TD 8: Espaces de Hilbert

David Hilbert (1862-1943) est un mathématicien allemand, considéré comme l'un des plus grands mathématiciens de son époque. Il y a tellement de choses à dire sur lui qu'on se contentera de l'épitaphe qui figure sur sa tombe (mais vous pouvez aller voir sur Wikipédia ou ailleurs pour en savoir plus!) :

Wir müssen wissen, wir werden wissen

Exercice 1 : Lemme de Zorn et bases Hilbertiennes

On rappelle qu'une base Hilbertienne d'un espace de Hilbert H est une famille orthonormée totale. On fixe un espace de Hilbert H.

- 1. On suppose H séparable. Montrer que H possède une base Hilbertienne dénombrable.
- 2. On ne suppose plus a priori H séparable.
 - a) Montrer que H possède une famille orthonormée maximale pour l'inclusion.
 - b) Montrer qu'une telle famille est une base Hilbertienne.

Exercice 2: Adjoints

Soit H un espace de Hilbert (réel ou complexe) et $T:H\to H$ linéaire continue.

- 1. Montrer qu'il existe une unique application linéaire continue, notée T^* et appelée adjoint de T, telle que pour tous $x, y \in H, (Tx, y) = (x, T^*y)$.
- 2. a) Montrer que $T^{**} = T$.
 - b) Montrer que $||T|| = ||T^*||$.
 - c) Montrer que $||TT^*|| = ||T^*T|| = ||T||^2$.
- 3. a) Montrer que $\ker(T^*) = (\operatorname{Im}(T))^{\perp}$.
 - b) En déduire que $\overline{\text{Im}(T)} = (\ker T^*)^{\perp}$.
- 4. On suppose que $T^*=T$ (on dit que T est auto-adjoint) et que $H\neq\{0\}$. On supposera de plus que H est réel. Montrer que

$$||T|| = \sup\{|(Tx, x)| \mid x \in H, ||x|| = 1\}$$

5. (Un exemple). On se place dans l'espace de Hilbert (complexe) $L^2(\mathbb{R}^d)$. Soit $K \in L^2(\mathbb{R}^d \times \mathbb{R}^d)$. On définit une application linéaire T_K sur H en posant, pour $f \in H$ et pour presque tout x:

$$T_K f(x) = \int_{\mathbb{R}^d} K(x, y) f(y) dy$$

- a) Vérifier que T_K est une application linéaire continue.
- b) Calculer son adjoint. On l'exprimera sous la forme T_L pour un L bien choisi.

Exercice 3 : Théorème de Lax-Milgram

Soit H un espace de Hilbert réel et $a: H \times H \to \mathbb{R}$ bilinéaire continue coercive i.e. telle qu'il existe C > 0 et $\alpha > 0$ tels que pour tous x et $y \in H$,

$$|a(x,y)| \le C||x|| \, ||y|| \, (\text{continuit\'e}) \, \text{ et } a(x,x) \ge \alpha ||x||^2 \, (\text{coercivit\'e})$$

.

- 1. Montrer qu'il existe une unique application linéaire $T: H \to H$ telle que pour tous $x,y \in H, a(x,y) = (Tx,y).$
- 2. Montrer que T est injective.
- 3. Montrer que $\operatorname{Im} T$ est fermé.
- 4. Montrer que Im T est dense dans H. En déduire que T est un isomorphisme et que T^{-1} est continue.
- 5. En déduire que pour toute forme linéaire continue $L: H \to \mathbb{R}$ il existe un unique $x \in H$ telle que pour tout $y \in H$, a(x,y) = L(y).
- 6. On suppose dans cette question que a est symétrique et soit $L: H \to \mathbb{R}$ une forme linéaire continue. Montrer que l'unique x de la question précédente est caractérisé par :

$$J(x) = \min_{y \in H} J(y)$$

où
$$J(y) = \frac{1}{2}a(y, y) - L(y)$$
.

Exercice 4 : Un théorème ergodique

Soit H un espace de Hilbert et soit $T: H \to H$ linéaire continue telle que $||T|| \le 1$. On note P le projecteur orthogonal sur $\ker(T-\mathrm{Id})$. On pose

$$S_n \coloneqq \frac{1}{n} \sum_{k=0}^{n-1} T^k$$

Le but de cet exercice est de montrer que pour tout $x \in H, S_n(x) \to P(x)$.

- 1. Montrer que l'ensemble $F := \{x \in H, S_n(x) \to P(x)\}$ est fermé.
- 2. Montrer que $ker(T Id) \subset F$.
- 3. Montrer que $ker(T Id) = ker(T^* Id)$.
- 4. Montrer que $\operatorname{Im}(T \operatorname{Id}) \subset F$.
- 5. Conclure.

Exercice 5 : Convergence faible

Soit H un espace de Hilbert. On dit qu'une suite (x_n) converge faiblement vers $x \in H$ si pour tout $y \in H$, $(x_n, y) \to (x, y)$. Soit $(x_n)_{n \in \mathbb{N}}$ une suite de H et $x \in H$.

- 1. On suppose que $x_n \to x$. Montrer que (x_n) converge faiblement vers x.
- 2. On suppose que pour tous $i, j \in \mathbb{N}$, $(x_i, x_j) = \delta_{i,j}$. Montrer que (x_n) converge faiblement vers 0.
- 3. On suppose que (x_n) converge faiblement vers x. Montrer que $||x|| \le \liminf ||x_n||$.
- 4. On suppose que (x_n) converge faiblement vers x et que $\limsup ||x_n|| \le ||x||$. Montrer que $x_n \to x$.
- 5. On suppose que H est séparable et que (x_n) est bornée. Montrer que l'on peut en extraire une sous-suite qui converge faiblement.
- 6. On suppose que (x_n) converge faiblement vers x. Montrer que (x_n) est bornée. Indication : on pourra utiliser le théorème de Banach-Steinhaus

Exercice 6 : Matrices de Gram et ...

Soit E un espace de Hilbert réel et $x_1, \ldots, x_p \in E$. On note $G(x_1, \ldots, x_p)$ le déterminant de Gram de cette famille, à savoir,

$$G(x_1, \dots, x_p) = \left| (\langle x_i, x_j \rangle)_{1 \le i, j \le p} \right|$$

- 1. Montrer que $G(x_1, \ldots, x_p) = 0 \iff (x_1, \ldots, x_p)$ est liée.
- 2. On suppose que (x_1, \ldots, x_p) est libre et on note $F = \text{Vect}(x_1, \ldots, x_p)$. Soit (e_1, \ldots, e_p) une base orthonormée de F. On note $M = (m_{ij})$ la matrice de changements de base :

$$x_j = \sum_{i=1}^p m_{ij} e_i$$

- a) Montrer que $G(x_1, \ldots, x_p) = (\det M)^2$.
- b) Soit $x \in E$. Montrer

$$d(x,F)^2 = \frac{G(x,x_1,\ldots,x_p)}{G(x_1,\ldots,x_p)}$$

 $Indication: on \ pourra \ utiliser \ le \ projet\'e \ orthogonal \ de \ x \ sur \ F$

3. Un calcul. On pose $E=L^2(]0,1[)$ et pour $r\geq 0$, on note $f_r:x\in]0,1[\mapsto x^r,f_r\in E.$ Soient $r_1,\ldots,r_p\geq 0$. Montrer que $G(f_{r_1},\ldots,f_{r_p})$ est le déterminant de la matrice suivante :

$$A = \left(\frac{1}{r_i + r_j + 1}\right)_{1 \le i, j \le p}$$

On admet que

$$\det(A) = \prod_{j=1}^{p} \frac{1}{2r_j + 1} \prod_{j < k} \left(\frac{r_j - r_k}{r_j + r_k + 1} \right)^2$$

Exercice 7 : ... Théorème de Müntz

Cet exercice utilise de façon substantielle les résultats de l'exercice précédent. On note toujours $E = L^2(]0,1[)$ et pour $r \geq 0$, $f_r : x \in]0,1[\mapsto x^r$. On se donne une suite de réels strictement croissante $(r_p)_{p\in\mathbb{N}}$ et on notera $F_p = \underline{\mathrm{Vect}(f_{r_0},\ldots,f_{r_p})}$. On souhaite étudier une CNS pour que la famille (f_{r_p}) soit totale, i.e. $E = \underline{\mathrm{Vect}(f_{r_p},p\in\mathbb{N})}$.

- 1. Montrer que (f_{r_p}) est totale si et seulement si pour tout $n \in \mathbb{N}$, $d(f_n, F_p) \to 0$ quand $p \to \infty$.
- 2. Montrer que (f_{r_p}) est totale si et seulement si $\sum_{p} \frac{1}{r_p} = +\infty$.

Exercice 8: Fonctions de Haar

On note $E = L^2(]0,1[)$. On note $H_{-1} = 1$ et pour $n \in \mathbb{N}$, et $0 \le k \le 2^n - 1$, on définit la fonction

$$H_{n,k}(x) = \begin{cases} \sqrt{2^n} \text{ si } x \in]\frac{k}{2^n}, \frac{2k+1}{2^{n+1}}[\\ -\sqrt{2^n} \text{ si } x \in]\frac{2k+1}{2^{n+1}}, \frac{k+1}{2^n}[\\ 0 \text{ sinon} \end{cases}$$

On notera $I_{n,k} = \frac{k}{2^n}, \frac{k+1}{2^n}$, le support de $H_{n,k}$. On note $\mathcal{H} = \{H_{-1}\} \cup (H_{n,k})_{n \in \mathbb{N}, 0 \le k < 2^n}$.

- 1. Montrer que \mathcal{H} est une famille orthonormée de E.
- 2. On va montrer dans cette question que \mathcal{H} est une famille totale de E. On fixe donc $f \in E$ telle que pour tout $h \in \mathcal{H}$, (h, f) = 0 et on veut montrer que f = 0. On introduit la fonction $F(y) = \int_0^y f(t)dt$.
 - a) Montrer que pour tout $n \in \mathbb{N}, 0 \le k < 2^n$,

$$F\left(\frac{k}{2^n}\right) + F\left(\frac{k+1}{2^n}\right) = 2F\left(\frac{2k+1}{2^{n+1}}\right)$$

b) En déduire que F = 0 puis que f = 0.