaces of Σ± (i.e. Σ with both
possible orientations). Each component is diffeomorphic to R6g−6, where g is
the genus of Σ. Note also that, if (j, ρ) is a dominating pair, then ρ cannot be
discrete and faithful (otherwise, j(Γ)\H2 and ρ(Γ)\H2 would have the same
volume, which would contradict the existence of a contracting equivariant
map).

In [189], I proved the following theorem:

Theorem 2.3.24 (See also Theorem 3.2.21). Let ρ be a representation of Γ
into PSL(2,R). If ρ is not discrete and faithful, then the open set

{[j] ∈ T+(Σ) | j dominates ρ} ⊂ T+(Σ)

is homeomorphic to R6g−6.

This built on previous work with Bertrand Deroin [55] proving the non-
emptiness of the set of dominating representations, a result obtained in-
dependently by Guéritaud–Kassel–Wolf [82]. We will come back on those
results and their generalization in Section 3.2.2.

Theorem 2.3.24, combined with results of Hitchin on the topology of the
PSL(2,R)-character variety of a surface group (Theorem 3.1.9), allow for a
complete topological description of the space PDC(Γ,AdS3). In particular,
its connected components are classified by the Euler classes of j and ρ.

Interestingly, the topology of those quotients depends on these Euler
classes. To be more precise, if (j, ρ) is an admissible pair then the quotient

j × ρ(Γ)\AdS3 (2.1)

is diffeomorphic to a circle bundle over Σ of Euler class

eu(j)− eu(ρ) .

In my thesis I also describe accurately the deformation space of anti-de
Sitter structures on a fixed circle bundle over Σ [187, Section 4.4]. This
space can have several connected components, some of which are obtained
by taking finite cyclic covers or cyclic quotients of the quotients of the form
(2.1).
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2.4 Geometry of compact quotients

I will conclude this presentation of compact quotients of reductive ho-
mogeneous spaces by investigating their topology and geometry. I will first
present a conjectural picture of those quotients which is known to hold in
many cases, then I will explain how this conjecture inspired my work on
volumes of those compact quotients.

2.4.1 A conjectural picture

Let G/H be a reductive homogeneous space and σ a Cartan involution
of G preserving H. Recall that G/H admits a retraction to the compact
negative definite subspace Gσ/Hσ. In [188], I conjectured the following:

Conjecture 2.4.1 (Fibration conjecture). Let Γ be a discrete subgroup of G
acting properly discontinuously on G/H. Then, up to taking a finite index
subgroup:

(1) Γ is the fundamental group of a closed aspherical manifold M of
dimension dim+(G/H),

(2) There exists a smooth Γ-invariant fibration from G/H to M̃ whose
fibers have the form g Gσ/Hσ for some g ∈ G.

We call a fibration G/H → M̃ satisfying (2) (or the induced fibration
Γ\G/H →M) a geometric fibration.

Remark 2.4.2. In all the examples discussed below, the “up to finite cover” as-
sumption is only used to pass to a torsion-free subgroup, which is a necessary
condition for Γ to satisfy (1). One could formulate the stronger conjecture
that Γ\G/H always admits a geometric fibration over a closed negatively
curved Riemannian orbifold with fundamental group Γ.

Here I want to argue in favour of this conjecture by pointing out that it
holds in most known cases. Let us start by mentioning the case of standard
quotients.

Proposition 2.4.3. The fibration conjecture holds for standard quotients.

Proof. Let L be a connected Lie subgroup of G acting properly and co-
compactly on G/H. By conjugating L one reduces to the case where L in
σ-invariant. Using Benoist–Kobayashi’s properness criterion, one shows that

{g ∈ L | gGσ/Hσ ∩Gσ/Hσ 6= ∅} = Lσ ,

while the cocompactness of the action of L implies that

L · (Gσ/Hσ) = G/H .

86



This gives a well-defined smooth L-equivariant fibration π : G/H → L/Lσ

such that
π−1(gLσ) = g(Gσ/Hσ) .

Now, any torsion-free uniform lattice Γ in L is the fundamental group of the
closed negatively curved manifold Γ\L/Lσ, and π is the desired equivariant
geometric fibration.

One can furthermore show that the conjecture remains true under small
deformations:

Proposition 2.4.4. Assume Γ\G/H satisfies the fibration conjecture. Then
there exists a small neigbourhood U of the inclusion Γ ↪→ G in Hom(Γ, G)∩
P̃DC(Γ, G/H) such that for all ρ ∈ U , the quotient ρ(Γ)\G/H satisfies the
fibration conjecture.

These are the first hints that the conjecture might hold in general. We now
turn to more concrete situations of which we have a better understanding.

Group spaces of rank 1

For compact quotients of the group space SO(d, 1), the fibration conjec-
ture was proved by Guéritaud–Kassel as a consequence of Theorem 2.3.20.

Theorem 2.4.5 (Guéritaud–Kassel [81]). Compact quotients of the group
space SO(d, 1) satisfy the fibration conjecture.

Proof. By Theorem 2.3.20, after taking a finite cover, one is reduced to study
quotients of the form Γρ\SO(d, 1), where Γ is a torsion-free uniform lattice
in SO(d, 1) and ρ : Γ→ SO(d, 1) a contracting representation.

Let f : Hd → Hd be a smooth ρ-equivariant contracting map, and define

π : SO(d, 1)→ Hd

which associates to g the unique fixed point of x 7→ g · f(x).
The smoothness and contraction property of f imply that π is a smooth

submersion. One easily verifies that π is equivariant with respect to the
actions of Γρ on SO(d, 1) and Γ on Hd. Finally, the fiber at a point x has the
form Stab(x)g, where Stab(x) is the compact subgroup of SO(d, 1) fixing x.
The submersion π is thus a geometric fibration.

Note that the same proof works for compact quotients of Γρ\SU(d, 1)
when ρ : Γ→ SU(d, 1) is a contracting representation. In fact, one can prove
that, for an admissible representation ρ of a uniform lattice Γ ⊂ SU(d, 1),
the quotient Γρ\SU(d, 1) admits a geometric fibration if and only if ρ is
contracting. The fibration conjecture can thus be reformulated as
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Conjecture 2.4.6. Let Γ be a uniform lattice in SU(d, 1) and ρ : Γ →
SU(d, 1) an admissible representation. Then ρ is contracting.

The sharpness of compact quotients of SU(d, 1) (Theorem 2.3.21), implies
that if ρ : Γ → SU(d, 1), and f : Hd

C → Hd
C is a continuous ρ-equivariant

map, then there exists λ < 1 and C > 0 such that

d(f(x), f(y)) < λd(x, y)

for all x, y such that d(x, y) > C. Conjecture 2.4.6 asks whether this large
scale contraction property is true uniformly for some f . The tools used by
Guéritaud–Kassel in the SO(d, 1) case (namely, a Kirzbraum–Valentine ex-
tension theorem for Lipschitz maps of the hyperbolic space) do not generalize
to SU(d, 1) because of the variable curvature of Hd

C.
However, there is hope to deduce Conjecture 2.4.6 from rigidity theorems

for equivariant harmonic maps: given a (reductive) representation ρ : Γ →
SU(d, 1) of a uniform lattice Γ, there exists a ρ-equivariant harmonic map
f : Hd

C → Hd
C. A theorem of Siu implies that this map is either holomorphic

or locally factors trough a holomorphic map to a curve. In the first case, this
map must be 1-Lipschitz by the Schwarz lemma, and one can prove that it
is contracting if ρ is admissible. One might hope to reduce the latter case
to a statement about surface group representations, for which we have many
tools at our disposal (see Chapter 3).

The particular case of anti-de Sitter 3-manifolds

By the isomorphism SO0(2, 1) ' AdS3, the fibration conjecture holds for
compact quotients of AdS3, as a particular case of Theorem 2.4.5. Here,
compact subspaces are exactly the timelike geodesics and Theorem 2.4.5
admits the following remarkable formulation:

Corollary 2.4.7. every closed anti-de Sitter 3-manifold admits a foliation
by timelike geodesics.

Stated this way, the result appears of analytic nature. Every time-
oriented Lorentzian manifold admits unit timelike vector fields, and one
wishes to find such a vector field X satisfying the equation

∇XX = 0 ,

where∇ denotes the Levi–Civita connection. It is tempting to try to imagine
an analytic approach to this question, which would extend beyond the case
of closed AdS 3-manifolds. One could wonder for instance whether Corol-
lary 2.4.7 extends to higher dimension, or to Lorentzian manifolds which are
“close to” being anti-de Sitter.

Note that timelike geodesic foliations, when they exist, are not necessarily
unique. For the closed anti-de Sitter 3-manifold j × ρ(Γ)\AdS3, they are in
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bijection with the (j, ρ)-equivariant contracting maps from H2 to H2. On the
other side, one might hope that an analytic approach provides a canonical
choice of geodesic foliation, solution of some variational problem.

From my work [189], one can deduce a canonical choice of a (j, ρ)-
equivariant contracting map, whose graph is a maximal spacelike surface
in H2 × H2 endowed with the pseudo-Riemannian metric gH2 ⊕ −gH2 (see
Section 3.2.2). It would be interesting to characterize this map in terms of
the associated timelike foliation, and see in particular if it minimizes some
functional on the space of unit timelike vector fields.

The spaces SO(2d, 2)/U(d, 1)

In the work in preparation [149], we prove that the Fibration conjecture
holds for sharp compact quotients of SO(2d, 2)/U(d, 1) (see Section 2.5.1).

2.4.2 Volume

Let volG/H denote the G-invariant volume form on G/H associated to
the pseudo-Riemannian metric. This form factors to every compact quotient
of G/H and allows to define its volume:

Vol(Γ\G/H) =

∣∣∣∣∣
∫

Γ\G/H
volG/H

∣∣∣∣∣ .
In [191] and [188], I initiated a systematic study of volumes of compact
reductive Clifford–Klein forms, driven by the following questions:

Question 2.4.8. Is Vol(Γ\G/H) rigid (i.e. constant under continuous de-
formations of Γ)?

Question 2.4.9. Is Vol(Γ\G/H) rational (i.e. a rational multiple of a
constant depending on G/H)?

Question 2.4.10. Does Vol(Γ\G/H) have a cohomological interpretation?

These three questions are intimately related. Obviously, the rationality
of the volumes of compact quotients of G/H implies their rigidity. On the
other side, rationality typically follows from interpreting this volume as a
characteristic class via Chern–Weil theory.

To be more precise, note that the principal H-bundle G→ G/H admits
a G-invariant connection. Let Ω denote its curvature form. Assume there
exists a H-invariant polynomial Q on h such that

volG/H = Q(Ω) .
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Then, up to scaling volG/H and ajusting Q, one can assume that CWH(Q)
belongs to H•(BH,Z), where CWH is the Chern–Weil homomorphism. After
quotienting by Γ, we obtain that

Vol(Γ\G/H) =

∣∣∣∣∣
∫

Γ\G/H
Q(Ω)

∣∣∣∣∣
=

∣∣∣∣∣
∫

Γ\G/H
f∗CWH(Q)

∣∣∣∣∣
∈ Z>0 ,

where f denotes the classifying map for the principal bundle Γ\G→ Γ\G/H.
A prototypical example is the hyperbolic plane, whose volume form is

proportional to the curvature form of its tangent bundle with the Poincaré
metric. One deduces the Gauss–Bonnet formula, namely that− 1

2πVol(Γ\H2)
equals the Euler class of the tangent bundle to Γ\H2, i.e. the Euler char-
acteristic of Γ\H2. This proves the rationality and rigidity of the volume of
closed hyperbolic surfaces.

When G/H is symmetric (i.e. H is the set of fixed points of an involution
of G), a theorem of Cartan asserts that volG/H is a Chern–Weil form if and
only if G and H have the same complex rank. Of course volG/H cannot be
a Chern–Weil form if G/H has odd dimension. In particular, this argument
does not give the rationality of the volume for

— compact quotients of Hp,q, p+ q odd.
— compact quotients of (non compact) group spaces.
In my thesis, I obtained the following volume formula for closed anti-de

Sitter 3-manifolds:

Theorem 2.4.11. Let Γ be the fundamental group of a closed surface and
(j, ρ) a contracting pair of representations from Γ to PSL(2,R). Then

Vol(j × ρ(Γ)\PSL(2,R)) =
π2

2
|eu(j) + eu(ρ)| ,

where eu denotes the Euler class of a representation.

This rationality of volumes of closed anti-de Sitter 3-manifolds is in stark
contrast with the behaviour of the Riemannian analog, namely volumes of
closed hyperbolic 3-manifolds.

Theorem 2.4.11 follows from a rather explicit differential geometric com-
putation which consists in integrating the volume form along the fibers of a
geometric fibration. It was obtained independently by Alessandrini and Li
in [7]. In [191], I generalized it to (not necessarily compact) quotients of the
group space SO0(d, 1).

In [188], I gave another interpretation of Theorem 2.4.11 that extends
to a broader context. Let Γ\G/H be a compact reductive Clifford–Klein
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form and assume without loss of generality that Γ is torsion-free. Denote
as previously p1 and p2 the respective projections from G/Hσ to G/H and
G/Gσ. These projections factor through the proper action of Γ. The map p1

has contractible fibers, hence it is a homotopy equivalence. The map p2, on
the other side, is a fibration with compact fibers of dimension p. A classical
spectral sequence argument then shows that

Hp(Γ) = Hp(Γ\G/Gσ) ' Z .

It is thus generated by a an element [Γ], which can be seen as a cycle in the
classifying space Γ\G/Gσ.

Theorem 2.4.12. We have

Vol(Γ\G/H) =

∫
[Γ]
p2∗p

∗
1ωG/H .

Remark 2.4.13. When the form p2∗p
∗
1ωG/H vanishes, this contradicts the

very existence of compact quotients of G/H. This proves Theorem 2.2.10.

To explain Theorem 2.4.12, let us interpretate G/Gσ as the space of
translates of Gσ/Hσ in G/H and G/Hσ as the spaces of pairs (x, V ) where
V is a translate of Gσ/Hσ in G/H and x is a point in V . With these
interpretations, we have p1(x, V ) = x and p2(x, V ) = V . Recall that p2∗ :
Ω•(G/Hσ)→ Ω•−q(G/Gσ) is the “integration over the fibers”, characterised
by the relation ∫

M
p2∗α =

∫
p−1

2 (M)
α .

Assume first that Γ\G/H admits a geometric fibration π over a closed
manifold M of dimension p. This fibration gives an embedding i : M →
Γ\G/Gσ (sending a point in M to its fiber) with the property that

p1 : p−1
2 (i(M))→ Γ\G/H

is a diffeomorphism. We thus have

Vol(Γ\G/H) =

∫
p−1

2 (i(M))
p∗1volG/H

=

∫
i(M)

p2∗p
∗
1ωG/H .

While a geometric fibration may not exist in general, it always exists
“up to homology”. To be more precise, let s be a continuous section of the
fibration p1 : Γ\G/Hσ → Γ\G/H (which exists because the fibers of p1 are
contractible). Applying the Leray–Serre spectral sequence to the homology
of the fibration p2 : Γ\G/Hσ → Γ\G/Gσ, we show
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Lemma 2.4.14. Let [Γ] be a cycle in Γ\G/Gσ generating Hp(Γ,Z). Then
p−1

2 ([Γ]) is homologuous to s(Γ\G/H) in Γ\G/Hσ.

The previous computation is then easily adapted to prove Theorem 2.4.12.

Using the fact that the form p2∗p
∗
1ωG/H is in some sense “Poincaré dual”

to the symmetric subspace H/Hσ ⊂ G/Gσ (this statement can be made pre-
cise by considering the compact dual symmetric spaces) together with results
of Cartan on the (invariant) cohomology of symmetric spaces, I could char-
acterize when the form p2∗p

∗
1ωG/H is a Chern–Weil form. Define the complex

rank of a semisimple Lie group G as the real rank of its complexification:

rkC(G) = rk(Aut(g⊗ C)) .

Theorem 2.4.15. If ωG/H is a non-vanishing Chern–Weil form on G/Gσ

then
rkC(G)− rkC(Gσ) = rkC(H)− rkC(Hσ) . (2.2)

Conversely, if Equality 2.2 holds, then p2∗p
∗
1ωG/H is a (possibly vanishing)

Chern–Weil form.

This proves the rationality of the volume of compact quotients of many
reductive homogeneous spaces, among which:

— The pseudo-hyperbolic spaces Hp,q for p even,
— The group spaces H, where H is a Lie group of Hermitian type.
For group spaces of rank 1, I characterized more explicitly the form

p2∗p
∗
1ωG/H . Combined with Kobayashi’s Theorem 2.3.4, one obtains a pre-

cise formula for the volume of compact quotients. Let Γ be a uniform lattice
in H = SO0(d, 1) or SU(d, 1) and ρ : Γ → H an admissible representation.
Recall that, given an H-invariant form α on H/Hσ, we denote by ρ∗α the
form on Γ\H/Hσ obtained by pulling-back α by any smooth ρ-equivariant
map, and factoring through Γ (cf Chapter 1, Section 1.2.3).

Theorem 2.4.16. For H = SO(d, 1), let volHd denote an invariant volume
form on H/Hσ = Hd. Then we have

Vol(Γρ\H) = Ad

∣∣∣∣∣
∫

Γ\Hd
volHd + (−1)d

∫
Γ\Hd

ρ∗volHd

∣∣∣∣∣ .
For H = SU(d, 1), let α denote an invariant Kähler form on H/Hσ = Hd

C.
Then we have

Vol(Γρ\H) = Bd

∣∣∣∣∣
d∑

k=0

∫
Γ\HdC

αk ∧ ρ∗αd−k
∣∣∣∣∣ .

The constants Ad and Bd in the above theorem can be made explicit if we
carefully normalize the various forms.
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Remark 2.4.17. While the case of SO(d, 1) was already treated in [191] us-
ing Guéritaud–Kassel’s fibration, Theorem 2.4.12 gives it a more conceptual
approach. For d = 2, we recover Theorem 2.4.11.

We could also apply Theorem 2.4.12 to compute the volume of sharp
compact quotients of SO(2p, 2)/U(p, 1) (see Section 2.5.1).

2.5 Research perspectives

We conclude this chapter by mentioning possible developments of this
topic, some of which are the object of works in preparation.

2.5.1 Geometry of compact quotients of SO(2d, 2)/U(d, 1)

As we have extensively discussed, we have reached a fairly good under-
standing of the geometry of compact quotients of rank 1 group spaces. We
now want to focus on the other family of reductive homogeneous spaces which
are known to admit non-standard quotients, namely SO(2d, 2)/U(d, 1). In a
work in preparation with Monclair and Schlenker [149], we investigate fur-
ther the relation between compact quotients of SO(2d, 2)/U(d, 1) and convex-
GHC anti-de Sitter manifolds. We construct exotic compact quotients and
prove the geometric fibration conjecture for those quotients.

Recall that Barbot proved that continuous deformations of convex-GHC
subgroups of SO(k, 2) remain convex-GHC, and conjectured that every convex-
GHC subgroup of SO(k, 2) is virtually a deformation of a uniform lattice in
SO(k, 1). Our main resultin [149] will be the construction, for any k ≥ 4, of
convex-GHC subgroups Γ ⊂ SO(k, 2) isomorphic to the fundamental group
of a Gromov–Thurston manifold [79].

These manifolds are among the few examples of closed negatively curved
manifolds (in any dimension greater than 3) which are not homeomorphic to
quotients of a symmetric space. In [149], we prove that their are isomorphic
to convex-GHC groups. In particular, these convex-GHC groups are not
deformations of lattices in SO(k, 1). They thus disprove Barbot’s conjecture
in every dimension k ≥ 4. Other counter-examples have been constructed
by Lee and Marquis for 4 ≤ k ≤ 8 using hyperbolic Coxeter groups [128].

Remark 2.5.1. Barbot’s conjecture is known to hold for k = 2 by the work
of Mess. For k = 3 it is still open and must be more subtle than in higher
dimension since, by Perelman’s hyperbolization theorem, every convex-GHC
subgroup of SO(3, 2) is isomorphic to a lattice in SO(3, 1).

Since, by Theorem 2.3.13, convex-GHC subgroups of SO(2d, 2) act prop-
erly discontinuously and cocompactly on SO(2d, 2)/U(d, 1), these counter-
examples to Barbot’s conjecture give the following:
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Theorem 2.5.2 (Monclair–Schlenker–Tholozan [149]). For every d ≥ 2, the
reductive homogeneous space SO(2d, 2)/U(d, 1) admits compact quotients by
Zariski dense subgroups of SO(2d, 2) that are not isomorphic to any lattice.

We will also give a more concrete understanding of the relation between
a convex-GHC anti-de Sitter manifold of dimension 2d + 1 and the cor-
responding compact quotient of SO(2d, 2)/U(d, 1). We first interpretate
SO(2d, 2)/U(d, 1) as the space of unit timelike Killing fields on AdS2d+1

(i.e. vector fields X infinitesimally preserving the Lorentzian metric g and
satisfying g(X,X) = −1 everywhere). Now, given a strictly convex spacelike
hypersurface H ⊂ AdS2d,1, we prove that any unit timelike Killing field is
orthogonal to H at exactly one point. This defines a projection map πH from
SO(2d, 2)/U(d, 1) to H which turns out to be a geometric fibration.

Assume moreover that some Γ ⊂ SO(2d, 2) acts properly discontinuously
and cocompactly H. Then this projection is Γ-equivariant. This argument
gives a new explanation of the fact that Γ acts properly discontinuously
and cocompactly on SO(2d, 2)/U(d, 1) and proves the geometric fibration
conjecture for such quotients.

Theorem 2.5.3 (Monclair–Schlenker–Tholozan [149]). Let Γ be a subgroup
of SO(2d, 2) acting properly discontinuously and cocompactly on a convex
spacelike hypersurface H. Then Γ\SO(2d, 2)/U(d, 1) admits a geometric fi-
bration over Γ\H.

Finally, one could apply Theorem 2.4.12 to interpretate the volume of
Γ\SO(2d, 2)/U(d, 1) as a characteristic class. We obtain the following result,
that we hope to include in some future work:

Theorem 2.5.4. Let Γ be a subgroup of SO(2d, 2) acting properly discon-
tinuously and cocompactly on a convex spacelike hypersurface Hof AdS2d+1.
Then

Vol(Γ\SO(2d, 2)/U(d, 1) = Cd |χ(Γ\H)| ,

where χ denotes the Euler characteristic and Cd is a constant depending only
on the normalization of the volume form.

Volume and Chern–Simons theory

Shortly after hearing of my volume computation for closed AdS 3-manifolds
(Theorem 2.4.11), Labourie gave it an alternative proof using Chern–Simons
theory of secondary characteristic classes. In some future work, we intend
to detail his argument, which extends to a broader context and proves the
rigidity of the volume in full generality.

Theorem 2.5.5. Let G/H be a reductive homogeneous space and Γ a dis-
crete subgroup of G acting properly discontinuously and cocompactly on G/H.
Then the volume of Γ\G/H is constant under deformations of Γ.
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Let us sketch a proof of this theorem, which we hope to detail in a forth-
coming work.

Proof. First, one can reduce to the case of group spaces by chosing a uniform
lattice Λ in H and replacing Γ\G/H by Γ\G/Λ, whose volume satisfies

Vol(Γ\G/Λ) = Vol(Γ\G/H) ·Vol(H/Λ)

(for suitable scalings of the volume forms). Now the tangent space to a Lie
group G admits two bi-invariant connections ∇L and ∇R, given respectively
by left and right parallelism. Cartan discribed explicitly the algebra of bi-
invariant forms on G. This algebra is generated by odd-dimensional forms
that can be written as “Chern–Simons forms”, i.e.∫ 1

t=0
P (∇̇t,Ω∇t , . . . ,Ω∇t)

where P is a G-invariant polynomial on g, ∇t is the connection (1− t)∇L +
t∇R and Ω∇t denotes its curvature tensor.

These forms factor to compact quotients of G, and one can prove that
their cohomology class is invariant under deformation of the flat connections
∇L and ∇R within the space of flat connections. Since the volume form is a
polynomial combination of those forms, one deduces its rigidity.

This argument can be pushed further in various directions. Theorem
2.5.5 can for instance be extended to manifolds locally modelled on G/H. 2

In a slightly different direction one can prove the following:

Theorem 2.5.6. Let Γ be a finitely generated group, G a semisimple Lie
group and α a G-invariant differential form on its symmetric space X (which
can be seen as a continuous cohomology class of the group G). Then the map

ρ 7→ [ρ∗α]

from Hom(Γ, G) to H•(Γ,R) is locally constant.

This statement does not seem to have been established before with this
degree of generality. As mentioned in Section 1.2.3, it is known when α is a
Chern–Weil form. The general statement will follow from interpreting other
G-invariant forms with Chern–Simmons theory.

2. Of course, this extension is potentially empty if the reductive Markus conjecture is
true.
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2.5.2 Quotients of finite volume

We decided to focus here on compact quotients for a more coherent ap-
proach, but one might be interested in removing the compactness assump-
tion. In particular, it is natural to ask which results extend to quotients of
finite volume.

Without entering into the details, let us mention that, while the coho-
mological obstructions to the existence of compact quotients rely on com-
pactness in an essential way, some of the geometric obstructions (such as
Benoist’s) have a larger scope, and the dynamical obstructions are likely to
generalize to the finite volume case.

Concerning the construction of non-standard and exotic compact quo-
tients for SO(d, 1), SU(d, 1) and SO(2k, 2)/U(k, 1), it seems that all of them
extend to construct non-standard and non-compact quotients of finite vol-
ume.

On the other side, very little is known toward a geometric characteriza-
tion of quotients of finite volume. In particular, the following crucial question
remains unanswered:

Question 2.5.7. Let Γ be a discrete subgroup of G acting properly discon-
tinuously on G/H with finite covolume. Is Γ finitely generated ?

When G/H is Riemannian, the answer to this question is notoriously
positive. If G has rank 1, it follows from a geometric description of the ends
of Γ\G/H (see [163]). When G has higher rank, it follows for instance from
Kazhdan’s property T (see [16]), or can be proved more geometrically using
the existence of a coarse fundamental domain. (However, the latter approach
relies on Margulis’s arithmeticity theorem.)

The higher rank tools (arithmeticity or Kazhdan’s property T) seem use-
less in the pseudo-Riemannian setting, where the non-standard examples
developed so far tend to behave like rank one lattices. Question 2.5.7 is still
open, which shows how little is known in general about those finite volume
quotients.

A bit more can be said about quotients of the group spaces SO0(d, 1),
for which a lot is known thanks to the work of Guéritaud–Kassel. In [81],
they study more generally quotients of the form Γρ\SO0(d, 1), where Γ is
a geometrically finite subgroup of SO0(d, 1) (in the sense of [28]), and ρ a
representation of Γ into SO0(d, 1). Their admissibility criterion generalizes
to this context, namely, Γρ acts properly discontinuously on SO0(d, 1) if and
only if ρ is contracting. We call such quotients geometrically finite.

Geometrically finite quotients admit a geometric fibration over Γ\Hd and
our computation of the volume works in this situation.

Theorem 2.5.8 (Tholozan, [191]). We have

Vol(Γρ\SO0(d, 1)) = Ad

∫
Γ\Hd

volHd + (−1)df∗volHd ,
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where f : Hd → Hd is any ρ-equivariant Lipschitz map.

If we choose f to be contracting, we obtain in particular that

Vol(Γρ\SO0(d, 1)) ≥ Ad(1− λ)Vol(Γ\Hd)

for some λ < 1. Therefore, this volume is finite if and only if Γ is a lattice
in Hd.

Using known volume rigidity results for representations of hyperbolic
lattices [34, 103], we deduce the volume rigidity of geometrically finite quo-
tients of SO0(d, 1) for d ≥ 3. In contrast, for d = 2, one obtains that the
volume of the quotients Γρ\SO0(2, 1) can vary continuously in the interval(
0, 2Vol(Γ\H2)

)
when ρ varies in the set of admissible representations.

The main obstacle to a complete description of all finite volume quotients
of SO0(d, 1) is Guéritaud–Kassel’s geometric finiteness assumption. Hence
the following question:

Question 2.5.9. Let Γ be a discrete subgroup of SO0(d, 1) and ρ : Γ →
SO0(d, 1) an admissible representation such that Γρ\SO0(d, 1) has finite vol-
ume. Is Γ geometrically finite?

When d = 2, Γ is geometrically finite if and only if it is finitely generated,
and this question is equivalent to Question 2.5.7. To answer it, one can try
to generalize Guéritaud–Kassel’s results to quotients Γρ\SO0(d, 1) which are
not geometrically finite. Guéritaud–Kassel’s admissiblity criterion does not
hold here. Instead, one can show the following weaker statements:

Proposition 2.5.10. If ρ is admissible, then there exists f : Hd → Hd which
is ρ-equivariant and weakly contracting, i.e.

d(f(x), f(y)) < d(x, y)

for all x 6= y.

Conversely, we have

Proposition 2.5.11. If there exists a ρ-equivariant weakly contracting map
f : Hd → Hd, then Γρ acts properly discontinuously on the domain

Uf = {g ∈ SO0(d, 1) s.t. g ◦ f has a fixed point} .

Moreover, Γρ\Uf admits a geometric fibration over Γ\Hd.

We strongly believe that Γρ acts properly discontinuously on SO0(d, 1)
if and only if f can be chosen so that Uf = SO0(d, 1).

Conjecture 2.5.12. The group Γρ acts properly discontinously on SO0(d, 1)
if and only if there exists a ρ-equivariant and weakly contracting map f :
Hd → Hd such that Uf = SO0(d, 1).
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One can show that Uf = SO0(d, 1) if and only if for every C > 0 there
exists R > 0 such that f(B(o,R)) ⊂ B(o,R − C). It thus requires f to be
“contracting enough” at infinity (typically, λ(r)-Lipschitz on B(o, r) for some
function λ < 1 such that

∫
R+

1− λ(r) = +∞). It is thus more constraining
than being weakly contracting, but weaker than being strongly contracting.

Now, if f is weakly contracting, our volume computation in [191] works
and gives:

Vol(Γρ\Uf ) = Ad

∫
Γ\Hd

(
volHd + (−1)df∗volHd

)
.

If f is sufficiently close to being isometric on complements of compact sets
of Γ\Hd, then it could happen (and does indeed in some cases) that the
two terms of the intergrand cancel out asymptotically so that the integral is
finite. Thus Question 2.5.9 boils down to asking whether f can be both:

— “contracting enough” asymptotically so that Uf = SO0(d, 1),
— “isometric enough” asymptotically so that Γ\Uf has finite volume.
Unfortunately, even for d = 2, where things are easy to manipulate,

Fanny Kassel and I haven’t been able to answer positively of negatively.
In all the examples we tried to study explicitly the two conditions seemed
incompatible, but the extreme flexibility of hyperbolic surfaces of infinite
type makes it hard to convert this into a general argument.
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Chapter 3

Surface group representations

In this chapter, we investigate the relations between the topology and ge-
ometry of surfaces and the linear representations of their fundamental group.
There are several motivations to this study:

— A first motivation is historical: surface group representations predate
the invention of the fundamental group. They have been studied
since XIXth century because they appear as monodromies of differen-
tial equations of a complex variable.

— Fundamental groups of surfaces of finite type are lattices in PSL(2,R).
Contrary to higher rank lattices (and to some extent, to other lattices
in rank 1 Lie groups), they are highly flexible. Understanding their
linear representations thus constitutes an entire part of the study of
linear representations of lattices.

— Through the theory of (G,X)-structures, representations of surface
groups play an important role in low dimensional geometry. Rep-
resentations into PSL(2,C), for instance, are crucial in Thurston’s
hyperbolization of Haken 3-manifolds.

— Surface groups are ubiquitous: Hamenstädt [86] and Kahn–Labourie–
Mozes [93], generalizing the work of Kahn–Marcovic [94], proved that
many higher rank lattices contain a lot of (closed) surface groups.

— Surface groups are the first examples of Kähler groups. The non-
Abelian Hodge correspondence establishes an analytic bijection be-
tween their character varieties and the moduli spaces of Higgs bun-
dles over Riemann surfaces [178]. These moduli spaces carry a rich
and interesting complex geometry. In particular, they form some of
the few examples of algebraically completely integrable systems [88].
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— Surface groups have a large outer automorphism group (the mapping
class group of the surface) which acts on character varieties preserving
their symplectic structure. These are rich and interesting dynamical
systems, which are not well-understood yet.

After a few general considerations on surfaces and the representations of
their fundamental groups, I will present certain character varieties of surface
groups, particularly the so-called higher Teichmüller spaces (Section 3.1). I
will then recall briefly the relation between harmonic maps, minimal embed-
dings and Higgs bundles over a Riemann surfaces, and explain how I used
these as tools to understand fine properties of certain classes of surface group
representations (Section 3.2). In Section 3.3, I will present my recent works
with Bertrand Deroin and Jérémy Toulisse which constructs bounded rela-
tive character varieties of punctured spheres. Finally, Section 3.4 is devoted
to my ongoing projects related to surface group representations: the first
one (Section 3.4.1) presents different points of view on what I call a highest
Teichmüller space, i.e. and infinite dimensional space in which all higher
Teichmüller spaces embed. The second project (Section 3.4.2) discusses an
approach to understanding holonomies of hyperbolic metrics with cone sin-
gularities that we are developing with Bertrand Deroin. The third project
(Section 3.4.3) inscribes my recent work on bounded components of relative
character varieties into the more general study of bounded mapping class
group orbits.

3.1 Surface groups and their representations

3.1.1 Surfaces and their Teichmüller spaces

Throughout this chapter, we will denote by Σg a closed oriented surface
of genus g, and by Σg,n the n-punctured surface of genus g, i.e. the surface
Σg with n points removed. We denote by Γg the fundamental group of Σg

and by Γg,n the fundamental group of Σg,n. We will only consider surfaces
with negative Euler characteristic, i.e.

χ(Σg,n) = 2− 2g − n < 0 .

(This only excludes the sphere, the open disc, the cylinder and the closed
torus.)

We will denote by [Γg,n] the set of conjugacy classes in Γg,n\{1}. This set
is in bijection with the set of free homotopy classes of closed curves on Σg,n.
A non-trivial closed curve on Σg,n (or the corresponding class in [Γg,n]) is
called simple if it is (or is freely homotopic to) an embedding of the circle.
Simple closed curves allow to cut surfaces into subsurfaces. More precisely,
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the complement of a simple closed curve in Σg,n is homeomorphic either
to Σg−1,n+2 or to the disjoint union Σg1,n1 t Σg2,n2 with g1 + g2 = g and
n1 + n2 = n+ 2.

When n > 0, the fundamental group Γg,n is a free group in 2g + n −
1 generators. In particular, two punctured surfaces with the same Euler
characteristic (such as Σ0,3 and Σ1,1) have the same fundamental group.
To distinguish between those groups, one needs to single out the peripheral
classes c1, . . . , cn of Γg,n, i.e. the conjugacy classes corresponding to the
curves circling each puncture counter-clockwise.

The (pure) mapping class group of the surface Σg,n is the group of con-
nected components of the group of homeomorphisms of Σg fixing the punc-
tures (or equivalently, homeomorphisms of Σg,n fixing its ends). We denote
it by MCGg,n. The mapping class group embeds in the outer automorphism
group

Out(Γg,n) = Aut(Γg,n)/Inn(Γg,n) .

When n = 0, this embedding is an isomorphism, by the Dehn–Nielsen–Baer
theorem. For surfaces with punctures, this embedding identifies MCGg,n

with the subgroup of Out(Γg,n) fixing the peripheral classes (see [61]).

Teichmüller space

As a convention, a complex structure on Σg,n will be a complex structure
that extends to Σg and is compatible with the orientation of Σg,n. The
Teichmüller space of the surface Σg,n, denoted Tg,n, is the space of complex
structures on Σg modulo isotopies fixing the punctures. Teichmüller proved
that it is a complex manifold of complex dimension 3g − 3 + n. The group
MCGg,n acts on Tg,n by pushing forward complex structures. This action is
properly discontinuous and the quotientMg,n = MCGg,n\Tg,n is the moduli
space of Riemann surfaces of genus g with n punctures.

Recall that a complex structure on Σg,n defines a conformal structure
on Σg, i.e. a conformal class on Riemannian metrics – namely those of the
form eσdzdz̄ in a local complex coordinate z. Conversely, the isothermal
coordinate theorem of Gauss asserts that every Riemannian metric on a
surface is locally conformal to a flat metric, and thus defines (together with
the orientation) a unique complex structure.

Now, the uniformization theorem of Riemann surfaces (due to Klein and
Poincaré for closed surfaces and to Poincaré and Koebe in general [54]) as-
serts that, given any complex structure J on Σg,n, there exists a unique com-
plete conformal metric on Σg,n which is hyperbolic, i.e. of curvature −1. In
other words, the Riemann surface (Σg,n, J) is biholomorphic to j(Γg,n)\H2,
where j : Γg,n → Isom+(H2) is discrete and faithful. Moreover, since the
complex structure on Σg,n extends to Σg, the uniformizing hyperbolic met-
ric has finite volume, so that the image of j is a lattice in Isom+(H2). The
representation j is called Fuchsian.
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The uniformization theorem gives two alternative points of view on Tg,n:
— Tg,n is the space of complete hyperbolic metrics of finite volume on

Σg,n modulo isotopy.
— Tg,n is the space of Fuchsian representations of Γg,n modulo conjuga-

tion.
The geometry of Tg,n is rich of this diversity of points of view. It carries
a complex structure, first constructed by Teichmüller, which is best under-
stood via the theory of quasi-comformal maps between Riemann surfaces.
Teichmüller also introduced a Finsler metric on Tg,n which turns out to be
its Kobayashi metric:

Definition 3.1.1. Let [g1] and [g2] be two points on Tg, seen as conformal
structures on Σg,n. The Teichmüller distance between [g1] and [g2] is given
by

dT ([g1], [g2]) = log

(
inf
g′2

(
inf{K | 1

K
g1 ≤ g′2 ≤ Kg1}

))
,

where the first infimum is taken over all metrics g′2 that are isotopic to a
metric in the conformal class [g2].

It also carries a natural Riemannian metric, called the Weil–Petersson
metric, which is the quotient modulo isotopy of the L2 metric on the space
of metrics of constant curvature −1. We denote it by hWP . The Weil–
Petersson metric is Kähler [4], has negative sectional curvature [5, 206] and
the associated symplectic structure coincides with the Atiyah–Bott symplec-
tic structure on the space of Fuchsian representations (see Section 3.1.2).

Finally, a third metric structure on Tg is given by Thurston’s asymmetric
metric [196]. Let j1 and j2 be two points in Tg, seen as Fuchsian representa-
tions of Γg.

Definition 3.1.2. Thurston’s asymmetric distance between j1 and j2 is the
logarithm of the infimum of Lipschitz constants of (j1, j2)-equivariant maps
from H2 to H2. Equivalently,

dTh(j1, j2) = log

(
sup
γ∈[Γ]

Lj2(γ)

Lj1(γ)

)
.

Geometry and dynamics of Fuchsian representations

Fuchsian representations, as holonomies of hyperbolic metrics on Σg,n,
are in some sense the “most geometric” representations of a surface group.
When studying other linear representations of Γg,n, a constant preocupation
will be to compare their geometric and dynamical properties to those of
Fuchsian representations. Let us mention some of those properties.
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Recall that we denote by Lj : [Γg,n] → R+ the length spectrum of a
Fuchsian representation j : Γg,n → Isom+(H2), i.e.

Lj(γ) = inf
x∈H2

d(x, j(γ) · x) .

It coincides with the highest weight length spectrum of j (see Section 1.2.4)
when we identify Isom+(H2) with SO0(2, 1) ⊂ SL(3,R). It also coincides
with the length spectrum of the hyperbolic metric ghyp on Σg,n corresponding
to j, in the sense that Lj(γ) is the length of the unique closed geodesic in
the free homotopy class corresponding to γ.

Several geometric properties of hyperbolic surfaces can be expressed in
terms of their length spectrum. Let us mention three such properties, namely
a universal bound for the systole, the existence of a Bers constant and the
collar lemma.

Proposition 3.1.3 (Systole). There exists a constant σg,n such that, for any
Fuchsian representation j : Γg,n → Isom+(H2), there exists a non-peripheral
closed curve γ with

Lj(γ) ≤ σg,n .
The optimal constant σg,n is the largest systole in Tg,n.

A pair of pants decomposition of Σg,n is a collection of 3g− 3 +n disjoint
simple closed curves on Σg,n whose complement is a union of 2g − 2 + n
disjoint thrice punctured spheres.

Proposition 3.1.4. There exists a constant Bg,n such that, for any Fuchsian
representation j : Γg,n → Isom+(H2), there exists a pair of pants decomposi-
tion (γi)1≤i≤3g−3+n of Σg,n such that

Lj(γi) ≤ Bg,n
for all i. The optimal constant Bg,n is the Bers constant of Σg,n.

We say that two closed curves γ and η on Σg,n intersect essentially if they
are not freely homotopic to disjoint curves. Keen’s collar lemma quantifies
the fact that two intersecting geodesics on a hyperbolic surface cannot both
be short.

Lemma 3.1.5 (Keen’s Collar lemma). Let γ and η be two closed curves
on Σg,n that essentially intersect. Then, for every Fuchsian representation
j : Γg,n → Isom+(H2), we have

sinh

(
Lj(γ)

2

)
· sinh

(
Lj(η)

2

)
≥ 1 .

Finally, let us recall that the entropy H (j) of a Fuchsian representation
is equal to 1.

In Section 3.2, we will present several comparison results which imply
some generalizations of the above properties to certain surface group repre-
sentations into other Lie groups.
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3.1.2 Character varieties and their symplectic geometry

We introduced character varieties of discrete groups into semisimple Lie
groups in Section 1.2.2. Let us now discuss the specific properties of character
varieties of surface groups. We start by focusing on fundamental groups of
closed surfaces. More details can be found in [122].

For convenience, let us assume that our semisimple group G is linear
algebraic. Recall that the space X(Γg, G) is the largest Hausdorff quotient of
Hom(Γg, G) under the conjugation action of G. It admits a structure of real
semi-algebraic set. We call a representation ρ : Γg → G strongly irreducible
if its centralizer is reduced to the center of G.

Proposition 3.1.6. The character variety X(Γg, G) has dimension (2g −
2) dim(G). If ρ : Γg → G is strongly irreducible, then X(Γg, G) is smooth
at [ρ].

One of the nicest features of character varieties of surface groups is that
they carry a natural symplectic structure (on the smooth locus), introduced
first by Atiyah–Bott [9] and further studied by Goldman [73, 75].

Recall that the (algebraic) tangent space to X(Γg, G) at [ρ] is canonically
identified with the twisted cohomology group H1(Γg,Adρ). The Killing form
on g induces an antisymmetric bilinear map

H1(Γg,Adρ)×H1(Γg,Adρ)→ H2(Γg,R) ' H2(Σg,R) ,

and the integration over Σg makes it a bilinear form on H1(Γg,Adρ). This
gives a 2-form ωAB on (the smooth locus of) X(Γg, G).

In [9], Atiyah and Bott interpret (X(Γg, G), ωAB) as the symplectic re-
duction of the space of all connections on a principal G-bundle (which is an
inifinite dimensional affine space with a natural translation invariant sym-
plectic form) under the action of the group of Gauge transformations. This
shows in particular that ωAB is closed and non-degenerate at smooth points.

Goldman studied in details the symplectic geometry of X(Γg, G). In par-
ticular, he found an explicit description of the Hamiltonian flow associated
to the functions:

Fγ,P : X(Γg, G) → R
[ρ] 7→ P (ρ(γ))

where P : G→ R is a smooth function invariant under conjugation and γ is
a simple closed curve [75]. He also gave formulae for the Poisson bracket of
Fγ,P and Fη,P , building a bridge with Topological Quantum Field Theory.

Note finally that the action of Aut(Γg) on Hom(Γg, G) by precomposition
of representations factors to an analytic action of MCGg on X(Γg, G) which
preserve the Atiyah–Bott symplectic form.

104



Relative character varieties of punctured surfaces

The symplectic structure of X(Γg, G) does not extend to punctured sur-
face groups in a straightforward way, for instance because H2(Σg,n,R) = {0}
for n > 1. It does extend, however, to the relative character varieties that
we introduce here.

Let Ĉ(G) denote the set of conjugacy classes in G and C(G) its largest
Hausdorff quotient. (In other words, C(G) is th character variety of the
group Z.) Recall that we denote by c1, . . . , cn the peripheral curves in Σg,n

(as well as the associated conjugacy classes in Γg,n).
There is a semi-algebraic restriction map

Res : X(Γg,n, G) → C(G)n

ρ 7→ ([ρ(ci)])1≤i≤n .

The fibers of this map are called the relative character varieties of Γg,n intoG.
Given a = (a1, . . . , an) ∈ C(G), we will denote by Xa(Γg,n, G) the preimage
of a by Res.

For a generic a, each ai consists of a single conjugacy class in G of dimen-
sion dimG− rkC(G). In general, ai is stratified by finitely many conjugacy
classes, and this stratification induces a stratification of Xa(Γg,n, G). Given
âi ∈ ai for all i, we denote by Xâ(Γg,n, G) ⊂ Xa(Γg,n, G) the conjugacy
classes of reductive representations ρ : Γg,n → G such that ρ(ci) is conjugate
to âi for all i, and call it a relative stratum.

Proposition 3.1.7. Let ρ : Γg,n → G be a strongly irreducible representa-
tion. Then [ρ] is a smooth point of its relative stratum.

Finally, the Atiyah–Bott symplectic form can now be defined on (the
smooth locus of) relative strata (see [77]).

To summarize, the whole character variety X(Γg,n, G) admits a (singular)
foliation whose leaves carry a symplectic structure. This is essentially the
same as a Poisson structure (i.e. a Poisson bracket on the space of regular
functions). While the whole group Out(Γg,n) acts on X(Γg,n, G), the sub-
group preserving the relative strata is exactly the pure mapping class group
MCGg,n, which also preserves the Poisson structure (hence the symplectic
structure of each stratum).

We now focus on closed surface groups and present in more details the
character varieties that will interest us. We will come back to relative char-
acter varieties in Section 3.4.3.

3.1.3 The PSL(2,R) character variety

A character variety of particular historical importance is the PSL(2,R)-
character variety X(Γg,PSL(2,R)). It already played a key role in Poincaré
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and Klein’s continuity method to uniformize compact Riemann surfaces, but
it is only in the eighties that its topology was completely described by the
work of Goldman [76] and Hitchin [89].

Recall that the Uniformization theorem of Klein–Poincaré identifies the
unoriented Teichmüller space T ±g with the subset XFuchs(Γg,PSL(2,R)) of
X(Γg,PSL(2,R)) consisting of conjugacy classes of Fuchsian representations.
It was already known by Klein and Poincaré that XFuchs(Γg,PSL(2,R)) forms
two connected components of X(Γg,PSL(2,R)) which are permuted by the
outer automorphism of PSL(2,R) (i.e. the conjugation by an orientation-
reversing isometry of H2). Since none of them contains the trivial represen-
tation, this shows that X(Γg,PSL(2,R)) has several connected components
(even modulo the orientation switch).

It turns out that these connected components are distinguished by their
Euler class, which can be seen as a locally constant map eu from X(Γg,PSL(2,R))
to Z. Milnor proved that it takes exactly all the integral values in the range
of the Euler characteristic of the surface:

Theorem 3.1.8 (Milnor–Wood inequality [147, 208]). Every ρ ∈ X(Γg,PSL(2,R))
satisfies

|eu(ρ)| ≤ 2g − 2 .

Conversely, for every integer 2−2g ≤ k ≤ 2g−2, there exists ρ ∈ X(Γg,PSL(2,R))
such that eu(ρ) = k.

Fuchsian representations have extremal Euler class (i.e. ±(2g − 2)). In
the 70s, Thurston gave an argument to prove the converse, building on Gro-
mov’s notion of simplicial volume. This was also proved in a more elemen-
tary way by Goldman in his thesis [72]. Finally, in the late 80’s, Goldman
showed that the preimages of the Euler class are connected while, at about
the same time, Hitchin described their topology, as the first spectacular ap-
plication of the non-abelian Hodge correspondance (see Section 3.2.1). Let
Xk(Γg,PSL(2,R)) denote the set of classes of representations of Euler class k.

Theorem 3.1.9.
— For every 2 − 2g ≤ k ≤ 2g − 2, the space Xk(Γg,PSL(2,R)) is con-

nected. (Goldman [76])
— For k ≥ 1, the space Xk(Γg,PSL(2,R)) is homeomorphic to a complex

vector bundle of rank 3g− 3− k over the kth symmetric power of Σg.
(Hitchin [89])

Remark 3.1.10. Applying the parabolic non-Abelian Hodge correspondance,
Mondello recently generalized Hitchin’s description of the PSL(2,R) charac-
ter variety to relative character varieties of punctured surface groups.

Let us now discuss the main open problems concerning PSL(2,R)-character
varieties.
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Simple closed curves and mapping class group dynamics

We already saw that the mapping class group MCGg acts properly dis-
continuously on T±(Σg) ' XFuchs(Γg,PSL(2,R)). The quotient space is the
moduli space of Riemann surfaces of genus g. In contrast, the mapping class
group action on non-extremal components of the character variety is very
chaotic. In fact, it is believed to be ergodic with respect to the measure
ω3g−3
AB .

Conjecture 3.1.11 (Goldman). Let U be a MCGg-invariant subset of
Xk(Γg,PSL(2,R)), with |k| < 2g − 2 (and g ≥ 3). Then either U or its
complement has measure 0.

The exception g = 2 was raised by Marché and Wolf [136] who noticed
that the subset of X0(Γ2,PSL(2,R)) formed by irreducible representations
has two MCG2-invariant connected components on which the action is er-
godic. They also proved the ergodicity of MCG2 on X1(Γ2,PSL(2,R)), thus
giving a complete answer to Goldman’s conjecture in genus 2.

Goldman’s conjecture is deeply related to another conjecture of Bowditch:

Conjecture 3.1.12 (Bowditch). Let ρ : Γg → PSL(2,R) be a non-Fuchsian
representation. Then there exists a simple closed curve γ ∈ [Γg] such that
ρ(γ) is not hyperbolic.

In fact, Marché and Wolff, following an argument of Goldman, proved
that MCGg acts ergodically on connected components of the open MCGg-
invariant domain of representations that map some simple closed curve to
an elliptic element. This shows in particular that Goldman’s conjecture is
in fact equivalent to the slightly weaker “generic” Bowditch conjecture.

Multiformization

A branched hyperbolic structure on a surface Σ is a path metric which
is locally isometric to a hyperbolic cone with angle a multiple of 2π. To be
more precise, let gdhyp denote the pull-back of the Poincaré metric on the unit
disc in C by the map z 7→ zd.

Definition 3.1.13. A branched hyperbolic structure on Σ is a path metric
such that every point x admits a neighbourhood which is locally isometric
to a neighbourhood of 0 with the metric gdxhyp for some dx ≥ 1.

The points where dx > 1 are called ramifications and the quantity dx− 1
is the multiplicity of the ramification.

There is a well-developed theory of branched structures on surfaces [135].
In particular, branched hyperbolic structures on Σg can alternatively be
described by the data of:

— A holonomy representation ρ : Γg → PSL(2,R),
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— A complex structure on Σg

— A developing map from Σ̃g to H2 which is ρ-equivariant, holomorphic
or anti-holomorphic and non-constant (but not necessarily a local
diffeomorphism).

The ramification points are then the points where the holomorphic map
is non immersive. An important open problem is the following:

Question 3.1.14. Which representations ρ : Γg → PSL(2,R) are the holon-
omy of a branched hyperbolic structure ?

We already saw that representations with maximal Euler class are ex-
actly the holonomies of smooth hyperbolic structures. More generally, if h is
a branched hyperbolic structure with k branched points (counted with mul-
tiplicity) and ρ its holonomy representation, then one has a Gauss–Bonnet
formula:

1

2π
Vol(h) = 2g − 2− k = |χ(ρ)| ,

where Vol(h) denotes the volume of (Σg, h). In particular, the number of
branched points cannot exceed 2g − 3.

There is a lot of flexibility in branched hyperbolic structures: Troyanov
[199], generalizing Poincaré–Koebe’s uniformization theorem, showed that,
given any effective divisor D of degree k < 2g − 2 on a Riemann surface of
genus g, there exists a unique conformal hyperbolic metric with ramification
divisor D. Thus, the space of branched hyperbolic structures has complex
dimension 3g − 3 + k. On the other side, given a hyperbolic surface with k
branched points, there is a complex k-dimensional family of deformations of
the hyperbolic structure preserving its holonomy. This is consistent with the
fact that holonomies of branched hyperbolic structures form an open set in
X(Γg,PSL(2,R)), by a variant of the Ehresmann–Thurston principle.

Not all representations arise this way: Tan [185] noticed that, if f is a
continuous map from Σg to Σg′ that is not homotopic to a branched cover
(for instance a map of degree one from Σg to Σg−1 that “crushes a handle”),
then, for a Fuchsian representation j of Γg′ , the composition j ◦ f∗ cannot
be the holonomy of a branched hyperbolic structure on Σg. However, these
examples are not generic (they have non-trivial kernel and discrete image).
This lead Goldman to the following conjecture:

Conjecture 3.1.15 (Goldman [78]). Let ρ : Γg → PSL(2,R) be an injec-
tive representation with non-zero Euler class. Then ρ is the holonomy of a
branched hyperbolic metric on Σg.

In an ongoing work with Bertrand Deroin, we obtain partial results to-
wards this conjecture, which will be discussed in Section 3.4.2.
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3.1.4 Higher Teichmüller spaces

Higher Teichmüller theory is, in a broad sense, the study of surface group
representations into Lie groups of higher dimension, and how they compare
to Fuchsian representations. In a more restricted sense, it intends to find
and describe analogs of the Teichmüller space inside character varieties of
higher rank Lie groups.

Quasi-Fuchsian representations

Historically, the study of differential equations on Riemann surfaces dur-
ing the second half of the XIXth century, which culminated with Klein and
Poincaré’s uniformization theorem, is intimately related to surface group
representations into PSL(2,C).

The character variety of a surface group into PSL(2,C) has two connected
components distinguished by their Stiefel–Whitney class, which vanishes if
and only if the representation lifts to SL(2,C). The component of Stiefel–
Whitney class 0 contains an open domain XQF (Γg,PSL(2,C)) consisting of
quasi-isometric embeddings. These quasi-isometric embeddings are called
quasi-Fuchsian representations.

Recall that, if ρ : Γg → PSL(2,C) is a quasi-Fuchsian representation,
then there exists a ρ-equivariant injective continuous map

ξρ : ∂∞Γg ' S1 → ∂∞H3 .

The complement of the image of ξρ consists of two complex discs Ω±ρ on
which ρ acts properly discontinuously and cocompactly. This defines a map

UnifAB : XQF (Γg,PSL(2,C)) → T +
g × T −g

ρ 7→
(
ρ(Γg)\Ω+

ρ , ρ(Γg)\Ω−ρ
)
.

The Double Uniformization Theorem of Ahlfors–Bers states that this map
is a homeomorphism [3].

In contrast with the case of PSL(2,R), quasi-Fuchsian representations do
not form a connected component of X(Γg,PSL(2,C)). They are indeed con-
tained in the connected component of the trivial representation. The closure
of XQF (Γg,PSL(2,C)) is the set of discrete and faithful representations, as a
consequence of Brock–Canary–Minsky’s ending lamination theorem [33]. Fi-
nally, let us mention that XQF (Γg,PSL(2,C)) is a maximal domain of proper
discontinuity for the action of MCGg (see [180]).

Hitchin representations

Using the non-Abelian Hodge correspondance, Hitchin proved in [90]
that the character variety X(Γg,PSL(n,R)) (n ≥ 3) has 3 connected com-
ponents for odd n and 6 for even n. Interestingly, these components are not
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distinguished by topological invariants. More precisely, Hitchin proved the
existence of one (for odd n) or two (for even n) connected components which
do not contain any representation into a compact group, despite having the
same topological invariants as some representation into PSO(n,R).

Definition 3.1.16. An n-Fuchsian representation is a representation of Γg
into PSL(n,R) of the form ιn ◦ j, where j : Γg → PSL(2,R) is Fuchsian and
ιn : PSL(2,R) → PSL(n,R) is the irreducible representation (unique up to
conjugation).

The composition with ιn defines a map from XFuchs(Γg,PSL(2,R)) to
X(Γg,PSL(n,R)). For odd n this map is 2 to 1 and its image is con-
nected while for n even it is injective and maps the two components of
XFuchs(Γg,PSL(2,R)) to two disjoint connected components of X(Γ,PSL(n,R)).

Theorem 3.1.17 (Hitchin [90]). The connected components of X(Γg,PSL(n,R))

containing ιn ◦XFuchs(Γg,PSL(2,R)) are homeomorphic to R(2g−2)(n2−1) and
do not contain any representation with relatively compact image.

These “exotic” components are since named Hitchin components and the
representations therein are called Hitchin representations.

Hitchin suggested that these components were good candidates for a
higher rank analog of the Teichmüller space and asked for a geometric in-
terpretation of these representations. For n = 3, an answer was already
given by Choi–Goldman [43], who showed that Hitchin representations into
PSL(3,R) are exactly the holonomies of convex projective structures on Σg

(see Section 3.2.3).
In his groundbreaking work [118], Labourie gave a spectacular answer to

Hitchin’s question in all rank: he introduced the notion of Anosov represen-
tation in order to show that Hitchin representations where all Anosov, with
additional convexity properties.

Theorem 3.1.18. Let ρ : Γg → PSL(n,R) be a Hitchin representation.
Then ρ is Anosov with respect to a minimal parabolic subgroup. Moreover,
the associated boundary map ξρ : ∂∞Γg → RPn−1 is Frenet and hyperconvex.

Without giving a precise definition, let us just say that “Frenet” means
that the curve admits a complete osculating flag, and hyperconvex is a very
strong transversality property for this family of osculating flags. Labourie’s
work implies in particular that a Hitchin representation ρ is always discrete
and faithful, and maps every γ ∈ Γg to a diagonalizable matrix with distinct
positive eigenvalues.

Hitchin components can be defined more generally for every real split
semisimple Lie group (such as Sp(2n,R), SO(n, n) and SO(n + 1, n)), for
which both works of Hitchin and Labourie extend.
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Maximal representations

Concomitantly to Labourie’s work on Hitchin representations, Burger–
Iozzi–Wienhard made tremendous progress on the understanding of maximal
representations into Hermitian Lie groups. In particular, they proved that
these representations have some “Fuchsian-like” behaviour, which was inter-
preted as an Anosov property in [35].

A Lie group G is called Hermitian if its symmetric space carries a G-
invariant Kähler structure. The associated Kähler form is a “Chern–Weil
form” and thus defines a topological invariant of surface group representa-
tions into G with values in Z, called the Toledo invariant. In the case of
G = PSL(2,R), it coincides with the Euler class. Burger, Iozzi and Wien-
hard [36] proved a Milnor–Wood inequality for the Toledo invariant and
initiated the more systematic study of maximal representations, for which
this inequality is an equality.

This invariant is named after Domingo Toledo, who introduced it in
[197] for G = SU(n, 1). There, he proved some Milnor–Wood inequality
and showed that the equality case imposes a remarkable form of rigidity:
representations with maximal Toledo invariant take value (up to conjugation)
into U(1, 1) × U(n − 1), and their projection to PU(1, 1) ' PSL(2,R) is
Fuchsian. This result was generalized by Burger–Iozzi–Wienhard:

Theorem 3.1.19 (Burger–Iozzi–Wienhard [36]). Let G be a Lie group of
Hermitian type and ρ a representation of Γg into G. Then

|Tol(ρ)| ≤ (2g − 2)rk(G) .

Moreover, if Tol(ρ) = (2g − 2)rk(G), then ρ takes values into a subgroup of
G of tube type.

Rather than defining the groups of tube type, let us just say that they are
products of simple Hermitian Lie groups of tube type, and that the non-
exceptional such groups are isogenous to SU(p, p), Sp(2n,R), SO∗(4n) or
SO0(2, n).

Definition 3.1.20. A representation ρ : Γ→ G is called maximal if

Tol(ρ) = (2g − 2)rk(G) .

If G is not of tube type, none of the maximal representations are Zariski
dense by Theorem 3.1.19. In contrast, when G is of tube type, Burger–Iozzi–
Wienhard show the existence of Zariski dense representations with maximal
Toledo invariant. Finally, they prove that maximal representations satisfy
some Anosov property:

Theorem 3.1.21 (Burger–Iozzi–Labourie–Wienhard [35]). Let ρ : Γ → G
be a maximal representation. Then ρ is Anosov with respect to the parabolic
subgroup fixing a point in the Shilov boundary.
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In particular, every maximal representation ρ is discrete and faithful,
and induces a ρ-equivariant continuous map ξρ from ∂∞Γg to the Shilov
boundary of G.

Example 3.1.22.
— The Shilov boundary of Sp(2g,R) is the space of Lagrangian sub-

spaces of R2g.
— The Shilov boundary of SO0(2, d) is the space of isotropic lines in

R2,d.

The connected components Xmax(Γ, G) of maximal representations can
thus be seen as higher rank analogs of the Teichmüller space, in the sense
that they consist only of discrete and faithful representations. Interestingly,
Xmax(Γ, G) is not always connected, and can have a richer topology than
that of the Hitchin components. Even more surprisingly, for G = PSp(4,R),
the set Xmax(Γ, G) has some “exotic” connected components consisting only
of Zariski dense representations [30].

The central questions of higher Teichmüller theory

Hitchin an maximal representations in a Lie group G share many prop-
erties with Fuchsian representations. First, they are discrete and faithful,
and in fact enjoy all the nice propoerties of Anosov representations (limit
curves, domains of discontinuity...). Moreover, unlike quasi-Fuchsian repre-
sentations, they are stable under any continuous deformation inside the real
group G. This motivates the following definition:

Definition 3.1.23. A higher Teichmüller space is a connected component
of X(Γ, G) (for some real semisimple Lie group G) consisting only of discrete
and faithful representations.

Higher Teichmüller theory is, in the more restricted sense, the study of
higher Teichmüller spaces and the representations therein. It is driven by
three fundamental questions that we present below.

Question 3.1.24. Can we list the higher Teichmüller spaces ?

This first question is close to being completely answered. Using Higgs
bundle techniques, the authors of [8] were able to give a restricted list of can-
didates: besides Hitchin and maximal components, a third potential family
is formed by certain components of the SO(p, q) character variety. It is
extremely likely that these components ar exactly those formed by the Θ-
positive representations introduced by Guichard–Wienhard (see next ques-
tion).

Question 3.1.25. What are the specific properties of the representations in
higher Teichmüller spaces ?
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Higher Teichmüller spaces most likely contain only Anosov representa-
tions. This, however, does not account for all their specificity, since the
Anosov property is not closed in general. In all examples, some additional
geometric control on the limit curve of Anosov representations in higher
Teichmüller spaces prevent them to “bend towards” a non-discrete represen-
tation. (For Hitchin representations, this is the hyper-convexity of the limit
curve.) Guichard and Wienhard formilized it into the general notion of Θ-
positivity, which guaranties for instance a Lipschitz limit set [85]. They are
close to proving that Θ-positivity is indeed a closed condition, which would
yield a positive answer to the following conjecture:

Conjecture 3.1.26. Let ρ be a representation of Γg into a Lie group G.
The following are equivalent:

— ρ is Anosov and Θ-positive
— every continuous deformation of ρ is discrete and faithful
— ρ is either Hitchin or maximal, or G ' SO(p, q) and ρ lies in one of

the components of X(Γ, G) singled out in [8].

Other geometric and dynamical properties of surface group representa-
tions seem related to the Θ-positivity:

— Positivity of associated cross-ratios on ∂∞Γg,
— Uniform controls on the length spectrum of the representation,
— Collar lemmas.

These properties will be discussed in the next sections.

Question 3.1.27. Do higher Teichmüller spaces carry a natural geometry
similar to that of Tg ?

The richness of Teichmüller theory stems from the diversity of viewpoints
on that space (as a space of complex structures, of hyperbolic metrics or of
linear representations). A constant trend in higher Teichmüller theory is to
try to diversify the points on view on those higher Teichmüller spaces and
enrich their geometry. Let us briefly mention some of them:

— The non-Abelian Hodge correspondance (see Section 3.2.1) answers
the above question in a way which is not completely satisfying. In-
deed, it endows real character varieties with a structure of complex
quasi-projective variety for which the Atiyah–Bott symplectic form is
Kähler. however, this additional structure is not quite natural since
it depends on the choice of a complex structure on Σg. In particular,
it is not invariant under the mapping class group. To address this is-
sue, one strategy is to construct a natural MCGg-invariant projection
from a higher Teichmüller space to Tg. This is the motivation behind
a conjecture of Labourie presented in Section 3.2.1.

— Labourie, Bridgeman, Canary and Sambarino used tools from hyper-
bolic dynamics to construct a pressure metric on Hitchin components,
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which extends the Weil–Petersson metric on T (Σ). An interesting
question is whether this metric is Kähler for some complex struc-
ture. If it is Kähler, though, the associated symplectic form cannot
be the Goldman symplectic form, according to the work of Labourie–
Wentworth [124].

— Recently, Fock and Thomas introduced the deformation space of higher
complex structures of rank n on a surface Σ, which has a nice Kähler
geometry. They conjecture a natural identification of this space with
the PSL(n,R)-Hitchin component [62].

— In Section 3.4.1, we discuss yet another approach initiated in [192],
which consists in embedding Hitchin components into the infinite di-
mensional Teichmüller space of a two dimensional foliation.

3.2 Harmonic maps and applications

Many of my contributions to the study of surface group representations
and higher Teichmüller theory have as a common feature the use of harmonic
analysis on Riemann surfaces. In this section, we introduce the theory of
equivariant harmonic maps and its relation with minimal surfaces and Higgs
bundles, before explaining how we applied it to study geometric properties
of surface group representations.

3.2.1 Harmonic maps, minimal surfaces, and Higgs bundles

Harmonic maps

Let G be a semisimple Lie group and K a maximal compact subgroup.
Denote by X = G/K the symmetric space of G and by gX its symmetric
Riemannian metric.

For a given complex structure J on Σg, denote by gJ the unique conformal
hyperbolic metric on (Σg, J) and by j : Γg → PSL(2,R) the Fuchsian repre-
sentation uniformizing (Σg, J) (defined modulo conjugation). Finally, let ρ
be a representation from Γg to G, and f : Σ̃g → X a smooth ρ-equivariant
map.

The pull-back metric f∗gX factors to Σg and decomposes in the form

ϕf + eJ(f)gJ + ϕ̄f ,

where eJ(f) is a function called the energy density of f (with respect to
gJ) and ϕf is a symmetric 2-form of type (2, 0) with respect to J , i.e. a
smooth section of K2

J , where KJ denotes the holomorphic cotangent bundle
of (Σg, J). The form ϕf is called the Hopf differential of f .
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Definition 3.2.1. The total energy of f is the integral of the energy density
against the volume form associated to gJ :

EJ(f) =

∫
Σ
eJ(f)dvolgJ .

The map f is harmonic if it is a critical point of EJ .

Remark 3.2.2. For later purposes, we defined the energy density eJ(f) with
respect to the uniformizing metric gJ . Changing gJ by a conformal factor
eσ would scale the energy density by e−σ. However, it would also scale the
volume form by eσ, so that the total energy EJ would remain unchanged.
The total energy and the notion of harmonicity are thus inherently conformal
notions.

Corlette, building on the work of Eells and Sampson, proved the funda-
mental existence result for equivariant harmonic maps:

Theorem 3.2.3 (Eells–Sampson [58], Corlette [47]). If ρ : Γg → G is re-
ductive, then there exists a smooth ρ-equivariant harmonic map from (Σ̃g, J)
to X, which minimizes the energy. Moreover, this harmonic map is unique
up to post-composition with an isometry centralizing ρ. In particular, if ρ is
irreducible, this harmonic map is unique.

We will denote by fJ,ρ this (essentially unique) ρ-equivariant harmonic
map, by E(J, ρ) its energy and by Φ(J, ρ) its Hopf differential. One easily
verifies that E(J, ρ) only depends on the isotopy class of J and the conjugacy
class of ρ, so that it defines a functional

E : Tg × X(Γg, G)→ R+ .

Harmonic maps allow to introduce analytic tools in topology by providing
“canonical” maps between Riemannian manifolds in a given homotopy class.
They are particularly powerful when the domain is a Riemann surface be-
cause they produce holomorphic objects. A first instance of this phenomenon
is the following result of Hopf:

Proposition 3.2.4 (Hopf). The Hopf differential of a harmonic map is
holomorphic.

Higgs bundles

While the notion of energy and harmonicity can be defined more generally
for maps between Riemannian manifolds, the particular feature of harmonic
maps from Riemann surfaces to symmetric spaces is that the algebraic prop-
erties of their differential is encoded in a holomorphic objet called a Higgs
bundle.
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To explain this let us first consider the case where G = SL(n,C). To
every representation ρ : Γ → G is canonically associated a flat complex
vector bundle Eρ of rank n, given by

Eρ = Σ̃g × Cn/(x, v) ' (γ · x, ρ(γ)v) .

We denote by ∇ρ the flat connection on Eρ. This connection induces a
trivialization of the determinent bundle det(Eρ) since the representation ρ
takes values in SL(n,C).

Let h be a Hermitian metric on Eρ whose associated metric on det(Eρ) is
the trivial metric. Lifting h to Σ̃g, one can see h as a ρ-equivariant map from
Σ̃g to the space of Hermitian scalar products on Cn of fixed determinent, i.e.
the symmetric space X = SL(n,C)/SU(n). The flat connection cannically
decomposes as

∇ρ = ∇h + Ψ ,

where ∇h is a connection preserving h and Ψ a 1-form with values in the h-
self-adjoint traceless endomorphisms of Eρ. The form Ψ can be interpreted
as the differential of the equivariant map from Σ̃g to X associated to h.
In particular, the pull-back of the metric gX by the equivariant map fh
corresponding to h is given by

f∗hgX = Tr(Ψ2) . (3.1)

Let us now endow Σg with a complex structure J . Then ∇h and Ψ
decompose further into (1, 0) and (0, 1) types, yielding

∇ρ = ∂̄h − ∂̄∗h + Θ + Θ∗ ,

where:
— ∂̄h is a ∂̄-operator, satisfying the Leibniz rule

∂̄h(fs) = (∂̄f)s+ f(∂̄hs) ,

— Θ is a (1, 0)-form with values in End(Eρ),
— The ∗ refers to the adjunction with respect to the metric h, so that

∂̄h − ∂̄∗h = ∇h and Θ + Θ∗ = Ψ.
The operator ∂̄h defines a holomorphic structure on Eρ, for which ∇h is the
Chern connection of h. We call the metric h harmonic if the corresponding
equivariant map from (Σ̃g, J) to X is harmonic.

Proposition 3.2.5. The metric h is harmonic if and only if Θ is holomor-
phic with respect to ∂̄h, i.e.

∂̄hΘ = 0 .
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Remark 3.2.6. This proposition essentially says that h (seen as an equiv-
ariant map) is harmonic if and only if the (1, 0) part of its differential is
holomorphic, which can be seen as a generalization of the well-known fact
that real harmonic functions on a Riemann surface are the real part of a
holomorphic function.

Remark 3.2.7. By (3.1), the Hopf differential of the harmonic map associ-
ated to the harmonic metric h is Tr(Θ2), and we recover the fact that it is
holomorphic.

Definition 3.2.8. A SL(n,C)-Higgs bundle on (Σ, J) is a pair (E ,Θ), where
E is a holomorphic vector bundle of rank n such that det(E) is holomorphi-
cally trivial and Θ is a holomorphic 1-form with values in End0(E) (where
End0 stands for traceless endomorphisms).

Together with Proposition 3.2.5, Theorem 3.2.3 allows to construct one
direction of the non-Abelian Hodge correspondance, which associates to a re-
ductive representation ρ the Higgs bundle ((Eρ, ∂̄h),Θh) where h a harmonic
metric on Eρ. To invert this map, one starts with a SL(n,C)-Higgs bundle
((E, ∂̄E),Θ) and wants to find a Hermitian metric h such that the connection
∂̄E − ∂̄∗E + Θ + Θ∗ is flat. This boils down to solving the self-dual equation

Fh + [Θ,Θ∗] = 0 ,

where Fh is the curvature of the Chern connection of h and * is the adjunction
with respect to h. A necessary condition (essentially due to S. Kobayashi)
is that ((E, ∂̄E),Θ) should be polystable in the following sense:

Definition 3.2.9. A SL(n,C) Higgs bundle (E ,Θ) is stable if every Θ-
invariant holomorphic subbundle (other than {0} and E) has negative degree.
It is polystable if it is a direct sum of stable Higgs bundles of degree 0.

Hitchin (for n = 2) and Simpson (in general) proved that the polystability
condition is also sufficient:

Theorem 3.2.10 (Hitchin [89], Simpson [178]). A Higgs bundle is polystable
if and only if it admits a Hermitian metric h solving the self-duality equa-
tions. Moreover, this metric is unique up to an automorphism of the Higgs
bundle. In particular, if the Higgs bundle is stable, then it is unique up to
scaling.

Putting these results together, one obtains an equivalence of categories
between reductive representations of Γg into SL(n,C) and polystable SL(n,C)-
Higgs bundles. This equivalence of category is called the non-Abelian Hodge
correspondence. It is also a real analytic bijection between the character
variety X(Γg, SL(n,C)) and the moduli space MHiggs((Σg, J), SL(n,C)) of
(polystable) SL(n,C)-Higgs bundles over the Riemann surface (Σg, J).
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Despite its very transcendental nature, some properties transit well through
the non-Abelian Hodge correspondence. An important one is that the corre-
spondence “recognizes” representations with values into a real subgroup G.

Let G be a semisimple subgroup of SL(n,C) and K its maximal compact
subgroup. Let m denote the orthogonal of Lie(K) in g, and let KC and mC
denote the respective complexifications of K and m.

Theorem 3.2.11 (see [178]). Let ρ be a representation of Γ into SL(n,C),
and (E ,Θ) the associated Higgs bundle. The following are equivalent:

— The representation ρ is conjugate to a representation with values in G,
— The structure group of E admits a holomorphic reduction to KC, for

which Θ takes values in the in the associated mC-bundle.

One can derive from this theorem a definition of a G-Higgs bundle, and
a non-Abelian Hodge correspondence between G-Higgs bundles and repre-
sentations into G. Let us illustrate this in some examples:

Example 3.2.12. A SL(n,R)-Higgs bundle is a SL(n,C)-Higgs bundle with a
holomorphic section Q of Sym2(E∗) which is non-degenerate at every point
and such that Θ is self-adjoint with respect to Q.

Example 3.2.13. A SU(p, q)-Higgs bundle is a SL(p + q,C)-Higgs bundle
(E ,Θ) with a holomorphic decomposition E = U ⊕ V, where U and V re-
spectively have rank p and q, and such that Θ maps U into V and V into
U .

Another property of representations that transit well through the cor-
respondence are the topological invariants associated to a representation.
Indeed, they are by definition the topological invariants associated to a K-
reduction of the flat principal G-bundle associated to ρ, and thus correspond
to topological invariants of theKC-bundle underlying the associated G-Higgs
bundle.

Example 3.2.14. Let ρ be a reductive representation into the Hermitian Lie
group SU(p, q) and let (U ⊕ V,Θ) be the associated SU(p, q)-Higgs bundle.
Then

Tol(ρ) = degU − degV = 2 degU .

Interestingly, the moduli spaceMHiggs((Σg, J), G) of polystable G-Higgs
bundles on (Σg, J) is a complex algebraic variety even though the group G is
real. When G is complex, the complex structure of the moduli space of Higgs
bundles does not agree with the complex structure of X(Γg, G). In fact, these
two complex structures fit together in a hyper-Kähler structure. Hitchin
[88, 90] and Simpson [178] introduced many tools to study the topology
and complex geometry of MHiggs((Σg, J), G), from which one derives the
remarkable results on the topology of character varieties that have been
mentioned in Section 3.1.
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The non-Abelian Hodge correspondence has been extended to Riemann
surfaces with punctures [177], to higher dimensional compact Kähler mani-
folds [178], and eventually to complex quasi-projective varieties [26, 148].

Minimal surfaces

We just saw that equivariant harmonic maps associate holomorphic ob-
jects to surface group representations, which enhances considerably the struc-
ture of their character varieties. A drawback of these constructions is that it
depends on the choice of a complex structure on Σg, so that this additional
structure is in some sense not “natural”. In particular, it is not invariant
under MCGg.

In order to remediate this, one might want to find a preferred complex
structure associated to a given representation. A general strategy for this
consists in minimizing the energy E(J, ρ) as a function of J . This strategy
succeeds in some cases, and is conjectured to work in greater generality.

To be more precise, let us recall first that the cotangent bundle to Tg
at a point J is canonically identified with the space H0(K2

J) of holomorphic
quadratic differentials on (Σg, J).

Let ρ be a reductive representation of Γg into a semi-simple Lie group G.
The energy functional on Tg associated to ρ is the function

Eρ : J 7→ E(J, ρ) .

A classical formula (see [203]) states that the differential of the energy func-
tional is given by the Hopf differential of the harmonic map:

Proposition 3.2.15. At a point J ∈ Tg we have

dEρ(J) = −4Φ(J, ρ) .

Corollary 3.2.16. The complex structure J is a critical point of Eρ if and
only if the harmonic map fJ,ρ is conformal, meaning that f∗J,ρgX is conformal
to gJ or, equivalently, that its Hopf differential vanishes.

Conformal harmonic maps are branched minimal immersions in the fol-
lowing sense: let J be a critical point of the energy functional Eρ (so that
fJ,ρ is conformal). If Eρ(J) = 0, then fJ,ρ is constant (in which case ρ fixes
a point in X and Eρ ≡ 0). Otherwise, away from a finite number of points
where the energy density vanishes, fJ,ρ is an immersion whose image is a
surface in X that locally minimizes the area. Conversely, if S ⊂ X is a
minimal surface, then the inclusion S ⊂ X is a conformal harmonic map for
the conformal structure on S induced by gX .

These considerations raise the following questions:

Question 3.2.17. What is the critical locus of Eρ?
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Question 3.2.18. Assume ρ is discrete and faithful. Does ρ(Γg)\X contain
a minimal surface diffeomorphic to Σg? If so, is this surface unique ?

Let us now discuss these questions on several examples.

Representations into PSL(2,R).

When ρ takes values into PSL(2,R), the ρ-equivariant conformal maps
from (Σ̃g, J) to X = H2 are either holomorphic or anti-holomorphic. There-
fore, finding a critical point of Eρ is equivalent to finding a branched hy-
perbolic structure on Σg with holonomy ρ. If J is a critical point, then
Eρ(J) = 2π|eu(ρ)| is a global minimum of Eρ, and the locus of such min-
ima, when non-empty, is a holomorphic submanifold of Tg of dimension
2g − 2− |eu(ρ)|.

Quasi-Fuchsian representations.

Let now ρ be a quasi-Fuchsian representation of Γg into PSL(2,C). One
can think of ρ-equivariant minimal embeddings as solutions of an asymptotic
Plateau problem with boundary given by the limit set of ρ in ∂∞H3.

Schoen–Yau [173] and Sacks–Uhlenbeck [168] proved the properness of
the energy functional Eρ and deduced the existence of ρ-equivariant con-
formal harmonic maps, and Freedman–Hass–Scott [63] proved that the con-
formal harmonic map corresponding to the global minimum of Eρ is an
embedding.

It seems that the finiteness of the critical locus of Eρ is still unproven.
One can show nevertheless that this set is compact, so that proving its
finiteness boils down to proving that every minimal surface in a quasi-
Fuchsian manifold is locally rigid. Huang and Wang proved that some quasi-
Fuchsian representations can have arbitrarily many equivariant minimal em-
beddings [91]. However, when the principal curvatures of a minimal surface
are bounded by 1, Uhlenbeck proved that this minimal surface is unique
[200]. The corresponding representations are called almost Fuchsian.

A heuristic picture behind these (non-)uniqueness results is that the min-
imal surface should be unique when the limit curve of ρ does not “wind” too
much. Seppi proved for instance that a control on the regularity of the limit
set of ρ implies a bound on principal curvatures of a minimal surface [175],
while the counter-examples to uniqueness of Huang and Wang come from a
limit set that approximates a highly meandering curve.

Higher Teichmüller spaces

The fact that the limit set of a quasi-Fuchsian representation can be
highly irregular is related to the fact that quasi-Fuchsian representations
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can “degenerate” to representations which are not quasi-isometric embed-
dings. This typically does not happen for Hitchin representations and more
generally for Guichard–Wienhard’s Θ-positive representations, whose limit
curves are Lipschitz. It is thus tempting to formulate the following conjec-
ture:

Conjecture 3.2.19. Let ρ : Γ → G be a Θ-positive representation. Then
the energy functional Eρ has a unique critical point, whose corresponding
conformal harmonic map is an embedding.

A particular case of the conjecture is a theorem of Schoen stating that,
given g1 and g2 two hyperbolic metrics on Σ, there is a unique diffeomorphism
from (Σ, g1) to (Σ, g2) homotopic to the identity whose graph is a minimal
surface [172].

The more general conjecture was formulated by Labourie in [120] for
Hitchin representations, where he also proved the properness of Eρ for any
Anosov representation. It was proven independently by Labourie [119] and
Loftin [133] for Hitchin representations into PSL(3,R) where minimal sur-
faces are related to affine spheres (see Section 3.2.3). Labourie later ex-
tended his result to Hitchin representations into all split real Lie groups of
rank 2 (namely, PSL(3,R), Sp(4,R) and G2) [121]. Arguments in favor of
the general conjecture came with our work with Brian Collier and Jérémy
Toulisse [45], which proved that the conjecture holds for all maximal repre-
sentations into Hermitian Lie groups of rank 2 (see Section 3.2.4).

The main motivation for Conjecture 3.2.19 is to provide higher Teich-
müller spaces with a natural complex structure. To explain this, consider,
inside Tg ×X(Γg, G), the subsetMmin(Σg, G) consisting of pairs (J, ρ) such
that the ρ-equivariant harmonic map fJ,ρ is conformal with respect to J . The
spaceMmin(Σg, G) is thus the moduli space of branched equivariant mnimal
immersions. The non-Abelian Hodge correspondence identifies Tg×X(Γg, G)
with the space of (equivalence classes of) triples (J, E ,Θ), where J is a com-
plex structure on Σg and (E ,Θ) is a G-Higgs bundle on (Σg, J). This space
has a MCGg-invariant structure of complex analytic variety (see [179, 6]),
and the MCGg-invariant subspace Mmin(Σg, G) is holomorphic since it is
defined by the equation Tr(Θ2) = 0 (see Remark 3.2.7).

If we now consider a component of representations for which we know
the existence and uniqueness of a minimal surface, then the projection from
Mmin(Σg, G) to the character variety is bijective in restriction to this com-
ponent, and one can push forward the complex structure.

3.2.2 Application 1: representations into Lie groups of rank 1

I now present various applications of the theory of equivariant harmonic
maps to the study of refined properties of surface group representations.
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My first application is a “domination theorem” for representations into Lie
groups of rank 1. More generally, let X be a complete simply connected
Riemannian manifold of sectional curvature bounded above by −1 and let ρ
be a representation of Γ into Isom(X). 1 We call ρ Fuchsian if it preserves a
totally geodesic plane of curvature −1 inX and acts properly discontinuously
on it.

Definition 3.2.20. A Fuchsian representation j : Γ→ PSL(2,R) dominates
ρ if there exists a (j, ρ)-equivariant map from H2 to X which is λ-Lipschitz
for some λ < 1.

Equivalently, by a theorem of Guéritaud–Kassel [81], j dominates ρ if
there exists λ < 1 such that

Lρ < λLj

where Lρ and Lj denote respectively the length spectrum of ρ and j acting
on X and H2. We denote by Dom(ρ) the domain of Tg formed by conjugacy
classes of Fuchsian representations that dominate ρ.

Theorem 3.2.21. Let ρ be a representation of Γ into Isom(X). Then, either
ρ is Fuchsian or Dom(ρ) is non-empty and homeomorphic to Tg.

The non-emptiness of Dom(ρ) was obtain with Bertrand Deroin [55],
and independently by Guéritaud–Kassel–Wolff [82] for representations ρ into
PSL(2,R)). The topology of Dom(ρ) was described in my subsequent work
[189].

The primary motivation of these results was their application to the de-
scription of the moduli space of anti-de Sitter 3-manifolds, which is discussed
in Chapter 2, Section 2.3.5. However, it also has other consequences which
are interesting in their own way. The non-emptiness of Dom(ρ), in partic-
ular, allows to extend certain uniform controls on Fuchsian representations
to all representations in rank 1.

Corollary 3.2.22. Let ρ be a representation of Γg into Isom(X). Then:
— There exists a simple closed curve γ ∈ [Γg] such that

Lρ(γ) ≤ σg ,

where σg is the largest systole in genus g.
— There exists a pair of pants decomposition given by curves (γi) ∈

[Γ]3g−3 such that
Lρ(γi) ≤ Bg ,

where Bg is the Bers constant in genus g. for all i.

1. Importantly, in this section, we normalize the metric of a symmetric space of rank
1 so that its sectional curvature is everywhere ≤ −1.
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The Bers constant in genus 2 was computed in [66] and its extension to
all representations in PSL(2,R) was used as a starting point in [136] to prove
Bowditch’s conjecture in genus 2.

As another application, one recovers Bowen’s entropy rigidity result: If
ρ : Γg → Isom(X) is discrete and faithful, then

H (ρ) ≥ 1 ,

with equality if and only if ρ is Fuchsian.
Finally Theorem 3.2.21 can be applied to a Fuchsian representation ρ

acting on H2 endowed with the metric e−RhH2 , R > 0. As a corollary, one
obtains a description of the left balls for Thurston’s asymmetric distance:

Corollary 3.2.23. Let j2 be a point in Tg. For every R > 0, the set

Bl(j2, R) = {j1 ∈ Tg | dTh(j1, j2) < R}

is homeomorphic to an open ball in Tg.

Note that the right balls

Br(j2, R) = {j2 ∈ T (Σ) | dTh(j2, j1) < R}

are convex for the Weil–Petersson distance as a consequence of [207]. This
does not readily imply Corollary 3.2.23, though, since dTh is not symmetric.

Let us now explain how the proof of Theorem 3.2.21 uses harmonic maps.
Fix a complex structure J on Σg. recall that Φ(J, ρ) denotes the Hopf dif-
ferential of the ρ-equivariant harmonic map fJ,ρ from (Σ̃g, J) to X. By
a theorem of Wolf [205] – which also follows from Hitchin’s Higgs bundle
description of XFuchs(Γg,PSL(2,R)) – there exists a unique Fuchsian repre-
sentation j : Γ→ PSL(2,R) such that Φ(J, j) = Φ(J, ρ). Using a maximum
principle, we prove in [55] that the (j, ρ)-equivariant map fJ,ρ ◦ f−1

J,j is either
isometric and totally geodesic, or contracting. The key to this maximum
principle is that harmonic maps are in some sense “saddle shaped” so that
the curvature of the pull-back metric f∗J,ρgX is bounded everywhere by −1.

Since the whole construction depends on the complex structure J , we
obtain a map Ψρ from Tg to Dom(ρ). To invert this map, one wants, given
a representation j, to find a complex structure J such that

Φ(J, j) = Φ(J, ρ) .

By Proposition 3.2.15, this is equivalent to finding a critical point of Ej−Eρ.
In [189], I prove that, when j dominates ρ, the functional Ej −Eρ admits a
unique critical point. Thus, the map Ψρ gives the required homeomorphism.
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Note that the proof associates to a dominating pair (j, ρ) a canonical
choice of complex structure J (the critical point of Ej −Eρ) and a canonical
(j, ρ)-equivariant contracting map from H2 to X (the map fJ,ρ ◦ f−1

J,j ). This
can be interpreted as a uniqueness result for maximal spacelike surfaces in
some pseudo-Riemannian setting: Endow the space H2×X with the pseudo-
Riemannian metric gH2 ⊕−gX , acted on by Γg via the representation j × ρ.
The graph of a (j, ρ)-equivariant contracting map is a Γg-invariant spacelike
disc in H2×X. The canonical contracting map is the unique one whose graph
is maximal (i.e. has maximal area modulo Γg), and the complex structure J
is given by the conformal class of the pseudo-Riemannian metric restricted
to this maximal disc.

3.2.3 Application 2: Convex RP2-structures

Recall that a proper convex domain in RP2 is an open domain which is
convex and bounded in an affine chart. Such domains can be endowed their
Hilbert distance, which proves to be a useful tool to study discrete group
actions on projecive spaces (see Section 1.3.3).

Let now ρ be a Hitchin representation of Γg into PSL(3,R). By a theorem
of Choi and Goldman [43], ρ acts properly discontinuously and cocompactly
on a proper convex domain Ωρ ⊂ RP2. The Hilbert length spectrum of ρ then
coincides with its highest weight length spectrum (see Section 1.3.3), which
we simply denote here by Lρ.

By the work of Labourie and Loftin [133, 119], the energy functional Eρ
on Tg has a unique critical point. In [190], I prove the following comparison
result:

Theorem 3.2.24. Let ρ be a Hitchin representation of Γ into PSL(2,R),
and let j be the Fuchsian representation corresponding to the unique critical
point of Eρ. Then either ρ = ι3 ◦ j or there exists λ > 1 such that

Lρ ≥ λLj .

As a corollary, one obtains a sharp version of the collar lemma of Lee–
Zhang [129] in rank 3:

Corollary 3.2.25. Let γ, η ∈ [Γ] be two essentially intersecting closed curves
on Σg. Then

sinh

(
Lρ(γ)

2

)
· sinh

(
Lρ(η)

2

)
> 1 .

The proof of this theorem uses an auxiliary Riemannian metric hB called
the Blashke metric. This metric comes from the theory of affine spheres. Very
briefly, for every proper convex Ω domain in RPn, one can find a canonical
smooth convex hypersurface in the cone of Ω in Rn+1 asymptotic to its
boundary, called the affine sphere (which solves a certain Monge-Ampère
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equation). The affine second fundamental form of this affine sphere is the
Blaschke metric. Calabi [38] proved that the Ricci curvature of the Blaschke
metric is non-positive and at least −(n− 1)hB.

When Ωρ ⊂ RP2 is invariant under a Hitchin representation ρ, the affine
sphere and the Blaschke metric are invariant under ρ(Γ) and are related to
minimal surfaces in the following way: the conformal class of the Blaschke
metric is the unique critical point of the energy functional Eρ on Tg, and the
associated conformal harmonic map to the symmetric space of PSL(3,R) is
some sort of “Gauss map” of the affine sphere [133, 119].

The proof of the inequality Lj ≤ Lρ can now be broken into two pieces.
On one side, using a classical maximum principle together with the curvature
bound of Calabi, one shows that the Blaschke metric is everywhere greater
than the conformal hyperbolic metric. One the other side, we show that the
length spectrum of ρ with respect to the Blaschke metric is less than the
length spectrum with respect to the Hilbert metric. This last point comes
from the following lemma:

Lemma 3.2.26. Let Ω be a proper convex domain of RPn and let dH and
dB denote respectively the Hilbert and Blaschke distances on Ω. Then, for
all x, y ∈ Ω, we have

dB(x, y) < dH(x, y) + 1 .

Remark 3.2.27. Lemma 3.2.26 is also at the core of my theorem on volume
growth of Hilbert geometries (Theorem 1.3.17).

3.2.4 Application 3: maximal representations in rank 2

Our investigation of higher Teichmüller spaces in relation to minimal
surfaces was pursued in a joint work with Brian Collier and Jérémy Toulisse,
where we generalize many of the results of the previous section to maximal
representations in rank 2.

Recall first that, by work of Burger–Iozzi–Wienhard, maximal represen-
tations take value into Hermitian Lie groups of tube type. In rank 2, this
essentially reduces our study to the familly G = SO0(2, d), d ≥ 2. Note in
particular the exceptional isomorphisms

PSL(2,R)× PSL(2,R) ' PSO0(2, 2) ,

PSp(4,R) ' SO0(2, 3) ,

PU(2, 2) ' PSO0(2, 4) .

We prove the following results:

Theorem 3.2.28 (Collier–Tholozan–Toulisse [45]). Let ρ be a maximal rep-
resentation of Γg into SO0(2, d). Then the energy functional Eρ has a unique
critical point. Moreover the associated equivariant conformal harmonic map
into the symmetric space of SO0(2, d) is an embedding.
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Theorem 3.2.29 (Collier–Tholozan–Toulisse [45]). Let ρ be a maximal rep-
resentation of Γg into SO0(2, d). Let j be the Fuchsian representation corre-
sponding to the unique critical point of Eρ. Then

Lj ≤ Lρ .

Here, Lρ denotes again the highest weight length spectrum of a representa-
tion ρ : Γg → SO0(2, d) ⊂ SL(d+ 2,R).

As a corollary, we obtain a sharp collar lemma identical to Corollary
3.2.25 for maximal representations into SO0(2, d), as well as an upper bound
on their highest weight entropy:

Corollary 3.2.30. Let ρ be a maximal representation of Γg into SO0(2, d).
Then its highest weight entropy satisfies

H (ρ) ≤ 1 ,

with equality if and only if ρ is Fuchsian.

The central idea of our work is to consider maximal representations into
SO0(2, d) acting on the pseudo-hyperbolic space H2,d−1. With this point of
view, ρ-equivariant maximal spacelike embeddings into H2,d−1 play the role
of affine spheres in the previous section. We prove the following:

(1) Every critical point of Eρ corresponds to a ρ-equivariant maximal
spacelike embedding of Σ̃g into H2,d−1, the Gauss map of which gives
a minimal embedding into the symmetric space of SO0(2, d).

(2) There is a unique such maximal spacelike embedding.
(3) The metric induced on Σg by this maximal spacelike embedding has

curvature greater or equal to −1, and its length spectrum is less or
equal to the length spectrum of ρ.

The point (1) follows from interpreting the cyclic structure of the Higgs
bundle associated to ρ on (Σg, J) when J is a critical point of Eρ. Point (2)
is a variation on an argument given by Bonsante and Schlenker for maximal
spacelike surfaces in H2,1. Roughly speaking, one applies a maximum prin-
ciple to the “height” of a maximal surface with repsect to another one. This
makes sense because the pseudo-Riemannian nature of the metric imposes
a strong geometric control on spacelike manifolds of maximal dimension.
Finally, Point (3) follows from classical inequalities for minimal surfaces in
hyperbolic spaces which are all reversed here because of the mixed signature.

Let me finally mention a further application of our work: Recall that
maximal representations ρ : Γg → SO0(2, d) are Anosov with respect to the
stabilizer of an isotropic line. The associated limit curve is the boundary
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at infinity of our ρ-invariant spacelike disc D in H2,d−1. Now the work of
Guichard–Wienhard [84] associates to ρ a cocompact domain of discontinu-
ity Ωρ in the space of totally isotropic planes in R2,d, which consists of all
isotropic 2-planes that do not intersect the limit curve. In [45], we show
that every totally isotropic plane in Ωρ is orthogonal to a unique point in
D. This defines a ρ-equivariant geometric fibration from Ωρ to D and al-
lows us to describe the topology of ρ(Γ)\Ωρ, which is not accessible with
Guichard–Wienhard’s construction.

3.2.5 Conjectural properties of higher Teichmüller spaces

The uniform controls on the length spectrum of Hitchin representations
into PSL(3,R) and maximal representations in rank 2 that were presented
in the previous sections motivate the following general conjecture:

Conjecture 3.2.31. Let T̂ ⊂ X(Γg, G) be a Higher Teichmüller space. Then
there exists a constant C > 0 such that, for any ρ ∈ T̂ , there exists a Fuchsian
representation j such that

Lρ ≥ CLj .

Remark 3.2.32. Here Lρ denotes the length spectrum for some metric on
the symmetric space of G and the constant C depends on the choice of this
metric. In practice, for each higher Teichmüller space, one could hope for a
sharp result with a suitable choice of length spectrum.

As in the previous sections, the conjecture would imply that the entropy
of ρ (for the corresponding choice of length spectrum) is bounded above by
1
C . In fact, Theorem 8 provides a crude upper bound for the entropy of
Anosov representations, since the Hausdorff dimension of their limit curve
is at most the dimension of the flag variety they live in. In [158], Potrie–
Sambarino have given a sharp bound on the highest weight entropy of Hitchin
representations in SL(n,R), and the recent work of Pozzetti–Sambarino–
Wienhard [159] implies that the simple weight entropy of any Θ-positive
representation is at most 1.

The conjecture would also imply a collar lemma for all representations
in T̂ . Such a collar lemma was proven by Lee–Zhang for Hitchin repre-
sentations [129], by Burger–Pozzetti for maximal representations [37], and
recently by Pozzetti–Beyrer for Θ-positive representations [25]. In a forth-
coming work, we will prove a collar lemma for all length spectra associated
to positive cross-ratios.

3.3 Bounded relative character varieties

In this short section, I present my recent works with Bertrand Deroin [56]
and Jérémy Toulisse [193], which construct compact relative components in
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relative character varieties of punctured spheres into Lie groups of Hermitian
type. These results will be put in persective in Section 3.4.3.

3.3.1 Relative character varieties into PSL(2,R)

Bertrand and I discovered the existence of these bounded relative com-
ponents while trying to design a notion of Euler class for representations of
surface groups with boundaries with nice additive properties.

The Toledo invariant, which can be defined for surfaces with boundary
using relative cohomology (see [36]), already provides a good generalization
of the Euler class to surfaces with boundary, but a drawback is that it does
not take integral values anymore. Adding a correction term given by (a
determination in the interval [0, 2π] of) the rotation numbers of the images
of boundary curves, one obtains an integral valued invariant which we call
the relative Euler class for representations ρ : Γg,n → PSL(2,R).

By a topological recurrence, we proved that the relative Euler class sat-
isfies the Milnor–Wood inequality for surfaces of positive genus. In contrast,
for an n-punctured sphere, the Euler class can take the value n − 1. This
singles out relative components which we called supra-maximal. We proved
in [56] that these components have remarkable properties.

Theorem 3.3.1 (Deroin–Tholozan [56]). Let ai, 1 ≤ i ≤ n be rotations of
angle 2π − αi in PSL(2,R) ' Isom+(H2). If 0 < αi < 2π and

∑n
i=1 αi <

2π, then the subset of Xa(Γ0,n,PSL(2,R) of relative Euler class n − 1 is a
compact connected component symplectomorphic to CPn−3 with a multiple of
the Fubini–Study symplectic form. Moreover the representations ρ in these
components satisfy the following properties:

(1) The MCG0,n-orbit of [ρ] ∈ Ω is bounded,
(2) The image by ρ of any simple closed curve has all its eigenvalues of

module 1,
(3) For every complex structure J on Σ0,n, there exists a ρ-equivariant

holomorphic map from (Σ̃0,n, J) to H2.

Remark 3.3.2. The second property contrasts with a lemma of Gallo–Kapovich–
Marden for closed surface group representations into PSL(2,C) [64].

3.3.2 Higher rank Hermitian Lie groups

Concomitantly to my work with Bertrand, Gabriele Mondello essentially
classified the topology of relative character varieties of punctured surfaces
into PSL(2,R) using the parabolic non-Abelian Hodge correspondence [150].
He could in particular recover our results using parabolic Higgs bundles.
This approach motivated Jérémy Toulisse and I to search for compact relative
components into the moduli spaces of parabolic Higgs bundles for higher rank

128



Lie groups. We managed to prove their existence for most of the classical
Lie groups of Hermitian type:

Theorem 3.3.3 (Tholozan–Toulisse [193]). Let G be one of the Lie groups
PU(p, q), Sp(2k,R) or SO∗(2k). For all n ≥ 4, there exists an open set
Ω ⊂ X(Γ0,n, G) which is a union of compact connected components of relative
character varieties. Moreover, the representations ρ in Ω have the following
properties:

(1) The MCG0,n-orbit of [ρ] ∈ Ω is bounded,
(2) The image by ρ of any simple closed curve has all its eigenvalues of

module 1,
(3) For every complex structure J on Σ0,n, there exists a ρ-equivariant

holomorphic map from (Σ̃0,n, J) to the symmetric space of G.

Though the proof of this Theorem is less constructive than that of Theorem
3.3.1, for some specific choices of parameters, we gave a nice description of
these compact components as certain quiver varieties.

These results give an idea of what could be the general properties of
bounded mapping class group orbits in (relative) character varieties. This
opens a research project which is discussed in Section 3.4.3.

3.4 Research perspectives

To conclude this chapter, I would like to mention three of my ongoing
research projects which pursue the study of surface group representations in
several different directions. Section 3.4.1 presents a project which aims at
reproducing the framework of Teichmüller theory in an infinite dimensional
space which “contains” all higher Teichmüller spaces. In Section 3.4.2, I
mention partial results toward Goldman’s conjecture on branched hyperbolic
metrics (Conjecture 3.1.15). Finally, in Section 3.4.3, I describe a conjectural
picture of bounded mapping class group orbits which puts in perspective the
results presented in the previous section.

3.4.1 Highest Teichmüller theory

As mentioned previously, a constant preoccupation of higher Teichmüller
theorists is to extend the beautiful geometry of the Teichmüller space to
higher Teichmüller spaces. Though the approach via Higgs bundles via
Labourie’s conjecture is promissing, there has been very little progress in
this direction beyond the rank 2 case discussed above.

In my lecture notes [192], I propose a new approach which consists in em-
bedding higher Teichmüller spaces into and infinite dimensional deformation
space of dynamical systems. This bears similarities with Labourie’s work
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[119] and is strongly related to Bridgeman–Canary–Labourie–Sambarino’s
construction of the pressure metric on Hitchin components [31, 32]. The
primary interest of my approach is to propose three different constructions
of a highest Teichmüller space, one of which does carry a “Teichmüller ge-
ometry”. My hope is that the geometric features of this highest Teichmüller
space restrict nicely to higher Teichmüller components. Though this last step
seems the hardest, I believe that the study of the geometry of this highest
Teichmüller space is interesting in its own way.

The results of this section are partly prospective. The framework, pre-
sented in [192], is not entirely new and consists in gathering works of Bowen
[29], Margulis [140], Sullivan [183] or Ledrappier [127]. I will also mention
some future work which investigates further the geometry of these higher
Teichmüller spaces.

In all this section, we fix Σ a closed surface of genus g ≥ 2, which
we equip with an arbitrary hyperbolic metric. We denote by T1Σ its unit
tangent bundle, and by ϕ the geodesic flow on T1Σ. Recall that the set
of closed orbits of ϕ (with multiplicity), is the set of closed geodesics and
identifies with the set [Γ] of non-trivial conjugacy classes in Γ.

Reparametrizations of the geodesic flow

The first and least original of our highest Teichmüller spaces is the space
of continuous reparametrizations of the geodesic flow ϕ of entropy 1. The
description of it we give here seems to date back to the work of Bowen.

A continuous reparametrization of ϕ is a flow ψ on T1Σ with the same
orbits and same orientation as ϕ. One can associate to ψ its period map:

Lψ : [Γ]→ R>0

which associates to every closed geodesic the time taken by ψ to run through
it. The period map almost characterizes the conjugacy class of ψ:

Theorem 3.4.1 (Bowen, Livsic [132]). If two reparametrizations ψ1 and ψ2

have the same period map, then ψ2 is a uniform limit of conjugates of ψ1. If
moreover ψ1 and ψ2 are Hölder continuous, then they are conjugate.

By work of Bowen, the topological entropy H (ψ) of a reparametrization
ψ equals the exponential growth rate of its period map:

H (ψ) = lim
R→+∞

1

R
log ]{[γ] ∈ [Γ] | Lψ(γ) ≤ R} .

The topological entropy gives a way to “normalize” a reparametrization: if
ψ has entropy λ, then the scaled flow

ψλ(x, t) = ψ(x, λt)

has entropy 1.
Let us introduce the following spaces:
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— The space Par(Σ) of reparametrizations of the geodesic flow modulo
the equivalence relation

ψ1 ∼ ψ2 ⇐⇒ Lψ1 = Lψ2 ,

— The subspace Par1(Σ) of reparametrizations of entropy 1,
— The projectivized space PPar(Σ) of reparametrizations up to scaling,
— The subset Parh1(Σ) of Hölder reparametrizations.

Definition 3.4.2. Our first highest Teichmüller space is the space Par1(Σ),
which is canonically homeomorphic to PPar(Σ).

The space PPar(Σ) has the structure of an infinite dimensional Banach
manifold and carries a natural complete Finsler metric. More precisely,
Par(Σ) identifies with the positive cone in the Banach space of cohomol-
ogy classes of continuous cocycles along ϕ, and its projectivisation is thus an
infinite dimensional convex projective domain which can be endowed with
its Hilbert distance dHilb. In [192], I remark that this Hilbert distance is the
analog of the symmetrized Thurston distance on Tg:

Proposition 3.4.3. Given [ψ1] and [ψ2] ∈ PPar(Σ), we have

dHilb(ψ1, ψ2) =
1

2

(
sup
γ∈[Γ]

log

(
Lψ2(γ)

Lψ1(γ)

)
+ sup
γ∈[Γ]

log

(
Lψ1(γ)

Lψ2(γ)

))
.

The set Par1(Σ) is a convex hypersurface in Par(Σ) which intersects every
ray at a single point. The thermodynamical formalism, developed by Ruelle
[167] and many others, gives the main properties of the entropy functional
in restriction to Hölder reparametrizations:

Theorem 3.4.4. The set Parh1(Σ) = Par1(Σ)∩Parh(Σ) is smooth in Parh(Σ)
with positive definite radial second fundamental form.

Definition 3.4.5. The radial second fundamental form of Par1(Σ) (when
defined) is called the pressure metric.

Here, the radial second fundamental form refers to the second fundamental
form of Par1(Σ) when taking the radial vector field as a basis for the normal
bundle to Par1(Σ). 2

It is a well-known fact that the geodesic flow of any negatively curved
metric on Σ is conjugate to a reparametrization of the geodesic flow on our
fixed hyperbolic structure. This has two consequences:

2. Though the hypersurface of entropy 1 does not solve (to my knowledge) any sort of
Monge–Ampère equation, there is some analogy here with the theory of affine spheres. In
fact, Lemma 3.2.26, which does not use any analytic property of the affine sphere, applies
here and gives a comparison between the pressure and symmetrized Thurston distances.
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— The construction and geometry of Par(Σ) are in fact independent of
the choice of a hyperbolic structure on Σ, and are thus preserved by
an action of the mapping class group of Σ,

— The Teichmüller space T (Σ) (and more generally the space of nega-
tively curved metrics, see [154]) embeds in Parh1(Σ).

Moreover, McMullen proved in [144] that the restriction of the pressure met-
ric to the image of T (Σ) coincides with (a multiple of) the Weil–Petersson
metric.

More generally, one can associate to an Anosov representation ρ : Γg → G
certain Hölder reparametrizations of the geodesic flow ψρ whose period map
satisfies

Lψρ(γ) = α(λ(ρ(γ)))

For certain linear forms α on the Weyl chamber of G. (Here, λ denotes the
Jordan projection.) Precisely which such forms α give rise to reparametriza-
tions of the geodesic flow an when the corresponding map ρ 7→ [ψρ] is
an immersion depends greatly on the Anosov property and the structure
of the group G. Two particularly interesting cases have been studied by
Bridgeman–Canary–Labourie–Sambarino:

Theorem 3.4.6 (Bridgeman–Canary–Labourie–Sambarino [31, 32]). There
exists an embedding

In : Hitn → PParh(Σ)

such that for all ρ ∈ Hitn and all γ ∈ [Γ],

LIn(ρ)(γ) = λ1(ρ(γ)) .

There also exists an embedding 3

Jn : Hitn → Parh1(Σ)

such that for all ρ ∈ Hitn and all γ ∈ [Γ],

LJn(ρ)(γ) = λ1(ρ(γ))− λ2(ρ(γ)) = Lsw
ρ (γ) .

Remark 3.4.7. The highest weight length spectrum of a Hitchin represen-
tation is also given by some reparametrization, but the corresponding map
I ′n : Hitn → PPar(Σ) is not an embedding because a representation ρ has the
same highest weight length spectrum as its image by the outer automorphism
of PSL(n,R).

3. The fact that the simple weight entropy of Hitchin representations equals 1 is due
to Potrie–Sambarino [158].
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These embeddings of Hitn allow the authors to construct pressure metrics
on Hitn by pulling back the pressure metric on PParh(Σ). By McMullen’s
theorem, these metrics restrict to the Weil–Petersson metric on the Fuchsian
locus. The pressure metric on the tangent space to Hitn at a Fuchsian point
was computed by Labourie and Wentworth [124]. It is not known whether
these pressure metrics are Kähler for some complex structure on Hitn.

Teichmüller space of the stable foliation

Recall that the geodesic flow ϕ on T1Σ preserves a 2-dimensional foliation
Ws, called the weakly stable foliation, such that two points in the same leaf
remain at bounded distance under the flow for positive time. This foliation
is also the weakly stable foliation of any Hölder reparametrization of ϕ.
Our second avatar of a highest Teichmüller space is the space of complex
structures on the foliation Ws.

A foliated complex structure (resp. foliated hyperbolic structure) onWs is
the data of a complex structure (resp. a hyperbolic metric) along the leaves
of Ws, which varies continuously with the leaf. Two such structures are
called homotopic if one is the image of the other by a homotopy preserving
the leaves. The uniformization theorem of Poincaré–Koebe was generalized
to 2-dimensional foliations by Candel [40]. In our context, Candel’s theorem
shows that any foliated complex structure onWs admits a unique conformal
foliated hyperbolic metric.

Definition 3.4.8. Our second highest Teichmüller space is the space T (Ws)
of homotopy classes of foliated complex structures (or equivalently, of foliated
hyperbolic metrics) on Ws.

Teichmüller spaces of foliations were introduced by Sullivan in [183] where
he proves that these spaces carry most of the geometry of classical Teich-
müller spaces.

Theorem 3.4.9 (Sullivan [183]). The space T (Ws) is an infinite dimen-
sional complex Banach manifold, biholomorphic to an open bounded domain
in the space of foliated holomorphic quadratic differentials. It carries a com-
plete Finsler metric, analogous to the classical Teichmüller metric.

Sullivan had the intuition that foliated Teichmüller spaces parametrized
certain moduli spaces of dynamical systems. He constructs for instance a cor-
respondence between dilating C1 self maps of the circle and foliated complex
structures on a 2-dimensional lamination associated to the solenoid. In the
same spirit, Cawley studies in [42] the “Teichmüller space” of Anosov diffeo-
morphisms of the torus. In [192], we establish the correspondence between
foliated complex structures on Ws and reparametrizations of the geodesic
flow of entropy 1. Denote by T h(Ws) the dense subset of foliated complex
structures that are transversally Hölder regular.
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Theorem 3.4.10 (Tholozan [192]). There is a continuous map

CF : T (Ws)→ Par1(Σ)

which induces a bijection between T h(Ws) and Parh1(Σ).

The construction of CF relies on the fact that each leaf of Ws has a pre-
ferred “point at infinity”. To a foliated hyperbolic metric, one can associate
the flow which follows geodesics going to this point at infinity. This flow is
conjugate to a reparametrization of the geodesic flow. Note that this foli-
ated hyperbolic metric similarly defines a “foliated horocyclic flow”, which
follows on each hyperbolic leaf the horocycles tangent to the preferred point
at infinity.

To construct an inverse to CF, one needs, given a reparametrization ψ
of the geodesic flow, to recover a horocyclic flow h such that

ψt ◦ hs ◦ ψ−t = he−ts .

This flow is constructed by desintegrating the Bowen–Margulis measure of
ψ along the strongly stable leaves. These are well-defined when ψ is Hölder
continuous. The fact that the desintegrated Margulis measures are scaled by
et under ψt precisely means that ψ has entropy 1 (see [140]).

The main motivation behind Theorem 3.4.10 is to (re)introduce complex
geometry into higher Teichmüller theory. In particular, we will show in a
future work that the pressure metric on Par1(Σ) becomes an infinite dimen-
sional Weil–Petersson metric on T (Ws). To be more precise, let us first say a
few words about the tangent space to T (Ws) at a foliated complex structure
J . Like in the classical setting, this tangent space can be seen as the space
H1(K−1

J ) of ∂̄-cohomology classes of foliated Beltrami differentials. Through
Theorem 3.4.9 (which is based on the Bers embedding of Teichmüller space),
it can also be seen as the space H0(K2

J) of foliated holomorphic quadratic
differentials.

In the classical setting, the space H0(K2
J) is naturally dual to H1(K−1

J ),
so that their identification is given by a Hermitian metric which is precisely
the Weil–Petersson metric. In the foliated setting however, while one can still
pair a Beltrami differential with a quadratic differential pointwise, a measure
on the whole space T1Σ is needed in order to turn this into a duality.

Fortunately, if we assume that J is transversally Hölder, there is a pre-
ferred measure µJ on (T1Σ, J) called the harmonic measure, which cor-
responds to the unique probability measure of maximal entropy for the
reparametrized flow CF(J). Using this measure we can define and analog of
the Weil–Petersson metric of T (Ws):
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Definition 3.4.11. The Weil–Petersson metric on T (Ws) at a foliated hy-
perbolic metric ghyp is given by

hWP (ϕ,ϕ) =

∫
T1(Σ)

ϕϕ̄

g2
hyp

dµJ ,

where ϕ is a foliated holomorphic quadratic differential.

In a forthcoming work, adapting techniques of McMullen [144] (see also
[124]), we will prove that this Weil–Petersson metric corresponds via CF to
the pressure metric.

Theorem 3.4.12. The map CF : T h(Ws)→ Parh1(Σ) is C1 and

CF∗hpressure = λhWP ,

for some constant λ which will be explicitly computed.

I hope this result is convincing enough of the relevance of studying the space
T (Ws) as a highest Teichmüller space. This raises two main questions.

Question 3.4.13. Is the metric hWP a Kähler metric ?

Question 3.4.14. Does Hitn embed into T (Ws) as a holomorphic subman-
ifold ?

A positive answer to both questions would imply the existence of a mapping
class group invariant complex structure on Hitn for which the pressure metric
is Kähler.

There exist various proofs that the Weil–Petersson metric on the classical
Teichmüller spaces is Kähler, and we strongly hope that one of these proofs
can be generalized to the foliated setting. Question 3.4.14, on the other side,
seems much harder to address because the embedding of Hitn into T (Ws)
factors through the map CF−1, which is hardly computable since it requires
finding the Bowen–Margulis measure associated to a reparametrization. We
actually have little reason to hope for a positive answer, beyond the following
prelimilary result, which follows from Labourie–Wentworth [124]:

Proposition 3.4.15. The tangent space to Hitn at a Fuchsian point is a
complex subspace of the tangent space to T (Ws).

Diffeomorphisms of the circle

Our third avatar of a highest Teichmüller space is a certain space of C1

actions of Γg on the circle. It is meant to generalize the identification of Tg
with the component of maximal Euler class in X(Γg,PSL(2,R)).

Recall that PSL(2,R) is isomorphic to PU(1, 1), which acts by homo-
graphies on the unit circle S1 ⊂ C. The Euler class of a representation ρ
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into PU(1, 1) is the Euler class of the flat S1-bundle associated to ρ, seen as
an oriented circle bundle. This definition readily extends to representations
into the group Homeo+(S1) of orientation preserving homeomorphisms of
the circle.

The Euler class of a representation ρ : π1(Σ)→ Homeo(S1) still satisfies
the Milnor–Wood inequality |eu(ρ)| ≤ 2g − 2 [208]. Moreover, representa-
tions of maximal Euler class have the following characterization:

Theorem 3.4.16 (Matsumoto [143]). Let j : π1(Σ) → PU(1, 1) be a Fuch-
sian representation and ρ : π1(Σ) → Homeo+(S1) a representation of Euler
class 2g − 2. Then ρ is semi-conjugate to j.

Under some regularity hypotheses, this rigidity theorem admits the following
stronger generalization:

Theorem 3.4.17 (Ghys [68]). Let ρ be a representation of π1(Σ) into the
group Diffk(S1) of diffeomorphisms of class Ck, with k ≥ 3. Then there exists
a Fuchsian representation j : π1(Σ) → PU(1, 1) such that ρ is conjugate to
j by a diffeomorphism of class Ck.

Remark 3.4.18. According to Bertrand Deroin this result is likely to hold in
regularity C2.

Let us denote by Diff(S1) the group of diffeomorphisms of S1 of class C1,
by Diffh(S1) the subgroup of diffeomorphisms with Hölder derivatives and by
Diffk(S1) the subgroup of diffeomorphisms of class Ck. If G is a subgroup of
Homeo(S1) with a topology, define X(Γg, G) to be the largest Hausdorff quo-
tient of Hom(Γg, G) under the conjugation action of G, and by Xmax(Γg, G)
the subset of representations with maximal Euler class. The above rigid-
ity theorems state that Xmax(Σg,Homeo(S1)) is reduced to a point while
Xmax(Γg,Diffk(S1)) = XFuchs(Γg,PSL(2,R)) for k ≥ 3.

The C1 regularity turns out to be much richer: as we will see, the space
X(Γg,Diff(S1)) “contains” the space of reparametrizations of the geodesic
flow. To be more precise, let us introduce a subclass of maximal representa-
tions.

Proposition-Definition 3.4.19. Let ρ be a representation of Γg into Diff(S1).
The following properties are equivalent:

— ρ has extremal Euler class, acts minimally on S1 and is expanding,
i.e. for all x ∈ S1, there exists γ ∈ Γg such that

|ρ(γ)′(x)| > 1 ,

— ρ is Hölder conjugate to some (hence any) Fuchsian representation.
We call such a representation an Anosov representation into Diff(S1).

Let Xan(Σ,Diff(S1)) denote the open set of equivalence classes of Anosov
representations of π1(Σ) into Diff(S1), and by Xan(Σ,Diffh(S1)) the dense
subset of Anosov actions with Hölder derivatives.
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Theorem 3.4.20. There is a continuous surjective map

DF : Xan(Σ,Diff(S1))→ Par1(Σ)

which restricts to a bijection from Xan(Σ,Diffh(S1)) to Parh1(Σ).

Given a representation ρ : π1(Σ) → Diff(S1), define the period map of ρ
by

Lρ : [Γ] → R+

γ 7→ − log (ρ(γ)′(γ+)) ,

where γ+ denotes the attracting fixed point of ρ(γ) on S1. Then the map
DF preserves periods, i.e. LDF(ρ) = Lρ. This characterizes DF.

While the construction of the map DF is rather explicit, its converse
relies once again on the existence of Margulis measures. More precisely, the
desintegration of the Bowen–Margulis measure on strongly unstable leaves
of a reparametrization ψ define a C1 structure 4 on the space of stable leaves
∂∞Γg, which one can see as a C1 action of π1(Σ) on the circle which is
topologically conjugate to a Fuchsian action.

The surjectivity of DF in general requires to carefully check what persists
of Margulis construction in the absence of the Hölder regularity hypotheses.
It is unclear whether DF is injective. We have reasons to believe that there
exist distinct Anosov actions ρ1 and ρ2 on S1 which are not C1-conjugate
but have the same periods. However, in this situation, it is plausible that
ρ2 is a limit of conjugates of ρ1, so that the two would be identified in the
Hausdorff quotient Xan(Σ,Diff(S1)).

An important component of Ghys’s rigidity theorem (Theorem 3.4.17)
is that every representation of π1(Σ) into Diffk(S1), k ≥ 3 with maximal
Euler class is Anosov in the sense of Definition 3.4.19. In particular such an
action is minimal [67]. An interesting question is whether this result extend
to C1 regularity. We will answer it negatively in a forthcoming work with
Ghazouani and Dal’bo:

Theorem 3.4.21 (Dal’bo–Ghazouani–Tholozan). There exist
— representations ρ : π1(Σ) → Diff(S1) of maximal Euler class which

act minimally on S1 but are not dialating,
— representations ρ : π1(Σ) → Diff(S1) of maximal Euler class with an

exceptional minimal set of positive measure,
— representations ρ : π1(Σ) → Diff(S1) of maximal Euler class with an

exceptional minimal set of measure 0.

In order to construct such examples, one wants to understand limits
of Anosov representations into Diff(S1). Our analogy with Anosov repre-
sentations into linear groups turn out to be fruitful here: we obtain these

4. Alternately, one can get this C1 structure via a Patersson–Sullivan construction.
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examples using Patterson–Sullivan measures associated to discrete and faith-
ful representations of π1(Σ) into PSL(2,C) that are limits of quasi-Fuchsian
representations.

We plan to investigate further these examples, and hope to obtain a clear
description of all maximal representations into Diff(S1).

3.4.2 Branched hyperbolic structures with prescribed holon-
omy

Recall that Goldman conjectured that every faithful representation ρ :
Γg → PSL(2,R) of Euler class k ≥ 1 should be the holonomy of a hyperbolic
structure on Σg with 2g − 2− k branched points.

There are at least three tools that might help tackle this conjecture:

— Geometric surgery: The perhaps most natural approach would
consist in cutting Σg into smaller pieces in restriction to which ρ is
the holonomy of a branched hyperbolic structure (with a controlled
behaviour at the boundary components), and then glue these pieces
together via some “hyperbolic surgery”. One can invent many such
surgeries, but the difficult part in this approach is to find the appro-
priate decomposition of Σg.

— Apply mapping class group transformations: In order to im-
plement the first approach, one might want to move in the space
of “decompositions” of Σg by applying a well-chosen mapping class
group transormation. Equivalently, one might try to replace ρ by
its image under a mapping group element. Good recurrence prop-
erties of this action might help get close enough to a representation
that we understand well, and conclude using the fact that holonomies
of branched hyperbolic structures form an open MCG(Σg)-invariant
set. In particular, Golman’s ergodicity conjecture (Conjecture 3.1.11)
would imply that holonomies of branched hyperbolic structures form
a subset of full measure in Xk(Γg,PSL(2,R)), k ≥ 1.

— Minimizing the energy functional: Finding a branched hyper-
bolic structure with holonomy ρ is equivalent to finding a complex
structure J on Σg, such that the unique ρ-equivariant harmonic map
fJ,ρ is holomorphic.This is a special case of the problem of finding a
branched minimal immersion. As explained in Section 3.2.1, it boils
down to proving that the energy functional Eρ admits a critical point.
Unfortunately, this energy functional is not proper unless ρ is Fuch-
sian. In fact, its set of minima is a (possibly empty) holomorphic
submanifold of dimension 2g − 2− eu(ρ).
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With Bertrand Deroin, we have been working on a combination of these
three approaches. At the price of a lot of technicality, we believe we managed
to prove the following theorem:

Theorem 3.4.22 (Deroin–T.). Let ρ : Γg → PSL(2,R) be a representation
of Euler class 2g − 3. Then ρ is the holonomy of a hyperbolic structure on
Σg with one branched point.

3.4.3 Bounded mapping class group orbits

While studying branched hyperbolic metrics on surfaces, Bertrand Deroin
and I discovered somehow serendipitously the existence of our “supra-maximal”
representations of the fundamental group of a punctured sphere into PSL(2,R).
Poundering on those examples lead us to question more generally the proper-
ties of bounded mapping class group orbits in character varieties. This opens
a broad research program which is still at its early stages. We conclude this
chapter by outlining this program.

In this section, we consider more generally representations of a surface
group with punctures. A first motivation for that is to have more examples
(including those constructed in [56] and [193]) in hope that understanding
their common features will give us a better intuition of the general under-
lying phenomena.A second motivation is that the class of representations
with bounded mapping class group orbits is stable under restriction to a
subsurface, so that one can hope to understand them via a “cutting/gluing”
operation which already played an important role in [56].

Let thus Σg,n be an oriented surface of genus g with n punctures, Γg,n
its fundamental group, and G a semisimple Lie group.

Definition 3.4.23. A representation ρ : π1(Σ) → G has bounded mapping
class group orbit if

{σ · [ρ], σ ∈ MCGg,n}

is contained in a compact subset of X(Σg,n, G).

Diverse examples

Let us start by giving various examples of such bounded orbits.

Representations into compact groups: The first and somehow trivial
example of a representation with bounded mapping class group orbit is a
representation with values into a compact subgroup of G. In fact, when ρ
takes values into a compact group, then the family

{ρ ◦ σ , σ ∈ Aut(Γg,n)}
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is bounded in Hom(Γg,n, G).
In contrast, the examples we further present do not take values into a

compact group and, while their Aut(Γg,n)-orbit is not bounded in Hom(Γg,n, G),
it becomes so after moding out by conjugation.

Fixed points and finite orbits: A particular type of bounded mapping
class group orbit consists of fixed points under the mapping class group
action. Though their existence (beyond the trivial representation) is far
from obvious, such fixed points are known to exist and arise from linear
representations of mapping class groups.

To be more precise, recall the existence of the Birman exact sequence:

1→ π1(Σg,n)→ MCGg,n+1 → MCGg,n → 1 .

The image of π1(Σg,n) in MCGg,n+1 consists of mapping class group elements
which move the last puncture around Σg,n, and the morphism MCGg,n+1 →
MCGg,n “forgets” the last puncture. The conjugation action of MCGg,n+1

gives an embedding MCGg,n+1 ↪→ Aut(Γg,n) such that Γg,n acts on itself by
inner automorphisms.

Let ρ be a representation of MCGg,n+1 into some linear group G. For all
γ ∈ Γg,n and all σ ∈ MCGg,n+1 ⊂ Aut(Γg,n), we have

ρ(σ · γ) = ρ(σ)ρ(γ)ρ(σ)−1

by the Birman exact sequence. It follows that the conjugacy class of ρ|Γg,n
in X(Γg,n, G) is fixed by the action of MCGg,n.

Conversely, let ρ be a representation of Γg,n into G whose conjugacy class
is a fixed point of the action of MCGg,n. Assume moreover that the image
of ρ has trivial centralizer. Then for every σ ∈ MCGg,n+1 ⊂ Aut(Γg,n), the
representation ρ ◦ σ−1 is conjugate to ρ by a unique element ρ̂(σ) ∈ G. One
easily verifies that ρ̂ is a representation of MCGg,n+1 which restricts to ρ
on Γg,n.

This shows that finding fixed points of the mapping class group action on
X(Σg,n, G) is essentially equivalent to finding representations of MCGg,n+1

into G. While one might be convinced from this remark that fixed points of
the mapping class group are abundant, I tend to see it as a justification why
mapping class group representations are hard to construct.

In any case, an interesting family of linear representations of MCGg,n+1

has been constructed by Reshetikhin and Turayev using Topological Quan-
tum Field Theory [164]. These representations typically take values into
some pseudo-Hermitian Lie group SU(r, s). Koberda and Santharubane re-
cently proved that the restrictions of (some of) those representations to Γg,n
are irreducible (in particular, they do not take value into a compact sub-
group) [113]. This provides, for every pair (g, n), an infinite family of fixed
points of MCGg,n parametrized by a root of unity q. However, the rank of
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these representations grows quickly with g, n, and q. Thus, TQFT, while
providing examples, is very far from giving a conjectural picture of the set of
fixed points of the mapping class group action in a given character variety.

More generally, finite orbits of the action of MCGg,n on X(Γg,n, G) cor-
respond to representations of finite index subgroups of MCGg,n+1. Finite
orbits of MCG0,4 acting on X(Γ0,4,PSL(2,C)) are realted to algebraic so-
lutions of Painlevé VI equations and have been classified by Lisovyy and
Tykhyy [130]. Little is known about them in higher rank or genus.

Bounded relative components for punctured spheres: While finite
mapping class group orbits are (at least conjecturally) scarce, Theorems 3.3.1
and 3.3.3 show that bounded mapping class group orbits might be much more
abundant, and do in fact cover open subsets of some character varieties in
genus 0.

Katz’s middle convolution: The middle convolution operation, intro-
duced by Katz in [99], provides a way to construct new bounded mapping
class group orbits in character varieties of punctured spheres. Introducing it
properly would bring us too far from our topic, so we will only briefly sketch
how it enters in the picture.

This operation transforms a local system on the punctured sphere Σ0,n

into another local system of different rank, by a process that ressembles
a Fourier–Mukai transform. What is remarkable for our purpose is that it
provides MCG0,n-equivariant isomorphisms between certain strata of relative
character varieties in SL(d,C) for different values of d.

Let now ρ be a representation of Γ0,n into a compact subgroup of SL(d,C).
By mapping class group equivariance, applying the middle convolution to
ρ gives a representation into some SL(d′,C) with bounded mapping class
group orbit. There are examples where the middle convolution maps repre-
sentations into a compact group to representations with unbounded images,
yielding non trivial bounded orbits.

Katz introduced the middle convolution in order to classify “rigid rep-
resentations”, i.e. relative strata which are reduced to a point. Note in
particular that these are fixed points of the mapping class group action.
Katz proved that they can all be obtained from a rank 1 local system by
applying iteratively the middle convolution. One could more generally hope
that bounded mapping class group orbits in character varieties of punctured
spheres can all be obtained by applying the middle convolution to represen-
tations into compact groups.

Though the middle convolution opertation does not generalize well to
surfaces we genus, Jérémy Toulisse and I may have found a similar construc-
tion which could produce examples of bounded orbits in character varieties
of closed surfaces.
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Conjectural picture

In this last section, we give a conjectural picture of bounded mapping
class group orbits based on the previous examples, and support it with pre-
liminary results obtained with Bertrand Deroin. These results are far from
taking written form and should be taken with caution.

Let us call a representation ρ : Σg,n → G ⊂ SL(d,C) cusp preserving
if the image of every peripheral curve has eigenvalues of module 1. This is
equivalent to the existence of a ρ-equivariant map of finite energy.

Proposition 3.4.24. Let ρ be a linear representation of Γg,n into G. The
following are equivalent:

(i) ρ is cusp preserving,
(ii) for every complex structure J on Σg,n, there exists a ρ-equivariant

map from (Σ̃g,n, J) to the symmetric space G/K of finite energy.

In the remainder of this section we only consider cusp-preserving repre-
sentations. The following lemma gives a motivation for that:

Lemma 3.4.25. Let ρ be a cusp preserving representation of Γg,n into
SL(d,C) with bounded mapping class group orbit. Then the image of any
simple closed curve γ has all its eigenvalues of module 1.

In other words, the class of cusp preserving representations with bounded
mapping class group orbit is stable under restriction to a subsurface.

Remark 3.4.26. There exist representations of Γ0,n into PSL(2,C) with finite
mapping class group orbit which are not cusp preserving.

To formulate our main conjecture, let us recall the definition of a complex
variation of Hodge structure, as defined in [178].

Definition 3.4.27. A (parabolic) Higgs bundle (E ,Θ) on a (punctured)
Riemann surface (Σg,n, J) is a complex variation of Hodge structure of weight
k if E admits a holomophic splitting as

E0 ⊕ . . .⊕ Ek

such that Θ maps Ei into KJ ⊗ Ei+1.

Remark 3.4.28. This terminology comes from Hodge theory: the cohomology
of a holomorphic family of projective varieties over a complex base B defines
a local system over B. The associated Higgs bundle over B is a variation of
Hodge structure in this sense, the splitting of which is given by the varying
Hodge decomposition of the cohomology of the fiber. The required property
of Θ follows from the Griffith transversality.
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Variations of Hodge structure are the fixed points of the natural action
of C∗ on the moduli space of Higgs bundles given by λ · (E ,Θ) = (E , λΘ),
and are thus the critical points of Hitchin’s energy functional ρ 7→ E(J, ρ).

We can now state our general conjecture for bounded mapping class group
orbits:

Conjecture 3.4.29. Let ρ be a cusp-preserving representation of Γg,n into
SL(d,C). Then the following are equivalent:

(i) The MCGg,n-orbit of [ρ] is bounded in X(Σg,n,SL(d,C)),
(ii) The energy functional Eρ on T (Σg,n) is constant,
(iii) For all complex structures J on Σg,n, the Higgs bundle over (Σg,n, J)

associated to ρ is a variation of Hodge structure.

The conjecture in examples: This conjecture is first motivated by the
examples discussed in Section 3.4.3.

— If ρ takes values in a compact group, then the energy functional Eρ
vanishes identically, and any Higgs bundle associated to ρ has van-
ishing Higgs field. It is thus a variation of Hodge structure of weight 0.

— The representations in compact relative components of character va-
rieties that we construct in [56] and [193] also have constant energy
functional. For every complex structure on Σ0,n, the associated ρ-
equivariant harmonic map to G/K is holomorphic, which transcribes
into the associated Higgs bundle being a variation of Hodge structure
of weight 1.

— Though this may require some clarification, it seems to follow from
Szabo’s work [184] that the Higgs bundle counterpart of Katz’s middle
convolution operation transforms a variation of Hodge structure of
weight k into a variation of Hodge structure of weight k + 1. Hence
the bounded orbits obtained by applying the middle convolution to
representations with values in compact groups should be variations
of Hodge structures.

Preliminary results: Conjecture 3.4.29 is also supported by some prelim-
inary results that we obtained with Bertrand Deroin. A first result is that a
bounded mapping class group orbit has bounded energy functional:

Lemma 3.4.30 (Deroin–Tholozan). Let ρ be a cusp-preserving representa-
tion of Γg,n into SL(d,C). Then the following are equivalent:

(i) The MCGg,n-orbit of [ρ] is bounded in X(Σg,n,SL(d,C)),
(ii) The energy functional Eρ on Tg,n is bounded.
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On the other side, the energy functionalEρ is known to be pluri-subharmonic
by a theorem of Toledo [198]. Using the fact that a pluri-subharmonic func-
tion that achieves its maximum is constant, we obtain the following

Theorem 3.4.31 (Deroin–Tholozan). ρ be a cusp-preserving representation
of Γg,n into SL(d,C) with bounded mapping class group orbit. Then there
exists [ρ′] in the closure of the orbit of [ρ] such that Eρ′ is constant. In
particular, if the action of MCGg,n on MCGg,n · [ρ] is minimal, then Eρ is
constant.

The next step is to study representations with constant energy functional.
These satisfy the equality in Toledo’s pluri-subharmonicity theorem, which
should imply some rigidity property. To make this more explicit, we found
a Gauge theoretical proof of Toledo’s subharmonicity adapted to the Higgs
bundle point of view. Understanding the equality case gives us that Higgs
bundles associated representations with constant energy functional are highly
critical points of the Hitchin fibration.

For a complex structure J on Σg, Let MHiggs(J, d) denote the moduli
space of semistable SL(d,C)-Higgs bundles on (Σg, J). Define

χiJ,d : MHiggs(J, d) → H0(Ki
J)

(E,Θ) 7→ Tr(Θi)
.

The Hitchin fibration [88] is the map (χ2, . . . , χd). It is a generic submersion
whose fibers are half dimensional abelian varieties.

Theorem 3.4.32 (Deroin–Tholozan). Let ρ : Γg,0 → SL(d,C) be a repre-
sentation and J be a critical point of Eρ such that the Hessian of Eρ at J
vanishes. Then the differential of χ2

J,d vanishes at the Higgs bundle corre-
sponding to ρ.

Though we haven’t been able yet to give a clear interpretation of the
above property, it implies for instance that the Higgs bundle (E,Θ) associ-
ated to (J, ρ) does not have a regular spectral curve. This is consistent with
the hope that Θ should be nipotent as it is the case in variations of Hodge
structures.

Higgs bundles over the moduli space: In the particular case of fixed
points of the Mapping class group action, Conjecture 3.4.29 is related to the
question of whether linear representations of mapping class groups are rigid.
Indeed, we have the following proposition, adapted from a classical argument
communicated to me by Jérémy Daniel:

Proposition 3.4.33. Assume that there exists a complex structure J on
Σg such that every fixed point of the action of MCGg on X(Σg, SL(d,C)) is
associated to a variation of Hodge structure on (Σg, J). Then the fixed locus
of MCGg in X(Σg, SL(d,C)) is finite.
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Proof. The character variety X(Σg, SL(d,C)) is defined over R. The locus of
fixed points of MCGg is a complex subvariety of X(Σg, SL(d,C)). If it has
positive dimension, it must contain points which are not real. On the other
side, every variation of Hodge structure gives rise to a representation into
some SU(r, s), which is thus a real point of X(Σg,SL(d,C)). Hence, if all
fixed points are of this form, then the fixed locus is zero dimensional.

Let now ρ be a representation of MCGg,1 into SL(d,C). If the restriction
of ρ to Γg is irreducible, then ρ|Γg completely characterizes ρ. In particular,
if ρ|Γg is an isolated fixed point of X(Σg, SL(d,C)), then the representation
ρ is rigid. Using the result of Santharoubane and Koberda, we deduce for
instance:

Proposition 3.4.34. If Conjecture 3.4.29 holds, then the Reshetykhin–Turayev
representations of MCGg,1 studied in [113] are rigid.

With a bit more work, one can hope to prove that Conjecture 3.4.29
implies the rigidity of all mapping class group representations.
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