A spectral gap for obstacle scattering in 2D

Lucas Vacossin

Workshop ANR Adyct, 8 novembre 2021

Lucas Vacossin

A spectral gap for obstacle scattering in 2D Workshop ANR Adyct, 8 novembre 2021

Resonances in obstacle scattering

- Resonances
- Distribution of resonances
- Semiclassical setting
- Conjectures and known results

Open quantum maps

- Quantizing open sympletic relations
- Ideas of proof for the spectral gap

Fractal uncertainty principle

- Uncertainty principle
- Fractal sets
- Fractal uncertainty principle

Table of Contents

Resonances in obstacle scattering

- Resonances
- Distribution of resonances
- Semiclassical setting
- Conjectures and known results

Open quantum maps

- Quantizing open sympletic relations
- Ideas of proof for the spectral gap

Fractal uncertainty principle

- Uncertainty principle
- Fractal sets
- Fractal uncertainty principle

Obstacle scattering

Lucas Vacossin

A spectral gap for obstacle scattering in 2D Workshop ANR Adyct, 8 novembre 2021

Obstacle scattering

A set of N obstacles \mathcal{O}_i :

- smooth boundary
- strictly convex
- Non-eclipse condition :

$$\forall i \neq j \neq k, \overline{\mathcal{O}_i} \cap \operatorname{conv}(\overline{\mathcal{O}_j} \cup \overline{\mathcal{O}_k}) = \emptyset$$

Obstacle scattering

 $\mathcal{O} = \bigcup_i \mathcal{O}_i$

We study

 $-\Delta$ on $\mathbb{R}^d\setminus \mathcal{O}$

with Dirichlet boundary condition.

Lucas Vacossin

$$R(\lambda) \coloneqq (-\Delta - \lambda^2)^{-1} : H^2(\mathbb{R}^d \setminus \mathcal{O}) \to L^2(\mathbb{R}^d \setminus \mathcal{O})$$

is well defined for Im $\lambda > 0$.

Lucas Vacossin

A spectral gap for obstacle scattering in 2D Workshop ANR Adyct, 8 novembre 2021

<ロ> (日) (日) (日) (日) (日)

2

$$R(\lambda) \coloneqq (-\Delta - \lambda^2)^{-1} : H^2(\mathbb{R}^d \setminus \mathcal{O}) \to L^2(\mathbb{R}^d \setminus \mathcal{O})$$

is well defined for Im $\lambda > 0$.

Theorem (see for instance the book of Dyatlov-Zworski)

 $R(\lambda)$ extends meromorphically to a family of operators $H^2_{comp} \to L^2_{loc}$ with poles of finite rank to all \mathbb{C} if the dimension is odd, to the log plane (and in particular to $\mathbb{C} \setminus (-i\mathbb{R})$) if *d* is even.

$$R(\lambda) \coloneqq (-\Delta - \lambda^2)^{-1} : H^2(\mathbb{R}^d \setminus \mathcal{O}) \to L^2(\mathbb{R}^d \setminus \mathcal{O})$$

is well defined for Im $\lambda > 0$.

Theorem (see for instance the book of Dyatlov-Zworski)

 $R(\lambda)$ extends meromorphically to a family of operators $H^2_{comp} \to L^2_{loc}$ with poles of finite rank to all \mathbb{C} if the dimension is odd, to the log plane (and in particular to $\mathbb{C} \setminus (-i\mathbb{R})$) if d is even.

Definition

The poles are the resonances.

Lucas Vacossin

A resonance $\lambda = k - i\gamma (\gamma > 0)$ comes with a **resonant states** u_{λ} : it is an outgoing solution (but not L^2) of the equation

$$(-\Delta - \lambda^2)u = 0$$

A D A D A D A

A resonance $\lambda = k - i\gamma (\gamma > 0)$ comes with a **resonant states** u_{λ} : it is an outgoing solution (but not L^2) of the equation

$$(-\Delta - \lambda^2)u = 0$$

Outgoing means that

$$u(x) \sim_{|x| \to +\infty} a\left(rac{x}{|x|}
ight) e^{i\lambda|x|} |x|^{-(d-1)/2}$$

12 N A 12 N

A resonance $\lambda = k - i\gamma \ (\gamma > 0)$ comes with a **resonant states** u_{λ} : it is an outgoing solution (but not L^2) of the equation

$$(-\Delta - \lambda^2)u = 0$$

Outgoing means that

$$u(x)\sim_{|x|\to+\infty} a\left(rac{x}{|x|}
ight)e^{i\lambda|x|}|x|^{-(d-1)/2}$$

Interpretation : set $v_{\lambda}(t,x) = u_{\lambda}(x)e^{-it\lambda}$. It solves the wave equation :

$$(\partial_t^2 - \Delta)v_\lambda = 0$$

$$\begin{split} \mathbf{k} &= \operatorname{Re} \lambda \to \operatorname{frequency} \\ \gamma &= -\operatorname{Im} \lambda \to \operatorname{decay} \operatorname{rate} \end{split}$$

Distribution of resonances

Question

 a > 0, γ > 0 being fixed, number of resonances in boxes [k, k + a] − iγ[0, 1], as k → +∞.

Distribution of resonances

Question

- a > 0, γ > 0 being fixed, number of resonances in boxes [k, k + a] − iγ[0, 1], as k → +∞.
- Spectral gaps : does there exists $\gamma > 0$ such that there is **NO** resonances in $[1, +\infty[-i[0, \gamma]?$

Question

- a > 0, γ > 0 being fixed, number of resonances in boxes [k, k + a] − iγ[0, 1], as k → +∞.
- Spectral gaps : does there exists $\gamma > 0$ such that there is **NO** resonances in $[1, +\infty[-i[0, \gamma]?$

Applications : (exponential) decay of the local energy for the wave equation outside the obstacles , resonance expansion of scattered waves

These are high-frequency problems : set

 $\operatorname{Re} \lambda = h^{-1}$, *h* semiclassical parameter

We now write $h\lambda = 1 + z$, $z \in D(0, Ch)$ i.e. we study

$$-h^2\Delta - (1+z)^2$$

These are high-frequency problems : set

 $\operatorname{Re} \lambda = h^{-1}$, *h* semiclassical parameter

We now write $h\lambda = 1 + z$, $z \in D(0, Ch)$ i.e. we study

$$-h^2\Delta-(1+z)^2$$

Semiclassical : the classical dynamics of the system influences the high-frequency behavior of the quantum problem

Classical dynamic

Figure: The billiard flow outside the obstacles

Lucas Vacossin

A spectral gap for obstacle scattering in 2D Workshop ANR Adyct, 8 novembre 2021

< 回 > < 三 > <

A reduced dynamics, at **discrete** time, living on the tangent space of the **boundary**. Each pair of obstacle $\mathcal{O}_i, \mathcal{O}_j$ gives a symplectic relation \mathcal{B}_{ij} Let's define :

$$S^* \partial \mathcal{O}_j = \{(x, \xi) \in T^* \mathbb{R}^2, x \in \partial \mathcal{O}_j, |\xi| = 1\}$$

 $B^* \partial \mathcal{O}_j = \{(y, \eta) \in T^* \partial \mathcal{O}_j, |\eta| \le 1\}$
 $\pi_j : S^* \partial \mathcal{O}_j \to B^* \partial \mathcal{O}_j$ the orthogonal projection on each fiber

ヨトィヨト

Billiard map

A reduced dynamics, at **discrete** time, living on the t**angent space of the boundary**.

 $\mathcal{B}_{ij}: B^*\partial \mathcal{O}_j \to B^*\partial \mathcal{O}_i$

Trapped set

We consider the billiard flow ϕ^t on $S^*(\mathbb{R}^d \setminus \mathcal{O}) = \{(x,\xi), x \in \mathbb{R}^d \setminus \mathcal{O}, |\xi| = 1\}$ and we define the outgoing (Γ_+) and incoming (Γ_-) tails

$$\mathsf{\Gamma}_{\pm} = \left\{ (x,\xi), \phi^t(x,\xi) ext{ stays bounded as } t o \mp \infty
ight\}$$

Trapped set

We consider the billiard flow ϕ^t on $S^*(\mathbb{R}^d \setminus \mathcal{O}) = \{(x,\xi), x \in \mathbb{R}^d \setminus \mathcal{O}, |\xi| = 1\}$ and we define the outgoing (Γ_+) and incoming (Γ_-) tails

$${\sf \Gamma}_{\pm}=\left\{(x,\xi),\phi^t(x,\xi) ext{ stays bounded as } t o \mp\infty
ight\}$$

We also define the trapped set

$$\Gamma=\Gamma_+\cap\Gamma_-$$

Trapped set

We consider the billiard flow ϕ^t on $S^*(\mathbb{R}^d \setminus \mathcal{O}) = \{(x,\xi), x \in \mathbb{R}^d \setminus \mathcal{O}, |\xi| = 1\}$ and we define the outgoing (Γ_+) and incoming (Γ_-) tails

$${\sf \Gamma}_{\pm}=\left\{(x,\xi),\phi^t(x,\xi) ext{ stays bounded as } t o \mp\infty
ight\}$$

We also define the trapped set

$$\Gamma = \Gamma_+ \cap \Gamma_-$$

Let's note $\mathcal{K}_j := \Gamma \cap S^* \partial \mathcal{O}_j$, $\mathcal{K}_j = \pi_j(\mathcal{K}_j)$ and $\mathcal{K} = \bigcup \mathcal{K}_j$. Claim :

- $K_j \subset \{(y,\eta) \in T^* \partial \mathcal{O}_j, |\eta| < 1\}$ i.e. no trapped glancing rays.
- The billiard map is a smooth canonical transformation in a neighborhood $V \subset B^* \partial \mathcal{O}$ of K; $\mathcal{B} : V \to \mathcal{B}(V)$.

Spectral gaps and trapped set

• 1 obstacle : no trapping. ∃ a spectral gap (see the works of Lax, Phillips, Morawetz, Raltson, Strauss, Melrose, etc., in the 70's)

Spectral gaps and trapped set

- 1 obstacle : no trapping. ∃ a spectral gap (see the works of Lax, Phillips, Morawetz, Raltson, Strauss, Melrose, etc., in the 70's)
- 2 obstacles : one single closed periodic orbit. ∃ a spectral gap. In fact, the asymptotic distribution is well understood : it is asymptotically close to a lattice (see Ikawa 80, Ch. Gerard 88)

- 1 obstacle : no trapping. ∃ a spectral gap (see the works of Lax, Phillips, Morawetz, Raltson, Strauss, Melrose, etc., in the 70's)
- 2 obstacles : one single closed periodic orbit. \exists a spectral gap. In fact, the asymptotic distribution is well understood : it is asymptotically close to a lattice (see Ikawa 80, Ch. Gerard 88)
- 3 and more obstacles : the trapped set is much more complicated.

Trapped set for $N \geq 3$ obstacles

Elements to understand the complexity of the trapped set :

• (Morita 91) Bijection between trapped orbits and sequences in

$$\left\{ (\alpha_n)_{n \in \mathbb{Z}} \in \{1, \dots, N\}^{\mathbb{Z}}; \alpha_{n+1} \neq \alpha_n \right\}$$

Trapped set for $N \ge 3$ obstacles

Elements to understand the complexity of the trapped set :

• (Morita 91) Bijection between trapped orbits and sequences in

$$\left\{ (\alpha_n)_{n \in \mathbb{Z}} \in \{1, \dots, N\}^{\mathbb{Z}}; \alpha_{n+1} \neq \alpha_n \right\}$$

• Hyperbolicity of the billiard map on the trapped set : if $\rho \in K \subset V$, \exists a continuous decomposition

$$T_{\rho}V = E_u(\rho) \oplus E_s(\rho)$$

where there exists C > 0 and $\lambda > 0$ such that

- $d_{\rho}\mathcal{B}(E_{u}(\rho)) = E_{u}(\mathcal{B}(\rho)) ; d_{\rho}\mathcal{B}(E_{s}(\rho)) = E_{s}(\mathcal{B}(\rho)) ;$
- for every $v \in E_u(\rho), n \in \mathbb{N}, ||d_{\rho}\mathcal{B}^{-n}(v)|| \leq Ce^{-\lambda n}$
- for every $v \in E_s(
 ho), n \in \mathbb{N}, ||d_
 ho \mathcal{B}^n(v)|| \leq C e^{-\lambda n}$;

Trapped set for $N \ge 3$ obstacles

Elements to understand the complexity of the trapped set :

• (Morita 91) Bijection between trapped orbits and sequences in

$$\left\{ (\alpha_n)_{n \in \mathbb{Z}} \in \{1, \dots, N\}^{\mathbb{Z}}; \alpha_{n+1} \neq \alpha_n \right\}$$

• Hyperbolicity of the billiard map on the trapped set : if $\rho \in K \subset V$, \exists a continuous decomposition

$$T_{\rho}V = E_u(\rho) \oplus E_s(\rho)$$

We can define the **unstable Jacobian** $J_u(\rho) = \det(d_\rho \mathcal{B} : E_u(\rho) \to E_u(\mathcal{B}(\rho))$

Trapped set for $N \geq 3$ obstacles

Elements to understand the complexity of the trapped set :

• (Morita 91) Bijection between trapped orbits and sequences in

$$\{(\alpha_n)_{n\in\mathbb{Z}}\in\{1,\ldots,N\}^{\mathbb{Z}};\alpha_{n+1}\neq\alpha_n\}$$

• Hyperbolicity of the billiard map on the trapped set : if $\rho \in K \subset V$, \exists a continuous decomposition

$$T_{\rho}V = E_u(\rho) \oplus E_s(\rho)$$

We can define the **unstable Jacobian** $J_u(\rho) = \det(d_\rho \mathcal{B} : E_u(\rho) \to E_u(\mathcal{B}(\rho))$

- Topological pressure P(s) associated to $-s \log J_u$:
 - $s \mapsto P(s)$ strictly decreasing
 - P(0) > 0: topological entropy
 - $P(1) = -\gamma_{cl} < 0$ with γ_{cl} classical escape rate.
 - Bowen's formula in dimension 2 : if $2s_0 = \dim_{Haus} K = \dim_{upper-box} K$, then s_0 is the unique root of P(s) = 0.

A few pictures

Obstacles : Three disks at the vertices of an equilateral triangle.

Figures from *Wada Basin Boundaries in Chaotic Scattering*, available on the web page *Chaos at Maryland*.

A few pictures

Obstacles : Three disks at the vertices of an equilateral triangle.

Figures from *Wada Basin Boundaries in Chaotic Scattering*, available on the web page *Chaos at Maryland*.

Theorem (see for instance Katok-Hasselblatt)

There exists two families of local manifolds $W_u(\rho)$ and $W_s(\rho)$ for $\rho \in K$ such that

-
$$T_{
ho}W_{*}(
ho) = E_{*}(
ho)$$
 ;

- if $\rho' \in W_s(\rho), d(F^n(\rho), F^n(\rho')) \to 0$ when $n \to \infty$;

- if $\rho' \in W_u(\rho), d(F^{-n}(\rho), F^{-n}(\rho')) \to 0$ when $n \to \infty$;

Other open hyperbolic systems

- Convex co-compact hyperbolic surfaces : $-\Delta_g$ on (M,g)
- Scattering by a compactly supported potential : $-h^2\Delta + V$ with $V \in \mathcal{C}^\infty_c(\mathbb{R}^d, \mathbb{R})$

Conjecture (Zworski 17)

Suppose that the system has a compact hyperbolic trapped set. Then, there exists a spectral gap.

Results :

Lucas Vacossin

Conjecture (Zworski 17)

Suppose that the system has a compact hyperbolic trapped set. Then, there exists a spectral gap.

Results :

• Holds under the pressure condition P(1/2) < 0 (in any dimension) (Ikawa 88), also in potential scattering (Nonnenmacher-Zworski 09)
Conjecture (Zworski 17)

Suppose that the system has a compact hyperbolic trapped set. Then, there exists a spectral gap.

Results :

- Holds under the pressure condition P(1/2) < 0 (in any dimension) (Ikawa 88), also in potential scattering (Nonnenmacher-Zworski 09)
- For convex co-compact hyperbolic surfaces : recent results with a **fractal uncertainty principle** (Dyatlov-Zahl 16, Dyatlov-Bourgain 17 and 18)

d = 2. Suppose that the obstacles have smooth strictly convex boundary and satisfy the non-eclipse condition. Then, there exists a spectral gap.

• This result also applies in potential scattering under certain dynamical assumptions.

d = 2. Suppose that the obstacles have smooth strictly convex boundary and satisfy the non-eclipse condition. Then, there exists a spectral gap.

- This result also applies in potential scattering under certain dynamical assumptions.
- Only in dimension 2.

d = 2. Suppose that the obstacles have smooth strictly convex boundary and satisfy the non-eclipse condition. Then, there exists a spectral gap.

- This result also applies in potential scattering under certain dynamical assumptions.
- Only in dimension 2.
- Based on a reduction to open quantum maps (Nonnenmacher-Sjöstrand-Zworski 11 and 14)

d = 2. Suppose that the obstacles have smooth strictly convex boundary and satisfy the non-eclipse condition. Then, there exists a spectral gap.

- This result also applies in potential scattering under certain dynamical assumptions.
- Only in dimension 2.
- Based on a reduction to open quantum maps (Nonnenmacher-Sjöstrand-Zworski 11 and 14)
- Use of the Fractal Uncertainty Principle where the unstable/stable distribution is not smooth (but C^{1+ε}) (Dyatlov-Jin-Nonnenmacher 19)

Table of Contents

Resonances in obstacle scattering

- Resonances
- Distribution of resonances
- Semiclassical setting
- Conjectures and known results

Open quantum maps

- Quantizing open sympletic relations
- Ideas of proof for the spectral gap

Fractal uncertainty principle

- Uncertainty principle
- Fractal sets
- Fractal uncertainty principle

Definition

An open quantum map quantizing the billiard map is a matrix of operators $T = T(h) = (T_{ij})$ where each $T_{ij} : L^2(Y_j) \to L^2(Y_i)$ is a Fourier integral operator associated to the symplectic relation \mathcal{B}_{ij} restricted to $Y_i \times Y_j$.

(日) (同) (日) (日)

Definition

An open quantum map quantizing the billiard map is a matrix of operators $T = T(h) = (T_{ij})$ where each $T_{ij} : L^2(Y_j) \to L^2(Y_i)$ is a Fourier integral operator associated to the symplectic relation \mathcal{B}_{ij} restricted to $Y_i \times Y_j$.

Remarks

- Here, $Y_k \subset \partial \mathcal{O}_k$ is an open interval containing the reduced trapped set.
- Being a FIO means that if $a \in C^{\infty}_{c}(Y_{i})$,

$$T_{ij}^* \operatorname{Op}_{\mathsf{h}}(a) T_{ij} = \operatorname{Op}_{\mathsf{h}}(b) + O(h)$$

where $b(\rho_j) = |\alpha_{ij}|^2(\rho_j) \times a \circ \mathcal{B}_{ij}(\rho_j)$.

We say that T is microlocally unitary near the trapped set if α_{ij} ∈ C[∞]_c(∂O_i) satisfies |α_{ij}| ≡ 1 in a neighborhood of K_j

(日) (同) (日) (日)

Theorem (Nonnenmacher-Sjöstrand-Zworski 14)

There exists a holomorphic family of operators $z \in D(0, Ch) \mapsto M(z; h)$ such that $M(z; h) = \prod_h M_0(z; h) \prod_h + O(h^L)$ (with L fixed but large) where

- (i) $M_0(0)$ is an open quantum map quantizing the billiard map microlocally unitary near the trapped set ;
- (ii) $M_0(z) = M_0(0) \operatorname{Op}_h\left(e^{i\frac{z}{h}\tau}\right) + O(h^{1-\varepsilon})$ for any $\varepsilon > 0$, where τ is a return time function
- (iii) Π_h is a finite rank projector with rank of order h^{-2}
- (iv) $\Pi_h M_0(z) \Pi_h = M_0(z) + O(h^K)$ for some K > 0.

and such that $h^{-1}(1+z)$ is a resonance if and only if det(Id - M(z; h)) = 0.

Reduction to an open quantum map

Theorem (Nonnenmacher-Sjöstrand-Zworski 14)

There exists a holomorphic family of operators $z \in D(0, Ch) \mapsto M(z; h)$ such that $M(z; h) = \prod_h M_0(z; h) \prod_h + O(h^L)$ (with L fixed but large) where

- (i) $M_0(0)$ is an open quantum map quantizing the billiard map microlocally unitary near the trapped set ;
- (ii) $M_0(z) = M_0(0) \operatorname{Op}_h\left(e^{i\frac{z}{\hbar}\tau}\right) + O(h^{1-\varepsilon})$ for any $\varepsilon > 0$, where τ is a return time function
- (iii) Π_h is a finite rank projector with rank of order h^{-2}

(iv)
$$\Pi_h M_0(z) \Pi_h = M_0(z) + O(h^K)$$
 for some $K > 0$.

and such that $h^{-1}(1+z)$ is a resonance if and only if det(Id - M(z; h)) = 0.

Remarks

Assume that τ is constant, there is a heuristic correspondence $h^{-1}(1+z)$ resonance $\leftrightarrow e^{-i\frac{z}{h}\tau}$ eigenvalue of M(0)

Spectral gap of depth $\gamma \leftrightarrow$ the spectral radius of M(0) is smaller than $e^{-\gamma \tau}$

Toy models

It motivates the study of open quantum maps for toy models. For instance, the baker's map on the torus.

Figure: A classical baker's map

Here, $P(1/2) = \frac{\log 3}{\log 5} - \frac{1}{2} > 0.$

Toy models

It motivates the study of open quantum maps for toy models. For instance, the baker's map on the torus.

Its quantum counterpart : in dimension $N = (2\pi h)^{-1} = 5^k$

E 6 4 E

It motivates the study of open quantum maps for toy models. For instance, the baker's map on the torus.

Its quantum counterpart : in dimension $N = 5^k = (2\pi h)^{-1}$

Theorem (Dyatlov-Jin 17)

There exists $\gamma > 0$ such that

$$\limsup_{k \to +\infty} \rho_{spec}(B_N) \le e^{-\gamma} < 1$$

d = 2. Suppose that the obstacles have smooth strictly convex boundary and satisfy the non-eclipse condition. Then, there exists a spectral gap.

Aim : $\rho_{spec}(M(0; h)) \le e^{-\gamma} < 1.$

• It is enough to show that if $n \sim \alpha |\log h|$: $||M^n|| = O(h^\beta)$ as $h \to 0$.

d = 2. Suppose that the obstacles have smooth strictly convex boundary and satisfy the non-eclipse condition. Then, there exists a spectral gap.

Aim : $\rho_{spec}(M(0; h)) \le e^{-\gamma} < 1.$

- It is enough to show that if $n \sim \alpha |\log h|$: $||M^n|| = O(h^\beta)$ as $h \to 0$.
- Basic idea : *M* FIO associated to *B* : *Mⁿ* FIO associated to *Bⁿ*. True for *n* fixed (Egorov's theorem)

d = 2. Suppose that the obstacles have smooth strictly convex boundary and satisfy the non-eclipse condition. Then, there exists a spectral gap.

Aim : $\rho_{spec}(M(0; h)) \le e^{-\gamma} < 1.$

- It is enough to show that if $n \sim \alpha |\log h| : ||M^n|| = O(h^\beta)$ as $h \to 0$.
- Basic idea : *M* FIO associated to *B* : *Mⁿ* FIO associated to *Bⁿ*. True for *n* fixed (Egorov's theorem)
- One would like to extend the property to $n \sim \alpha |\log h|$: hopeless for large α but if possible, we could write

$$M^n = \operatorname{Op}_{\mathsf{h}}(\chi_+)M^n + \operatorname{O}(h^\infty); M^n = M^n \operatorname{Op}_{\mathsf{h}}(\chi_-) + \operatorname{O}(h^\infty)$$

where $\chi_{\pm}\equiv 1$ on $\widetilde{\Gamma}_{\pm}$ and

$$\operatorname{supp}(\chi_{\pm}) \subset \widetilde{\mathsf{\Gamma}}_{\pm}(\mathit{Ch}^{\delta lpha})$$

where δ related to the contraction/expansion rate of the classical flow and $\widetilde{\Gamma}_{\pm} = \bigcup_{j} \pi_{j} (\Gamma_{\pm} \cap S^{*} \partial \mathcal{O}_{j}).$

Ideas of proof

We write the (informal) computation.

Lucas Vacossin

 $\mathsf{Aim}: ||M^N|| = O(h^\beta)$

• We break the symmetry N = 2n = n + n, by writing. $N = n_{-} + n_{+}$. $n_{-} \sim \rho_{-} |\log h|$ short (resp. $n_{+} \sim \rho_{+} |\log h|$ long) logarithmic time :

$$M^N = M^{n_-} M^{n_+}$$

We have $n_{-} < n_{E} < n_{+}$ where n_{E} is the Ehrenfest time

 $\mathsf{Aim}: ||M^N|| = O(h^\beta)$

• We break the symmetry N = 2n = n + n, by writing. $N = n_{-} + n_{+}$. $n_{-} \sim \rho_{-} |\log h|$ short (resp. $n_{+} \sim \rho_{+} |\log h|$ long) logarithmic time :

$$M^N = M^{n_-} M^{n_+}$$

We have $n_{-} < n_{E} < n_{+}$ where n_{E} is the Ehrenfest time

• *n*₋ short enough to stay under the control of semiclassical calculus and use Egorov's theorem:

$$M^{n_-} = M^{n_-} \operatorname{Op}_{\mathsf{h}}(\chi_-) + \operatorname{O}(h^\infty)$$

 $\mathsf{Aim}: ||M^N|| = O(h^\beta)$

• We break the symmetry N = 2n = n + n, by writing. $N = n_{-} + n_{+}$. $n_{-} \sim \rho_{-} |\log h|$ short (resp. $n_{+} \sim \rho_{+} |\log h|$ long) logarithmic time :

$$M^N = M^{n_-} M^{n_+}$$

We have $n_{-} < n_{E} < n_{+}$ where n_{E} is the Ehrenfest time

• *n*₋ short enough to stay under the control of semiclassical calculus and use Egorov's theorem:

$$M^{n_-} = M^{n_-} \operatorname{Op}_{\mathsf{h}}(\chi_-) + \operatorname{O}(h^\infty)$$

• *n*₊ too long to use standard semiclassical tools : the study of *M*^{*n*₊} is much more technical.

• We focus on sufficiently small pieces U_1, \ldots, U_J covering the trapped set.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We focus on sufficiently small pieces U_1, \ldots, U_J covering the trapped set.
- Using a pseudodifferential partition of unity $(Id = \sum_j A_j)$ associated to the U_j , we write $M = \sum_j MA_j$ and develop

$$M^{n_+} = \sum_{\mathbf{q} \in \{1,\dots,J\}^{n_+}} M_{\mathbf{q}}$$

$$M^N = \sum M^{n_-} \operatorname{Op}_{\mathsf{h}}(\chi_-) M_{\mathsf{q}}$$

 \implies Triangle inequality not precise enough.

- We focus on sufficiently small pieces U_1, \ldots, U_J covering the trapped set.
- Using a pseudodifferential partition of unity $(Id = \sum_{j} A_{j})$ associated to the U_{j} , we write $M = \sum_{j} MA_{j}$ and develop

$$M^{n_+} = \sum_{\mathbf{q} \in \{1,\dots,J\}^{n_+}} M_{\mathbf{q}}$$

$$M^N = \sum M^{n_-} \operatorname{Op}_{\mathsf{h}}(\chi_-) M_{\mathsf{q}}$$

- \implies Triangle inequality not precise enough.
- We need fine microlocal methods, inspired by previous works (Rivière 10, Dyatlov-Jin-Nonnenmacher 19) to

- We focus on sufficiently small pieces U_1, \ldots, U_J covering the trapped set.
- Using a pseudodifferential partition of unity $(Id = \sum_{j} A_{j})$ associated to the U_{j} , we write $M = \sum_{j} MA_{j}$ and develop

$$M^{n_+} = \sum_{\mathbf{q} \in \{1,\dots,J\}^{n_+}} M_{\mathbf{q}}$$

$$M^{N}=\sum M^{n_{-}}\operatorname{Op}_{\mathsf{h}}(\chi_{-})M_{\mathsf{q}}$$

- \implies Triangle inequality not precise enough.
- We need fine microlocal methods, inspired by previous works (Rivière 10, Dyatlov-Jin-Nonnenmacher 19) to
- study the microlocolization of $M_{\mathbf{q}}$

- We focus on sufficiently small pieces U_1, \ldots, U_J covering the trapped set.
- Using a pseudodifferential partition of unity $(Id = \sum_{j} A_{j})$ associated to the U_{j} , we write $M = \sum_{j} MA_{j}$ and develop

$$M^{n_+} = \sum_{\mathbf{q} \in \{1,\dots,J\}^{n_+}} M_{\mathbf{q}}$$

$$M^{N}=\sum M^{n_{-}}\operatorname{Op}_{\mathsf{h}}(\chi_{-})M_{\mathsf{q}}$$

- \implies Triangle inequality not precise enough.
- We need fine microlocal methods, inspired by previous works (Rivière 10, Dyatlov-Jin-Nonnenmacher 19) to
- study the microlocolization of $M_{\mathbf{q}}$
- control the interaction between two terms of the sum.

Instead, we want to apply a Cotlar-Stein type estimate : we want to construct a partition of $\{1, \ldots, J\}^{n_+}$, let's call it $V_1, \ldots, V_{K(h)}$, to write

$$M^N = \sum_{k=1}^{K(h)} M_k$$

where M_k is of the form

$$M_k = M^{n_-}\operatorname{Oph}(\chi_-)\sum_{\mathbf{q}\in V_{\mathbf{q}}}M_{\mathbf{q}}$$

We want to ensure that there exists K_0 independant of h such that if $k \in \{1, \ldots, K(h)\}$, $M_k^* M_j = M_k M_j^* = O(h^{\infty})$ holds for all but at most $K_0 j$.

Instead, we want to apply a Cotlar-Stein type estimate : we want to construct a partition of $\{1, \ldots, J\}^{n_+}$, let's call it $V_1, \ldots, V_{K(h)}$, to write

$$M^N = \sum_{k=1}^{K(h)} M_k$$

where M_k is of the form

$$M_k = M^{n_-}\operatorname{Oph}(\chi_-)\sum_{\mathbf{q}\in V_{\mathbf{q}}}M_{\mathbf{q}}$$

We want to ensure that there exists K_0 independant of h such that if $k \in \{1, \ldots, K(h)\}$, $M_k^* M_j = M_k M_j^* = O(h^{\infty})$ holds for all but at most $K_0 j$.

$$||M^N|| \le C \sup_k ||M_k||$$

Lucas Vacossin

• Define in which situation two M_q can "interact "

Image: A matrix

How to build this partition?

- Define in which situation two $M_{\mathbf{q}}$ can "interact "
- Gather the pieces into "clouds" where a cloud interact with no more than K_0 other clouds.

Reduction to a Fractal Uncertainty Principle

The bound $||M^N|| = O(h^\beta)$ reduces to a bound of the form :

$$\left| \mathsf{Op}_{\mathsf{h}}(\chi_{-}) \sum_{\mathsf{q} \in V_k} M_{\mathsf{q}} \right| \leq C h^{\beta}$$

. .

Question : Can we find a coordinate chart in which the pieces of V_k are arranged like this ?

Reduction to a Fractal Uncertainty Principle

Question : Can we find a coordinate chart in which the pieces of V_k are arranged like this ?

Claim : Yes. It relies on the $C^{1+\varepsilon}$ regularity of the unstable distribution.

Reduction to a Fractal Uncertainty Prinicple

Using this special change of coordinates, the bound $||M^N|| = O(h^\beta)$ reduces to a bound of the form :

$$\left|\left|\mathbbm{1}_{X_{-}(h)}(hD_{y})\mathbbm{1}_{X_{+}(h)}(y)\right|\right|\leq Ch^{eta}$$

where $X_{-}(h)$ (resp. $X_{+}(h)$) is an $h^{\alpha_{-}}$ (resp. $h^{\alpha_{+}}$) neighborhood of fractal sets, namely, with an upper-box dimension strictly smaller than one.

Figure: Ideal (but hopeless) case. In reality, we dont'h have perfect straight lines but a controlled deformation of such a picture.

Table of Contents

Resonances in obstacle scattering

- Resonances
- Distribution of resonances
- Semiclassical setting
- Conjectures and known results

2) Open quantum maps

- Quantizing open sympletic relations
- Ideas of proof for the spectral gap

Fractal uncertainty principle

- Uncertainty principle
- Fractal sets
- Fractal uncertainty principle

• A tool of harmonic analysis.

- A tool of harmonic analysis.
- First appeared in Dyatlov-Zahl 16, then further developed by Dyatlov and Bourgain (17,18)

- A tool of harmonic analysis.
- First appeared in Dyatlov-Zahl 16, then further developed by Dyatlov and Bourgain (17,18)
- Only works in 1D
Uncertainty principle

The *h*-Fourier transform $\mathcal{F}_h : L^2(\mathbb{R}) \to L^2(\mathbb{R})$:

$$\mathcal{F}_h u(\xi) = (2\pi h)^{-1/2} \int_{\mathbb{R}} u(x) e^{-i\frac{x\cdot\xi}{h}} dx$$

Lucas Vacossin

イロト イヨト イヨト イヨト

Uncertainty principle

The *h*-Fourier transform $\mathcal{F}_h : L^2(\mathbb{R}) \to L^2(\mathbb{R})$:

$$\mathcal{F}_h u(\xi) = (2\pi h)^{-1/2} \int_{\mathbb{R}} u(x) e^{-i\frac{x\cdot\xi}{h}} dx$$

Definition

Let X(h) and Y(h) be two families of *h*-dependent sets. We say that X and Y satisfy an uncertainty principle with exponent β if there exists C > 0:

$$\left|\left|\mathbb{1}_{X(h)}\mathcal{F}_{h}\mathbb{1}_{Y(h)}\right|\right|_{L^{2}\to L^{2}}\leq Ch^{\beta}$$

Example

Uncertainty principle with X(h) = Y(h) = [0, h]

$$\left|\left|\mathbbm{1}_{X(h)}\mathcal{F}_{h}\mathbbm{1}_{Y(h)}\right|\right|_{L^{2}\rightarrow L^{2}}\leq \frac{1}{2\pi}h^{1/2}$$

Lucas Vacossin

A spectral gap for obstacle scattering in 2D Workshop ANR Adyct, 8 novembre 2021

< 同 ▶ < 三 ▶

Definition

Let $0 \le \alpha_0 \le \alpha_1 \le +\infty$ and $\nu > 0$. We say that a closed set $X \subset \mathbb{R}$ is ν -porous on scale α_0 to α_1 if for every interval $I \subset \mathbb{R}$ with $|I| \in [\alpha_0, \alpha_1]$, there exists a subinterval $J \subset I$ such that

$$J \cap X = \emptyset$$
 ; $|J| = \nu |I|$

Definition

Let $0 \le \alpha_0 \le \alpha_1 \le +\infty$ and $\nu > 0$. We say that a closed set $X \subset \mathbb{R}$ is ν -porous on scale α_0 to α_1 if for every interval $I \subset \mathbb{R}$ with $|I| \in [\alpha_0, \alpha_1]$, there exists a subinterval $J \subset I$ such that

$$J \cap X = \emptyset$$
 ; $|J| = \nu |I|$

Upper-box dimension of a pre-compact set $X \subset \mathbb{R}$:

$$\delta_X = \limsup_{\varepsilon o 0} - \frac{\log N_X(\varepsilon)}{\log \varepsilon}$$

where $N_X(\varepsilon)$ is the minimal number of balls of radius ε needed to cover X.

Examples

Upper-box dimension of a pre-compact set $X \subset \mathbb{R}$:

$$\delta_X = \limsup_{\varepsilon o 0} - \frac{\log N_X(\varepsilon)}{\log \varepsilon}$$

where $N_X(\varepsilon)$ is the minimal number of balls of radius ε needed to cover X.

Proposition

Assume that a precompact set $X \subset \mathbb{R}$ has an upper-box dimension $\delta < 1$. Then, there exists $\nu > 0$ such that X is ν -porous on scale 0 to $+\infty$.

Examples

Upper-box dimension of a pre-compact set $X \subset \mathbb{R}$:

$$\delta_X = \limsup_{\varepsilon o 0} - rac{\log N_X(\varepsilon)}{\log \varepsilon}$$

where $N_X(\varepsilon)$ is the minimal number of balls of radius ε needed to cover X.

Proposition

Assume that a precompact set $X \subset \mathbb{R}$ has an upper-box dimension $\delta < 1$. Then, there exists $\nu > 0$ such that X is ν -porous on scale 0 to $+\infty$.

Proposition

Assume that $X \subset [0,1]$ is ν -porous on scale 0 to 1. Then X + [-h,h] is $\nu/3$ -porous on scale $\frac{3}{\nu}h$ to 1.

Proposition

Assume that a precompact set $X \subset \mathbb{R}$ has an upper-box dimension $\delta < 1$. Then, there exists $\nu > 0$ such that X is ν -porous on scale 0 to $+\infty$.

Proposition

Assume that $X \subset [0,1]$ is ν -porous on scale 0 to 1. Then X + [-h,h] is $\nu/3$ -porous on scale $\frac{3}{\nu}h$ to 1.

The sets $X_{\pm}(h)$ are ν_{\pm} porous on scales $Ch^{\alpha_{\pm}}$ to 1.

Theorem (Dyatlov-Bourgain 18)

Let $\nu > 0$. Then there exists $\beta = \beta(\nu)$ such that, for all *h*-dependent families of sets X = X(h), Y = Y(h) which are ν -porous on scale *h* to 1, there exists C > 0 such that

 $\left|\left|\mathbb{1}_{X(h)}\mathcal{F}_{h}\mathbb{1}_{Y(h)}\right|\right| \leq Ch^{\beta}$

Theorem (Dyatlov-Bourgain 18)

Let $\nu > 0$. Then there exists $\beta = \beta(\nu)$ such that, for all *h*-dependent families of sets X = X(h), Y = Y(h) which are ν -porous on scale *h* to 1, there exists C > 0 such that

 $\left|\left|\mathbb{1}_{X(h)}\mathcal{F}_{h}\mathbb{1}_{Y(h)}\right|\right| \leq Ch^{\beta}$

Proposition (Dyatlov-Jin-Nonnenmacher 19)

Let $\nu > 0$, $0 < \alpha_1, \alpha_2 \le 1$. And assume than $\gamma \coloneqq \alpha_1 + \alpha_2 - 1 > 0$. Then there exists $\beta = \beta(\nu)$ such that, for all *h*-dependent families of sets X = X(h),(resp. Y = Y(h)) which are ν -porous on scale h^{α_1} (resp. h^{α_2}) to 1, there exists C > 0 such that

 $\left|\left|\mathbb{1}_{X(h)}\mathcal{F}_{h}\mathbb{1}_{Y(h)}\right|\right| \leq Ch^{\gamma\beta}$

《口》 《圖》 《臣》 《臣》

Thank you for your attention

Lucas Vacossin

A spectral gap for obstacle scattering in 2D Workshop ANR Adyct, 8 novembre 2021

(a) < (a)