Methods in representation theory and operator algebras

January 10, 2025

Abstract

This is the lecture note of the CIRM-IHP research school [CIRM2025].

1 Monica Nevins: Introduction to representation theory

1.1 Definitions

Definition 1.1.1. A *representation* of a group *G* is a pair (π, V) where *V* is a C-vector space and π is a homomorphism $G \to GL(V)$. If *G* is topological, the map $G \times V \to V$ has to be continuous. A morphism of *G*-representations between (π, V) and (σ, W) is a linear map $T: V \to W$ commuting with *G*-actions, and such *T* are called *intertwining operators*.

Example 1.1.2. (1) Zero representation: V = 0.

- (2) Trivial representation: $V = \mathbb{C}$ and $\pi : G \to GL(V) = \mathbb{C}^{\times}$, $g \mapsto 1$, denoted by $\mathbb{1}$.
- (3) $G = S_3$. Permutation representation $\pi_P : S_3 \to GL(\mathbb{C}^3)$, sending *g* to its associated permutation matrix. Sign representation $\sigma : S_3 \to \mathbb{C}^{\times}$, $g \mapsto det(\pi_P(g))$.

A subrepresentation of (π, V) is a *G*-invariant subspace $W \subseteq V$. For example, $W = \mathbb{C}(1,1,1)$ is a subrepresentation of π_P . In other words, $T : (\mathbb{1}, \mathbb{C}) \to (\pi_P, \mathbb{C}^3), 1 \mapsto (1,1,1)$ lies in $\operatorname{Hom}_{S_3}(\mathbb{C}, \mathbb{C}^3)$.

Example 1.1.3. Let $B = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \} \subseteq GL_2(\mathbb{C})$. The natural representation of B on \mathbb{C}^2 has a subrepresentation $W = \mathbb{C}(1, 0)^{\mathrm{T}}$.

Definition 1.1.4. An *irreducible representation* of *G* is one with no non-trivial *G*-invariant closed subspace.

Example 1.1.5. (1) Any 1-dimensional representation is irreducible.

(2) (π_P, \mathbb{C}^3) is not irreducible.

Exercise 1.1.6. Any irreducible representation of a finite group is finite dimensional, and an irreducible representation of an abelian group is 1-dimensional.

Theorem 1.1.7 (Schur's lemma). *Suppose* (π, V) *and* (σ, W) *are irreducible representations of G*, *then* dim Hom_{*G*}(V, W) = 1 *if* $\pi \simeq \sigma$, *and* 0 *otherwise.*

The goals of representation theory:

- Classify all irreducible representations of *G*.
- Describe every representation of *G* in terms of its irreducible subrepresentations and irreducible subquotients.

1.2 Unitary representations

Definition 1.2.1. A representation (π, V) of *G* on a Hilbert space (V, \langle , \rangle) is *unitary* if π factors through U(V).

Theorem 1.2.2. Any representation of a compact group G on a Hilbert space is unitarizable.

Exercise 1.2.3. Let $W \subseteq V$ be a subrepresentation of a unitary representation, then W^{\perp} is a subrepresentation of V and $V = W \oplus W^{\perp}$.

Exercise 1.2.4. Any finite dimensional (unitary) representation of a compact group is completely reducible.

1.3 Group algebras

Let *G* be a finite group. Define $\mathbb{C}[G] = \left\{ \sum_{g \in G} c_g g \mid c_g \in \mathbb{C} \right\}$ to be the *group algebra*, equipped with the multiplication:

$$\sum_{g} c_{g}g \cdot \sum_{h} d_{h}h = \sum_{k} \left(\sum_{g} c_{g}d_{g^{-1}k}\right)k.$$

For a representation (π, V) , we get a homomorphism of algebras:

$$\pi: \mathbb{C}[G] \to \operatorname{End}(V), \sum c_g g \mapsto \sum c_g \pi(g).$$

The group algebra $\mathbb{C}[G]$ is a left regular representation of *G*:

$$\lambda: G \to \operatorname{GL}(\mathbb{C}[G]), \lambda(g) \sum_{h} c_{h}h := \sum_{h} c_{h}gh = \sum_{k} c_{g^{-1}k}k.$$

It is also a *C*^{*}-algebra with the operator norm from λ and the involution sending $\sum c_g g$ to $\sum \overline{c_{g^{-1}}}g$.

Theorem 1.3.1. (1) Every irreducible representation of G occurs as a subrepresentation of the group algebra $(\lambda, \mathbb{C}[G])$ with multiplicity equal to its degree.

(2)

$$\mathbb{C}[G] = \bigoplus_{(\sigma,W) \text{ irreducible}} W \otimes \operatorname{Hom}_G(W, \mathbb{C}[G]), w \otimes T \mapsto T(w).$$

(3) $\mathbb{C}[G] \simeq \bigoplus_{(\sigma, W)} \operatorname{End}(W)$ as an algebra.

Exercise 1.3.2. $\mathbb{C}[S_3] = \mathbb{1} \oplus \mathbb{C}_{sign} \oplus M_2(\mathbb{C}^2)$ and $\pi_P = \mathbb{1} \oplus \mathbb{C}^2$.

1.4 Beyond finite groups

We view $\sum c_g g \in \mathbb{C}[G]$ as a function in $C_c(G)$, whose value at g is c_g , and the multiplication as the convolution.

Now we drop the finite group assumption. For a representation $\pi : G \to GL(V)$, we have a homomorphism of algebras:

$$\pi: \mathcal{C}_{c}(G) \to \operatorname{End}(V), \ \pi(f)v = \int_{G} f(g)\pi(g)v dg.$$

The left regular representation

$$\lambda: G \to \mathcal{B}(\mathcal{L}^2(G)), \ (\lambda(g)f)(k) := f(g^{-1}k)$$

is an analogue of $G \to GL(\mathbb{C}[G])$. We denote the closure of $\lambda(C_c(G))$ by $C_r^*(G)$.

When *G* is compact, we have the *Peter-Weyl theorem* and this case behaves like in the finite group setting. When *G* is not compact,

- not every irreducible representation is unitary, or finite dimensional;
- not every unitary representation occurs in $L^2(G)$, for instance 1.

1.5 Induction and restriction

Let *H* be a subgroup of *G* and (σ, W) a representation of *G*. The restriction Res^{*G*}_{*H*} $(\sigma) := (\sigma|_H, W)$ is a representation of *H*, but it is usually not irreducible even if σ is.

Definition 1.5.1 (Induction). Let (σ, W) be a representation of *H*.

- If G is finite, V = Ind^G_H(σ) := C[G] ⊗_{C[H]} W ⊇ W is a representation of G. We have dim V = [G : H] dim W.
- For a general *G*, consider the vector bundle $G \times_H W$ over G/H. The induction is defined via sections of this vector bundle:

$$\operatorname{Ind}_{H}^{G}W := \left\{ f: G \to W \,\middle|\, f(gh) = \sigma(h^{-1})f(g) \right\}$$
$$(\pi(g)f)(k) = f(g^{-1}k).$$

Suppose that *G* is compact.

Proposition 1.5.2 (Frobenius reciprocity).

$$\operatorname{Hom}_{G}(W,\operatorname{Ind}_{H}^{G}U) = \operatorname{Hom}_{H}(\operatorname{Res}_{H}^{G}W,U)$$
$$T \mapsto T'(w) = T(w)(1_{G}).$$

2 Tyrone Crisp: Tempered representations from the point of view of C*-algebras

The goal of this course: for a real or *p*-adic reductive group *G*, compute its reduced group C^* -algebra $C^*_c(G)$.

Theorem 2.0.1 (Wassermann). Let G be a real reductive group. There is a Morita equivalence

$$C_r^*(G) \sim \bigoplus_{[P,\sigma]} C_0(\mathfrak{a}_P^*/W'_{\sigma}) \rtimes R_{\sigma}.$$

2.1 Lecture 1

Definition 2.1.1. A C^* -algebra is an algebra A over \mathbb{C} , with

- a conjugate-linear involution $* : A \to A$ satisfying $(ab)^* = b^*a^*$;
- a norm || || in which *A* is complete; $||ab|| \le ||a|| ||b||$ and $||a^*a|| = ||a||^2$.

Example 2.1.2. Let X be a locally compact Hausdorff space, the space

 $C_0(X) := \{ f : X \to \mathbb{C} \text{ continuous } | f(x) \to 0 \text{ at } \infty \}$

is a *C**-algebra.

For a Hilbert space, B(H) is a C^* -algebra.

Theorem 2.1.3. Every C^* -algebra is isomorphic to a subalgebra of some B(H).

Example 2.1.4. For the ideal of compact operators $K(H) \subset B(H)$, $C_0(X, K(H))$ is also a C^* -algebra.

Example 2.1.5. For a C*-algebra A equipped with an action of a finite group W, we have two new C*-algebras:

- the fixed-point algebra A^W;
- the crossed product $A \rtimes W := \{\sum_{w \in W} a_w w \mid a_w \in A\}.$

Let *X* be a locally compact Hausdorff space, *H* a Hilbert space and *W* a finite group acting on *X* by homeomorphisms. Let $\{I_{w,x} \in U(H) \mid w \in W, x \in X\}$ be unitary operators such that

- $I_{w_1,w_2x}I_{w_2,x} = I_{w_1w_2,x}$ (in particular, $I_{1,x} = id_H$).
- For each $w \in W$, $x \mapsto I_{w,x}$ is continuous in the strong operator topology.

Let *W* act on $C_0(X, K(H))$ by

$$\beta_w(f)x := I_{w,w^{-1}x}f(w^{-1}x)I_{w^{-1},x}.$$

The fixed-point algebra $C_0(X, K(H))^W$ will be the second-most important example of a C^* -algebra in these lectures.

Example 2.1.6. $W = \{1, w\}$ acts on $X = \mathbb{R}$ by wx = -x. $H = \mathbb{C}^2$ so $K(H) = M_2(\mathbb{C})$. $I_{w,x} = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}$. We have $C_0(\mathbb{R}, M_2)^W \simeq C_C^0([0, \infty), M_2)$.

Let *G* be a locally compact group with a left Haar measure *dg*.

Definition 2.1.7. The reduced group *C**-algebra is

$$C_r^*(G) := \overline{\lambda(C_c(G))}^{\|\|_{operator}},$$

where $\lambda : C_c(G) \to B(L^2(G))$.

Definition 2.1.8. A representation of a C^* -algebra A is a homomorphism $\pi : A \to B(H)$ for some Hilbert space H. The *spectrum* \widehat{A} is the set of equivalence classes of irreducible representations of A. The *Jacobson topology* on \widehat{A} has one open subset $\{\pi \mid \pi(J) \neq 0\}$ for an ideal J.

A *state* on *A* is a bounded linear $\varphi : A \to \mathbb{C}$ with $\varphi(a^*a) \ge 0$ and $\|\varphi\| = 1$. **Gelfand-Naimark-Segal construction**: given a state φ , define

•
$$J_{\varphi} = \{a \in A \mid \varphi(aa^*) = 0\},\$$

•
$$H_{\varphi} = \overline{A/J_{\varphi}}$$

• $\pi_{\varphi}(a)(b+J_{\varphi})=ab+J_{\varphi}.$

It is irreducible if φ is *pure*, *i.e.* not a convex combination of other states.

Theorem 2.1.9. Let A be a C*-algebra.

- Every irreducible representation is equivalent to a GNS representation.
- If $a \neq b \in A$, then $\pi(a) \neq \pi(b)$ for some π .
- We have a nice induction from a representation of a subalgebra of A.

Theorem 2.1.10. *The followings are equivalent:*

- π is irreducible;
- $\pi \simeq \pi_{\varphi}$ for φ pure;
- Schur's lemma;
- $\pi(A)$ is dense in B(H).

A unitary representation $\pi : G \to U(H)$ extends to $C_c(G) \to B(H)$. It extends to $C_r^*(G)$ if and only if $||\pi(f)|| \le ||\lambda(f)||_{operator}$. Denote by $\widehat{G}_r \subseteq \widehat{G}$ to be those that extend to $C_r^*(G)$.

Theorem 2.1.11. $\widehat{G}_r \simeq \widehat{C_r^*(G)}$.

Example 2.1.12. When *G* is abelian or compact, $\widehat{G}_r = \widehat{G}$. In general, $\pi \in \widehat{G}_r$ if and only if π is *tempered*, *i.e.* its *K*-finite matrix coefficients are $L^{2+\varepsilon}$ modulo the center.

Strategy for computing $C_r^*(G)$: match up tempered representations with representations of simpler C^* -algebras.

Theorem 2.1.13. $\widehat{C_0(X)} \simeq X$, $\operatorname{ev}_x \leftrightarrow x$.

Theorem 2.1.14. Every irreducible representation of K(H) is equivalent to the identity representation $K(H) \hookrightarrow B(H)$.

Theorem 2.1.15. $C_0(X, K(H)) \simeq X$, $ev_x \leftrightarrow x$.

Consider *X*, *H*, *W*, $I_{w,x}$ as before. Note that $w \mapsto I_{w,x}$ is a unitary representation of $W_x = \{w \in W \mid wx = x\}$, and $ev_x(C_0(X, K(H))^W) = K(H)^{W_x}$.

Theorem 2.1.16. The maps $\xi \otimes t \mapsto (\dim H_o)^{1/2} t(\xi)$ give an isomorphism:

$$\bigoplus_{\rho\in\widehat{W_x}}H_\rho\otimes \mathrm{HS}(\rho,I_x)^{W_x}\simeq H.$$

Theorem 2.1.17. • *The irreducible representations of* $C_0(X, K(H))^W$ *are*

 $\pi_{x,\rho}: C_0(X, K(H))^W \xrightarrow{\operatorname{ev}_x} K(H)^{W_x} \xrightarrow{k \mapsto k \otimes -} K(\operatorname{HS}(\rho, I_x)^{W_x}).$

• Two representations π_{x_1,ρ_1} , π_{x_2,ρ_2} are equivalent if and only if there exists some $w \in W$ such that $x_2 = wx_1$ and $\rho_2 \simeq w\rho_1 : v \mapsto \rho_1(w^{-1}vw)$.

A *C*^{*}-algebra *A* is *CCR* if $\pi(A) \subseteq K(H_{\pi})$ for every $\pi \in \widehat{A}$. The examples that we have seen are all CCR.

Theorem 2.1.18 (Harish-Chandra, Bernstein). *If G is a real and p-adic reductive group, then* $C_r^*(G)$ *is* CCR.

A subalgebra $B \subseteq A$ is *separating* if the restrictions of irreducible representations remain irreducible, and the restrictions of inequivalent representations remain inequivalent. We say that *A* has the *Stone-Weierstrass property* if *B* separating implies B = A.

Theorem 2.1.19 (Kaplansky). *Every CCR algebra has the SWP.*

Remark 2.1.20. This is a tool for computing the range of a Fourier transform.

2.2 Lecture 2

Plan: replace $C_r^*(G)$ by a simpler C^* -algebra that is Morita equivalent to $C_r^*(G)$. This is reasonable since Morita equivalent C^* -algebras have the same K-theory and representations.

For left (*resp.* right) Hilbert module of a C^* -algebra, we use the notation of inner product [,] (*resp.* \langle , \rangle).

Example 2.2.1. Let *H* be a Hilbert space. It is a right C-module, and a left Hilbert B(*H*)-module ($[\xi, \eta] : \zeta \mapsto \xi \langle \eta, \zeta \rangle$). The left module structure is not *full*, *i.e.* $\overline{\text{span}(\{[\xi|\eta]\})} \neq A$. *Example* 2.2.2. $C_0(X, H)$ is

- a full right Hilbert $C_0(X)$ -module;
- a full left Hilbert $C_0(X, K(H))$ -module.

Example 2.2.3. Let *E* be a left Hilbert *A*-module. It is a left Hilbert A^W -module

$${}^W[\xi|\eta] := rac{1}{|W|} \sum_{w \in W} eta_w([\xi|\eta]).$$

If *E* is full over *A*, then it is also full over A^W .

Example 2.2.4. $\pi : W \to U(H)$ a representation, $C_r^*(W) = \mathbb{C} \rtimes W$. *H* is a left Hilbert $K(H)^W$ -module:

$${}^{W}[\xi|\eta] = rac{1}{|W|} \sum_{w \in W} \pi(w)[\xi|\eta]\pi(w)^{-1},$$

and a right Hilbert $C_r^*(W)$ -module:

$$\xi.w = \pi(w^{-1})\xi, \, \langle \xi, \eta \rangle_W := \frac{1}{|W|} \sum_{w \in W} \langle \xi, \pi(w)\eta \rangle w.$$

Given a *A*-*B* bimodule *E*. If $\pi : B \to B(V)$ is a Hilbert representation of *B*, then $E \otimes_B V$ is a Hilbert representation of *A*:

$$\langle \xi_E \otimes \xi_V, \eta_E \otimes \eta_V \rangle := \langle \xi_V, \pi(\langle \xi_E, \eta_E \rangle) \eta_V \rangle.$$

Example 2.2.5. Let $H \subseteq G$ be a closed unimodular subgroup, then $C_c(G)$ is a $C_c(G)$ - $C_c(H)$ bimodule:

$$\langle \xi, \eta \rangle(h) := \int_G \overline{\xi}(g) \eta(gh) dg.$$

Complete it to get a $C^*(G)$ - $C^*(H)$ bimodule *E*. The *unitary induction* is given by $E \otimes_{C_*}$: URep $(H) \rightarrow URep(G)$.

An *A*-*B* bimodule *E* is a *Morita equivalence* if

- *E* is a full left Hilbert *A*-module and a full right Hilbert *B*-module;
- $[\xi b|\eta] = [\xi|\eta b^*], \langle a\xi, \eta \rangle = \langle \xi, a^*\eta \rangle;$
- $[\xi|\eta]\zeta = \xi\langle\eta,\zeta\rangle.$

We say *A*, *B* are (strongly) Morita equivalent, denoted by $A \sim_M B$, which is an equivalence relation.

• $A \sim_M B \Rightarrow \widehat{A} \simeq \widehat{B}$ and $K_*(A) \simeq K_*(B)$.

- $A \sim_M B \Leftrightarrow A \otimes K(H) \simeq B \otimes K(H)$ assuming countable approximate identities.
- $A \sim_M B \Leftrightarrow$ equivalent categories of operator modules. If they have 1, we can replace by the categories of (algebraic) modules.
- Equivalence of categories URep does not imply (strong) Morita equivalence.

Let $H \subseteq G$ be closed, and *E* the induction bimodule.

Theorem 2.2.6 (Rieffel). *THe induction bimodule E can be made into a Morita equivalence be tween* $C^*(H)$ *and* $C_0(G/H) \rtimes G$.

Corollary 2.2.7 (Mackey). Unitary induction gives an equivalence between URep(H) and the category of unitary representations G admitting a compatible representation of $C_0(G/H)$.

Example 2.2.8. $A \rtimes K$, A abelian, K compact. Let $\pi : A \rtimes K \to U(H)$ be irreducible. It is an irreducible representation of $C_0(K_{\varphi}) \rtimes K \simeq C_0(K/K_{\varphi}) \rtimes K$, and is induced from K_{φ} . *Example* 2.2.9. $K(H) \sim_M \mathbb{C}$.

In a Morita equivalence, we always have $[\xi|\eta] = |\xi\rangle\langle\eta|$. Now given $W, \pi: W \to U(H)$ and $K(H)^W$.

Theorem 2.2.10. *H* is a Morita equivalence between $K(H)^W$ and the ideal

$$J := \overline{\operatorname{span}} \{ \langle \xi, \eta \rangle_W \} \subseteq C_r^*(W),$$

and

$$J = \bigoplus_{\rho \in \widehat{W}, \overline{\rho} \subseteq \pi} \mathcal{K}(H_{\rho}).$$

Theorem 2.2.11. Given X, H, W, $I_{w,x}$ as before, then $C_0(X, H)$ is a Morita equivalence between $C_0(X, K(H))^W$ and certain ideal in $C_0(X) \rtimes W$.

Set $W_x = \{ w \in W \mid wx = x \}$ and $W'_x = \{ x \in W_x \mid I_{w,x} \in \mathbb{C}id_H \}.$

- Normalisation:
- *Completeness*: for all *x*, the unitary representation $I_{-,x} : W_x \to U(H)$ contains every $\rho \in \widehat{W_x/W'_x}$.

C(X, W, I) things

Theorem 2.2.12. $C_0(X, H)$ can be made into a Morita equivalence between $C_0(X, K(H))^W$ with the ideal

$$C(X, W, I) = \left\{ \sum_{w \in W} f_w w \in C_0(X) \rtimes W \middle| f_{w'w}(x) = f_w(x), \forall x \in X, w \in W, w' \in W'_X \right\}.$$

Corollary 2.2.13. Suppose that $W = W' \rtimes R$, where for each x we have $W'_x = W_x \cap W'$, then

$$\mathbf{C}_0(X,\mathbf{K}(H))^W \sim_M \mathbf{C}_0(X/W') \rtimes R.$$

2.3 Lecture 3

The main reference is [CCH16]. The Langlands decomposition $G = M_G \times A_G$ where M_G has compact center and exp : $\mathfrak{a}_G \to A_G$.

An irreducible unitary representation σ of M is *square-integrable* if for all $\xi, \eta \in H_{\sigma}$, the matrix coefficient $c_{\xi,\eta}(m) = \langle \sigma(m)\xi, \eta \rangle$ is in $L^2(M)$.

Theorem 2.3.1. $\widehat{M}_{L^2} \subseteq \widehat{M}_r$.

Theorem 2.3.2. If $\sigma \in \widehat{M}_{L^2}$, then $\sigma(C_r^*(M)) = K(H_{\sigma})$.

For each $\chi \in \mathfrak{a}^*$ and $\sigma \in \widehat{M}_{L^2}$, we define an irreducible unitary representation $\sigma \otimes \chi : G \to U(H_{\sigma}), ma \mapsto \sigma(m)\chi(a).$

Theorem 2.3.3. *For* $f \in C_c(G)$ *and* $\chi \in \mathfrak{a}^*$ *, let*

$$\pi_{G,\sigma}(f)(\chi) := (\sigma \otimes \chi)(f) = \int_M \int_A f(ma)\sigma(m)\chi(a)dadm.$$

This map $\pi_{G,\sigma}$ *extends to a homomorphism of* C^* *-algebras:*

$$\pi_{G,\sigma}: \mathbf{C}^*_r(G) \to \mathbf{C}_0(\mathfrak{a}^*, \mathbf{K}(H_\sigma)).$$

Proof. Study functions of the form $ma \mapsto f_M(m)f_A(a)$, which form a dense subset. \Box

Not every irreducible tempered representation is of this form, but it can be obtained by parabolic induction from some $\sigma \otimes \chi$ of a parabolic subgroup.

Now let $P = L_P N_P = M_P A_P N_P$ a parabolic subgroup of *G*.

Definition 2.3.4 (Parabolic induction). For $\sigma \in (\widehat{M_P})_{L^2}$ and $\chi \in \mathfrak{a}_P^*$, $\operatorname{Ind}_P^G(\sigma \otimes \chi)$ is the unitary representation of *G* induced from $\sigma \otimes \chi$.

Compact picture: G = KP implies that $\operatorname{Ind}_P^G(\sigma \otimes \chi) \simeq \operatorname{Ind}_{K \cap P}^K(\sigma)$ over *K*. Fix σ , then all these parabolic inductions are isomorphic as *K*-representations.

Theorem 2.3.5. *We have a homomorphism of C*-algebras:*

 $\pi_{P,\sigma}: \mathbf{C}^*_r(G) \to \mathbf{C}_0(\mathfrak{a}^*_P, \mathsf{K}(\mathrm{Ind}_P^G H_\sigma)).$

Theorem 2.3.6 (Complete Fourier transform). We have an injective homomorphism of C^* -algebras:

$$\bigoplus \pi_{P,\sigma} : \mathbf{C}^*_r(G) \to \bigoplus_{[P,\sigma]} \mathbf{C}_0(\mathfrak{a}^*_P, \mathsf{K}(\mathrm{Ind}_P^G H_\sigma)).$$

Question: What is the image of this Fourier transform? We need to understand the intertwining operators between $\text{Ind}_P^G(\sigma \otimes \chi)$'s.

Theorem 2.3.7 (Bruhat). *The intertwining operators between* $\text{Ind}_P^G(\sigma \otimes \chi)$'s are controlled by a certain finite group.

Fix P = MAN, then

- *W_P* the Weyl group associated to *A_P*.
- For each $\sigma \in \widehat{M}_{L^2}$, $W_{\sigma} := \{ w \in W_P \mid w\sigma \simeq \sigma \}$.
- For each $\chi \in \mathfrak{a}_P^*$, $W_{\sigma,\chi} := \{ w \in W_\sigma \mid w\chi = \chi \}$.

Theorem 2.3.8 (Knapp-Stein). There are unitary operators:

$$H_{w,\chi} \in \mathrm{U}(\mathrm{Ind}_P^G \, H_\sigma), \, w \in W_\sigma, \chi \in \mathfrak{a}_P^*,$$

satisfying

- $\chi \mapsto I_{w,\chi}$ is continuous in the strong operator topology,
- $I_{w_1,w_2\chi}I_{w_2,\chi} = I_{w_1w_2,\chi}$
- $I_{w,\chi}$ is an intertwining operator $\operatorname{Ind}_P^G(\sigma \otimes \chi) \to \operatorname{Ind}_P^G(\sigma \otimes w\chi)$.

Define an action of W_{σ} on $C_0(\mathfrak{a}_P^*, K(\operatorname{Ind}_P^G H_{\sigma}))$: $\beta_w(f)(\chi) = I_{w,w^{-1}\chi}f(w^{-1}\chi)I_{w^{-1}\chi}$, and we have

$$\pi_{P,\sigma}(\mathbf{C}_r^*(G)) \subseteq \mathbf{C}_0(\mathfrak{a}_P^*, \mathbf{K}(\operatorname{Ind}_P^G H_{\sigma}))^{W_{\sigma}}$$

Theorem 2.3.9. The Fourier transform

$$\bigoplus \pi_{P,\sigma} : \mathbf{C}^*_r(G) \to \bigoplus_{[P,\sigma]} \mathbf{C}_0(\mathfrak{a}^*_P, \mathsf{K}(\mathrm{Ind}_P^G H_\sigma))^{W_\sigma}$$

is an isomorphism of C^* -algebras.

2.4 Lecture 4

Theorem 2.4.1 (Knapp-Stein). Let $W'_{\sigma} := W'_{\sigma,0}$.

- (1) There is a subgroup $R_{\sigma} \subseteq W_{\sigma}$ such that $W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$.
- (2) $W'_{\sigma,\chi} = W_{\sigma,\chi} \cap W'_{\sigma}$.
- (3) The $I_{w,\chi}$'s can be chosen so that they satisfy the normalisation and completeness conditions.

Corollary 2.4.2 (Wassermann). For each real reductive group G, we have

$$C^*_r(G) \sim_M \bigoplus_{[P,\sigma]} C_0(\mathfrak{a}_P^*/W'_{\sigma}) \rtimes R_{\sigma}.$$

Example 2.4.3. Let $G = SL_2(\mathbb{R})$, then

 $\mathbf{C}^*_r(G)\sim_M \mathbf{C}_0(\mathbb{Z}\backslash\{0\})\oplus\mathbf{C}_0([0,\infty))\oplus\mathbf{C}_0(\mathbb{R})\rtimes W,$

where $W \simeq \mathbb{Z}/2\mathbb{Z}$.

Now let *G* be a *p*-adic reductive group.

Theorem 2.4.4. $\widehat{G}_{L^2} \neq 0$.

Define $X_G = \{\chi : G \to U(\mathbb{C}) | \chi(g) = 1 \text{ if contained in a compact subgroup}\}$, which is a compact torus. We get a Fourier transform:

$$\pi_{G,\sigma}: G \to C(X_G, K(H_{\sigma}))$$

The complete Fourier transform is also injective due to Harish-Chandra and Bernstein.

- We define W_{σ} as a subgroup of $X_P \rtimes W_P$.
- $I_{w_1,w_2x}I_{w_2,x} = \gamma_{P,\sigma}(w_1,w_2)I_{w_1w_2,\chi}$ for some 2-cocycle. So we deal with projective representations and twisted crossed products.
- We need to keep track of a projective character $w \mapsto i_{w,\chi}$ of $W'_{\sigma,\chi}$ for each χ .

Theorem 2.4.5 (Plymen, Harish-Chandra). The Fourier transform

$$\bigoplus \pi_{P,\sigma} : C_r^*(G) \to \bigoplus_{[P,\sigma]} C_0(X_P, \mathsf{K}(\mathrm{Ind}_P^G H_\sigma))^{W_\sigma}$$

is an isomorphism.

Theorem 2.4.6. The bimodule $C(X_P, \operatorname{Ind}_P^G H_\sigma)$ gives a Morita equivalence between $C_r^*(G)_{(P,\sigma)}$ with the ideal $C(X_P, W_\sigma, I)$.

Some calculation of the K-theory for this reduced group C^* -algebra, with an example of $\operatorname{Ind}_{P_{\min}}^{\operatorname{Sp}(4,\mathbb{Q}_p)} \mathbb{1}$.

3 Omar Mohsen: Representation theory of nilpotent groups and Kirillov's orbit method

3.1 Lecture 1

Let *V* be a commutative monoid (abelian group without inverse). Define

$$K(V) := \{(a,b) \mid a, b \in V\} / \sim,$$

where $(a, b) \sim (c, d)$ if there exists $f \in V$ such that a + d + f = b + c + f.

Proposition 3.1.1. K(V) is an abelian group, and we have $V \to K(V)$, $a \mapsto [(a, 0)]$.

In this lecture, we will write [(a, b)] as a - b. Let *A* be a *C*^{*}-algebra with a unit.

Definition 3.1.2. If *E* is an *A*-module, we say that *E* is *finitely generated projective* if there exists an *A*-module *F* such that $E \oplus F = A^n$ for some *n*.

If *E*, *F* are finitely generated projective, then so is $E \oplus F$. When A = C(X) for a compact Hausdorff *X*.

Theorem 3.1.3. *Finitely generated projective A-modules are in bijection with vector bundles over X. If* $L \rightarrow X$ *is a vector bundle, then* $E = \Gamma(L)$ *is a finitely generated projective module.*

Definition 3.1.4. Define $V(A) := \{[E] | E \text{ is finitely generated projective}\}$, which is a commutative monoid with identity [0], and the group law $[E] + [F] = [E \oplus F]$.

Definition 3.1.5.

 $K_0(A) := K(V(A)) = \{ [E] - [F] | E, F \text{ are finitely generated projective} \}.$

Example 3.1.6. $K_0(B(H)) = 0$ for any infinite dimensional Hilbert space *H*.

Let $\varphi : A \to B$ be a *-homomorphism. We can define a map $\varphi_* : K_0(A) \to K_0(B)$ by sending [E] to $[\varphi_*(E)]$, where $\varphi_*(E) = E \otimes_A B$ is a right *B*-module.

If $E \oplus F = A^n$, let $L : A^n \to A^n$ be the projection over E. In fact, any finitely generated projective module appears as $E = pA^n$ for some n and some projection $p : A^n \to A^n$.

- A (self-adjoint) projection $p \in M_n(A)$ is an element such that $p^2 = p$ and $p^* = p$.
- Let *p* and *q* are two projections, then $pA^n \simeq qA^n$ if and only if there exist $x, y \in M_n(A)$ such that xy = p and yx = q (*Von Neumann relation*). We write $p \sim_v q$ if they satisfy the Von Neumann relation.
- We have

$$V(A) = \bigcup_n \operatorname{proj}(\mathbf{M}_n(A)) / \sim_v .$$

Definition 3.1.7. For projections $p, q \in M_n(A)$, define $p \sim_s q$ if there exists $z \in U(M_n(A))$ such that $zpz^{-1} = q$.

Remark 3.1.8. If $p \sim_v q$ with x invertible, then $p \sim_s q$. The relation $p \sim_s q$ implies $p \sim_v q$, but the converse fails.

Proposition 3.1.9. If $p \sim_v q$, then $\begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix} \sim_s \begin{pmatrix} q & 0 \\ 0 & 0 \end{pmatrix}$ as projections in $M_{2n}(A)$.

Proof. Take $E = pA^n$ and $E' = qA^n$, which are isomorphic since $p \sim_v q$. There exist F, F' such that $E \oplus F = A^n$ and $E' \oplus F' = A^n$. We have $E \oplus (F \oplus A^n) \simeq A^{2n}$, where $F \oplus A^n \simeq F \oplus E' \oplus F' \simeq F \oplus E \oplus F' \simeq F' \oplus A^n$, thus we get an isomorphism between the complements of E, E' in A^{2n} .

Corollary 3.1.10.

$$V(A) = \bigcup_{n} \operatorname{proj}(\mathcal{M}_n(A)) / \sim_s .$$

Proposition 3.1.11. *If* p, q are projections in $M_n(A)$, such that ||p - q|| < 1/4, then $p \sim_s q$.

Proof. Take z = 2pq - p - q + 1. This element satisfies pz = pq and zq = pq. We need z to be unitary, which can be implied by ||2pq - p - q|| < 1. This inequality follows from ||p - q|| < 1/4.

Let φ_0, φ_1 be two homomorphism from A to B. If there exists a homomorphism

 $\widetilde{\varphi}: A \to B[0,1] = \{f: [0,1] \to B \text{ continuous}\}\$

such that $ev_0 \circ \widetilde{\varphi} = \varphi_0$ and $ev_1 \circ \widetilde{\varphi} = \varphi_1$, then $\varphi_{0,*} = \varphi_{1,*}$.

3.2 Lecture 2

If we have C^* -algebras $A_1 \xrightarrow{\varphi_1} B \xleftarrow{\varphi_2} A_2$ such that φ_1 is surjective, then we have the fiber product $C = A_1 \times_B A_2$.

Proposition 3.2.1. Let E_1, E_2 be finitely generated modules over A_1, A_2 respectively, and L: $\varphi_{1,*}E_1 \simeq \varphi_{2,*}E_2$, then

$$\mathcal{M}(E_1, E_2, L) := \{ (e_1, e_2) \in E_1 \times E_2 \, | \, L(e_1 \otimes 1) = e_2 \otimes 1 \}$$

is finitely generated projective, and all finitely generated projective C-modules come this way.

Proof. One can assume that $E_1 = A_1^n$ and $E_2 = A_2^n$, using the complement trick yesterday. Lemma 3.2.2. If $L \in GL_n(B)$ has invertible preimage under φ_1 , then $\mathcal{M}(E_1, E_2, L) \simeq C^n$.

Proof of Lemma 3.2.2. Take a basis e_1, \ldots, e_n the corresponding basis of E_1 , and $\tilde{e}_1, \ldots, \tilde{e}_n$ of E_2 . Let K be the element in $GL_n(A_1)$ such that $\varphi_1(K) = L^{-1}$. The elements $(\sum_j K_{i,j}e_i, \tilde{e}_i)$ lie in $\mathcal{M}(E_1, E_2, L)$ and generate C^n .

One has

$$\mathcal{M}(A_1^n, A_2^n, L) \oplus \mathcal{M}(A_1^n, A_2^n, L^{-1}) = \mathcal{M}(A_1^{2n}, A_2^{2n}, \operatorname{diag}(L, L^{-1})).$$

The projectivity of $\mathcal{M}(E_1, E_2, L)$ follows from the following lemma, where every matrix on the right hand side can be lifted to A_1 :

Lemma 3.2.3.

$$\begin{pmatrix} L & 0 \\ 0 & L^{-1} \end{pmatrix} = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -L^{-1} & 1 \end{pmatrix} \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Now we get a sequence $K_0(C) \xrightarrow{(\pi_1,\pi_2)} K_0(A_1) \oplus K_0(A_2) \xrightarrow{(\varphi_1,\varphi_2)} K_0(B)$. *Exercise* 3.2.4. This sequence is exact.

We will define a map $K_1(B) \rightarrow K_0(C)$ such that this makes a longer exact sequence, and K_1 should come from automorphisms.

Definition 3.2.5. Let *A* be a unital *C*^{*}-algebra. Define $K_1(A)$ to be the abelian group $\bigcup_n \pi_0(\operatorname{GL}_n(A))$, the product defined as

$$[M_1] \cdot [M_2] = [M_1M_2], M_1, M_2 \in \operatorname{GL}_n(A).$$

Lemma 3.2.6 (Whitehead). *If* $x, y \in GL_n(A)$, *then*

$$\begin{pmatrix} xy & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} yx & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}, \begin{pmatrix} y & 0 \\ 0 & x \end{pmatrix}$$

are all in the same connected component of $GL_{2n}(A)$.

Proof. Idea: using rotations in $GL_{2n}(A)$. Set $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ and $M_{\theta} = \operatorname{diag}(y, 1) \cdot R_{-\theta} \cdot \operatorname{diag}(1, x) \cdot R_{\theta}$, and $M_{k\pi/2}$, k = 0, 1, 2, 3 give the matrices in the lemma.

Alternatively, one can define $K_1(A)$ by

{[(*E*, *L*)] | *E* is a finitely generated projective module, $L \in Aut(E)$ } / ~,

where $(E, L) \sim (E', L')$ if there exists (F, K) such that (E, L) + (F, K) and (E', L') + (F, K) are homotopic.

3.3 Lecture 3

The boundary map $K_1(B) \rightarrow K_0(C)$ is given by: for $L \in GL_n(B)$,

$$\partial(L) = [\mathcal{M}(A_1^n, A_2^n, L)] - [C^n].$$

Example 3.3.1. $K_1(C(S^1)) = \mathbb{Z}$.

The space $A \otimes C(S^1)$ is the space of functions $f : S^1 \to A$, which is a C^* -algebra. It is the fiber product of two copies of $A \otimes C([0, 1])$ over $A \otimes A$. From the exact sequence,

$$K_1(A) \simeq \ker \left(K_0(A \otimes \mathcal{C}(S^1)) \xrightarrow{\operatorname{ev}_1} K_0(A) \right).$$

Theorem 3.3.2 (Bott).

$$\beta: K_0(A) \simeq \ker \left(K_1(A \otimes \mathcal{C}(S^1)) \xrightarrow{\operatorname{ev}_1} K_1(A) \right)$$
$$[P] \in \operatorname{Proj}(\mathcal{M}_n(A)) \mapsto [z \mapsto zP + (1-P) \in \operatorname{GL}_n(A)].$$

Proof of the surjectivity. Suppose $f : S^1 \to \operatorname{GL}_n(A)$ such that $[f] \in \operatorname{ker}(K_1(A \otimes \operatorname{C}(S^1)) \to K_1(A))$. We may assume that $f(z) = z^{-m}(a_0 + za_1 + \cdots + z^{m'}a_{m'})$, then $[f] = [z^{-m}] + [a_0 + \cdots + z^{m'}a_{m'}]$.

Since $[z^{-m}] = -m[z] = -m\beta(1)$, now we assume $f(z) = a_0 + \cdots + a_m z^m \in GL_n(A)$. Define

$$\mu(z) = \begin{pmatrix} a_0 & a_1 & \cdots & a_m \\ -z & 1 & & & \\ & \ddots & & & \\ & & -z & 1 \end{pmatrix}.$$

Using

$$\begin{pmatrix} 1 & -a_m \\ & \ddots & \\ & & 1 \end{pmatrix} \mu(z) \begin{pmatrix} 1 & & & \\ 0 & \ddots & & \\ \vdots & & \ddots & \\ \vdots & & \ddots & \\ 0 & z & \cdots & z & 1 \end{pmatrix}$$

we can assume that $f(z) = a_0 + za_1$, and $f(1) = a_0 + a_1$ is invertible and homotopic to Id. So $(a_0 + a_1)^{-1}f(z) = (a_0 + a_1)^{-1}a_0 + z(a_0 + a_1)^{-1}a_1 = (1 - a) + za$.

Since f(z) is invertible for any $z \in S^1$, if $\lambda \in \text{Spec}(a)$, then $1 - \lambda + z\lambda \neq 0$ for any $z \in S^1$. This is equivalent to that $\text{Re}(\lambda) \neq 1/2$. Now define g(z) = 0 if $\text{Re}(z) \leq 1/2$ and 1 if Re(z) > 1/2, and P = g(a). It suffices to show that $\beta(P)$ is homotopic to (1 - a) + za. \Box

If *A* is non-unital, we define $K_0(A) := \ker(K_0(A^+) \xrightarrow{a+\lambda_1 \mapsto \lambda} K_0(\mathbb{C}) = \mathbb{Z})$, and $K_1(A) := K_1(A^+)$.

Let *G* be a simply-connected nilpotent Lie group.

- exp : $\mathfrak{g} \to G$ is a diffeomorphism.
- If h ⊆ g is a Lie subalgebra, then exp(h) is a closed subgroup of *G*, i.e. connected subgroups of *G* are closed.

Goal: classification of unitary irreducible representations of *G*.

For a closed subgroup $H, \chi : H \to S^1$ is unitary, and we take $\Pi = \text{Ind}_H^G(\chi)$. If $H \subsetneq H'$, χ admits an extension to H'. The differential of χ takes values in $i\mathbb{R}$, and $\chi([h,h]) = 0$.

Take $\xi : \mathfrak{g} \to \mathbb{R}$, and look at $B : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$, $(v, w) \mapsto \xi([v, w])$, which is anti-symmetric. The kernel of *B* is $\{v \mid B(v, w) = 0, \forall w\}$. The codimension of ker(*B*) is even. We look for $\mathfrak{h} \subseteq \mathfrak{g}$ such that

- (1) h is a Lie subalgebra;
- (2) B(h, h) = 0;
- (3) dim $\mathfrak{h} = \dim(\ker B) + \frac{1}{2}\operatorname{codim}(\ker B)$.

Theorem 3.3.3. *There exists such an* \mathfrak{h} (*not unique*).

Theorem 3.3.4. For such an *H*, the induction $\pi_{\xi} := \text{Ind}_{H}^{G}(e^{i\xi})$ is irreducible and unitary, and its isomorphism class is independent of the choice of \mathfrak{h} .

Theorem 3.3.5. All irreducible unitary representations come from this construction.

In conclusion, we have a surjection $\mathfrak{g}^* \to \widehat{G}$.

3.4 Lecture 4

Theorem 3.4.1 (Kirillov). *The map* $\operatorname{Ad}^*(G) \setminus \mathfrak{g}^* \to \widehat{G}$, $\xi \mapsto \pi_{\xi}$ *is bijective.*

Theorem 3.4.2 (Brown). The map $\operatorname{Ad}^*(G) \setminus \mathfrak{g}^* \to \widehat{G}$ is a homeomorphism, where the topology on \widehat{G} is the Fell topology.

Recall a subquotient of *A* is I/J for ideals $I \subseteq A, J \subseteq I$.

Theorem 3.4.3. *There is a bijection between locally closed subsets of* \widehat{A} *, and isomorphism classes of subquotients of* A*.*

Remark 3.4.4. Given an irreducible unitary representation $\pi : I \to B(H)$, one can extend it uniquely to $A \to B(H)$.

Recall that if $\pi : A \to U(H)$ is a unitary representation, then

$$\operatorname{supp}(\pi) = \left\{ [\pi'] \, \big| \, \operatorname{ker}(\pi) \subseteq \operatorname{ker}(\pi') \right\}$$

Theorem 3.4.5. Let \mathfrak{h} be a subalgebra of \mathfrak{g} and $\ell : \mathfrak{h} \to \mathbb{R}$ a linear map such that $\ell|_{[\mathfrak{h},\mathfrak{h}]} = 0$, then

$$\operatorname{supp}(\operatorname{Ind}_{H}^{G} e^{i\ell}) = \overline{\operatorname{Ad}^{*}(G) \left\{ \xi \in \mathfrak{g}^{*} \, | \, \xi|_{\mathfrak{h}} = \ell \right\}} / \operatorname{Ad}^{*}(G).$$

Particularly, if $\ell = 0$ *, then*

$$\operatorname{supp}(\operatorname{L}^2(G/H)) = \overline{\bigcup_{g \in G} (g\mathfrak{h}g^{-1})^{\perp}} / \operatorname{Ad}^*(G).$$

Theorem 3.4.6. (1) S(G) is a *-subalgebra of $C^*(G)$.

- (2) S(G) is closed under smooth functional calculus.
 - (i) If $f \in S(G)$ and $g : U \to \mathbb{C}$, g(0) = 0 holomorphic on an open neighborhood of $\operatorname{Spec}(f)$, then $g(f) \in S(G)$.
 - (*ii*) If $f \in S(G)$ is normal and $g : W \to \mathbb{C}$ smooth on an open neighborhood of Spec(f) and g(0) = 0, then $g(f) \in S(G)$.

Definition 3.4.7. A *C*^{*}-algebra *A* is called *liminal* (or CCR) if for any $[\pi] \in \widehat{A}$, $\pi(A) = K(H_{\pi})$, and is of *type I* if for any $[\pi]$ one has $K(H) \subseteq \pi(A)$.

Theorem 3.4.8 (Dixmier). C*G is liminal. In fact if $f \in S(G)$ and $\pi \in \widehat{G}$, then $\pi(f)$ is a trace class operator:

$$\operatorname{Tr} \pi(f) = \int_{\mathcal{O}} \widehat{f \circ \exp d\mu},$$

where $\mathcal{O} \subseteq \mathfrak{g}^*$ is the corresponding co-adjoint orbit.

If $\mathcal{O} \subset \mathfrak{g}^*$ is a co-adjoint orbit, then \mathcal{O} is a symplectic smooth manifold: fix $\xi \in \mathcal{O}$, then $\mathcal{O} \simeq G/\operatorname{Stab}(\xi)$ and $\operatorname{T}_{\xi}\mathcal{O} = \mathfrak{g}/\operatorname{ker} B_{\xi}$. \mathcal{O} is also a closed subset of \mathfrak{g}^* , which is equivalent to that \widehat{G} is T_1 (consequence of C^{*}G being liminal). There exists a measure μ on \widehat{G} such that for any $f \in S(G)$,

$$f(1) = \int_{\widehat{G}} \operatorname{Tr}(\pi(f)) \, d\mu(\pi).$$

If we replace f with $f^* \star f$, then

$$\int_{G} |f(g)|^{2} dg = \int_{\widehat{G}} \|\pi(f)\|_{\mathrm{HS}}^{2} d\mu(\pi).$$

Theorem 3.4.9 (Beltita-Beltita-Ludwig). (Fourier transform of C*-algebras of nilpotent Lie groups) There exist ideals $0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n = C^*G$ corresponding to $\widehat{G} = V_1 \cup \cdots \cup V_n$ with each subset locally closed is Hausdorff, such that

$$I_{i+1}/I_i \simeq C_0(V_i) \otimes K(H).$$

All H's have infinite dimension, except one.

Conjecture 3.4.10. If $J \subseteq I \subseteq C^*G$ such that $\widehat{I/J}$ is Hausdorff, then I/J is Morita equivalent to $C_0(\widehat{I/J})$.

4 Hang Wang: Group *C**-algebras and their K-theory

The aim is Connes-Kasparov isomorphism as K-theoretic Mackey analogy.

4.1 Lecture 1

4.1.1 What is Mackey analogy?

Let *G* be a connected Lie group, and *K* the maximal compact subgroup of *G*. Let \mathfrak{g} and \mathfrak{k} be their real Lie algebras. The space $\mathfrak{g}/\mathfrak{k}$ is a metric space and an abelian group. For any $k \in K$, we have the adjoint action $\operatorname{Ad}(k)$ on $\mathfrak{g}/\mathfrak{k}$.

Definition 4.1.1. The motion group is defined to be

$$G_0 := K \ltimes (\mathfrak{g}/\mathfrak{k}), (k_1, v_1) \cdot (k_2, v_2) = (k_1 k_2, \mathrm{Ad}_{k_2^{-1}}(v_1) + v_2).$$

Example 4.1.2. For $G = SL(2, \mathbb{R})$ and $K = SO(2, \mathbb{R}) \subseteq G$, $\mathfrak{k} = \left\{ \begin{pmatrix} 0 & t \\ -t & 0 \end{pmatrix} | t \in \mathbb{R} \right\} \subseteq \mathfrak{g}$, and $\mathfrak{g}/\mathfrak{k} = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} | a, b \in \mathbb{R} \right\} \simeq \mathbb{R}^2$. The action of $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ on $(a, b)^T \in \mathfrak{g}/\mathfrak{k}$ is the natural one. The motion group $G_0 = SO(2) \ltimes \mathbb{R}^2$ is the group of rigid motions.

Mackey analogy is a prediction of a 1-1 correspondence between:

 $\widehat{G}_t = \{ \text{ tempered representations } \} / \simeq$

and \widehat{G}_0 (unitary dual).

4.1.2 Structure of the unitary dual of *G*₀

Let *K* be a compact Lie group, *X* an abelian group, and $\alpha : K \to Aut(X)$. One studies the unitary dual of $\widehat{K \ltimes X}$. The unitary dual \widehat{X} is isomorphic to $X^* = Hom(X, U(1))$. For $\varphi \in \widehat{X}$, take $K_{\varphi} = \{k \in K \mid \varphi(k.x) = \varphi(x), \forall x \in X\}$ to be the isotopy subgroup.

Remark 4.1.3. When *G* is complex semisimple, K_{φ} is connected.

Given $\varphi \in \widehat{X}$ and $(\tau, W_{\tau}) \in \widehat{K_{\varphi}}$, we construct the following representation of $K_{\varphi} \ltimes X$:

$$\tau \otimes \varphi : K_{\varphi} \ltimes X \to \operatorname{GL}(W_{\tau})$$
$$(k, x) \mapsto \varphi(x)\tau(k).$$

Induce $\tau \otimes \varphi$ to G_0 :

$$\pi_{\tau,\varphi} := \operatorname{Ind}_{K_{\varphi} \ltimes X}^{K \ltimes X} \tau \otimes \varphi.$$

Theorem 4.1.4 (Mackey). Let G be complex semisimple and $X = \mathfrak{g}/\mathfrak{k}$. The representation $\pi_{\tau,\varphi}$ lies in \widehat{G}_0 , and the map

$$\bigsqcup_{\varphi \in \widehat{X}} \widehat{K_{\varphi}} \to \widehat{G_{0}}, \, (\tau, \varphi) \mapsto \pi_{\tau, \varphi}$$

is surjective. Moreover, $\pi_{\tau_1,\varphi_1} \simeq \pi_{\tau_2,\varphi_2}$ if and only if there exists $k \in K$ such that $\varphi_2(x) = \varphi_1(k.x)$ and $\tau_2 = \tau_1 \circ \operatorname{Ad}(k)$.

In summary,

$$\widehat{K \ltimes X} \simeq \left(\bigsqcup_{\varphi \in \widehat{X}} \widehat{K_{\varphi}}\right) / K.$$

Now let $X = \mathfrak{g}/\mathfrak{k}$. In the following we assume that *G* is connected complex semisimple. We use the Iwasawa decomposition G = KAN, where *A* is the abelian component, and *N* is the unipotent subgroup. Let *M* be the centralizer of *A* in *K*, and B = MAN the Borel subgroup.

Example 4.1.5. If $G = SL(3, \mathbb{C})$, we have: K = SU(3),

$$A = \{\operatorname{diag}(x_1, x_2, x_3) \mid x_1 > 0, x_1 x_2 x_3 = 1\} \simeq \mathbb{R}^2,$$
$$M = \left\{\operatorname{diag}(e^{i\theta_1}, e^{i\theta_2}, e^{i\theta_3}) \mid \theta_i \in \mathbb{R}, \theta_1 + \theta_2 + \theta_3 = 0\right\} \simeq (S^1)^2,$$

and $N = \left\{ \begin{pmatrix} 1 & * & * \\ & 1 & * \\ & & 1 \end{pmatrix} \right\}.$

We write *X* as $\mathfrak{a} \oplus \mathfrak{a}^{\perp}$. For $\varphi \in (\mathfrak{g}/\mathfrak{k})^*$, there exists a *w* in the Weyl group $W := N_K(M)/M$ such that $\varphi' = \varphi \circ \operatorname{Ad}(w)$ has zero restriction to \mathfrak{a}^{\perp} , called the *balanced charac*-*ter*. The character φ' can be identified with $\varphi'|_{\mathfrak{a}} \in \widehat{\mathfrak{a}}$.

Remark 4.1.6. For a balanced character φ' , then for any $k \in M \subseteq K$, k.x = x for any $x \in \mathfrak{a}$, thus $k \in M \subseteq K_{\varphi}$. Hence M is a maxiaml torus of K_{φ} .

If *K* is a general connected compact Lie group with a maximal torus *T*, then $\widehat{K} \simeq \widehat{T}/W$, where *W* is the Weyl group. Applying this to K_{φ} , we have $\widehat{K_{\varphi}} = \widehat{M}/W_{\varphi}$, where $W_{\varphi} = W(K_{\varphi}, M)$.

Theorem 4.1.7.

$$\widehat{G_0} = K \widehat{\ltimes(\mathfrak{g}/\mathfrak{h})} = \bigsqcup_{\varphi \in \widehat{\mathfrak{a}}/W} \widehat{M}/W_{\varphi} = (\widehat{M} \times \widehat{\mathfrak{a}})/W.$$

4.1.3 Tempered dual of G

Assume that *G* is complex semisimple with Iwasawa decomposition G = KAN.

Definition 4.1.8. For $\sigma \in \widehat{M}$ and $\varphi \in \widehat{A}$, the *principal series* associated to (σ, φ) is

$$P_{\sigma, arphi} := \mathrm{Ind}_{MAN}^G \sigma \otimes arphi \otimes \mathbb{1}.$$

Under our assumption, $P_{\sigma,\varphi}$ is irreducible, and $P_{\sigma_1,\varphi_1} \simeq P_{\sigma_2,\varphi_2}$ if and only if there exists $w \in W = N_G(MA)/MA$ such that $w(\sigma_1, \varphi_1) = (\sigma_2, \varphi_2)$. All tempered representations of *G* are such principal series.

Theorem 4.1.9.

$$\left(\widehat{M}\times\widehat{A}\right)/W\simeq\widehat{G}_t,\,(\sigma,\varphi)\mapsto P_{\sigma,\varphi}.$$

Via the exponential map $\mathfrak{a} \to A$, one has $\widehat{G_0} \simeq \widehat{G_t}$.

Example 4.1.10. For $G = SL(3, \mathbb{C})$, $\widehat{M} \simeq \mathbb{Z}^2$ and $\widehat{A} \simeq \mathbb{R}^2$. The tempered dual \widehat{G}_t is $(\widehat{M} \times \widehat{A})/W$. A fundamental domain of \widehat{M}/W is $\{(m_1, m_2) \in \mathbb{Z}^2 \mid m_2 \geq m_1 \geq 0\}$, and

$$\widehat{G}_t \simeq \left(\bigsqcup_{m_2 > m_1 > 0} \mathbb{R}^2\right) \sqcup \left(\bigsqcup_{m_2 = m_1 \text{ or } m_1 = 0} \mathbb{R}^2 / \mathbb{Z}_2\right) \sqcup (\mathbb{R}^2 / S_3)_{(0,0)}.$$

4.2 Lecture 2

4.2.1 Cartan decomposition

Let *G* be a non-compact semisimple Lie group with finite center. Let *K* be a maximal compact subgroup of *G*, then:

- (1) There is a homomorphism $\Theta : G \to G$ with $\theta = d\Theta : \mathfrak{g} \to \mathfrak{g}$ such that $\Theta^2 = \text{Id.}$ This homomorphism is called a *Cartan decomposition*.
- (2) Let 𝔅 and 𝔅 be the 1, −1 eigenspaces of θ. Then we have 𝔅 = 𝔅 ⊕ 𝔅, and we call (𝔅, 𝔅) a *Cartan pair*.
- (3) The morphism $K \times \mathfrak{p} \to G$, $(k, X) \mapsto k \exp X$ is a diffeomorphism. We write G = KP.
- *Example* 4.2.1. If *G* is a complex semisimple Lie group, then $\mathfrak{p} = \mathfrak{k} + i\mathfrak{k}$ and $\theta(g) = -\overline{g}^T$. For instance, if $G = SL(2, \mathbb{C})$, then $\mathfrak{k} = \mathfrak{su}(2)$.

• If $G = SL(2, \mathbb{R})$, then $\mathfrak{sl}(2) = \mathfrak{k} \oplus \mathfrak{p}$, where \mathfrak{p} consists of symmetric matrices. In this case, $\theta(g) = -\overline{g}^T$.

The motion group $G_0 = K \ltimes (\mathfrak{g}/\mathfrak{k}) = K \ltimes \mathfrak{p}$, and we can view \mathfrak{p} as the tangent space of G/K.

The Killing form $B(x, y) = \text{Tr}(\text{ad}(x) \circ \text{ad}(y))$ is positive definite, and makes G/K a *G*-invariant Riemannian manifold.

4.2.2 Tangent groupoid (family of groups connecting *G* and *G*₀)

Define $\mathcal{G} = K \times \mathfrak{p} \times [0,1]$ to be a family of groups with parameter $t \in [0,1]$, with multiplication defined for each *t*:

- When t = 0, $(k_1, v_1) \circ_0 (k_2, v_2) := (k_1k_2, \operatorname{Ad}(k_2^{-1})v_1 + v_2)$, thus $\mathcal{G}_0 = \mathcal{G}_0$.
- When t > 0, we first define a diffeomorphism $\varphi_t : K \times \mathfrak{p} \to G$, $(k, X) \mapsto k \exp(tX)$. Set

$$(k_1, v_1) \circ_t (k_2, v_2) := \varphi_t^{-1} \left(\varphi_t(k_1, v_1) \circ \varphi_t(k_2, v_2) \right)$$

Exercise 4.2.2. $(k_1, v_1) \circ_t (k_2, v_2) \xrightarrow{t \to 0} (k_1, v_1) \circ_0 (k_2, v_2).$

Remark 4.2.3. We can perform this construction whenever there is a submanifold inclusion $S \subseteq M$. For each t > 0, the fiber is N, and the fiber at t = 0 is the normal bundle N(S, M). If we take N to be $M \times M$ with $M = M^{\Delta} \subseteq N$, the fiber at t = 0 is TM. A sequence $(x_n, y_n, t_n) \in M \times M \times (0, 1]$ tends to $(X_x, 0) \in TM$ if $\frac{y_n - x_n}{t_n} \to X_x$.

Remark 4.2.4. We have a diffeomorphism

$$K \times \mathfrak{a} \times \mathfrak{n} \to G$$

(k, X, Y) $\mapsto k \exp X \exp Y.$

Using this we can perform a similar thing $K \times \mathfrak{a} \times \mathfrak{n} \times [0,1] \rightarrow \mathcal{G}$. When t > 0, it sends (k, X, Y, t) to $k \exp(tX) \exp(tY)$, and when t = 0, it sends that to (k, X + Y, 0).

4.2.3 Continuous field of C*-algebras

We write the fiber of \mathcal{G} over t as G_t . Take the completion of $C_c(G_t)$, and we get $C_r^*(G_t)$. Consider continuous sections in this family, *i.e.* $f : [0,1] \rightarrow \{C_r^*(G_t)\}_{t \in [0,1]}$ such that $t \mapsto ||f(t)||_{C_r^*(G_t)}$ is continuous. We define

$$||f|| := \sup_{t \in [0,1]} ||f(t)||_{\mathbf{C}_r^*(G_t)}.$$

The completion of continuous sections in this norm becomes a C^* -algebra, denoted by $C_r^*G_{[0,1]}$.

The evaluation map ev_0 sending $f \in C_r^*G_{[0,1]}$ to f(0) is a C^* -algebra homomorphism, and we denote its kernel by $C_r^*G_{(0,1]}$. We have a short exact sequence:

$$0 \to C_r^* G_{(0,1]} \to C_r^* G_{[0,1]} \to C_r^* (G_0) \to 0.$$

For any *f* in the kernel, one can construct a homotopy H(t, s) = f(st) between 0 and f(t), thus the K-theory of $C_r^*G_{(0,1]}$ is 0. On the K-theory level, the algebras $C_r^*G_{[0,1]}$ and $C_r^*(G_0)$ are the same, thus $K_1(C_r^*(G_0)) \stackrel{\text{ev}_0}{\simeq} K_1(C_r^*G_{[0,1]}) \stackrel{\text{ev}_1}{\longrightarrow} K_1(C_r^*(G))$. This also exists for i = 2. Connes-Kasparov morphism states that $K_i(C_r^*(G_0)) \simeq K_i(C_r^*(G))$. The point is that the K-theory of $C_r^*(G_0)$ is easy to compute. One has

$$K_i(\mathbf{C}_r^*(G_0)) \simeq K_i\left(\mathbf{C}_0(\mathfrak{p}^*, \mathbf{K}(\mathbf{L}^2(K))^K)\right)$$
$$\simeq K_i(\mathbf{C}_0(\mathfrak{p}^*) \rtimes K)$$
$$\simeq K_i^K(\mathbf{C}_0(\mathfrak{p}^*))$$
$$\simeq K_K^i(\mathfrak{p}^*).$$

In certain nice situation, this is isomorphic to $K_K^{i+\dim \mathfrak{p}^*}(\mathrm{pt})^1$, and isomorphic to the representation ring R(K) if $r + \dim \mathfrak{p}^*$ is even.

4.3 Lecture 3

4.3.1 Some calculation of $K(C_r^*(G))$

Let G = KAN be a complex simisimple Lie group, then

$$\mathbf{C}_r^*(G) \simeq \mathbf{C}_0(\widehat{M} \times \widehat{A}, \mathbf{K}(\mathbf{L}^2(K)))^W \simeq \bigoplus_{\sigma \in \widehat{M}/W} \mathbf{C}_0(\widehat{A}/W_\sigma, \mathbf{K}(\mathrm{Ind}_M^G H_\sigma)),$$

where $W_{\sigma} = \{w \in W \mid w\sigma \simeq \sigma\}$. This *C*^{*}-algebra is Morita equivalent to

$$\bigoplus_{\in \widehat{M}/W} C_0(\widehat{A}/W_{\sigma}),$$

thus $K_i(\mathbf{C}_r^*(G)) \simeq \bigoplus_{\sigma \in \widehat{M}/W} K^i(\widehat{A}/W_{\sigma}).$

Set $\widehat{A} \simeq \mathbb{R}^n$. If $W_{\sigma} = 1$, then $K^i(\mathbb{R}^n) \xrightarrow{\text{Bott periodicity}} K^{i+n}(\text{pt})$ equals \mathbb{Z} if $i \equiv n \mod 2$, and 0 otherwise.

Example 4.3.1. Let $G = SL(3, \mathbb{C})$, then $A \simeq \mathbb{R}^2$, $M \simeq (S^1)^2$, $W \simeq S_3$. The fundamental domain $\widehat{M}/W = \{(m_1, m_2) \in \mathbb{Z}^2 \mid m_2 \ge m_1 \ge 0\}$. We have

$$K_0(\mathbf{C}^*_r(\mathrm{SL}(3,\mathbb{C}))) \simeq \bigoplus_{m_2 \ge m_1 \ge 0} K^0(\mathbb{R}^2/W_{\sigma}) \simeq \bigoplus_{m_2 > m_1 > 0} \mathbb{Z}$$

since K^0 (half plane) = 0, and trivial K_1 .

Example 4.3.2. Let $G = SL_2(\mathbb{C})$, then $M \simeq \mathbb{Z}$, $A \simeq \mathbb{R}$, $W = \mathbb{Z}/2\mathbb{Z}$ and we have

$$K_1(C_r^*(\mathrm{SL}(2,\mathbb{C}))) \simeq \bigoplus_m K^1(\mathbb{R}/W_m) = K^1(\mathbb{R}/W) \oplus \bigoplus_{m>0} K^1(\mathbb{R}) = \bigoplus_{m>0} \mathbb{Z},$$

and trivial K_0 .

¹Here the subscript *K* means *K*-equivariant.

Now instead of a general real reductive group, we look at $SL(2, \mathbb{R})$. In this case, we have two parabolic subgroups: the Borel P_1 and $P_2 = G$.

$$C_r^*(\mathrm{SL}(2,\mathbb{R}))\sim_M \left(\bigoplus_{\sigma\in(\widehat{M}_2)_{ds}}\mathbb{C}\right)\oplus C_0(\mathbb{R}/\mathbb{Z}_2)\oplus C_0(\mathbb{R})\rtimes\mathbb{Z}_2.$$

Considering the K-theory:

$$K_0(\mathcal{C}^*_r(\mathrm{SL}(2,\mathbb{R}))) = \left(\bigoplus_{\sigma\in\widehat{G}_{ds}}\mathbb{Z}\right)\oplus\mathbb{Z}.$$

Here we use $K_0(\mathbb{C}_0(\mathbb{R}) \rtimes \mathbb{Z}_2)$. The algebra $\mathbb{C}_0(\mathbb{R}) \rtimes \mathbb{Z}_2$ has a model

$$A = \{ f : [0, \infty) \to M_2(\mathbb{C}) \, | \, f(\infty) = 0, f(0) = (*_*) \} \, .$$

Take $A_0 = \{f \in A \mid f(0) = f(\infty) = 0\}$, which is Morita equivalent to $C_0(0, 1)$. The evaluation map ev₀ gives a short exact sequence:

$$0 \to A_0 \to A \xrightarrow{\operatorname{ev}_0} \mathbb{C}^2 \to 0$$

is used to calculate $K_0(A)$.

4.3.2 $K(C_r^*(G_0))$

Recall that given $f \in C_c(G)$, one can define the generalized Fourier transform

$$\widehat{f}:\widehat{G}\to \{\mathsf{B}(H_{\sigma})\}_{\pi\in\widehat{G}_{t}},$$
$$\widehat{f}(\pi)=\int_{G}f(g)\pi(g)dg.$$

We have $G_0 = K \ltimes \mathfrak{p}$. We define the Fourier transform

$$C_r^*(G_0) \xrightarrow{\simeq} C_0(\mathfrak{p}^*, \mathcal{K}(\mathcal{L}^2(K)))^K,$$

$$f \mapsto \widehat{f}(\varphi)(k_1, k_2) : \int_{\mathfrak{p}} f(k_1 k_2^{-1} x) \varphi(k_2^{-1}(x)) dx,$$

where we identify an operator with its integral kernel. For any $h \in K$, $\hat{f}(h^{-1}\varphi)(k_1h, k_2h) = \hat{f}(\varphi)(k_1, k_2)$. For the right hand side,

$$C_0(\mathfrak{p}^*, K(L^2(K)))^K \simeq C_0(\mathfrak{p}^*) \rtimes K.$$

If *K* acts on *X* trivially,

$$C(X, K(L^{2}(K)))^{K} = C(X) \otimes K(L^{2}(K))^{K} = C(X) \otimes C_{r}^{*}(K) \simeq C(X) \rtimes K,$$

In Lecture 2, we have $K_i(C_r^*(G_0)) \simeq K$ under some nice conditions: where nice means *K*-action on \mathfrak{p}^* preserves the orientation. In this situation, the *K*-action factors through $K \to SO(\mathfrak{p}^*)$. Assume this lifts to $K \to Spin(\mathfrak{p}^*)$, then

$$K_K^{\dim \mathfrak{p}^*}(\mathfrak{p}^*) \simeq \mathbf{R}(K).$$

Remark 4.3.3. Removing the conditions, we refer to a paper of Echterhoff-Pfante.

4.4 Lecture 4

Let *G* be a complex semisimple Lie group and $G_0 = K \ltimes \mathfrak{p}$ the motion group. We have

$$\widehat{G}_t = \bigsqcup_{\tau \in \widehat{M}/W} \widehat{A}/W_{\sigma},$$

with $W = N_G(MA)/MA$, and

$$\widehat{G_0} = \bigsqcup_{\sigma \in \widehat{M}/W} \widehat{\mathfrak{a}}/W,$$

with $W = N_K(M)/M$.

Definition 4.4.1. For $\tau \in \hat{K}$, it is a *K*-type for $\pi \in \hat{G}$ if it appears in the decomposition of $\pi|_{K}$. A *K*-type τ of π is called a *minimal K*-type if the highest weight of τ is minimal among all *K*-types.

For any $\sigma \in \widehat{M}$, we have

$$\widehat{G}_t = \bigsqcup_{ au_\sigma \in \widehat{K}} C_\sigma, \, \widehat{G_0} = \bigsqcup_{ au_\sigma \in \widehat{K}} \mathcal{C}_\sigma,$$

where C_{σ} (resp. C_{σ}) is the set consisting of π with minimal *K*-type τ_{σ} .

4.4.1 Compact group representation

Let *K* be a compact Lie group. The Fourier transform gives a *C**-algebra homomorphism:

$$C_r^*(K) \to C_0(\widehat{K}, \{\mathbf{M}_{d_{\pi}}(\mathbb{C})\}_{\pi \in \widehat{K}}), \, C(K) \ni f \mapsto \widehat{f}(\pi) = \int_K f(k)\pi(k)dk.$$

For $(\pi, H_{\pi}) \in \widehat{K}$, let $u, v \in H_{\pi}$, and we define $\phi_{u,v}(x) := \langle \pi(x)u, v \rangle$. If $e_1, \ldots, e_{d_{\pi}}$ is an orthogonal normal basis of H_{π} , we set $\pi_{i,j} = \phi_{e_i,e_j}$ and $\pi(x) = (\pi_{i,j}(x))_{1 \le i,j \le d_{\pi}}$. We have the orthogonal relation:

$$\int_K \pi_{i,j}(x)\pi_{i',j'}(x)dx = \frac{1}{d_\pi}\delta_{i,j}\delta_{i',j'}.$$

Let e_1 be a unit vector in the highest weight space of π . The matrix coefficient $p_{\pi} := d_{\pi}\pi_{1,1} \in C(K)$ is an idempotent in $C^*(K)$, and

$$\int_{K} p_{\pi}(x) p_{\pi'}(x) dx = d_{\pi} \delta_{\pi,\pi'}.$$

For $\tau \in \widehat{K}$, then $\widehat{p_{\tau}}(\eta_{i,j}) = \int_{K} p_{\tau}(x) \eta_{i,j}(x) dx = \delta_{\tau,\eta} \delta_{i,1} \delta_{j,1}$. So $\widehat{p_{\tau}} = (0, \dots, (E_{11})_{\pi=\tau}, \dots, 0)$. Under the Fourier transform, the subalgebra $C^*(K) p_{\tau} C^*(K)$ correspond to

$$\mathbf{M}_{d_{\tau}}(\mathbb{C})E_{1,1}\mathbf{M}_{d_{\tau}}(\mathbb{C})=\mathbf{M}_{d_{\tau}}(\mathbb{C}).$$

The subalgebra $C^*(K)p_{\tau}C^*(K)$ is Morita equivalent to $p_{\tau}C^*(K)p_{\tau}$. Observe that under the Fourier transform, $p_{\tau}C^*(K)p_{\tau}$ becomes $E_{11}M_{d_{\tau}}(\mathbb{C})E_{11} \simeq \mathbb{C}$.

4.4.2 Idea of proof

Let $M \subseteq K$ be the maximal torus, then \widehat{M}/W is in bijection with \widehat{K} . For any $\sigma \in \widehat{M}/W$, we get a projection $p_{\tau_{\sigma}} \in C_r^*(K)$. Consider the subalgebra $C_r^*(G)p_{\tau_{\sigma}}C_r^*(G) \subseteq C_r^*(G)$. It corresponds to the component \widehat{A}/W_{σ} , *i.e.* equals $C_0(\widehat{A}/W_{\sigma_{\tau}}, K(H_{\sigma_{\tau}}))$

Fact: For $\sigma \in \widehat{M}, \varphi \in \widehat{A}, p_{\sigma,\varphi} \in \widehat{G}_t$ has lowest *K*-type τ_{σ} . The representation $\pi_{\sigma,\varphi} = \operatorname{Ind}_{K_{\sigma}\ltimes\mathfrak{a}}^{K\ltimes\mathfrak{a}}(\sigma\otimes\varphi)\in\widehat{G}_0$ has lowest *K*-type τ_{σ} .

The subalgebra $C_0(\hat{A}/W_{\sigma}, K(H_{\sigma}))$ is Morita equivalent to $p_{\tau_{\sigma}}C_r^*(G)p_{\tau_{\sigma}}$, which becomes $C_0(\hat{A}/W_{\sigma})$ under the Fourier transform.

In order to show $K_0(C_r^*(G_0)) \simeq K_0(C_r^*(G))$, it is equivalent to show that

$$\operatorname{ev}_{1}: \bigoplus_{\sigma \in \widehat{M}/W} K_{0}(\mathcal{C}_{\sigma}) = K_{0}(C_{r}^{*}(G_{[0,1]})) \xrightarrow{\simeq} K_{0}(C_{r}^{*}(G)) = \bigoplus_{\sigma \in \widehat{M}/W} K_{0}(C_{\sigma}).$$

Using the Morita equivalence,

$$K_0(\mathcal{C}_{\sigma}) \simeq K_0(\mathcal{C}_{\sigma} p_{\sigma} \mathcal{C}_{\sigma}) \xrightarrow{\simeq} K_0(p_{\sigma} \mathcal{C}_{\sigma} p_{\sigma}) \simeq K_0(C_0(\widehat{\mathfrak{a}}/W_{\sigma}) \times [0,1]),$$

and on the other side similarly $K_0(C_{\sigma}) \simeq K_0(C_0(\widehat{A}/W_{\sigma}))$.

5 Erik Van Den Ban: Harmonic analysis on non-Riemannian symmetric spaces

There are a lot of details missing in this note! It is painful to take the notes, and the slides can be found in the website of trimester program.

5.1 Lecture 1

Settings:

- *G* real connected semisimple Lie group with finite center
- σ involution of *G*
- G^{σ} the fixed group of σ
- $H \subseteq G^{\sigma}$ open subgroup
- X = G/H semisimple symmetric space
- $\sigma_* = d\sigma : \mathfrak{g} \to \mathfrak{g}$ infinitesimal involution

One has the decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{q}$ as eigenspaces of σ . The tangent space $T_e(X) \simeq \mathfrak{g}/\mathfrak{h} \simeq \mathfrak{q}$, and the Killing form of \mathfrak{q} makes *X* a pseudo-Riemannian symmetric space.

Example 5.1.1. • Riemannian case: σ a Cartan involution, H = K, q = p.

- Group case: $G = G' \times G'$, $H = (G')^{\Delta}$, and G acts on G' by $(x, y)g = xgy^{-1}$, $G' \simeq G/H$.
- Hyperbolic case.

Lemma 5.1.2. *There exists a Cartan involution* θ *of* \mathfrak{g} *that commutes with* σ *. The composition* $\theta\sigma$ *is also an involution.*

Theorem 5.1.3. *The map* $K \times (\mathfrak{p} \cap \mathfrak{q}) \times (\mathfrak{p} \cap \mathfrak{h}) \to G$, $(k, X, Y) \mapsto k \exp X \exp Y$ *is a diffeomorphism.*

Corollary 5.1.4. *The map* $K \times (\mathfrak{p} \cap \mathfrak{q}) \to G$ *induces a diffeomorphism* $G/H \simeq K \times_{K \cap H} (\mathfrak{p} \cap \mathfrak{q})$, *which is a vector bundle over* $K/K \cap H$ *with fiber* $\mathfrak{p} \cap \mathfrak{q}$.

If $\sigma = \theta$, $G/K \simeq K \times_K \mathfrak{p} = \{*\} \times \mathfrak{p}$.

Theorem 5.1.5. *There are finitely many* Ad(H)*-conjugacy classes of Cartan subspaces of* \mathfrak{q} *. They all have the same dimension, called the* rank *of* G/H*.*

Fix $\mathfrak{a}_{\mathfrak{q}} \subset \mathfrak{p} \cap \mathfrak{q}$ a maximal abelina subspace.

Lemma 5.1.6. $\Sigma = \{ \alpha \in \mathfrak{a}_{\mathfrak{q}}^* \setminus \{0\} \mid \mathfrak{g}_{\alpha} \neq 0 \}$ *is a possibly non-reduced root system.*

Fix Σ^+ positive system and Δ simple roots, and take $W = W(\mathfrak{a}_{\mathfrak{q}})$ the Weyl group.

Definition 5.1.7. $W_{K \cap H}$:= the image of $N_{K \cap H}(\mathfrak{a}_{\mathfrak{q}})$ in W.

Put $\mathfrak{g}_{\alpha\pm} := \mathfrak{g}_{\alpha} \cap \mathfrak{g}_{\pm}$, eigenspaces of $\sigma\theta$, and m_{α}^{\pm} the dimension. $G^+ := G^{\sigma\theta}$ is reductive, and Σ_+ is a root system of $(\mathfrak{g}_+, \mathfrak{a}_\mathfrak{q})$. Define Σ_+^+ and W_+ .

Remark 5.1.8. $W_+ \subseteq W_{K \cap H}$ is an equality if and only if *H* is essentially connected.

Definition 5.1.9. Define $\mathfrak{a}_{\mathfrak{q}}^{\operatorname{reg}}$ to be $W.\mathfrak{a}_{\mathfrak{q}}^+$, and also $\mathfrak{a}_{\mathfrak{q},+}^{\operatorname{reg}} := W_{K\cap H}\mathfrak{a}_{\mathfrak{q},+}^+$.

Lemma 5.1.10. $G = K\overline{A_{\mathfrak{q},+}^+}H$, with unique $\overline{A_{\mathfrak{q},+}^+}$ -part.

Corollary 5.1.11. The space $X_+ = KA_q^{\text{reg}}H$ is an open dense subset of X.

Suppose $\mathcal{W} \subset N_K(\mathfrak{a}_\mathfrak{q})$ is finite, then

$$X_+ = \bigsqcup_{v \in \mathcal{W}} KA_{\mathfrak{q}}^+ vH \Leftrightarrow \mathcal{W} \xrightarrow{1-1} W/W_{K \cap H}.$$

Definition 5.1.12. Define $\mathfrak{g}^d \subseteq \mathfrak{g}_{\mathbb{C}}$ by $\mathfrak{g}_+ \oplus i\mathfrak{g}_-$.

Put $\mathfrak{k}^d := \mathfrak{h}_{\mathbb{C}} \cap \mathfrak{g}^d$, $\mathfrak{p}^d := \mathfrak{g}_{\mathbb{C}} \cap \mathfrak{q}^d$, then $\mathfrak{g}^d = \mathfrak{k}^d \oplus \mathfrak{p}^d$ is a Cartan decomposition, with $\theta^d = \sigma_{\mathbb{C}}|_{\mathfrak{g}^d}$. Put $\sigma^d := \theta_{\mathbb{C}}|_{\mathfrak{g}^d}$ and $\mathfrak{h}^d := \mathfrak{k}_{\mathbb{C}} \cap \mathfrak{g}^d$, $\mathfrak{q}^d := \mathfrak{p}_{\mathbb{C}} \cap \mathfrak{g}^d$.

We construct a duality $(\mathfrak{g}, \sigma, \theta) \leftrightarrow (\mathfrak{g}^d, \sigma^d, \theta^d)$.

Example 5.1.13. The dual space of $GL(n, \mathbb{R}) / O(n)$ is U(n) / O(n), and in the group case, the dual of a compact Lie group $G = (G \times G)/G^{\Delta}$ is $G^{\mathbb{C}}/G$, where $G_{\mathbb{C}}$ is the complexification of *G*.

Definition 5.1.14. Let $\mathcal{D}(G/H)$ be the space of linear partial differential operators on $C^{\infty}(G/H)$, and $\mathbb{D}(G/H)$ its *H*-invariant subspace.

We have a map $R : \mathcal{U}(\mathfrak{g}) \to \operatorname{End}_{\mathbb{C}}(\mathbb{C}^{\infty}(G))$, and it induces $r : \mathcal{U}(\mathfrak{g})^{H} \twoheadrightarrow \mathbb{D}(G/H)$, Suppose that $G \subseteq G_{\mathbb{C}}$, and let G^{d}, K^{d} be the analytic subgroups of $G_{\mathbb{C}}$ with Lie algebras $\mathfrak{g}^{d}, \mathfrak{t}^{d}$. One has $\mathcal{U}(\mathfrak{g})^{H} = \mathcal{U}(\mathfrak{g}^{d})^{K^{d}}$. There exists a unique homomorphism of algebras $\mathbb{D}(G/H) \to \mathbb{D}(G^{d}/K^{d}), D \mapsto {}^{d}D$ commuting with the identity of \mathcal{U} , and it is an isomorphism.

We have the *Harish-Chandra isomorphism*: $\gamma^d : \mathbb{D}(G^d/K^d) \xrightarrow{\simeq} \mathbb{P}(\mathfrak{a}^{d,*})^{W(\mathfrak{g}^d,\mathfrak{a}^d)}$.

5.2 Lecture 2

When *H* is reductive, X = G/H has a left invariant measure dx and $L^2(G/H, dx)$ carries the left regular representation $L_g \varphi(x) = \varphi(g^{-1}x)$. A goal of the harmonic analysis is to study the Plancherel decomposition of $L^2(G/H)$ in terms of irreducible unitary representations.

5.2.1 Basic representation theory

Setting: *V* is Fréchet (or complete locally convex space).

For a continuous representation (π, V) , the space V^{∞} of smooth vectors is a representation of $\mathcal{U}(\mathfrak{g})$. The subspace of *K*-finite smooth vectors $V^{\infty} \cap V_K$ is dense in *V*.

Definition 5.2.1. For $\delta \in \widehat{K}$, define $V[\delta]$ to be the image of $V_{\delta} \otimes \text{Hom}_{K}(V_{\delta}, V)$. Then $V_{K} = \bigoplus_{\delta \in \widehat{K}} V[\delta]$. A representation *V* is *admissible* if dim $V[\delta] < \infty$ for any $\delta \in \widehat{K}$.

Lemma 5.2.2. If *V* is admissible, then $V_K \subseteq V^{\infty}$ (and this is a (\mathfrak{g}, K) -module).

Lemma 5.2.3. If (π, V) is admissible, then V_K is an admissible (\mathfrak{g}, K) -module. Furthermore,

- (1) the map $W \mapsto W \cap V_K$ defines a bijection between the closed invariant subspaces of V and V_K . The inverse is given by taking the closure.
- (2) (π, V) is irreducible if and only if V_K is irreducible.

Definition 5.2.4. A *Harish-Chandra module* is a finitely generated admissible (g, K)-module.

A motivating result of Harish-Chandra: suppose that (π, \mathcal{H}) is irreducible unitary, then π is admissible. Two irreducible unitary representations are equivalent if their associated (\mathfrak{g}, K) -modules are equivalent.

Define $\mathfrak{Z} = \mathfrak{Z}(\mathfrak{g})$ to be the center of $\mathcal{U}(\mathfrak{g})$.

Theorem 5.2.5 (Harish-Chandra). Let (π, \mathcal{H}) be irreducible unitary. Then π is quasi-simple, i.e. \mathfrak{Z} acts by scalars on V^{∞} (through an infinitesimal character $\chi \in \mathfrak{Z}$).

5.2.2 Back to $\mathbb{D}(G/H)$

For $D \in \mathbb{D}(G/H)$, we can define its *formal adjoint* $D' \in \mathbb{D}(G/H)$.

Theorem 5.2.6. If D = D', then D is essentially self-adjoint with operator core $L^2(X)^{\infty}$.

Definition 5.2.7. A *discrete series* of G/H is an irreducible unitary G-representation (π, \mathcal{H}) that admits G-equivariant $\mathcal{H} \to L^2(G/H)$. For $\xi \in (G/H)^{\wedge}_{ds}$, we denote the isotopic space by $L^2(G/H)_{\xi}$.

Lemma 5.2.8. *R* induces an injective homomorphism $\mathfrak{Z} \hookrightarrow \mathbb{D}(G/H)$. Accordingly, $\mathbb{D}(G/H)$ is a finite \mathfrak{Z} -module.

For each ξ , one can decompose the finite $\mathbb{D}(G/H)$ -module $L^2(G/H)^{\infty}_{\xi,K}$ into a direct sum of (\mathfrak{g}, K) -submodules on which $\mathbb{D}(G/H)$ acts by scalars.

For $\chi \in \mathbb{D}(G/H)^{\wedge}$, put $\xi_{\chi}(G/H)$ the space of smooth eigenfunctions of χ . Our goal is for each χ to describe the irreducible (\mathfrak{g}, K) -submodules of $\xi_{\chi}(G/H)_K \cap L^2(G/H)^{\infty}$. The idea of Flensted-Jensen is to use the duality $G/H \leftrightarrow G^d/K^d$.

For simplicity, assume $G \subseteq G_{\mathbb{C}}$ and define G^d, K^d, H^d as Lie subgroups of $G_{\mathbb{C}}$ with corresponding Lie algebras.

Recall that $G_+ = \exp(\mathfrak{p} \cap \mathfrak{q})(K \cap H)$ is contained in $G \cap G^d$. For $f \in C^{\infty}(G/H)_K$ and $x \in G_+$, the function $k \mapsto f(kx)$ has a unique analytic extension to $f_x : K_{\mathbb{C}} \to \mathbb{C}$.

Theorem 5.2.9 (F-J). There exists a unique map $C^{\infty}(G/H)_K \to C^{\infty}(G^d/K^d)_{H^d}$, $f \mapsto {}^d f$ such that

- ${}^d f = f \text{ on } G_+,$
- for all $x \in G_+$, $h \in H^d$, ${}^d f(hx) = f_x(h)$.

For all $D \in \mathbb{D}(G/H)$, ${}^{d}(Df) = {}^{d}D^{d}f$.

Corollary 5.2.10. The duality $f \mapsto {}^d f$ fives $\xi_{\chi}(G/H)_K \hookrightarrow \xi_{d_{\chi}}(G^d/K^d)_{H^d}$, where ${}^d\chi$ is defined by ${}^d\chi({}^dD) = \chi(D)$.

5.2.3 Poisson transform on *G*/*K*

Setting: G = KAN and the minimal parabolic P = MAN. For $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$, define $\chi_{\lambda}(D) = \gamma(D, \lambda) = (\gamma(D))(\lambda)$, which is a character in $\mathbb{D}(G/H)^{\wedge}$. Denote $\xi_{\chi_{\lambda}}(G/K)$ by $\xi_{\lambda}(G/K)$. For $\xi \in \mathfrak{a}_{\mathbb{C}}^*$, set $a^{\xi} := e^{\xi(\log a)}$, $a \in A$.

For $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$, we define $\pi_{\lambda} = \operatorname{Ind}_P^G(\mathbb{1} \otimes (-\lambda) \otimes \mathbb{1})$ to be

$$C^{0}(G/P; -\lambda) = \left\{ f \in C^{0}(G) \mid f(gman) = a^{\lambda - \rho_{P}} f(g) \right\}$$

with the action $\pi_{\lambda}(g)f(x) = f(g^{-1}x)$.

Definition 5.2.11. The *Poisson transform* \mathcal{P}_{λ} : $C^{0}(G/P; -\lambda) \to C^{\infty}(G/K)$ is defined by

$$\mathcal{P}_{\lambda} \varphi(x) = \int_{K} \varphi(xk) dk, \, x \in G.$$

Lemma 5.2.12. \mathcal{P}_{λ} maps $C^{0}(G/P; -\lambda)$ into $\xi_{\lambda}(G/K)$, and intertwines π_{λ} with L.

The Poisson transform \mathcal{P}_{λ} factors through res : $C^{0}(G/P; -\lambda) \xrightarrow{\simeq} C(K/M)$, and we still denote that by \mathcal{P}_{λ} .

Definition 5.2.13. $\mathcal{B}'(K/M) := [C^{\omega}(K/M)dk]'$ (hyperfunctions in $K/M)^2$.

Theorem 5.2.14 (Helgason's conjecture; proved by Kashiwara-Kowata-Minewasa-Oshima-Okamoto-Tanaka). \mathcal{P}_{λ} admits a unique extension to a continuous linear map $\mathcal{B}'(K/M) \rightarrow \xi_{\lambda}(G/K)$, which intertwines π_{λ} and L. For $\rho(\lambda) \neq 0$, this extension is a topological linear isomorphism.

Theorem 5.2.15. rank $G/H = \operatorname{rank} K/K \cap H$ implies that $(G/H)_{ds}^{\wedge} \neq \emptyset$.

Theorem 5.2.16 (Oshima-Matsuki,1982). $(G/H)_{rs}^{\wedge} \neq \emptyset \Leftrightarrow \operatorname{rank} G/H = \operatorname{rank} K/K \cap H$.

5.3 Lecture 3

5.3.1 Parabolic induction

Definition 5.3.1. A *parabolic subgroup* of *G* is a subgroup *P* such that $P = N_G(\text{Lie}(P))$.

Given such a *P*, take a maximal abelian $\mathfrak{a} \subseteq \mathfrak{g}$, $\Sigma^+(\mathfrak{g}, \mathfrak{a})$ the positive system, $M = Z_K(\mathfrak{a})$ and we have the Iwasawa decomposition G = KAN. The group $P_0 = MAN$ is a minimal parabolic subgroup. One has $K \cap P_0 = M$, $G = KP_0 \simeq K \times_M P_0$ and $\mathfrak{k} \subseteq \mathfrak{g}$ induces a diffeomorphism $K/M \simeq G/P_0$. Every parabolic subgroup of *G* is *K*-conjugate to a *standard* parabolic subgroup.

For a parabolic $Q \subseteq G$, set $M_{1,Q} = Q \cap \theta(Q)$. The parabolic Q decomposes as $Q = M_{1,Q}N_Q$. Set $\mathfrak{a}_Q = Z(\mathfrak{m}_{1,Q}) \cap \mathfrak{p}$ and $A_Q = \exp \mathfrak{a}_Q$. We have $M_{1,Q} = M_QA_Q = Z_G(\mathfrak{a}_Q)$. The Langlands decomposition of Q is $Q = M_QA_QN_Q$.

Let $\mathcal{P}(A)$ to be set of parabolic subgroups containing *A*, and

Definition 5.3.2. Given $Q \in \mathcal{P}(A)$, define

$$\mathfrak{a}_{O}^{+} = \left\{ X \in \mathfrak{a}_{Q} \, \big| \, \alpha(X) > 0, \forall \alpha \in \Sigma(\mathfrak{n}_{Q}, \mathfrak{a}_{Q}) \right\}$$

For $X \in \mathfrak{a}$, define $\Sigma(X) = \{ \alpha \in \Sigma \mid \alpha(X) > 0 \}$.

Remark 5.3.3. Set $X \sim Y$ if $\Sigma(X) = \Sigma(Y)$, and this defines an equivalence relation on \mathfrak{a} .

Lemma 5.3.4. $Q \mapsto \mathfrak{a}_Q^+$ gives a bijection from $\mathcal{P}(A)$ to \mathfrak{a}/\sim . The inverse is given by $\Phi \mapsto P_{\Phi} = M_{1,\Phi}N_{\Phi}$, where $M_{1,\Phi} = Z_G(\Phi)$, $\mathfrak{n}_{\Phi} = \sum_{\alpha \in \Sigma, \alpha \mid \Phi > 0} \mathfrak{g}_{\alpha}$.

The classes a/\sim are facets, where *G* has the smallest dimension, and minimal parabolics have the maximal dimension.

Remark 5.3.5. • $P \subseteq Q \Leftrightarrow \overline{\mathfrak{a}_P^+} \supseteq \mathfrak{a}_Q^+;$

²Here $C^{\infty}(K/M)dk$ stands for the space of real analytic densities.

- $\mathfrak{a}_{wPw^{-1}}^+ = w(\mathfrak{a}_P^+), w \in W(\Sigma).$ Given:
- $\xi \in \widehat{M_P}, \lambda \in i\mathfrak{a}_P^* \hookrightarrow \widehat{A_P};$
- $\xi \otimes \lambda$ is a unitary representation of $M_{1,P}$.
- The *unitary induction*: $\operatorname{Ind}_{P}^{G}(\xi \otimes \lambda)$.

The space of the unitary induction is

$$\mathrm{L}^{2}(P;\xi;\lambda) := \left\{ f \in \mathrm{L}^{2}(G,\mathcal{H}_{P})_{loc} \, \middle| \, f(manx) = a^{\lambda+\rho_{P}}\xi(m)^{-1}f(x) \right\}.$$

This representation is unitary for $\lambda \in i\mathfrak{a}_P$, and

$$L^{2}(P;\xi;\lambda) \times L^{2}(P,\xi,-\overline{\lambda}) \to \mathbb{C}$$
$$(f,g) \mapsto \int_{K} \langle f(k),g(k) \rangle dk$$

is G-equivariant.

The restriction gives a topological linear isomorphism

$$L^{2}(P;\xi;\lambda) \simeq L^{2}(K;\xi|_{K\cap M_{P}}) = \operatorname{Ind}_{K\cap M_{P}}^{K}(\xi|_{K\cap M_{P}})$$

Theorem 5.3.6. $L^2(P;\xi;\lambda)^{\infty} = C^{\infty}(P;\xi,\lambda).$

Define the dual $C^{-\infty}(P;\xi;\lambda) = \overline{C^{\infty}(P;\xi;-\overline{\lambda})'} \leftrightarrow C^{\infty}(P;\xi;\lambda)$. The idea is to construct $j \in C^{-\infty}(P;\xi;\lambda)^H$, then have *G*-matrix coefficient

 $m_j: \mathbf{C}^{\infty}(P;\xi; -\overline{\lambda}) \hookrightarrow \mathbf{C}^{\infty}(G/H).$

On open orbit $PvH \subseteq G$, one must have $j|_{PvJ} \in C^{\infty}(PvH, \mathcal{H}_{\xi}^{-\infty})^{H}$ and Consider parabolic subgroups stable under $\sigma\theta$.

I am lost here.

5.4 Lecture 4

Definition 5.4.1. The *unnormalized Fourier transform* ${}^{u}\hat{f}$ of $f \in C^{\infty}(G/H)$ is defined by

$${}^{u}\widehat{f}(P,\xi,\lambda):=\int_{G/H}f(x)\pi_{P,\xi,\lambda}(x)j(P,\xi,\lambda)dx\in V_{P}(\xi)^{*}\otimes C^{\infty}(K;\xi|_{K_{P}}).$$

Example 5.4.2. If H = K, $\hat{f}(P_{\emptyset}, 1, \lambda) = \pi_{P_{\emptyset,1,\lambda}}(f) \mathbb{1}_{P_{\emptyset},\lambda}$.

The Fourier transform intertwines *L* with $\mathbb{1} \otimes \pi_{P,\xi,\lambda}$.

Theorem 5.4.3 (Plancherel identity). *For* $f \in C_c^{\infty}(G/K)$,

$$\|f\|_{\mathrm{L}^{2}(X)}^{2} = \sum_{P \in \mathbb{P}_{\sigma}} [W : W_{P}^{*}] \sum_{\xi \in X_{P,*,ds}^{\wedge}} \int_{i\mathfrak{a}_{P,\mathfrak{q}}^{*}} \|^{u} \widehat{f}(P,\xi,\lambda)\|_{\mathrm{HS}}^{2} d\mu_{P,\xi}(\lambda).$$

Remark 5.4.4. $V_P(\xi)$ plays the role of multiplicity space.

Suppose that $P \in \mathcal{P}_{\sigma}(A_{\mathfrak{q}}), \xi \in \widehat{M_P}$ and ξ has real infinitesimal character.

Theorem 5.4.5 (Knapp-Stein, Vogan-Wallach). There is a unique meromorphic family:

$$\mathfrak{a}_{P,\mathbb{C}}^* \ni \lambda \mapsto A(\overline{P}, P, \xi, \lambda)$$

of intertwining operators $\pi_{P,\xi,\lambda} \to \pi_{\overline{P},\xi,\lambda}$ such that for $\langle \operatorname{Re}(\lambda), \alpha \rangle >> 0$ for each α , then for $f \in C^{\infty}(P;\xi;\lambda)$,

$$A(Q, P, \xi, \lambda)f(x) = \int_{\overline{N_P} \cap N_Q} f(nx)dn.$$

Remark 5.4.6. $A(\overline{P}, P, \xi, \lambda) \circ A(P, \overline{P}, \xi, \lambda) = \eta(P, \overline{P}, \xi, \lambda) \cdot \text{Id}$, with $\eta(P, \overline{P}, \xi, \cdot)$ a meromorphic function.

Lemma 5.4.7. $\eta(P, \overline{P}, \xi, \lambda) \ge 0$ for $\lambda \in i\mathfrak{a}_P^*$.

The *Plancherel measure* $d\mu_{P,\xi}(\lambda)$ is $\eta(\overline{P}, P, \xi, \lambda)^{-1} \cdot d\mu_P(\lambda)$, where $d\mu_P$ is the Lebesgue measure on $i\mathfrak{a}_P^*$.

Definition 5.4.8. We normalize *j* by

$$j^{\circ}(P,\xi,\lambda) := A(\overline{P},P,\xi,\lambda)^{-1}j(\overline{P},\xi,\lambda),$$

and define \hat{f} as ${}^{u}\hat{f}$ but with j° in place of j.

Corollary 5.4.9. For $f \in C_c^{\infty}(G)$, $\widehat{f}(P,\xi,\lambda) = A(\overline{P},P,\xi,\lambda)^{-1u}\widehat{f}(\overline{P},\xi,\lambda)$.

Theorem 5.4.10 (Normalized Plancherel indentity). *For* $f \in C_c^{\infty}(G/H)$,

$$\|f\|_{\mathrm{L}^{2}(X)}^{2}=\sum_{P\in\mathbb{P}_{\sigma}}[W:W_{P}^{*}]\sum_{\xi\in X_{P,*,ds}^{\wedge}}\int_{i\mathfrak{a}_{P,\mathfrak{q}}^{*}}\|\widehat{f}(P,\xi,\lambda)\|_{\mathrm{HS}}^{2}d\mu_{P}(\lambda).$$

5.5 Lecture 5

I give up...

6 Toshiyuki Kobayashi: Basic questions in group-theoretic analysis on manifolds

- (1) Is representation theory useful to the global analysis on the *G*-manifold X? Does the group sufficiently control the space of functions?
- (2) What can we say about the "spectrum" on $L^2(X)$?

Given a *G*-manifold *X*, *G* acts on $C^{\infty}(X)$ and $L^{2}(X, \nu_{X})$, where ν_{X} is a *G*-invariant Radon measure. More generally, $L^{2}(X)$ is defined by using the half-density bundle or a multiplier representation built on the cocycle c(g, x) where $g_*\nu_X = c(g, x)\nu_X$.

For any unitary representation Π , one has

$$\Pi \simeq \int_{\widehat{G}}^{\oplus} m_{\pi} \pi d_{\mu}(\pi),$$

where $m : \widehat{G} \to \mathbb{N} \cup \{\infty\}$.

- Smallest units of representations: irreducible ones;
- Smallest units of Lie groups: 1-dim abelian groups and simple Lie groups;
- Reductive Lie groups "are" products of abelian groups and simple Lie groups.

6.1 Spectral analysis

Let X be a (pseudo-)Riemannian manifold with a G-action.

- Spectral analysis of Δ_X : $L^2(X) \simeq \int \mathcal{H}_{\lambda} d\tau(\lambda)$;
- Representation theory: Plancherel decomposition. This induces the spectral decomposition if *m*_π ≤ 1.

Example 6.1.1. O(n + 1) acts on S^n , O(n, 1) acts on \mathbb{H}^n (hyperbolic), and O(p, q) acts of the space of forms (pseudo-Riemannian).

Hint for rigorous formulation. In group representations:

- strong point: can distinguish inequivalent irreducible representations even they are infinite-dimensional.
- weak point: multiplicity.

For $\pi \in Irr(G)$, consider the multiplicity dim $Hom_G(\pi, C^{\infty}(X))$ (infinite, finite, bounded, multiplicity free).

Let G_C be a complex reductive Lie group and *B* a Borel subgroup of G_C . Suppose that G_C acts on a connected complex manifold X_C .

Definition 6.1.2. $X_{\mathbb{C}}$ is *spherical* if *B* has an open orbit in $X_{\mathbb{C}}$.

Example 6.1.3. Grassmannian varieties, flag varieties and symmetric spaces.

For reductive $G \supseteq H$, consider X = G/H.

Theorem 6.1.4. *The followings are equivalent:*

(1) (Global analysis and representation theory) There exists C > 0 such that

dim Hom_{*G*}(π , C^{∞}(X)) \leq *C*, for any $\pi \in$ Irr(*G*).

- (2) (Complex geometry) $X_{\mathbb{C}}$ is spherical.
- (3) (Algebra) The ring $\mathbb{D}_{G_{\mathbb{C}}}(X_{\mathbb{C}})$ is commutative.
- (4) (Algebra) The ring $\mathbb{D}_{G_{\mathbb{C}}}(X_{\mathbb{C}})$ is a polynomial ring.

6.2 Branching problems

Example 6.2.1 (Induction). $\operatorname{Ind}_{H}^{G} \mathbb{1} \simeq C^{\infty}(G/H), L^{2}(G/H), \ldots$ *Example* 6.2.2 (Restriction). $\pi' \otimes \pi''|_{G_{1}^{\Delta}} \simeq$?.

Given $G' \subseteq G$, the *branching problem* is to understand how the restriction behaves, *i.e.*

 $[\Pi|_{G'}:\pi] := \dim \operatorname{Hom}_{G'}(\Pi_{G'},\pi), \ \pi \in \operatorname{Irr}(G'), \Pi \in \operatorname{Irr}(G).$

Theorem 6.2.3 (Uniformly bounded multiplicity criterion). For a pair $G \supseteq G'$ of real reductive groups, the followings are equivalent:

- (1) $\sup_{\Pi} \sup_{\pi} [\Pi|_{G'} : \pi] < \infty.$
- (2) $(G_{\mathbb{C}} \times G'_{\mathbb{C}}) / \operatorname{diag}(G'_{\mathbb{C}})$ is spherical.
- (3) The ring $\mathcal{U}(\mathfrak{g}_{\mathbb{C}})^{G'_{\mathbb{C}}}$ is commutative.
- (4) The ring $\mathcal{U}(\mathfrak{g}_{\mathbb{C}})^{G'_{\mathbb{C}}}$ is a polynomial ring.

Remark 6.2.4. We also have $(G \times G') / \text{diag}(G')$ is spherical (replacing Borel subgroup by minimal parabolic subgroup) if and only if $[\Pi|_{G'}; \pi] < \infty$ for any π and Π .

6.3 Tempered homogeneous spaces

Let *G* be a locally compact group.

Definition 6.3.1. A unitary irreducible representation π of *G* is *tempered* if π is weakly contained in L²(*G*).

A basic question: when is $L^2(X)$ tempered? In other words, for which *G*-space *X*, $L^2(X) \prec L^2(G)$?

Suppose that *G* is a real reductive Lie group, one has

$$\operatorname{Irr}(G) \supseteq \widehat{G} \supseteq \widehat{G}_{temp}.$$

Irr(*G*) is classified by Langlands, \hat{G}_{temp} is classified by Knapp-Zuckerman, but \hat{G} is still mysterious over 70 years.

Even when G/H is a reductive symmetric space, the question involves a hard problem regarding vanishing conditions of cohomological parabolic inductions with singular parameters. How about more general space X = G/H?

Example 6.3.2. Let $G = GL(p + q + r, \mathbb{R})$, and the subgroup $H = GL(p) \times GL(q) \times GL(r)$, then $L^2(G/H)$ is tempered if and only if

$$p \le q + r + 1, q \le p + r + 1, r \le p + q + 1.$$

Definition 6.3.3. A continuous *G*-action on *X* is *proper* if $G_S = \{g \in G \mid gS \cap S \neq \emptyset\}$ is compact for any compact subset $S \subseteq X$.

Theorem 6.3.4. *Let H be a connected subgroup of a real reductive Lie group G, then the followings are equivalent:*

- (1) $L^2(G/H)$ is tempered.
- (2) $2\rho_{\mathfrak{h}} \leq \rho_{\mathfrak{g}}(Y)$ for any $Y \in \mathfrak{h}$.

Remark 6.3.5. For the example G = GL(p + q + r), this combinatorial condition is equivalent to $2 \max(p, q, r) \le p + q + r + 1$.

Theorem 6.3.6. Let g be a complex reductive Lie algebra, then the followings are equivalent:

- (1) $L^2(G/H)$ is tempered.
- (2) $2\rho_{\mathfrak{h}} \leq \rho_{\mathfrak{g}}$.
- (3) \mathfrak{h} has a solvable limit in \mathfrak{g} .
- (4) $\mathfrak{h}^{\perp} \cap \mathfrak{g}_{\mathrm{reg}}^* \neq 0$ in \mathfrak{g}^* .

7 Nigel Higson: *C**-algebras and tempered representation theory: a look backward and a look forward

7.1 Some (selective) history

- 1943, Gelfand-Naimark C*-algebras
- 1946, Gelfand-Naimark unitary representations of $SL(n, \mathbb{C})$ and Plancherel formula
- 1947, Segal $C_r^*(G)$
- 1955-1975, Harish Chandra
- 1959, Bott periodicity, Atiyah-Hirzebruch K-theory
- 1965, Seeley C*-algebra extension from pseudo-differential operators
- 1973, Brown-Donglas-Fillmore theory of

$$0 \to \chi(H) \to E \to \mathcal{C}(X) \to 0$$

- 1980, Pimsner-Voiculescu: $K_*(A_\theta)$
- 1984, Connes-Kasparov conjecture
- 1983, Kasparov (ICM) on K-theory and non-commutative geometry and representations:"At present this is a non-existent math region..."

7.2 The present

V.Lafforgue (1998-2000) Proof of Connes-Kasparov conjecture over *p*-adic fields using index theory, and a new proof for Harish-Chandra's classification of discrete series using Connes-Kasparov.

Remark 7.2.1. V.Lafforgue uses Kasparov's "dual Dirac" method (a left-inverse to Connes-Kasparov, following Lusztig and Atiyah). Note that for a discrete series π , H_{π} is projective over $C_r^*(G)$. He uses Weyl's $\sum (n_k)^2 = 1$ trick (in K-theory, not L²).

7.3 Bradd-Higson-Yuncken paper [BHY24]

A tidied up picture of $\widehat{SL(2, \mathbb{R})}_{tempered}$, indexed by $\widehat{SO(2)}$ and $\mathbb{Z}/2\mathbb{Z}$, also for $SL(3, \mathbb{R})$. Let \mathfrak{a} be the one in the Iwasawa decomposition, and \mathfrak{a}_{dom}^* the dominant chamber. Define \mathfrak{a}_{L+}^* to be facets of \mathfrak{a}_{dom}^* , and M_I to be the *M*-part of the centralizer of \mathfrak{a}_I in *G*.

Definition 7.3.1. We have $\text{Im}(\text{InfChar}(\pi)) \in \mathfrak{a}_{dom}^*$. An unitary representation is *tempiric* if $\text{Im}(\text{InfChar}(\pi)) = 0$.

Theorem 7.3.2 (Bruhat 1954, Harish-Chandra 1960s, Vogan 2000).

$$\widehat{G}_{tempered} = \bigsqcup_{I} \left(\widehat{M}_{I} \right)_{tempiric} \times \mathfrak{a}_{I,+}^{*}.$$

Theorem 7.3.3 (Vogan 1981). *There is a natural bijection*

$$\left(\widehat{M}_{I}\right)_{tempiric}\simeq \widehat{K}_{I},$$

where K_I is the maximal compact subgroup of M_I .

Theorem 7.3.4 (Bradd-Higson-Yuncken). The followings are equivalent:

- (1) Connes-Kasparov isomorphism for every real reductive group G.
- (2) The group morphism

$$\mathbb{Z}[\widehat{K}] \to \mathbb{Z}[\widehat{G}_{tempiric}], \tau \mapsto \sum_{\pi} \operatorname{mult}(\tau, \pi) \cdot \pi$$

is an isomorphism for every G.

8 Monica Nevins: Wonders of *p*-adic representation theory

Je suis fatiguée.

References

- [BHY24] Jacob Bradd, Nigel Higson, and Robert Yuncken. Operator K-Theory and Tempiric Representations. 2024. arXiv: 2412.18924 [math.RT]. URL: https: //arxiv.org/abs/2412.18924.
- [CCH16] Pierre Clare, Tyrone Crisp, and Nigel Higson. "Parabolic induction and restriction via C*-algebras and Hilbert C*-modules". In: *Compositio Mathematica* 152.6 (2016), pp. 1286–1318.
- [CIRM2025] Jacob Bradd, Tyrone Crisp, Nigel Higson, Toshiyuki Kobayashi, Monica Nevins, Omar Mohsen, Erik Van Den Ban, and Hang Wang. CIRM-IHP research school: Methods in representation theory and operator algebras. https: //conferences.cirm-math.fr/3227.html. 2025.