0. The goal of this exercise is to find all solutions $u \in C^1(\mathbb{R}^2, \mathbb{R})$ of the equation

$$2y\frac{\partial u}{\partial x}(x,y) + \frac{\partial u}{\partial y}(x,y) = 0, \quad x,y \in \mathbb{R}.$$
 (1)

(a) Consider the vector-field $v : \mathbb{R}^2 \to \mathbb{R}^2$ defined by v(x, y) := (2y, 1) and let $\varphi^t(x_0, y_0)$ denote the solution of the Cauchy problem for the autonomous differential equation (x'(t), y'(t)) = v(x(t), y(t)) with $x(0) = x_0$, $y(0) = y_0$. Prove that $u(\varphi^t(x_0, y_0))$ does not depend on $t \in \mathbb{R}$ if $u \in C^1(\mathbb{R}^2, \mathbb{R})$ satisfies the equation (1). (b) Find an explicit formula for $\varphi^t(x_0, y_0)$.

(c) Prove that all solutions of the equation (1) can be written as $u(x,y) = g(y^2 - x)$, where $g \in C^1(\mathbb{R}, \mathbb{R})$.

1. (a) Recall the Picard–Lindelöf/Cauchy–Lipschitz theorem on the local existence/uniqueness of solutions of the Cauchy problem $u'(t) = f(t, u(t)), u(t_0) = x_0$, where $f : \mathbb{R} \times E \supset \mathcal{O} \to E$ and E is a Banach space. Let $E = \mathbb{R}^m, I :=] - \frac{r}{R}, \frac{r}{R} [$ and $f : I \times B(0, r) \to B(0, R)$ be a continuous function. In (b)–(d) we prove **Peano's theorem :** the Cauchy problem u'(t) = f(t, u(t)), u(0) = 0, has at least one solution $u : I \to \mathbb{R}^m$. (b) Let $n \in \mathbb{N}^*$ and $\tau_n := \frac{r}{nR}$. Define (inductively)

$$u_n(0) := 0, \qquad \begin{aligned} u_n((k+1)\tau_n) &:= & u_n(k\tau_n) + \tau_n f(k\tau_n, u_n(k\tau_n)), \\ & u_n(-(k+1)\tau_n) &:= & u_n(-k\tau_n) - \tau_n f(-k\tau_n, u_n(-k\tau_n)), \end{aligned} \quad k = 0, \dots, n-1$$

and let the function u_n be linear on each of the segments $[k\tau_n, (k+1)\tau_n]$, where k = -n, ..., n-1. Check the correctness of this definition (i.e., that $||u_n(\pm k\tau_n)|| < r$ if k < n: otherwise, f is not defined).

(c) Recall the Arzelá–Ascoli theorem for the space C(K, E) of continuous functions on a compact K and prove that the functions $u_n \in C([-\frac{r}{R}, \frac{r}{R}]; \mathbb{R}^m)$ satisfy the assumptions of this theorem.

(d) Prove that each subsequential limit u of functions u_n solves the differential equation u'(t) = f(t, u(t)). [*Hint*: as usual, it is useful to rewrite this differential equation in the integral form.]

(e) Find all solutions of the equation $u'(t) = 2\sqrt{|u(t)|}$ with u(0) = 0 (and prove that there are no other ones). (f) Consider now the equation $u'(t) = 2\sqrt{|u(t)|} + b(t)$, where b is a continuous functions and $0 < b(t) \le 1$ for all $t \in \mathbb{R}$. Prove that the Cauchy problem for this equation with u(0) = 0 has a *unique* solution and that this solution is defined for all $t \in \mathbb{R}$.

Now let $E = \ell_0^{\infty} = \{(x_0, x_1, \ldots) : x_n \to 0 \text{ as } n \to \infty\}$. Consider a function $f : (x_n)_{n \in \mathbb{N}} \mapsto (2\sqrt{|x_n|} + \frac{1}{n+1})_{n \in \mathbb{N}}$. (g) Prove that the Cauchy problem u'(t) = f(u(t)), u(0) = 0, does not have any local solution. [*Hint*: show that $x_n(t) > t^2$ for all t > 0 and $n \ge \mathbb{N}$.]

(h) Check that $f: \ell_0^{\infty} \to \ell_0^{\infty}$ is a continuous function. What is wrong with the proof in (b)–(d) if $E = \ell_0^{\infty}$?

(i) Let $E := C([0,1], \mathbb{R})$ and $u \in C(I, E)$, where I is an open interval. Prove that $u \in C^1(I, E)$ if and only if the partial derivative $\frac{d}{dt}u(t, x)$ exists for all $(t, x) \in I \times [0, 1]$ and is continuous on $I \times [0, 1]$.

(j) Let $a, b \in C(I \times [0, 1], \mathbb{R})$ and $t_0 \in I$. Modify the arguments from items (b)–(d) to prove that there exists $u \in C^1(I, E)$ such that $u(t_0, x) = 0$ for all $x \in [0, 1]$ and

$$\frac{d}{dt}u(t,x) = \int_0^x (a(t,y)\sqrt{|u(t,y)|} + b(t,y))dy \text{ for all } (t,x) \in I \times [0,1].$$

TURN THE PAGE!

2. One says that a compact set $K \subset \mathbb{R}^2 \cong \mathbb{C}$ does not separate 0 from ∞ if there exists a continuous curve $\gamma : [0,1) \to \mathbb{C} \setminus K$ such that $\gamma(0) = 0$ and $\gamma(t) \to \infty$ as $t \to 1$. In this problem, the goal is to prove

Janiszewski's theorem : Let $0 \notin K_1, K_2 \subset \mathbb{R}^2 \cong \mathbb{C}$ be two compact sets. Assume that neither K_1 nor K_2 separate 0 from ∞ . If $K_1 \cap K_2$ is connected, then $K_1 \cup K_2$ also does not separate 0 from ∞ .

We call $p \in \mathbb{C}$ an *hv-polyline* if p is a polyline consisting of finitely many vertical and horizontal segments. We say that $P \in \mathbb{C}$ is a *closed hv-polyline* if it is an hv-polyline whose starting and ending points coincide.

(a) Recall the definition of connected and path-connected topological spaces. Prove that an *open* set $U \subset \mathbb{C}$ is connected if and only if for each $z_1, z_2 \in U$ there exists an hv-polyline $p \subset U$ going from z_1 to z_2 . (b) Recall the definition of a connected component of a topological space. Prove that for each compact $K \subset \mathbb{C}$ the set $\mathbb{C} \setminus K$ has exactly one unbounded connected component.

Below we take for granted the following two facts about *non-self-intersecting* closed hv-polylines $P \subset \mathbb{C}$: (i) The 'trivial' case of the Jordan curve theorem : the set $\mathbb{C} \smallsetminus P$ has *exactly* two connected components. We say (see (b)) that $z \notin P$ lies *outside* P if it belongs to the unbounded connected component of $\mathbb{C} \smallsetminus P$; $z \notin P$ lies *inside* P if it belongs to the bounded connected component of $\mathbb{C} \smallsetminus P$.

(ii) if $0 \notin P$, we will denote by $\oint_P z^{-1} dz$ the (Riemann) integral computed along P with the convention that P is oriented counterclockwise. In particular, if P is a *rectangle* with opposite corners (x_1, y_1) and (x_2, y_2) , then

$$\oint_P z^{-1} dz = \int_{x_1}^{x_2} \frac{dx}{x + iy_1} + \int_{y_1}^{y_2} \frac{dy}{x_2 + iy} + \int_{x_2}^{x_1} \frac{dx}{x + iy_2} + \int_{y_2}^{y_1} \frac{dy}{x_1 + iy_2} dy$$

provided that $x_1 < x_2$ and $y_1 < y_2$. In this case, a straightforward computation gives

 $\oint_P z^{-1} dz = 2\pi i \text{ if } 0 \text{ lies inside } P, \qquad \oint_P z^{-1} dz = 0 \text{ if } 0 \text{ lies outside } P.$ (2)

We also take for granted that (2) holds for *all* non-self-intersecting closed hv-polylines P (this can be proven by splitting the inner component of $\mathbb{C} \setminus P$ into two parts with smaller number of edges unless P is a rectangle).

(c) Let $\gamma : [0,1) \to \mathbb{C}$ be continuous, $\gamma(0) = 0$ and $\gamma(t) \to \infty$ as $t \to 1$; denote $\Gamma := \gamma([0,1)) \subset \mathbb{C}$. Prove that $\oint_P z^{-1} dz = 0$ for all non-self-intersecting closed hv-polylines $P \subset \mathbb{C} \smallsetminus \Gamma$.

(d) Deduce from (c) that $\oint_P z^{-1} dz = 0$ for all (possibly, self-intersecting) closed polylines $P \subset \mathbb{C} \setminus \Gamma$.

(e) In the same setup, prove that there exists a function $L: \mathbb{C} \setminus \Gamma \to \mathbb{C}$ such that $\int_p z^{-1} dz = L(z_2) - L(z_1)$ for each hv-polyline $p \subset \mathbb{C} \setminus \Gamma$ going from z_1 to z_2 . [*Hint*: choose a reference point $z_0 \in U$ in each of the connected components U of $\mathbb{C} \setminus \Gamma$ and define $L(z) := \int_{p_0(z_0,z)} z^{-1} dz$ for $z \in U$, where $p_0(z_0,z) \subset U$ is an arbitrarily chosen hv-polyline going from z_0 to z. Use (c) to check the required property of L for all $p \subset U$.]

We now come to the setup of Janiszewski's theorem. Let $\Gamma_j := \gamma_j([0,1)) \subset \mathbb{C} \setminus K_j$ and $L_j : \mathbb{C} \setminus \Gamma_j \to \mathbb{C}$ denote the corresponding functions constructed in the item (e).

(f) Argue that there exists a connected component U of the set $\mathbb{C} \setminus (\Gamma_1 \cup \Gamma_2)$ such that $K_1 \cap K_2 \subset U$. Prove that one can choose reference points in the definition of L_1 and L_2 so that $L_1(z) = L_2(z)$ for all $z \in U$.

(g) Prove that there exist open sets V_j , j = 1, 2, such that $V_1 \cap V_2 = \emptyset$ and $K_j \setminus U \subset V_j \subset \mathbb{C} \setminus \Gamma_j$. Denote $V := U \cup V_1 \cup V_2 \supset K_1 \cup K_2$ and let $L(z) := L_j(z)$ for $z \in V_j \cup U$, j = 1, 2.

(h) Prove that $\int_p z^{-1} dz = L(z_2) - L(z_1)$ for each hv-polyline $p \subset V$ going from z_1 to z_2 . In particular, one has $\oint_P z^{-1} dz = 0$ if $P \subset V$ is a closed hv-polyline. [*Hint*: prove that it is always possible to split each segment of $p \subset V$ into finitely many parts, each of which is contained in *one* of the sets $U \cup V_1$ and $U \cup V_2$.] (i) Arguing by contradiction, assume that the connected component U_0 of $\mathbb{C} \setminus (K_1 \cup K_2)$ that contains 0 is bounded. Prove that there exists a non-self-intersecting closed hv-polyline $P \subset V \cap U_0$ such that 0 lies inside P. [*Hint*: take a small enough $\delta > 0$ and consider the union of all squares $[-\delta+2m\delta,\delta+2m\delta] \times [-\delta+2n\delta,\delta+2n\delta]$, $n, m \in \mathbb{Z}$, that are contained in U_0 .] Conclude the proof of the Janiszewski theorem.

(j) Deduce from the Janiszewski theorem the following fact : if $\gamma : [0,1] \to \mathbb{C} \setminus \{0\}$ is a Jordan arc (i.e., γ is a continuous injection; in particular, $\gamma(0) \neq \gamma(1)$), then $\gamma([0,1])$ does not separate 0 from ∞ .

See the next page for problem #3!

3. Stability/asymptotic stability of stationary points of a flow. Consider a differential equation u'(t) = f(u(t)), where $f: U \to E$ is a locally Lipschitz function defined on an open set $U \subset E$ in a Banach space E. Recall that $x_0 \in U$ is called a stationary point of this equation if $f(x_0) = 0$ and that we denote by $\varphi^t(x)$ the solution of the Cauchy problem with the initial data u(0) = x. Also, recall that x_0 is called - stable if for each C > 0 there exists $\varepsilon > 0$ such that $\|\varphi^t(x) - x_0\| \leq C$ for all $x \in B(x_0, \varepsilon)$ and all $t \geq 0$; - asymptotically stable if x_0 is stable and there exists $\varepsilon > 0$ such that $x \in B(x_0, \varepsilon) \Rightarrow \varphi^t(x) \to x_0$ as $t \to +\infty$. Below we assume that (i) x_0 is a stationary point of the equation u'(t) = f(u(t));

(ii) $\Phi: U \to \mathbb{R}$ is a smooth function such that x_0 is a strict local minimum of Φ ; (iii) there exists r > 0 such that $\langle \nabla \Phi(x), f(x) \rangle < 0$ for all $x \in B(x_0, r) \setminus \{x_0\}$.

(a) Check that $\frac{d}{dt}\Phi(\varphi^t(x)) \leq 0$ if $\varphi^t(x) \in B(x_0, r)$. Prove that x_0 is a stable stationary point.

(b) Let $E = \mathbb{R}^n$. Prove that in this case x_0 is always asymptotically stable.

[*Hint*: by continuity, one has $\max_{x \in K} \langle \nabla \Phi(x), f(x) \rangle < 0$ for all compact sets $K \not\supseteq x_0$.]

The next goal is to discuss a possible construction of an equation u'(t) = f(u(t)) in the *infinite-dimensional* space $E = \ell^2$ such that the conditions (i)–(iii) hold for $x_0 = 0$ and $\Phi(x) = ||x||^2$ but the stationary point 0 is *not* asymptotically stable.

Let $Sx := (0, x_0, x_1, x_2, \ldots)$ and ${}^tSx := (x_1, x_2, x_3, \ldots)$ be the shift operators in the (real) Banach space ℓ^2 .

We start with considering the linear equation v'(t) = A v(t), where $A := S - {}^{t}S$.

(c) Prove that $x \mapsto Ax$ is a Lipschitz function. Write $\nabla \Phi(x)$ explicitly. Prove that $\Phi(x) = ||x||^2$ is a conserved quantity for this equation (i.e., that $\Phi(v(t))$ does not depend on t if v(t) satisfies v'(t) = Av(t)).

(d) Denote $B(x) := ||x||^2 - \langle x, Sx \rangle$. Prove that B(x) > 0 if $x \neq 0$ and that $\inf_{x:||x||=1} B(x) = 0$.

(e) Write $\nabla B(x)$ explicitly and prove that $\frac{d}{dt}B(v(t)) \leq 0$ if v'(t) = Av(t).

Now let $f(x) := Ax - (B(x))^k x$, where $k \gg 1$ and consider the differential equation u'(t) = f(u(t)).

(f) Check that $\langle \nabla \Phi(x), f(x) \rangle < 0$ if $x \neq 0$.

(g) For $u(t) \neq 0$, write u(t) = r(t)v(t), where $r(t) := ||u(t)|| \in \mathbb{R}_+$ and v(t) := u(t)/||u(t)||. Check that the equation u'(t) = f(u(t)) implies that v'(t) = Av(t) and $r'(t) = -(r(t))^{2k+1}(B(v(t)))^k$.

(h) Deduce from (e) that

$$\frac{1}{\|u(t)\|^{2k}} - \frac{1}{\|u(0)\|^{2k}} = 2k \int_0^t (B(v(t)))^k dt \,. \tag{3}$$

and conclude that the stable stationary point 0 of the equation u'(t) = f(u(t)) cannot be asymptotically stable if the equation v'(t) = A v(t) admits a trajectory $v(t) \neq 0$ such that $\int_0^{+\infty} (B(v(t)))^k dt < +\infty$.

[!!] The proof is <u>not</u> complete. Though we know from the item (d) that B(v(t)) decays along all trajectories of the equation v'(t) = Av(t) and that $\inf_{\|x\|=1} B(x) = 0$, this does not directly imply even the existence of a trajectory v(t) such that $B(v(t)) \to 0$ as $t \to +\infty$, not to speak about the rate of convergence. To proceed further one needs more involved tools and this would be (by far) too much for the exam.

BON COURAGE!