EcoLE NORMALE SUPERIEURE EXAMEN, 18 JANVIER 2022
TOPOLOGIE ET CALCUL DIFFERENTIEL 9H00-12H00 (3 HEURES)

0. The goal of this exercise is to find all solutions u € C1(R? R) of the equation

ou du
Qy%(%y)-kafy(%y) =0, z,yeR. (1)

(a) Consider the vector-field v : R? — R? defined by v(x,y) := (2y,1) and let ¢'(xo,%0) denote the solution
of the Cauchy problem for the autonomous differential equation (z'(t),y'(t)) = v(x(¢),y(t)) with 2(0) = x,
y(0) = yo. Prove that u(p!(xg,y0)) does not depend on t € R if u € C1(R?,R) satisfies the equation (1).

(b) Find an explicit formula for ¢ (g, yo).
(c) Prove that all solutions of the equation (1) can be written as u(x,y) = g(y?—x), where g € C*(R,R).

1. (a) Recall the Picard-Lindel6f/Cauchy—Lipschitz theorem on the local existence/uniqueness of solutions
of the Cauchy problem «'(¢) = f(¢,u(t)), u(to) = zo, where f: R x E D O — FE and E is a Banach space.

Let E =R"™, [ :=]-5,gland f: 1 x B(0,r) — B(0,R) be a continuous function. In (b)-(d) we prove
Peano’s theorem : the Cauchy problem u’(t) = f(¢,u(t)), u(0) = 0, has at least one solution w: I — R™.

(b) Let n € N* and 7, := —=. Define (inductively)

R’
o Un((k+1)70) = un(kmn) + 70 f (kTn, un(k7)), B _
w020 1)) = (b)), F = O
and let the function u,, be linear on each of the segments [k7,, (k + 1)7,], where k = —n,...,n — 1. Check

the correctness of this definition (i.e., that ||u,(xk7,)| <7 if k < n : otherwise, f is not defined).

(c) Recall the Arzeld—Ascoli theorem for the space C(K, E) of continuous functions on a compact K and

prove that the functions u, € C([—f, ];R™) satisfy the assumptions of this theorem.

(d) Prove that each subsequential limit u of functions u,, solves the differential equation u'(t) = f(¢, u(t)).
[ Hint : as usual, it is useful to rewrite this differential equation in the integral form. ]

(e) Find all solutions of the equation u'(t) =24/ |u )| with ©(0)=0 (and prove that there are no other ones).

(f) Consider now the equation u'(t) = 2\/ lu(t)| + b(t), Where b is a continuous functions and 0 < b(t) < 1
for all t € R. Prove that the Cauchy problem for this equation with u(0) = 0 has a unique solution and that
this solution is defined for all ¢ € R.

Now let E = £5° = {(zo,21,...) : ©n, — 0 as n — oo}. Consider a function f : (n)nen — (24/|2n|+ n+1)n€N'

(g) Prove that the Cauchy problem u/(¢) = f(u(t)), u(0) = 0, does not have any local solution.
[ Hint : show that z,,(t) > t? for all t > 0 and n > N.]

(h) Check that f : £5° — £3° is a continuous function. What is wrong with the proof in (b)—(d) if E = ¢5°?

(i) Let E := C([0,1],R) and u € C(I, E), where I is an open interval. Prove that v € C*(I, E) if and only
if the partial derivative jt (t,x) exists for all (¢,z) € I x [0,1] and is continuous on I x [0, 1].

(j) Let a,b € C(I x [0,1],R) and ty € I. Modify the arguments from items (b)—(d) to prove that there exists
u € CY(I, E) such that u(tg,z) = 0 for all z € [0,1] and

= [ (a(t,y)\/Tu(t,y)] + b(t,y))dy for all (t,z) €I x[0,1].

TURN THE PAGE !



2. One says that a compact set K C R? = C does not separate 0 from oo if there exists a continuous
curve v : [0,1) = C ~\ K such that y(0) =0 and v(¢) — oo as t — 1. In this problem, the goal is to prove
Janiszewski’s theorem : Let 0 ¢ K, K5 C R? = C be two compact sets. Assume that neither K;
nor K separate 0 from oo. If K1 N K5 is connected, then K7 U K5 also does not separate 0 from oo.
We call p C C an hv-polyline if p is a polyline consisting of finitely many vertical and horizontal segments.
We say that P C C is a closed hv-polyline if it is an hv-polyline whose starting and ending points coincide.

(a) Recall the definition of connected and path-connected topological spaces. Prove that an open set U C C
is connected if and only if for each 27,z € U there exists an hv-polyline p C U going from 2z to zs.

(b) Recall the definition of a connected component of a topological space. Prove that for each compact K C C
the set C \ K has exactly one unbounded connected component.

Below we take for granted the following two facts about non-self-intersecting closed hv-polylines P C C :

(i) The ‘trivial’ case of the Jordan curve theorem : the set C \ P has ezactly two connected components. We
say (see (b)) that z & P lies outside P if it belongs to the unbounded connected component of C \ P
z & P lies inside P if it belongs to the bounded connected component of C \ P.

(ii) if 0 ¢ P, we will denote by fp 2~ 1dz the (Riemann) integral computed along P with the convention that P
is oriented counterclockwise. In particular, if P is a rectangle with opposite corners (x1,y1) and (22, y2), then

% 1 /Iz dx /y2 dy /””1 dx /”1 dy
7 dz = — + — + — + :
P 2 T + 11 o T2 + 1y z T + Y2 ys L1 + 1y

provided that x1 < x5 and y; < yo. In this case, a straightforward computation gives

$p 27 dz = 2mi if O lies inside P, $p 2z tdz =0 if 0 lies outside P. (2)

We also take for granted that (2) holds for all non-self-intersecting closed hv-polylines P (this can be proven
by splitting the inner component of C\ P into two parts with smaller number of edges unless P is a rectangle).

(c) Let v :[0,1) — C be continuous, ¥(0) = 0 and y(t) — oo as t — 1; denote I" := ~([0,1)) C C. Prove
that fp 271dz = 0 for all non-self-intersecting closed hv-polylines P C C \. T.

(d) Deduce from (c) that §, 27 dz = 0 for all (possibly, self-intersecting) closed polylines P C C . T.

(e) In the same setup, prove that there exists a function L : C\T — C such that fp 27z = L(22) — L(21)

for each hv-polyline p C C \ T going from z; to zo. [ Hint : choose a reference point zg € U in each of the
connected components U of C \ T and define L(z) := pr(ZU 2 27 tdz for z € U, where po(z0,2) C U is an

arbitrarily chosen hv-polyline going from zp to z. Use (c¢) to check the required property of L for all p C U.]

We now come to the setup of Janiszewski’s theorem. Let T'; := 7;([0,1)) CC\ K; and L; : C\T; - C
denote the corresponding functions constructed in the item (e).

(f) Argue that there exists a connected component U of the set C~ (I'y UT'2) such that K; N Ky C U. Prove
that one can choose reference points in the definition of L; and Ls so that Li(z) = La(2) for all z € U.

(g) Prove that there exist open sets Vj, j = 1,2, such that Vi, N Vo =0 and K; ~ U C V; C C\T;. Denote
Vi=UUViUV, D K1 UKy and let L(z) := L;(z) for z€ V;UU, j=1,2.

(h) Prove that fp 27 Ydz = L(z9) — L(2,) for each hv-polyline p C V going from z; to zo. In particular, one
has §P 27'dz = 0 if P C V is a closed hv-polyline. [Hint : prove that it is always possible to split each
segment of p C V into finitely many parts, each of which is contained in one of the sets U UV} and U U V5 ]
(i) Arguing by contradiction, assume that the connected component Uy of C \ (K7 U K»3) that contains 0 is
bounded. Prove that there exists a non-self-intersecting closed hv-polyline P C VNUj such that 0 lies inside P.
[Hint : take a small enough § > 0 and consider the union of all squares [—d+2md, §+2md] x [-d+2nd, §+2nd],
n,m € Z, that are contained in Uy .] Conclude the proof of the Janiszewski theorem.

(j) Deduce from the Janiszewski theorem the following fact : if v : [0,1] — C \ {0} is a Jordan arc (i.e.,
«v is a continuous injection ; in particular, v(0) # (1)), then ([0, 1]) does not separate 0 from oco.

SEE THE NEXT PAGE FOR PROBLEM #3!
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3. Stability /asymptotic stability of stationary points of a flow. Consider a differential equation
u'(t) = f(u(t)), where f : U — F is a locally Lipschitz function defined on an open set U C E in a Banach
space E. Recall that o € U is called a stationary point of this equation if f(z¢) = 0 and that we denote by
©'(x) the solution of the Cauchy problem with the initial data «(0) = . Also, recall that zq is called

— stable if for each C' > 0 there exists € > 0 such that [|¢'(z) — x| < C for all x € B(xg,e) and all t > 0;
— asymptotically stable if xq is stable and there exists ¢ > 0 such that = € B(zq, ) = ¢'(z) — x¢ as t — +o0.

Below we assume that (i) z¢ is a stationary point of the equation u'(t) = f(u(t));
(ii) ® : U — R is a smooth function such that xq is a strict local minimum of @ ;
(iii) there exists r > 0 such that (V®(z), f(z)) < 0 for all z € B(xg,r) ~ {zo}.
(a) Check that % ®(p'(x)) < 0 if ¢'(2) € Bz, r). Prove that g is a stable stationary point.
(b) Let F = R"™. Prove that in this case xg is always asymptotically stable.
int : by continuity, one has max,cx z), f(x)) <0 for all compact sets zg.
Hint : b inui h Vo 0 for all K

The next goal is to discuss a possible construction of an equation u'(t) = f(u(t)) in the infinite-dimensional
space E = ¢% such that the conditions (i)—(iii) hold for 2o = 0 and ®(x) = ||z||* but the stationary point 0
is not asymptotically stable.

Let Sx := (0,70, 71, 22,...) and Sz := (x1, 22, 73,...) be the shift operators in the (real) Banach space £2.
We start with considering the linear equation v'(t) = Awv(t), where A := S —1S.

(c) Prove that x — Ax is a Lipschitz function. Write V®(z) explicitly. Prove that ®(z) = ||z||? is a conserved
quantity for this equation (i.e., that ®(v(¢)) does not depend on ¢ if v(t) satisfies v'(t) = Awv(t)).

(d) Denote B(z) := ||z]|* — (z, Sz). Prove that B(z) > 0 if z # 0 and that inf,. =1 B(z) = 0.
(e) Write VB(z) explicitly and prove that < B(v(t)) < 0 if v'() = Av(2).

Now let f(z) := Az — (B(x))*z, where k > 1 and consider the differential equation u/(t) = f(u(t)).
(f) Check that (V®(x), f(x)) < 0 if x #£ 0.

(g) For u(t) # 0, write u(t) = r(t)v(t), where r(t) := ||u(t)]] € Ry and v(t) := u(t)
equation u'(t) = f(u(t)) implies that v'(t) = Awv(t) and r'(t) = —(r(¢))**+1(B(v(t))

(h) Deduce from (e) that

/||u(t)]|- Check that the
)k

1 1 !
— = Zk/ (B(v(t)))"dt. (3)
[u(®)l?* [lu(0)[]>* 0
and conclude that the stable stationary point 0 of the equation u'(t) = f(u(t)) cannot be asymptotically
stable if the equation v'(t) = Av(t) admits a trajectory v(t) # 0 such that f0+oo(B(v(t)))kdt < +o0.

[!!] The proof is not complete. Though we know from the item (d) that B(v(t)) decays along all trajectories
of the equation v'(t) = Av(t) and that inf|;—; B(x) = 0, this does not directly imply even the existence of
a trajectory v(t) such that B(v(t)) — 0 as ¢ — +o00, not to speak about the rate of convergence. To proceed
further one needs more involved tools and this would be (by far) too much for the exam.

BON COURAGE!



