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0. The goal of this exercise is to find all solutions u ∈ C1(R2,R) of the equation

2y
∂u

∂x
(x, y) +

∂u

∂y
(x, y) = 0, x, y ∈ R. (1)

(a) Consider the vector-field v : R2 → R2 defined by v(x, y) := (2y, 1) and let ϕt(x0, y0) denote the solution
of the Cauchy problem for the autonomous differential equation (x′(t), y′(t)) = v(x(t), y(t)) with x(0) = x0,
y(0) = y0. Prove that u(ϕt(x0, y0)) does not depend on t ∈ R if u ∈ C1(R2,R) satisfies the equation (1).

(b) Find an explicit formula for ϕt(x0, y0).

(c) Prove that all solutions of the equation (1) can be written as u(x, y) = g(y2−x), where g ∈ C1(R,R).

1. (a) Recall the Picard–Lindelöf/Cauchy–Lipschitz theorem on the local existence/uniqueness of solutions
of the Cauchy problem u′(t) = f(t, u(t)), u(t0) = x0, where f : R× E ⊃ O → E and E is a Banach space.

Let E = Rm, I := ]− r
R ,

r
R [ and f : I × B(0, r) → B(0, R) be a continuous function. In (b)–(d) we prove

Peano’s theorem : the Cauchy problem u′(t) = f(t, u(t)), u(0) = 0, has at least one solution u : I → Rm.

(b) Let n ∈ N∗ and τn := r
nR . Define (inductively)

un(0) := 0,
un((k+1)τn) := un(kτn) + τnf(kτn, un(kτn)),

un(−(k+1)τn) := un(−kτn)− τnf(−kτn, un(−kτn)),
k = 0, ..., n− 1.

and let the function un be linear on each of the segments [kτn, (k + 1)τn], where k = −n, ..., n − 1. Check
the correctness of this definition (i.e., that ‖un(±kτn)‖ < r if k < n : otherwise, f is not defined).

(c) Recall the Arzelá–Ascoli theorem for the space C(K,E) of continuous functions on a compact K and
prove that the functions un ∈ C([− r

R ,
r
R ] ;Rm) satisfy the assumptions of this theorem.

(d) Prove that each subsequential limit u of functions un solves the differential equation u′(t) = f(t, u(t)).
[ Hint : as usual, it is useful to rewrite this differential equation in the integral form. ]

(e) Find all solutions of the equation u′(t)=2
√
|u(t)| with u(0)=0 (and prove that there are no other ones).

(f) Consider now the equation u′(t) = 2
√
|u(t)| + b(t), where b is a continuous functions and 0 < b(t) ≤ 1

for all t ∈ R. Prove that the Cauchy problem for this equation with u(0) = 0 has a unique solution and that
this solution is defined for all t ∈ R.

Now let E = `∞0 = {(x0, x1, . . .) : xn → 0 as n→∞}. Consider a function f : (xn)n∈N 7→ (2
√
|xn|+ 1

n+1 )n∈N.

(g) Prove that the Cauchy problem u′(t) = f(u(t)), u(0) = 0, does not have any local solution.
[ Hint : show that xn(t) > t2 for all t > 0 and n ≥ N. ]

(h) Check that f : `∞0 → `∞0 is a continuous function. What is wrong with the proof in (b)–(d) if E = `∞0 ?

(i) Let E := C([0, 1],R) and u ∈ C(I, E), where I is an open interval. Prove that u ∈ C1(I, E) if and only
if the partial derivative d

dtu(t, x) exists for all (t, x) ∈ I × [0, 1] and is continuous on I × [0, 1].

(j) Let a, b ∈ C(I × [0, 1],R) and t0 ∈ I. Modify the arguments from items (b)–(d) to prove that there exists
u ∈ C1(I, E) such that u(t0, x) = 0 for all x ∈ [0, 1] and

d
dtu(t, x) =

∫ x

0
(a(t, y)

√
|u(t, y)|+ b(t, y))dy for all (t, x) ∈ I × [0, 1] .

Turn the page !
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2. One says that a compact set K ⊂ R2 ∼= C does not separate 0 from ∞ if there exists a continuous
curve γ : [0, 1)→ CrK such that γ(0) = 0 and γ(t)→∞ as t→ 1. In this problem, the goal is to prove

Janiszewski’s theorem : Let 0 6∈ K1,K2 ⊂ R2 ∼= C be two compact sets. Assume that neither K1

nor K2 separate 0 from ∞. If K1 ∩K2 is connected, then K1 ∪K2 also does not separate 0 from ∞.

We call p ⊂ C an hv-polyline if p is a polyline consisting of finitely many vertical and horizontal segments.
We say that P ⊂ C is a closed hv-polyline if it is an hv-polyline whose starting and ending points coincide.

(a) Recall the definition of connected and path-connected topological spaces. Prove that an open set U ⊂ C
is connected if and only if for each z1, z2 ∈ U there exists an hv-polyline p ⊂ U going from z1 to z2.

(b) Recall the definition of a connected component of a topological space. Prove that for each compact K ⊂ C
the set CrK has exactly one unbounded connected component.

Below we take for granted the following two facts about non-self-intersecting closed hv-polylines P ⊂ C :

(i) The ‘trivial’ case of the Jordan curve theorem : the set CrP has exactly two connected components. We
say (see (b)) that z 6∈ P lies outside P if it belongs to the unbounded connected component of Cr P ;

z 6∈ P lies inside P if it belongs to the bounded connected component of Cr P .

(ii) if 0 6∈ P , we will denote by
∮
P
z−1dz the (Riemann) integral computed along P with the convention that P

is oriented counterclockwise. In particular, if P is a rectangle with opposite corners (x1, y1) and (x2, y2), then∮
P

z−1dz =

∫ x2

x1

dx

x+ iy1
+

∫ y2

y1

dy

x2 + iy
+

∫ x1

x2

dx

x+ iy2
+

∫ y1

y2

dy

x1 + iy

provided that x1 < x2 and y1 < y2. In this case, a straightforward computation gives∮
P
z−1dz = 2πi if 0 lies inside P ,

∮
P
z−1dz = 0 if 0 lies outside P . (2)

We also take for granted that (2) holds for all non-self-intersecting closed hv-polylines P (this can be proven
by splitting the inner component of CrP into two parts with smaller number of edges unless P is a rectangle).

(c) Let γ : [0, 1) → C be continuous, γ(0) = 0 and γ(t) → ∞ as t → 1 ; denote Γ := γ([0, 1)) ⊂ C. Prove
that

∮
P
z−1dz = 0 for all non-self-intersecting closed hv-polylines P ⊂ Cr Γ.

(d) Deduce from (c) that
∮
P
z−1dz = 0 for all (possibly, self-intersecting) closed polylines P ⊂ Cr Γ.

(e) In the same setup, prove that there exists a function L : Cr Γ→ C such that
∫
p
z−1dz = L(z2)−L(z1)

for each hv-polyline p ⊂ C r Γ going from z1 to z2. [ Hint : choose a reference point z0 ∈ U in each of the
connected components U of C r Γ and define L(z) :=

∫
p0(z0,z)

z−1dz for z ∈ U , where p0(z0, z) ⊂ U is an

arbitrarily chosen hv-polyline going from z0 to z. Use (c) to check the required property of L for all p ⊂ U . ]

We now come to the setup of Janiszewski’s theorem. Let Γj := γj([0, 1)) ⊂ C rKj and Lj : C r Γj → C
denote the corresponding functions constructed in the item (e).

(f) Argue that there exists a connected component U of the set Cr (Γ1 ∪Γ2) such that K1 ∩K2 ⊂ U . Prove
that one can choose reference points in the definition of L1 and L2 so that L1(z) = L2(z) for all z ∈ U .

(g) Prove that there exist open sets Vj , j = 1, 2, such that V1 ∩ V2 = ∅ and Kj r U ⊂ Vj ⊂ Cr Γj . Denote
V := U ∪ V1 ∪ V2 ⊃ K1 ∪K2 and let L(z) := Lj(z) for z ∈ Vj ∪ U , j = 1, 2.

(h) Prove that
∫
p
z−1dz = L(z2)− L(z1) for each hv-polyline p ⊂ V going from z1 to z2. In particular, one

has
∮
P
z−1dz = 0 if P ⊂ V is a closed hv-polyline. [Hint : prove that it is always possible to split each

segment of p ⊂ V into finitely many parts, each of which is contained in one of the sets U ∪ V1 and U ∪ V2.]

(i) Arguing by contradiction, assume that the connected component U0 of Cr (K1 ∪K2) that contains 0 is
bounded. Prove that there exists a non-self-intersecting closed hv-polyline P ⊂V ∩U0 such that 0 lies inside P .
[Hint : take a small enough δ > 0 and consider the union of all squares [−δ+2mδ, δ+2mδ]×[−δ+2nδ, δ+2nδ],
n,m ∈ Z, that are contained in U0 .] Conclude the proof of the Janiszewski theorem.

(j) Deduce from the Janiszewski theorem the following fact : if γ : [0, 1] → C r {0} is a Jordan arc (i.e.,
γ is a continuous injection ; in particular, γ(0) 6= γ(1)), then γ([0, 1]) does not separate 0 from ∞.

See the next page for problem #3 !
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3. Stability/asymptotic stability of stationary points of a flow. Consider a differential equation
u′(t) = f(u(t)), where f : U → E is a locally Lipschitz function defined on an open set U ⊂ E in a Banach
space E. Recall that x0 ∈ U is called a stationary point of this equation if f(x0) = 0 and that we denote by
ϕt(x) the solution of the Cauchy problem with the initial data u(0) = x. Also, recall that x0 is called

– stable if for each C > 0 there exists ε > 0 such that ‖ϕt(x)− x0‖ ≤ C for all x ∈ B(x0, ε) and all t ≥ 0 ;
– asymptotically stable if x0 is stable and there exists ε > 0 such that x ∈ B(x0, ε)⇒ ϕt(x)→ x0 as t→ +∞.

Below we assume that (i) x0 is a stationary point of the equation u′(t) = f(u(t)) ;
(ii) Φ : U → R is a smooth function such that x0 is a strict local minimum of Φ ;
(iii) there exists r > 0 such that 〈∇Φ(x), f(x)〉 < 0 for all x ∈ B(x0, r) r {x0}.

(a) Check that d
dtΦ(ϕt(x)) ≤ 0 if ϕt(x) ∈ B(x0, r). Prove that x0 is a stable stationary point.

(b) Let E = Rn. Prove that in this case x0 is always asymptotically stable.
[ Hint : by continuity, one has maxx∈K〈∇Φ(x), f(x)〉 < 0 for all compact sets K 63 x0. ]

The next goal is to discuss a possible construction of an equation u′(t) = f(u(t)) in the infinite-dimensional
space E = `2 such that the conditions (i)–(iii) hold for x0 = 0 and Φ(x) = ‖x‖2 but the stationary point 0
is not asymptotically stable.

Let Sx := (0, x0, x1, x2, . . .) and tSx := (x1, x2, x3, . . .) be the shift operators in the (real) Banach space `2.

We start with considering the linear equation v′(t) = Av(t), where A := S − tS.

(c) Prove that x 7→ Ax is a Lipschitz function. Write ∇Φ(x) explicitly. Prove that Φ(x) = ‖x‖2 is a conserved
quantity for this equation (i.e., that Φ(v(t)) does not depend on t if v(t) satisfies v′(t) = Av(t)).

(d) Denote B(x) := ‖x‖2 − 〈x, Sx〉. Prove that B(x) > 0 if x 6= 0 and that infx:‖x‖=1B(x) = 0.

(e) Write ∇B(x) explicitly and prove that d
dtB(v(t)) ≤ 0 if v′(t) = Av(t).

Now let f(x) := Ax− (B(x))kx, where k � 1 and consider the differential equation u′(t) = f(u(t)).

(f) Check that 〈∇Φ(x), f(x)〉 < 0 if x 6= 0.

(g) For u(t) 6= 0, write u(t) = r(t)v(t), where r(t) := ‖u(t)‖ ∈ R+ and v(t) := u(t)/‖u(t)‖. Check that the
equation u′(t) = f(u(t)) implies that v′(t) = Av(t) and r′(t) = −(r(t))2k+1(B(v(t)))k.

(h) Deduce from (e) that
1

‖u(t)‖2k
− 1

‖u(0)‖2k
= 2k

∫ t

0

(B(v(t)))kdt . (3)

and conclude that the stable stationary point 0 of the equation u′(t) = f(u(t)) cannot be asymptotically

stable if the equation v′(t) = Av(t) admits a trajectory v(t) 6= 0 such that
∫ +∞
0

(B(v(t)))kdt < +∞.

[ ! ! ] The proof is not complete. Though we know from the item (d) that B(v(t)) decays along all trajectories
of the equation v′(t) = Av(t) and that inf‖x‖=1B(x) = 0, this does not directly imply even the existence of
a trajectory v(t) such that B(v(t))→ 0 as t→ +∞, not to speak about the rate of convergence. To proceed
further one needs more involved tools and this would be (by far) too much for the exam.

Bon courage !
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