$\mathbf{0}$. The goal of this exercise is to find all solutions $u \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ of the equation

$$
\begin{equation*}
2 y \frac{\partial u}{\partial x}(x, y)+\frac{\partial u}{\partial y}(x, y)=0, \quad x, y \in \mathbb{R} . \tag{1}
\end{equation*}
$$

(a) Consider the vector-field $v: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $v(x, y):=(2 y, 1)$ and let $\varphi^{t}\left(x_{0}, y_{0}\right)$ denote the solution of the Cauchy problem for the autonomous differential equation $\left(x^{\prime}(t), y^{\prime}(t)\right)=v(x(t), y(t))$ with $x(0)=x_{0}$, $y(0)=y_{0}$. Prove that $u\left(\varphi^{t}\left(x_{0}, y_{0}\right)\right)$ does not depend on $t \in \mathbb{R}$ if $u \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ satisfies the equation (1).
(b) Find an explicit formula for $\varphi^{t}\left(x_{0}, y_{0}\right)$.
(c) Prove that all solutions of the equation (1) can be written as $u(x, y)=g\left(y^{2}-x\right)$, where $g \in C^{1}(\mathbb{R}, \mathbb{R})$.

1. (a) Recall the Picard-Lindelöf/Cauchy-Lipschitz theorem on the local existence/uniqueness of solutions of the Cauchy problem $u^{\prime}(t)=f(t, u(t)), u\left(t_{0}\right)=x_{0}$, where $f: \mathbb{R} \times E \supset \mathcal{O} \rightarrow E$ and E is a Banach space.
Let $\left.E=\mathbb{R}^{m}, I:=\right]-\frac{r}{R}, \frac{r}{R}[$ and $f: I \times B(0, r) \rightarrow B(0, R)$ be a continuous function. In (b)-(d) we prove Peano's theorem : the Cauchy problem $u^{\prime}(t)=f(t, u(t)), u(0)=0$, has at least one solution $u: I \rightarrow \mathbb{R}^{m}$.
(b) Let $n \in \mathbb{N}^{*}$ and $\tau_{n}:=\frac{r}{n R}$. Define (inductively)

$$
\begin{array}{ccc}
u_{n}(0):=0, & u_{n}\left((k+1) \tau_{n}\right) & := \\
u_{n}\left(-(k+1) \tau_{n}\right) & := & u_{n}\left(k \tau_{n}\right)+\tau_{n} f\left(k \tau_{n}, u_{n}\left(k \tau_{n}\right)\right), \\
u_{n}\left(-k \tau_{n}\right)-\tau_{n} f\left(-k \tau_{n}, u_{n}\left(-k \tau_{n}\right)\right),
\end{array} \quad k=0, \ldots, n-1 .
$$

and let the function u_{n} be linear on each of the segments $\left[k \tau_{n},(k+1) \tau_{n}\right]$, where $k=-n, \ldots, n-1$. Check the correctness of this definition (i.e., that $\left\|u_{n}\left(\pm k \tau_{n}\right)\right\|<r$ if $k<n$: otherwise, f is not defined).
(c) Recall the Arzelá-Ascoli theorem for the space $C(K, E)$ of continuous functions on a compact K and prove that the functions $u_{n} \in C\left(\left[-\frac{r}{R}, \frac{r}{R}\right] ; \mathbb{R}^{m}\right)$ satisfy the assumptions of this theorem.
(d) Prove that each subsequential limit u of functions u_{n} solves the differential equation $u^{\prime}(t)=f(t, u(t))$. [Hint : as usual, it is useful to rewrite this differential equation in the integral form.]
(e) Find all solutions of the equation $u^{\prime}(t)=2 \sqrt{|u(t)|}$ with $u(0)=0$ (and prove that there are no other ones).
(f) Consider now the equation $u^{\prime}(t)=2 \sqrt{|u(t)|}+b(t)$, where b is a continuous functions and $0<b(t) \leq 1$ for all $t \in \mathbb{R}$. Prove that the Cauchy problem for this equation with $u(0)=0$ has a unique solution and that this solution is defined for all $t \in \mathbb{R}$.

Now let $E=\ell_{0}^{\infty}=\left\{\left(x_{0}, x_{1}, \ldots\right): x_{n} \rightarrow 0\right.$ as $\left.n \rightarrow \infty\right\}$. Consider a function $f:\left(x_{n}\right)_{n \in \mathbb{N}} \mapsto\left(2 \sqrt{\left|x_{n}\right|}+\frac{1}{n+1}\right)_{n \in \mathbb{N}}$.
(g) Prove that the Cauchy problem $u^{\prime}(t)=f(u(t)), u(0)=0$, does not have any local solution.
[Hint : show that $x_{n}(t)>t^{2}$ for all $t>0$ and $n \geq \mathbb{N}$.]
(h) Check that $f: \ell_{0}^{\infty} \rightarrow \ell_{0}^{\infty}$ is a continuous function. What is wrong with the proof in (b)-(d) if $E=\ell_{0}^{\infty}$?
(i) Let $E:=C([0,1], \mathbb{R})$ and $u \in C(I, E)$, where I is an open interval. Prove that $u \in C^{1}(I, E)$ if and only if the partial derivative $\frac{d}{d t} u(t, x)$ exists for all $(t, x) \in I \times[0,1]$ and is continuous on $I \times[0,1]$.
(j) Let $a, b \in C(I \times[0,1], \mathbb{R})$ and $t_{0} \in I$. Modify the arguments from items (b)-(d) to prove that there exists $u \in C^{1}(I, E)$ such that $u\left(t_{0}, x\right)=0$ for all $x \in[0,1]$ and

$$
\frac{d}{d t} u(t, x)=\int_{0}^{x}(a(t, y) \sqrt{|u(t, y)|}+b(t, y)) d y \quad \text { for all }(t, x) \in I \times[0,1] .
$$

2. One says that a compact set $K \subset \mathbb{R}^{2} \cong \mathbb{C}$ does not separate 0 from ∞ if there exists a continuous curve $\gamma:[0,1) \rightarrow \mathbb{C} \backslash K$ such that $\gamma(0)=0$ and $\gamma(t) \rightarrow \infty$ as $t \rightarrow 1$. In this problem, the goal is to prove

Janiszewski's theorem : Let $0 \notin K_{1}, K_{2} \subset \mathbb{R}^{2} \cong \mathbb{C}$ be two compact sets. Assume that neither K_{1}
nor K_{2} separate 0 from ∞. If $K_{1} \cap K_{2}$ is connected, then $K_{1} \cup K_{2}$ also does not separate 0 from ∞.
We call $p \subset \mathbb{C}$ an $h v$-polyline if p is a polyline consisting of finitely many vertical and horizontal segments. We say that $P \subset \mathbb{C}$ is a closed hv-polyline if it is an hv-polyline whose starting and ending points coincide.
(a) Recall the definition of connected and path-connected topological spaces. Prove that an open set $U \subset \mathbb{C}$ is connected if and only if for each $z_{1}, z_{2} \in U$ there exists an hv-polyline $p \subset U$ going from z_{1} to z_{2}.
(b) Recall the definition of a connected component of a topological space. Prove that for each compact $K \subset \mathbb{C}$ the set $\mathbb{C} \backslash K$ has exactly one unbounded connected component.

Below we take for granted the following two facts about non-self-intersecting closed hv-polylines $P \subset \mathbb{C}$:
(i) The 'trivial' case of the Jordan curve theorem : the set $\mathbb{C} \backslash P$ has exactly two connected components. We say (see (b)) that $z \notin P$ lies outside P if it belongs to the unbounded connected component of $\mathbb{C} \backslash P$;
$z \notin P$ lies inside P if it belongs to the bounded connected component of $\mathbb{C} \backslash P$.
(ii) if $0 \notin P$, we will denote by $\oint_{P} z^{-1} d z$ the (Riemann) integral computed along P with the convention that P is oriented counterclockwise. In particular, if P is a rectangle with opposite corners $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, then

$$
\oint_{P} z^{-1} d z=\int_{x_{1}}^{x_{2}} \frac{d x}{x+i y_{1}}+\int_{y_{1}}^{y_{2}} \frac{d y}{x_{2}+i y}+\int_{x_{2}}^{x_{1}} \frac{d x}{x+i y_{2}}+\int_{y_{2}}^{y_{1}} \frac{d y}{x_{1}+i y}
$$

provided that $x_{1}<x_{2}$ and $y_{1}<y_{2}$. In this case, a straightforward computation gives

$$
\begin{equation*}
\oint_{P} z^{-1} d z=2 \pi i \text { if } 0 \text { lies inside } P, \quad \oint_{P} z^{-1} d z=0 \text { if } 0 \text { lies outside } P . \tag{2}
\end{equation*}
$$

We also take for granted that (2) holds for all non-self-intersecting closed hv-polylines P (this can be proven by splitting the inner component of $\mathbb{C} \backslash P$ into two parts with smaller number of edges unless P is a rectangle).
(c) Let $\gamma:[0,1) \rightarrow \mathbb{C}$ be continuous, $\gamma(0)=0$ and $\gamma(t) \rightarrow \infty$ as $t \rightarrow 1$; denote $\Gamma:=\gamma([0,1)) \subset \mathbb{C}$. Prove that $\oint_{P} z^{-1} d z=0$ for all non-self-intersecting closed hv-polylines $P \subset \mathbb{C} \backslash \Gamma$.
(d) Deduce from (c) that $\oint_{P} z^{-1} d z=0$ for all (possibly, self-intersecting) closed polylines $P \subset \mathbb{C} \backslash \Gamma$.
(e) In the same setup, prove that there exists a function $L: \mathbb{C} \backslash \Gamma \rightarrow \mathbb{C}$ such that $\int_{p} z^{-1} d z=L\left(z_{2}\right)-L\left(z_{1}\right)$ for each hv-polyline $p \subset \mathbb{C} \backslash \Gamma$ going from z_{1} to z_{2}. [Hint : choose a reference point $z_{0} \in U$ in each of the connected components U of $\mathbb{C} \backslash \Gamma$ and define $L(z):=\int_{p_{0}\left(z_{0}, z\right)} z^{-1} d z$ for $z \in U$, where $p_{0}\left(z_{0}, z\right) \subset U$ is an arbitrarily chosen hv-polyline going from z_{0} to z. Use (c) to check the required property of L for all $p \subset U$.]

We now come to the setup of Janiszewski's theorem. Let $\Gamma_{j}:=\gamma_{j}([0,1)) \subset \mathbb{C} \backslash K_{j}$ and $L_{j}: \mathbb{C} \backslash \Gamma_{j} \rightarrow \mathbb{C}$ denote the corresponding functions constructed in the item (e).
(f) Argue that there exists a connected component U of the set $\mathbb{C} \backslash\left(\Gamma_{1} \cup \Gamma_{2}\right)$ such that $K_{1} \cap K_{2} \subset U$. Prove that one can choose reference points in the definition of L_{1} and L_{2} so that $L_{1}(z)=L_{2}(z)$ for all $z \in U$.
(g) Prove that there exist open sets $V_{j}, j=1,2$, such that $V_{1} \cap V_{2}=\emptyset$ and $K_{j} \backslash U \subset V_{j} \subset \mathbb{C} \backslash \Gamma_{j}$. Denote $V:=U \cup V_{1} \cup V_{2} \supset K_{1} \cup K_{2}$ and let $L(z):=L_{j}(z)$ for $z \in V_{j} \cup U, j=1,2$.
(h) Prove that $\int_{p} z^{-1} d z=L\left(z_{2}\right)-L\left(z_{1}\right)$ for each hv-polyline $p \subset V$ going from z_{1} to z_{2}. In particular, one has $\oint_{P} z^{-1} d z=0$ if $P \subset V$ is a closed hv-polyline. [Hint : prove that it is always possible to split each segment of $p \subset V$ into finitely many parts, each of which is contained in one of the sets $U \cup V_{1}$ and $U \cup V_{2}$.]
(i) Arguing by contradiction, assume that the connected component U_{0} of $\mathbb{C} \backslash\left(K_{1} \cup K_{2}\right)$ that contains 0 is bounded. Prove that there exists a non-self-intersecting closed hv-polyline $P \subset V \cap U_{0}$ such that 0 lies inside P. [Hint : take a small enough $\delta>0$ and consider the union of all squares $[-\delta+2 m \delta, \delta+2 m \delta] \times[-\delta+2 n \delta, \delta+2 n \delta]$, $n, m \in \mathbb{Z}$, that are contained in U_{0}.] Conclude the proof of the Janiszewski theorem.
(\mathbf{j}) Deduce from the Janiszewski theorem the following fact : if $\gamma:[0,1] \rightarrow \mathbb{C} \backslash\{0\}$ is a Jordan arc (i.e., γ is a continuous injection ; in particular, $\gamma(0) \neq \gamma(1))$, then $\gamma([0,1])$ does not separate 0 from ∞.

SEE THE NEXT PAGE FOR PROBLEM \#3!
3. Stability/asymptotic stability of stationary points of a flow. Consider a differential equation $u^{\prime}(t)=f(u(t))$, where $f: U \rightarrow E$ is a locally Lipschitz function defined on an open set $U \subset E$ in a Banach space E. Recall that $x_{0} \in U$ is called a stationary point of this equation if $f\left(x_{0}\right)=0$ and that we denote by $\varphi^{t}(x)$ the solution of the Cauchy problem with the initial data $u(0)=x$. Also, recall that x_{0} is called

- stable if for each $C>0$ there exists $\varepsilon>0$ such that $\left\|\varphi^{t}(x)-x_{0}\right\| \leq C$ for all $x \in B\left(x_{0}, \varepsilon\right)$ and all $t \geq 0$;
- asymptotically stable if x_{0} is stable and there exists $\varepsilon>0$ such that $x \in B\left(x_{0}, \varepsilon\right) \Rightarrow \varphi^{t}(x) \rightarrow x_{0}$ as $t \rightarrow+\infty$.

Below we assume that (i) x_{0} is a stationary point of the equation $u^{\prime}(t)=f(u(t))$;
(ii) $\Phi: U \rightarrow \mathbb{R}$ is a smooth function such that x_{0} is a strict local minimum of Φ;
(iii) there exists $r>0$ such that $\langle\nabla \Phi(x), f(x)\rangle<0$ for all $x \in B\left(x_{0}, r\right) \backslash\left\{x_{0}\right\}$.
(a) Check that $\frac{d}{d t} \Phi\left(\varphi^{t}(x)\right) \leq 0$ if $\varphi^{t}(x) \in B\left(x_{0}, r\right)$. Prove that x_{0} is a stable stationary point.
(b) Let $E=\mathbb{R}^{n}$. Prove that in this case x_{0} is always asymptotically stable.
[Hint : by continuity, one has $\max _{x \in K}\langle\nabla \Phi(x), f(x)\rangle<0$ for all compact sets $K \not \supset x_{0}$.]
The next goal is to discuss a possible construction of an equation $u^{\prime}(t)=f(u(t))$ in the infinite-dimensional space $E=\ell^{2}$ such that the conditions (i)-(iii) hold for $x_{0}=0$ and $\Phi(x)=\|x\|^{2}$ but the stationary point 0 is not asymptotically stable.
Let $S x:=\left(0, x_{0}, x_{1}, x_{2}, \ldots\right)$ and ${ }^{t} S x:=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ be the shift operators in the (real) Banach space ℓ^{2}.
We start with considering the linear equation $v^{\prime}(t)=A v(t)$, where $A:=S-{ }^{t} S$.
(c) Prove that $x \mapsto A x$ is a Lipschitz function. Write $\nabla \Phi(x)$ explicitly. Prove that $\Phi(x)=\|x\|^{2}$ is a conserved quantity for this equation (i.e., that $\Phi(v(t))$ does not depend on t if $v(t)$ satisfies $\left.v^{\prime}(t)=A v(t)\right)$.
(d) Denote $B(x):=\|x\|^{2}-\langle x, S x\rangle$. Prove that $B(x)>0$ if $x \neq 0$ and that $\inf _{x:\|x\|=1} B(x)=0$.
(e) Write $\nabla B(x)$ explicitly and prove that $\frac{d}{d t} B(v(t)) \leq 0$ if $v^{\prime}(t)=A v(t)$.

Now let $f(x):=A x-(B(x))^{k} x$, where $k \gg 1$ and consider the differential equation $u^{\prime}(t)=f(u(t))$.
(f) Check that $\langle\nabla \Phi(x), f(x)\rangle<0$ if $x \neq 0$.
(g) For $u(t) \neq 0$, write $u(t)=r(t) v(t)$, where $r(t):=\|u(t)\| \in \mathbb{R}_{+}$and $v(t):=u(t) /\|u(t)\|$. Check that the equation $u^{\prime}(t)=f(u(t))$ implies that $v^{\prime}(t)=A v(t)$ and $r^{\prime}(t)=-(r(t))^{2 k+1}(B(v(t)))^{k}$.
(h) Deduce from (e) that

$$
\begin{equation*}
\frac{1}{\|u(t)\|^{2 k}}-\frac{1}{\|u(0)\|^{2 k}}=2 k \int_{0}^{t}(B(v(t)))^{k} d t \tag{3}
\end{equation*}
$$

and conclude that the stable stationary point 0 of the equation $u^{\prime}(t)=f(u(t))$ cannot be asymptotically stable if the equation $v^{\prime}(t)=A v(t)$ admits a trajectory $v(t) \neq 0$ such that $\int_{0}^{+\infty}(B(v(t)))^{k} d t<+\infty$.
[!!] The proof is not complete. Though we know from the item (d) that $B(v(t))$ decays along all trajectories of the equation $v^{\prime}(t)=A v(t)$ and that $\inf _{\|x\|=1} B(x)=0$, this does not directly imply even the existence of a trajectory $v(t)$ such that $B(v(t)) \rightarrow 0$ as $t \rightarrow+\infty$, not to speak about the rate of convergence. To proceed further one needs more involved tools and this would be (by far) too much for the exam.

Bon courage!

