
A spectral gap for obstacle scattering in 2D

Lucas Vacossin

Workshop ANR Adyct, 8 novembre 2021

Lucas Vacossin A spectral gap for obstacle scattering in 2D Workshop ANR Adyct, 8 novembre 2021 1 / 39



1 Resonances in obstacle scattering
Resonances
Distribution of resonances
Semiclassical setting
Conjectures and known results

2 Open quantum maps
Quantizing open sympletic relations
Ideas of proof for the spectral gap

3 Fractal uncertainty principle
Uncertainty principle
Fractal sets
Fractal uncertainty principle

Lucas Vacossin A spectral gap for obstacle scattering in 2D Workshop ANR Adyct, 8 novembre 2021 2 / 39



Table of Contents

1 Resonances in obstacle scattering
Resonances
Distribution of resonances
Semiclassical setting
Conjectures and known results

2 Open quantum maps
Quantizing open sympletic relations
Ideas of proof for the spectral gap

3 Fractal uncertainty principle
Uncertainty principle
Fractal sets
Fractal uncertainty principle

Lucas Vacossin A spectral gap for obstacle scattering in 2D Workshop ANR Adyct, 8 novembre 2021 3 / 39



Obstacle scattering

Lucas Vacossin A spectral gap for obstacle scattering in 2D Workshop ANR Adyct, 8 novembre 2021 4 / 39



Obstacle scattering

A set of N obstacles Oi :
- smooth boundary
- strictly convex
- Non-eclipse condition :

∀i 6= j 6= k ,Oi ∩ conv(Oj ∪ Ok) = ∅
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Obstacle scattering

O =
⋃
i

Oi

We study
−∆ on Rd \ O

with Dirichlet boundary condition.
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Resonances

R(λ) := (−∆− λ2)−1 : H2(Rd \ O)→ L2(Rd \ O)

is well defined for Imλ > 0.

Theorem (see for instance the book of Dyatlov-Zworski)
R(λ) extends meromorphically to a family of operators H2

comp → L2
loc with poles of

finite rank to all C if the dimension is odd, to the log plane (and in particular to
C \ (−iR)) if d is even.

Definition
The poles are the resonances.
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Resonant states

A resonance λ = k − iγ (γ > 0) comes with a resonant states uλ : it is an
outgoing solution (but not L2) of the equation

(−∆− λ2)u = 0

Outgoing means that

u(x) ∼|x|→+∞ a

(
x

|x |

)
e iλ|x||x |−(d−1)/2

Interpretation : set vλ(t, x) = uλ(x)e−itλ. It solves the wave equation :

(∂2
t −∆)vλ = 0

k = Reλ→ frequency
γ = − Imλ→ decay rate
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Distribution of resonances

Question
• a > 0, γ > 0 being fixed, number of resonances in boxes [k, k + a]− iγ[0, 1],

as k → +∞.

• Spectral gaps : does there exists γ > 0 such that there is NO resonances in
[1,+∞[−i [0, γ]?

Applications : (exponential) decay of the local energy for the wave equation
outside the obstacles , resonance expansion of scattered waves
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Semiclassical setting

These are high-frequency problems : set

Reλ = h−1 , h semiclassical parameter

We now write hλ = 1 + z , z ∈ D(0,Ch) i.e. we study

−h2∆− (1 + z)2

Semiclassical : the classical dynamics of the system influences the high-frequency
behavior of the quantum problem
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Classical dynamic

Figure: The billiard flow outside the obstacles
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Billiard map

A reduced dynamics, at discrete time, living on the tangent space of the
boundary. Each pair of obstacle Oi ,Oj gives a symplectic relation Bij
Let’s define :

S∗∂Oj = {(x , ξ) ∈ T ∗R2, x ∈ ∂Oj , |ξ| = 1}
B∗∂Oj = {(y , η) ∈ T ∗∂Oj , |η| ≤ 1}
πj : S∗∂Oj → B∗∂Oj the orthogonal projection on each fiber
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Billiard map

A reduced dynamics, at discrete time, living on the tangent space of the
boundary.
Bij : B∗∂Oj → B∗∂Oi

Figure: Description of the Lagrangian relation Bij
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Trapped set

We consider the billiard flow φt on S∗(Rd \O) = {(x , ξ), x ∈ Rd \O, |ξ| = 1} and
we define the outgoing (Γ+) and incoming (Γ−) tails

Γ± =
{

(x , ξ), φt(x , ξ) stays bounded as t → ∓∞
}

We also define the trapped set

Γ = Γ+ ∩ Γ−

Let’s note Kj := Γ ∩ S∗∂Oj , Kj = πj(Kj) and K =
⋃
Kj .

Claim :
• Kj ⊂ {(y , η) ∈ T ∗∂Oj , |η| < 1} i.e. no trapped glancing rays.
• The billiard map is a smooth canonical transformation in a neighborhood
V ⊂ B∗∂O of K ; B : V → B(V ).
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Spectral gaps and trapped set

• 1 obstacle : no trapping. ∃ a spectral gap (see the works of Lax, Phillips,
Morawetz, Raltson, Strauss, Melrose, etc., in the 70’s)

• 2 obstacles : one single closed periodic orbit. ∃ a spectral gap. In fact, the
asymptotic distribution is well understood : it is asymptotically close to a
lattice (see Ikawa 80, Ch. Gerard 88 )

• 3 and more obstacles : the trapped set is much more complicated.
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Trapped set for N ≥ 3 obstacles

Elements to understand the complexity of the trapped set :
• (Morita 91) Bijection between trapped orbits and sequences in{

(αn)n∈Z ∈ {1, . . . ,N}Z;αn+1 6= αn

}

• Hyperbolicity of the billiard map on the trapped set : if ρ ∈ K ⊂ V , ∃ a
continuous decomposition

TρV = Eu(ρ)⊕ Es(ρ)

We can define the unstable Jacobian Ju(ρ) = det(dρB : Eu(ρ)→ Eu(B(ρ))

• Topological pressure P(s) associated to −s log Ju:
- s 7→ P(s) strictly decreasing
- P(0) > 0 : topological entropy
- P(1) = −γcl < 0 with γcl classical escape rate.
- Bowen’s formula in dimension 2 : if 2s0 = dimHaus K = dimupper−box K ,
then s0 is the unique root of P(s) = 0.
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A few pictures

Obstacles : Three disks at the vertices of an equilateral triangle.
Figures from Wada Basin Boundaries in Chaotic Scattering, available on the web
page Chaos at Maryland.
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Unstable/stable manifolds

Theorem ( see for instance Katok-Hasselblatt)
There exists two families of local manifolds Wu(ρ) and Ws(ρ) for ρ ∈ K such that

- TρW∗(ρ) = E∗(ρ) ;
- if ρ′ ∈Ws(ρ), d(F n(ρ),F n(ρ′))→ 0 when n→∞;
- if ρ′ ∈Wu(ρ), d(F−n(ρ),F−n(ρ′))→ 0 when n→∞;
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Other open hyperbolic systems

• Convex co-compact hyperbolic surfaces : −∆g on (M, g)

• Scattering by a compactly supported potential : −h2∆ + V with
V ∈ C∞c (Rd ,R)
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Conjectures and results

Conjecture ( Zworski 17)
Suppose that the system has a compact hyperbolic trapped set. Then, there exists
a spectral gap.

Results :

• Holds under the pressure condition P(1/2) < 0 (in any dimension) (Ikawa
88), also in potential scattering (Nonnenmacher-Zworski 09)
• For convex co-compact hyperbolic surfaces : recent results with a fractal
uncertainty principle (Dyatlov-Zahl 16, Dyatlov-Bourgain 17 and 18)
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A spectral gap for obstacle scattering in 2D

Theorem (V., WIP)
d = 2. Suppose that the obstacles have smooth strictly convex boundary and
satisfy the non-eclipse condition. Then, there exists a spectral gap.

• This result also applies in potential scattering under certain dynamical
assumptions.

• Only in dimension 2.
• Based on a reduction to open quantum maps

(Nonnenmacher-Sjöstrand-Zworski 11 and 14)
• Use of the Fractal Uncertainty Principle where the unstable/stable

distribution is not smooth (but C 1+ε) (Dyatlov-Jin-Nonnenmacher 19)
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Open quantum maps

Definition
An open quantum map quantizing the billiard map is a matrix of operators
T = T (h) = (Tij) where each Tij : L2(Yj)→ L2(Yi ) is a Fourier integral operator
associated to the symplectic relation Bij restricted to Yi × Yj .

Remarks
• Here, Yk ⊂ ∂Ok is an open interval containing the reduced trapped set.
• Being a FIO means that if a ∈ C∞c (Yi ),

T ∗ij Oph(a)Tij = Oph(b) + O(h)

where b(ρj) = |αij |2(ρj)× a ◦ Bij(ρj).
• We say that T is microlocally unitary near the trapped set if αij ∈ C∞c (∂Oi )

satisfies |αij | ≡ 1 in a neighborhood of Kj
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Reduction to an open quantum map

Theorem (Nonnenmacher-Sjöstrand-Zworski 14)
There exists a holomorphic family of operators z ∈ D(0,Ch) 7→ M(z ; h) such that
M(z ; h) = ΠhM0(z ; h)Πh + O(hL) (with L fixed but large) where
(i) M0(0) is an open quantum map quantizing the billiard map microlocally

unitary near the trapped set ;
(ii) M0(z) = M0(0) Oph

(
e i

z
h τ
)

+ O(h1−ε) for any ε > 0, where τ is a return time
function

(iii) Πh is a finite rank projector with rank of order h−2

(iv) ΠhM0(z)Πh = M0(z) + O(hK ) for some K > 0.
and such that h−1(1 + z) is a resonance if and only if det(Id−M(z ; h)) = 0.
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(iv) ΠhM0(z)Πh = M0(z) + O(hK ) for some K > 0.
and such that h−1(1 + z) is a resonance if and only if det(Id−M(z ; h)) = 0.

Remarks
Assume that τ is constant, there is a heuristic correspondence
h−1(1 + z) resonance ↔ e−i

z
h τ eigenvalue of M(0)

Spectral gap of depth γ ↔ the spectral radius of M(0) is smaller than e−γτ
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Toy models

It motivates the study of open quantum maps for toy models. For instance, the
baker’s map on the torus.

Figure: A classical baker’s map

Here, P(1/2) = log 3
log 5 −

1
2 > 0.

Its quantum counterpart : in dimension N = 5k = (2πh)−1

BN = F∗N


χN/5FN/5χN/5 0 0 0 0

0 0 0 0 0
0 0 χN/5FN/5χN/5 0 0
0 0 0 0 0
0 0 0 0 χN/5FN/5χN/5


Theorem (Dyatlov-Jin 17)
There exists γ > 0 such that

lim sup
k→+∞

ρspec(BN) ≤ e−γ < 1
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Ideas of proof for the theorem

Theorem (V., WIP)
d = 2. Suppose that the obstacles have smooth strictly convex boundary and
satisfy the non-eclipse condition. Then, there exists a spectral gap.

Aim : ρspec(M(0; h)) ≤ e−γ < 1.
• It is enough to show that if n ∼ α| log h| : ||Mn|| = O(hβ) as h→ 0.

• Basic idea : M FIO associated to B : Mn FIO associated to Bn.
True for n fixed (Egorov’s theorem)
• One would like to extend the property to n ∼ α| log h| : hopeless for large α

but if possible, we could write

Mn = Oph(χ+)Mn + O(h∞);Mn = Mn Oph(χ−) + O(h∞)

where χ± ≡ 1 on Γ̃± and

supp(χ±) ⊂ Γ̃±(Chδα)

where δ related to the contraction/expansion rate of the classical flow and
Γ̃± =

⋃
j πj (Γ± ∩ S∗∂Oj).
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Ideas of proof

We write the (informal) computation.

M2n = Mn Oph(χ−) Oph(χ+)︸ ︷︷ ︸
⇓

Mn + O(h∞)
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More rigorous skecth of proof

Aim : ||MN || = O(hβ)

• We break the symmetry N = 2n = n + n, by writing. N = n− + n+.
n− ∼ ρ−| log h| short (resp. n+ ∼ ρ+| log h| long) logarithmic time :

MN = Mn−Mn+

We have n− < nE < n+ where nE is the Ehrenfest time

• n− short enough to stay under the control of semiclassical calculus and use
Egorov’s theorem:

Mn− = Mn− Oph(χ−) + O(h∞)

• n+ too long to use standard semiclassical tools : the study of Mn+ is much
more technical.
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Study of Mn+

• We focus on sufficiently small pieces U1, . . . ,UJ covering the trapped set.

• Using a pseudodifferential partition of unity (Id =
∑

j Aj) associated to the
Uj , we write M =

∑
j MAj and develop

Mn+ =
∑

q∈{1,...,J}n+
Mq

MN =
∑

Mn− Oph(χ−)Mq

=⇒ Triangle inequality not precise enough.
• We need fine microlocal methods, inspired by previous works (Rivière 10,

Dyatlov-Jin-Nonnenmacher 19) to

- study the microlocolization of Mq

- control the interaction between two terms of the sum.
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Partition

Instead, we want to apply a Cotlar-Stein type estimate : we want to construct a
partition of {1, . . . , J}n+ , let’s call it V1, . . . ,VK(h), to write

MN =

K(h)∑
k=1

Mk

where Mk is of the form

Mk = Mn− Oph(χ−)
∑
q∈Vq

Mq

We want to ensure that there exists K0 independant of h such that if
k ∈ {1, . . . ,K (h)}, M∗kMj = MkM

∗
j = O(h∞) holds for all but at most K0 j .

||MN || ≤ C sup
k
||Mk ||
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How to build this partition?

• Define in which situation two Mq can "interact "

• Gather the pieces into "clouds" where a cloud interact with no more than K0
other clouds.
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Reduction to a Fractal Uncertainty Principle

The bound ||MN || = O(hβ) reduces to a bound of the form :∣∣∣∣∣∣
∣∣∣∣∣∣Oph(χ−)

∑
q∈Vk

Mq

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ Chβ

Question : Can we find a coordinate chart in which the pieces of Vk are arranged
like this ?
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Reduction to a Fractal Uncertainty Principle

Question : Can we find a coordinate chart in which the pieces of Vk are arranged
like this ?

Claim : Yes. It relies on the C 1+ε regularity of the unstable distribution.
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Reduction to a Fractal Uncertainty Prinicple

Using this special change of coordinates, the bound ||MN || = O(hβ) reduces to a
bound of the form : ∣∣∣∣1X−(h)(hDy )1X+(h)(y)

∣∣∣∣ ≤ Chβ

where X−(h) (resp. X+(h)) is an hα− (resp. hα+) neighborhood of fractal sets,
namely, with an upper-box dimension strictly smaller than one.

Figure: Ideal (but hopeless) case. In reality, we dont’h have perfect straight lines but a
controlled deformation of such a picture.
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Generalities on the FUP

• A tool of harmonic analysis.

• First appeared in Dyatlov-Zahl 16, then further developed by Dyatlov and
Bourgain (17,18)

• Only works in 1D
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Uncertainty principle

The h-Fourier transform Fh : L2(R)→ L2(R) :

Fhu(ξ) = (2πh)−1/2
∫
R
u(x)e−i

x·ξ
h dx

Definition
Let X (h) and Y (h) be two families of h-dependent sets. We say that X and Y
satisfy an uncertainty principle with exponent β if there exists C > 0 :∣∣∣∣1X (h)Fh1Y (h)

∣∣∣∣
L2→L2 ≤ Chβ

Example
Uncertainty principle with X (h) = Y (h) = [0, h]∣∣∣∣1X (h)Fh1Y (h)

∣∣∣∣
L2→L2 ≤

1
2π

h1/2

Lucas Vacossin A spectral gap for obstacle scattering in 2D Workshop ANR Adyct, 8 novembre 2021 35 / 39



Uncertainty principle

The h-Fourier transform Fh : L2(R)→ L2(R) :

Fhu(ξ) = (2πh)−1/2
∫
R
u(x)e−i

x·ξ
h dx

Definition
Let X (h) and Y (h) be two families of h-dependent sets. We say that X and Y
satisfy an uncertainty principle with exponent β if there exists C > 0 :∣∣∣∣1X (h)Fh1Y (h)

∣∣∣∣
L2→L2 ≤ Chβ

Example
Uncertainty principle with X (h) = Y (h) = [0, h]∣∣∣∣1X (h)Fh1Y (h)

∣∣∣∣
L2→L2 ≤

1
2π

h1/2

Lucas Vacossin A spectral gap for obstacle scattering in 2D Workshop ANR Adyct, 8 novembre 2021 35 / 39



Fractal sets and porosity

Definition
Let 0 ≤ α0 ≤ α1 ≤ +∞ and ν > 0. We say that a closed set X ⊂ R is ν-porous
on scale α0 to α1 if for every interval I ⊂ R with |I | ∈ [α0, α1], there exists a
subinterval J ⊂ I such that

J ∩ X = ∅ ; |J| = ν|I |
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Examples

Upper-box dimension of a pre-compact set X ⊂ R :

δX = lim sup
ε→0

− logNX (ε)

log ε

where NX (ε) is the minimal number of balls of radius ε needed to cover X .

Proposition
Assume that a precompact set X ⊂ R has an upper-box dimension δ < 1. Then,
there exists ν > 0 such that X is ν-porous on scale 0 to +∞.

Proposition
Assume that X ⊂ [0, 1] is ν-porous on scale 0 to 1. Then X + [−h, h] is
ν/3-porous on scale 3

ν h to 1.

The sets X±(h) are ν± porous on scales Chα± to 1.
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Fractal uncertainty principle

Theorem (Dyatlov-Bourgain 18)
Let ν > 0. Then there exists β = β(ν) such that, for all h-dependent families of
sets X = X (h),Y = Y (h) which are ν-porous on scale h to 1, there exists C > 0
such that ∣∣∣∣1X (h)Fh1Y (h)

∣∣∣∣ ≤ Chβ

Proposition (Dyatlov-Jin-Nonnenmacher 19)
Let ν > 0, 0 < α1, α2 ≤ 1. And assume than γ := α1 + α2 − 1 > 0. Then there
exists β = β(ν) such that, for all h-dependent families of sets X = X (h),(resp.
Y = Y (h)) which are ν-porous on scale hα1 (resp. hα2) to 1, there exists C > 0
such that ∣∣∣∣1X (h)Fh1Y (h)

∣∣∣∣ ≤ Chγβ
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Thank you for your attention
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