Methods in representation theory and operator
algebras

January 10, 2025

Abstract
This is the lecture note of the CIRM-IHP research school [ ].

1 Monica Nevins: Introduction to representation theory

1.1 Definitions

Definition 1.1.1. A representation of a group G is a pair (77, V) where V is a C-vector space
and 7 is a homomorphism G — GL(V). If G is topological, the map G x V — V has to be
continuous. A morphism of G-representations between (77, V) and (o, W) is a linear map
T :V — W commuting with G-actions, and such T are called intertwining operators.

Example 1.1.2. (1) Zero representation: V = 0.
(2) Trivial representation: V =Cand 7w : G — GL(V) = C*, g +— 1, denoted by 1.

(3) G = S;. Permutation representation 7tp : S3 — GL(C?), sending ¢ to its associated
permutation matrix. Sign representation ¢ : S3 — C*, ¢ — det(7tp(g)).

A subrepresentation of (7t,V) is a G-invariant subspace W C V. For example, W =
C(1,1,1) is a subrepresentation of 7tp. In other words, T : (1,C) — (7rp,C3), 1 — (1,1,1)
lies in Homg, (C, C°).

Example 1.1.3. Let B = {(2?)} C GL,(C). The natural representation of B on C? has a
subrepresentation W = C(1,0)T.

Definition 1.1.4. An irreducible representation of G is one with no non-trivial G-invariant
closed subspace.

Example 1.1.5. (1) Any 1-dimensional representation is irreducible.

(2) (7tp, C?) is not irreducible.

Exercise 1.1.6. Any irreducible representation of a finite group is finite dimensional, and
an irreducible representation of an abelian group is 1-dimensional.

1



Theorem 1.1.7 (Schur’s lemma). Suppose (7t, V) and (o, W) are irreducible representations of
G, then dimHomg(V, W) = 1if t ~ ¢, and 0 otherwise.

The goals of representation theory:

* Classify all irreducible representations of G.

* Describe every representation of G in terms of its irreducible subrepresentations and
irreducible subquotients.

1.2 Unitary representations

Definition 1.2.1. A representation (77, V) of G on a Hilbert space (V, (, )) is unitary if 7t
factors through U(V).

Theorem 1.2.2. Any representation of a compact group G on a Hilbert space is unitarizable.

Exercise 1.2.3. Let W C V be a subrepresentation of a unitary representation, then W+ is
a subrepresentation of Vand V = W @ W+.

Exercise 1.2.4. Any finite dimensional (unitary) representation of a compact group is com-
pletely reducible.

1.3 Group algebras

Let G be a finite group. Define C[G| = {dec o8 ‘ cg € C} to be the group algebra,
equipped with the multiplication:

Y g Y dyh =) (chdg1k> k.
8 h k 8
For a representation (71, V'), we get a homomorphism of algebras:

7:C[G] = End(V), } ceg — ) cem(g).
The group algebra C[G] is a left regular representation of G:
A:G — GL(C[G]), A(g) Y cnh =) cngh =) co-rik.
h h k
It is also a C*-algebra with the operator norm from A and the involution sending } " c.¢ to
118

Theorem 1.3.1. (1) Every irreducible representation of G occurs as a subrepresentation of the
group algebra (A, C[G]) with multiplicity equal to its degree.

(2)
C[G] = @  W&Homg(W,C[G]), w® T — T(w).
(0,W) irreducible

(3) C[G] ~ @ ,w) End(W) as an algebra.
Exercise 1.3.2. C[S3] = 1& Cyjg & M2(C?) and 71p = 1@ C2.
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1.4 Beyond finite groups

We view ) co,¢ € C[G] as a function in C.(G), whose value at g is cg, and the multipli-
cation as the convolution.

Now we drop the finite group assumption. For a representation 7 : G — GL(V), we
have a homomorphism of algebras:

7 :Ce(G) = End(V v—/f Q)vdg.

The left regular representation

A G = B(LX(G)), (Mg)f) (k) := f(g™'k)

is an analogue of G — GL(C[G]). We denote the closure of A(C.(G)) by C;(G).
When G is compact, we have the Peter-Weyl theorem and this case behaves like in the
finite group setting. When G is not compact,

* not every irreducible representation is unitary, or finite dimensional;

e not every unitary representation occurs in L?(G), for instance 1.

1.5 Induction and restriction

Let H be a subgroup of G and (¢, W) a representation of G. The restriction Res% (¢) :=
(o|g, W) is a representation of H, but it is usually not irreducible even if ¢ is.

Definition 1.5.1 (Induction). Let (¢, W) be a representation of H.

e If G is finite, V = Ind$(¢) := C[G] ®@cg) W 2 W is a representation of G. We have
dimV = [G: H] dim W.

* For a general G, consider the vector bundle G xy W over G/H. The induction is
defined via sections of this vector bundle:

mdfW: = {£:G - W|f(gh) =c(h™)f(9)}
(7(8)f) (k) = f(g"k).
Suppose that G is compact.

Proposition 1.5.2 (Frobenius reciprocity).

Homg (W, Ind5U) = Hompy (Res$ W, U)
T T'(w) = T(w)(1c).



2 Tyrone Crisp: Tempered representations from the point
of view of C*-algebras
The goal of this course: for a real or p-adic reductive group G, compute its reduced
group C*-algebra C(G).

Theorem 2.0.1 (Wassermann). Let G be a real reductive group. There is a Morita equivalence

C;(G) ~ € Colap/W,) % Ry
[P.o]

2.1 Lecturel
Definition 2.1.1. A C*-algebra is an algebra A over C, with

* a conjugate-linear involution * : A — A satisfying (ab)* = b*a*;

e anorm || || in which A is complete; ||ab|| < ||a|/||b|| and ||a*a|| = ||a]|?.
Example 2.1.2. Let X be a locally compact Hausdorff space, the space

Co(X) :={f : X — C continuous| f(x) — Oat oo}

is a C*-algebra.

For a Hilbert space, B(H) is a C*-algebra.
Theorem 2.1.3. Every C*-algebra is isomorphic to a subalgebra of some B(H).

Example 2.1.4. For the ideal of compact operators K(H) C B(H), Co(X,K(H)) is also a
C*-algebra.

Example 2.1.5. For a C*-algebra A equipped with an action of a finite group W, we have
two new C*-algebras:

o the fixed-point algebra AW;
e the crossed product A x W := {}_,ew dww | a, € A}.

Let X be a locally compact Hausdorff space, H a Hilbert space and W a finite group
acting on X by homeomorphisms. Let {I,x € U(H) |w € W,x € X} be unitary operators
such that

L4 le,wlewz,x — Iu)lwz,x (in particular, Il/x — idH)-
* Foreachw € W, x — Iy is continuous in the strong operator topology.

Let W act on Cy(X,K(H)) by
IBw(f)x = Iw,wfle(w_lx)lw*l,x'

The fixed-point algebra Co(X, K(H))" will be the second-most important example of a
C*-algebra in these lectures.



Example 2.1.6. W = {1,w} acts on X = Rby wx = —x. H = C* so K(H) = M(C).
Ly = (057 ~5in¥) We have Cy(R,Mp)" 2~ C2(]0,00), M3).

sinx cosx

Let G be a locally compact group with a left Haar measure dg.

Definition 2.1.7. The reduced group C*-algebra is

C:(G) := mll IIWWI
where A : C.(G) — B(L?(G)).

Definition 2.1.8. A representation of a C*-algebra A is a homomorphism 77 : A — B(H)
for some Hilbert space H. The spectrum A is the set of equivalence classes of irreducible

representations of A. The Jacobson topology on A has one open subset {7t | r(]) # 0} for
an ideal J.

A state on A is a bounded linear ¢ : A — C with ¢(a*a) > 0 and ||¢|| = 1. Gelfand-
Naimark-Segal construction: given a state ¢, define

* Jp={ac Alg(aa*) =0},

* Hyp= A/,

o y(a)(b+Jp) = ab+J,.
It is irreducible if ¢ is pure, i.e. not a convex combination of other states.
Theorem 2.1.9. Let A be a C*-algebra.

* Every irreducible representation is equivalent to a GNS representation.

e Ifa#be A, then rt(a) # rt(b) for some 7.

* We have a nice induction from a representation of a subalgebra of A.
Theorem 2.1.10. The followings are equivalent:

e 7T is irreducible;

* 7T~ 71y for ¢ pure;

e Schur’s lemma;

e 11(A) is dense in B(H).

A unitary representation 7 : G — U(H) extends to C.(G) — B(H). It extends to
C;(G) if and only if ||7w(f)|| < ||A(f)|loperator- Denote by G, € G to be those that extend
to CX(G).

—

Theorem 2.1.11. G, ~ C(G).



Example 2.1.12. When G is abelian or compact, ér =G. In general, 7T € @r if and only if
7T is tempered, i.e. its K-finite matrix coefficients are L2*¢ modulo the center.

Strategy for computing C;(G): match up tempered representations with representa-
tions of simpler C*-algebras.

—

Theorem 2.1.13. C(X) ~ X, evy <> x.

Theorem 2.1.14. Every irreducible representation of K(H) is equivalent to the identity represen-
tation K(H) — B(H).

—

Theorem 2.1.15. C(X,K(H)) ~ X, evy ¢ x.

Consider X, H, W, I, x as before. Note that w > I, is a unitary representation of
Wy = {w € W|wx = x}, and ev,(Cy (X, K(H))W) = K(H)"=x.

Theorem 2.1.16. The maps & @ t — (dim H,)'/t(¢) give an isomorphism:

P H, ®HS(p, Iy)"* ~ H.
peW;

Theorem 2.1.17. ¢ The irreducible representations of Co (X, K(H))W are

T p + Co(X,K(H))W 22 K(H)Wr 22597 k(HS(p, 1) ™).

* Two representations 7ty, p,, Tx, p, are equivalent if and only if there exists some w € W such
1

that xy = wxq and py ~ w1 : v — p1(w™ ow).
A C*-algebra A is CCR if 71(A) C K(Hy) for every 7t € A. The examples that we have
seen are all CCR.

Theorem 2.1.18 (Harish-Chandra,Bernstein). If G is a real and p-adic reductive group, then
C;(G) is CCR.

A subalgebra B C A is separating if the restrictions of irreducible representations re-
main irreducible, and the restrictions of inequivalent representations remain inequiva-
lent. We say that A has the Stone-Weierstrass property if B separating implies B = A.

Theorem 2.1.19 (Kaplansky). Every CCR algebra has the SWP.

Remark 2.1.20. This is a tool for computing the range of a Fourier transform.

2.2 Lecture 2

Plan: replace C}(G) by a simpler C*-algebra that is Morita equivalent to C;(G). This
is reasonable since Morita equivalent C*-algebras have the same K-theory and represen-
tations.

For left (resp. right) Hilbert module of a C*-algebra, we use the notation of inner prod-

uct [, | (resp. (, ).



Example 2.2.1. Let H be a Hilbert space. It is a right C-module, and a left Hilbert B(H)-
module ([¢, 7] : { — &(y,C)). The left module structure is not full, i.e. span({[{|n]}) # A

Example 2.2.2. Cy(X, H) is

e a full right Hilbert C,(X)-module;
e a full left Hilbert C,(X, K(H))-module.

Example 2.2.3. Let E be a left Hilbert A-module. It is a left Hilbert A"-module

Vel = |wy Y Bul[Eln]).

weW

If E is full over A, then it is also full over AW.

Example 22.4. m : W — U(H) a representation, C;(W) = C x W. H is a left Hilbert
K(H)"-module:

Ml = |W|Zﬂ w)[¢lylm(w)

weW
and a right Hilbert C} (W )-module:

w0 = xw ™ @ahw = g L @y

Given a A-B bimodule E. If 7t : B — B(V) is a Hilbert representation of B, then E ®p V
is a Hilbert representation of A:

(Ce@8v, e @nv) = (Gv, (e, E))1V)-
Example 2.2.5. Let H C G be a closed unimodular subgroup, then C.(G) isa C.(G)-C.(H)

bimodule: ~
= [ E(@n(sndg

Complete it to get a C*(G)-C*(H) bimodule E. The unitary induction is given by EQc, :
URep(H) — URep(G).

An A-B bimodule E is a Morita equivalence if
e Eis a full left Hilbert A-module and a full right Hilbert B-module;
* [Gbln) = [Slnb7), (ag, ) = (&, a*n);

e Sl =¢(n, Q).

We say A, B are (strongly) Morita equivalent, denoted by A ~,; B, which is an equiva-
lence relation.

e A~y B= A~ BandK.(A) ~ K.(B).



e A~y B A®K(H) ~ B®K(H) assuming countable approximate identities.

* A ~m B & equivalent categories of operator modules. If they have 1, we can
replace by the categories of (algebraic) modules.

¢ Equivalence of categories URep does not imply (strong) Morita equivalence.
Let H C G be closed, and E the induction bimodule.

Theorem 2.2.6 (Rieffel). THe induction bimodule E can be made into a Morita equivalence be-
tween C*(H) and Cy(G/H) x G.

Corollary 2.2.7 (Mackey). Unitary induction gives an equivalence between URep(H) and the
category of unitary representations G admitting a compatible representation of Co(G/H).

Example 2.2.8. A x K, A abelian, K compact. Let 77 : A x K — U(H) be irreducible. It is
an irreducible representation of C,(K,) x K ~ Cy(K/Ky) x K, and is induced from K.

Example 2.2.9. K(H) ~ C.

In a Morita equivalence, we always have [¢|] = |) (7].
Now given W, 7w : W — U(H) and K(H)",

Theorem 2.2.10. H is a Morita equivalence between K(H)W and the ideal
J:=span {{¢,mw} € C;/ (W),

and

J= @ K(H).

peW,pg T

Theorem 2.2.11. Given X, H, W, I, x as before, then Cy(X, H) is a Morita equivalence between
Co(X,K(H))W and certain ideal in Co(X) x W.

Set Wy = {w € W|wx = x} and W, = {x € Wy | I, € Cidy}.
e Normalisation:

e Completeness: for all x, the unitary representation I_ , : Wy — U(H) contains every
p € Wy/Wi.

C(X, W, I) things

Theorem 2.2.12. C(X, H) can be made into a Morita equivalence between Cy(X, K(H))W with
the ideal

C(X,W,I) = { Y fow € Co(X) X W fura(x) = fu(x),Vx € X,w e W,w' € ng}
weW

Corollary 2.2.13. Suppose that W = W’ x R, where for each x we have W, = Wy N W', then
Co(X, K(H))W ~p1 Co(X/W') % R.
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2.3 Lecture 3

The main reference is [ ]. The Langlands decomposition G = Mg X Ag where
Mg has compact center and exp : ag — Ag.

An irreducible unitary representation ¢ of M is square-integrable if for all {,n € H,, the
matrix coefficient g, (m) = (o(m)¢,n) is in L2(M).

Theorem 2.3.1. ]\7IL2 - ]\7Ir.
Theorem 2.3.2. If 0 € M2, then o(C:(M)) = K(H,).

For each x € a* and 0 € M;», we define an irreducible unitary representation ¢ ® y :
G — U(Hy), ma — o(m)x(a).

Theorem 2.3.3. For f € C.(G) and x € a*, let

m6o (N0 = (e = [ [ fma)o(m)x(a)dadm
This map 7, extends to a homomorphism of C*-algebras:
1Ge: Cr(G) = Cy(a*,K(Hy)).
Proof. Study functions of the form ma +— fyr(m)fa(a), which form a dense subset. O

Not every irreducible tempered representation is of this form, but it can be obtained
by parabolic induction from some ¢ ® x of a parabolic subgroup.
Now let P = LpNp = MpApNp a parabolic subgroup of G.

Definition 2.3.4 (Parabolic induction). For ¢ € (Mp);2 and x € a}, Ind§(c @ x) is the
unitary representation of G induced from o ® x.

Compact picture: G = KP implies that Ind$ (¢ ® x) ~ Ind¥p(c) over K. Fix o, then
all these parabolic inductions are isomorphic as K-representations.

Theorem 2.3.5. We have a homomorphism of C*-algebras:
7p s : CH(G) — Co(ab, K(Ind$ Hy)).
Theorem 2.3.6 (Complete Fourier transform). We have an injective homomorphism of C*-
algebras:
@ Tp o :C @ CO Clp, Indp HO’))
[P.o]

Question: What is the image of this Fourier transform? We need to understand the
intertwining operators between Ind$ (e ® x)’s

Theorem 2.3.7 (Bruhat). The intertwining operators between Ind$ (o ® x)’s are controlled by a
certain finite group.



Fix P = M AN, then

* Wp the Weyl group associated to Ap.

e Foreach o € My2, W, := {w € Wp|wo ~ o}.

e Foreach x € a}, Wy := {w € Wy |wx = x}.
Theorem 2.3.8 (Knapp-Stein). There are unitary operators:

Ly, € U(Indg Hy), w € Wy, X € ap,

satisfying

* x + Iy is continuous in the strong operator topology,

* Twywoxlwyx = Twywn,xs

* Iy, is an intertwining operator Ind$ (0 ® x) — Ind$ (0 @ wy).

Define an action of W, on Cy(ab, K(Ind$ Hy)): Bu(f)(x) = Iw/wfle(wfl)()lwqx, and we
have
pe(Cr(G)) S Co(ap, K(Ind§ Hy))"e.

Theorem 2.3.9. The Fourier transform

B 7pe : Ci(G) — @ Colap, K(IndF Hy )"
[P.o]
is an isomorphism of C*-algebras.

24 Lecture4
Theorem 2.4.1 (Knapp-Stein). Let W; := W, .
(1) There is a subgroup R, C W, such that W, = W/ X R,.
(2) Wy, = Wox NW.
(3) The I, x's can be chosen so that they satisfy the normalisation and completeness conditions.

Corollary 2.4.2 (Wassermann). For each real reductive group G, we have

CH(G) ~m €D Colap/WL) x Ry
[P,o]

Example 2.4.3. Let G = SLy(R), then
G (G) ~m Co(Z\{0}) ® Co([0,0)) D Co(IR) x W,
where W ~ Z /27.
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Now let G be a p-adic reductive group.
Theorem 2.4.4. G2 # 0.

Define Xg = {x: G — U(C) | x(g) = 1 if contained in a compact subgroup}, which
is a compact torus. We get a Fourier transform:

e G — C(Xg, K(Hy)).
The complete Fourier transform is also injective due to Harish-Chandra and Bernstein.
* We define W, as a subgroup of Xp x Wp.

* Twywyxlwyx = ¥pe (W1, w2) Lwyw,,x for some 2-cocycle. So we deal with projective
representations and twisted crossed products.

 We need to keep track of a projective character w +~ iy, of Wy , for each .

Theorem 2.4.5 (Plymen,Harish-Chandra). The Fourier transform

P mpe : Ci(G) = €D Co(Xp, K(IndFHy)) "
[Po]

is an isomorphism.

Theorem 2.4.6. The bimodule C(Xp,Ind$ H,) gives a Morita equivalence between C* (G)(po)
with the ideal C(Xp, Wy, I).

Some calculation of the K-theory for this reduced group C*-algebra, with an example of

Ind> P4 1,

Pmin

3 Omar Mohsen: Representation theory of nilpotent groups
and Kirillov’s orbit method

3.1 Lecturel
Let V be a commutative monoid (abelian group without inverse). Define
K(V):={(a,b)|a,beV}/ ~,
where (a,b) ~ (c,d) if there exists f € V suchthata+d+ f =b+c+ f.
Proposition 3.1.1. K(V) is an abelian group, and we have V.— K(V), a — [(a,0)].

In this lecture, we will write [(a,b)] as a — b.
Let A be a C*-algebra with a unit.

Definition 3.1.2. If E is an A-module, we say that E is finitely generated projective if there
exists an A-module F such that E® F = A" for some 7.
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If E, F are finitely generated projective, thensois E & F. When A = C(X) for a compact
Hausdorff X.

Theorem 3.1.3. Finitely generated projective A-modules are in bijection with vector bundles over
X. If L — X is a vector bundle, then E = T'(L) is a finitely generated projective module.

Definition 3.1.4. Define V(A) := {[E] | E is finitely generated projective}, which is a com-
mutative monoid with identity [0], and the group law [E| + [F|] = [E & F].

Definition 3.1.5.
Ko(A) := K(V(A)) = {[E] — [F] | E, F are finitely generated projective} .

Example 3.1.6. Ko(B(H)) = 0 for any infinite dimensional Hilbert space H.

Let ¢ : A — B be a *-homomorphism. We can define a map ¢, : Ko(A) — Ko(B) by
sending [E]| to [¢«(E)], where ¢.(E) = E ® 4 B is a right B-module.

KHE®DF = A",letL: A" — A" be the projection over E. In fact, any finitely generated
projective module appears as E = pA” for some n and some projection p : A" — A"

* A (self-adjoint) projection p € M, (A) is an element such that p?> = p and p* = p.

* Let p and g are two projections, then pA" ~ gA" if and only if there exist x,y €
M, (A) such that xy = p and yx = g (Von Neumann relation). We write p ~ q if they
satisfy the Von Neumann relation.

e We have
V(A) = Uproj(Ma(A))/ ~s .

Definition 3.1.7. For projections p,q € M, (A), define p ~; q if there exists z € UM, (A))
such that zpz~1 = g.

Remark 3.1.8. If p ~, g with x invertible, then p ~; q. The relation p ~; g implies p ~ g,
but the converse fails.

Proposition 3.1.9. If p ~y, g, then < 5 8> ~s (g 8) as projections in My, (A).

Proof. Take E = pA"™ and E' = gA", which are isomorphic since p ~, q. There exist
F,F such that EGF = A" and E' ® F' = A". We have E @ (F® A") ~ A?", where
FOA"~FOE ®@F ~FOE@F ~ F @ A", thus we get an isomorphism between the
complements of E, E’ in A%". O

Corollary 3.1.10.
V(A) = Uproj(Mn(A))/ ~s -
n
Proposition 3.1.11. If p, q are projections in My, (A), such that ||p — q|| < 1/4, then p ~5 q.

Proof. Take z = 2pq — p — q + 1. This element satisfies pz = pg and zq = pg. We need z
to be unitary, which can be implied by ||2pg — p — ¢q|| < 1. This inequality follows from
lp—ql <1/4. O
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Let ¢o, ¢1 be two homomorphism from A to B. If there exists a homomorphism
¢:A— B[0,1] = {f :[0,1] — B continuous}

such that evg o ¢ = ¢p and evy o ¢ = @1, then ¢« = @1 +.

3.2 Lecture?2

If we have C*-algebras A; RN IS Aj such that ¢, is surjective, then we have the
fiber product C = Ay xp Aj.

Proposition 3.2.1. Let Ey, E; be finitely generated modules over Ay, Ay respectively, and L :
§01,*E1 ~ §02,*E2, then

M(El,Ez, L) = {(61,62) € E1 X Ep | L(61 & 1) =R 1}
is finitely generated projective, and all finitely generated projective C-modules come this way.

Proof. One can assume that E; = A and E; = A7, using the complement trick yesterday.
Lemma 3.2.2. If L € GL,(B) has invertible preimage under ¢1, then M(Eq, Ep, L) ~ C".

Proof of Lemma 3.2.2. Take abasis ey, ..., e, the corresponding basis of E{, and ey, . . ., €, of
E;. Let K be the element in GL, (A1) such that ¢;(K) = L~!. The elements (X Kijei ei)
lie in M(Ey, Ep, L) and generate C". O

One has
M(AR, AL L) ® M(AT, AL LY = M(A?", A3", diag(L, L™1)).

The projectivity of M(Ej, E;, L) follows from the following lemma, where every matrix
on the right hand side can be lifted to A;:

o )= ) D66 )

Now we get a sequence Ky(C) (), Ko(A1) ® Ko(Ap) (o), Ko(B).

Lemma 3.2.3.

Exercise 3.2.4. This sequence is exact.

We will define a map K3(B) — Ko(C) such that this makes a longer exact sequence,
and K; should come from automorphisms.

Definition 3.2.5. Let A be a unital C*-algebra. Define K;(A) to be the abelian group
U, 710 (GL,(A)), the product defined as

[My] - [Mp] = [M1M3], My, M € GL,,(A).
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Lemma 3.2.6 (Whitehead). If x,y € GL,(A), then

() (5 2)- G363

are all in the same connected component of GLy, (A).

Proof. Idea: using rotations in GLp, (A). Set Ry = (99 ~sinf) and My = diag(y,1)-R_g-

sinf cos6

diag(1, x) - Ry, and My, /2, k = 0,1,2,3 give the matrices in the lemma. O
Alternatively, one can define K;(A) by
{[(E,L)] | E is a finitely generated projective module, L € Aut(E)} / ~,
where (E,L) ~ (E’, L) if there exists (F,K) such that (E,L) + (F,K) and (E’,L") + (F,K)

are homotopic.

3.3 Lecture3
The boundary map K;(B) — Ko(C) is given by: for L € GL,(B),
(L) = [M(A], A3, L)] - [C"].

Example 3.3.1. K{(C(S1)) = Z.

The space A ® C(S) is the space of functions f : S! — A, which is a C*-algebra. It is
the fiber product of two copies of A ® C([0,1]) over A ® A. From the exact sequence,

Ki(A) ~ ker (KO(A ®C(SY)) = KO(A)> .
Theorem 3.3.2 (Bott).

B:Ko(A) ~ ker (Kl(A ®C(sY)) = Kl(A)>
[P] € Proj(My(A)) s [z 2P+ (1 — P) € GLa(A)].
Proof of the surjectivity. Suppose f : S' — GL,(A) such that [f] € ker(K;(A ® C(S!)) —

Kq(A)). We may assume that f(z) = z " (ag + zay + - - - + 2™ a,y), then [f] = [z7"] +
[ag+ - - + 2™ a,y).

Since [z7™] = —m|z] = —mpB(1), now we assume f(z) = a9+ - - - + az™ € GL,(A).
Define
apg a1 -+ am
—z 1
H(z) =
-z 1
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Using

1
1 —ay 0
u(z)
1 . .
0O z -+ z 1

we can assume that f(z) = ag + zay, and f(1) = ag + a1 is invertible and homotopic to Id.
So (ag +a1) "' f(z) = (ag +ay) tag +z(ap +ay) 'ay = (1 —a) + za.

Since f(z) is invertible for any z € S, if A € Spec(a), then1 — A +zA # 0 for any z €
Sl. This is equivalent to that Re(A) # 1/2. Now define g(z) = 0 if Re(z) < 1/2 and 1 if
Re(z) > 1/2,and P = g(a). It suffices to show that B(P) is homotopic to (1 —a) +za. O

If A is non-unital, we define Ko(A) := ker(Ko(A™) oMo,
Ky (AT).

Let G be a simply-connected nilpotent Lie group.

Ko(C) = Z),and K1 (A) :=

* exp : g — G is a diffeomorphism.

e If h C gis a Lie subalgebra, then exp(h) is a closed subgroup of G, i.e. connected
subgroups of G are closed.

Goal: classification of unitary irreducible representations of G.
For a closed subgroup H, x : H — S' is unitary, and we take IT = Ind%(x). If H C H/,
X admits an extension to H'. The differential of x takes values in iR, and x([h, h]) = 0.
Take¢ : g — R,and lookatB: g x g — R, (v,w) — &([v, w]), which is anti-symmetric.
The kernel of B is {v| B(v,w) = 0, Vw}. The codimension of ker(B) is even. We look for
h C g such that

(1) bis a Lie subalgebra;

(2) B(h,b) =0;

(3) dim b = dim(ker B) + Jcodim(ker B).
Theorem 3.3.3. There exists such an by (not unique).

Theorem 3.3.4. For such an H, the induction 7tz := Ind$(ef%) is irreducible and unitary, and
its isomorphism class is independent of the choice of b.

Theorem 3.3.5. All irreducible unitary representations come from this construction.

In conclusion, we have a surjection g* — G.

15



3.4 Lecture4
Theorem 3.4.1 (Kirillov). The map Ad*(G)\g* — G, ¢ — T s bijective.

Theorem 3.4.2 (Brown). The map Ad*(G)\g* — G is a homeomorphism, where the topology
on G is the Fell topology.

Recall a subquotient of Ais I/] forideals I C A, ] C I.

Theorem 3.4.3. There is a bijection between locally closed subsets of A, and isomorphism classes
of subquotients of A.

Remark 3.4.4. Given an irreducible unitary representation 77 : I — B(H), one can extend
it uniquely to A — B(H).

Recall that if 7 : A — U(H) is a unitary representation, then
supp(m) = {[7] | ker(m) C ker()}.

Theorem 3.4.5. Let h be a subalgebra of g and { : b — R a linear map such that L], o\ = 0, then

supp(Indf; ') = Ad™(G) {G € [ ]y = £}/Ad*(G).
Particularly, if ¢ = 0O, then
supp(L*(G/H)) = |J (ghg~")+/Ad"(G).
g€G
Theorem 3.4.6. (1) S(G) is a *-subalgebra of C*(G).
(2) S(G) is closed under smooth functional calculus.

(i) If f € S(G)and g : U — C, g(0) = 0 holomorphic on an open neighborhood of
Spec(f), then g(f) € S(G).

(ii) If f € S(G) is normal and ¢ : W — C smooth on an open neighborhood of Spec(f)
and g(0) = 0, then g(f) € S(G).

Definition 3.4.7. A C*-algebra A is called liminal (or CCR) if for any [71] € A, (A) =
K(Hy), and is of type I if for any [7r] one has K(H) C 7t(A).

Theorem 3.4.8 (Dixmier). C*G is liminal. In fact if f € S(G) and 7t € G, then 7(f) is a trace
class operator:

Ter(f) = [ Foexpdn,

where O C g* is the corresponding co-adjoint orbit.
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If O C g* is a co-adjoint orbit, then O is a symplectic smooth manifold: fix { € O, then
O~G/ Stab(§ ) and TzO = g/ ker Bg. O is also a closed subset of g*, which is equlvalent

to that G is T (consequence of C*G being liminal). There exists a measure y on G such

that for any f € S(G),
= [ Te(x(f)) du().
If we replace f with f* x f, then

L@ Pag = [ () sdu().

Theorem 3.4.9 (Beltita-Beltita-Ludwig). (Fourier transform of C*-algebras of nilpotent Lie
groups) There exist ideals 0 C I C I, C --- C I, = C*G corresponding to G = VU --- UV,
with each subset locally closed is Hausdorff, such that

Liy1/1; = Cy(V;) @ K(H).
All H's have infinite dimension, except one.

Conjecture 3.4.10. If ] C I C C*G such that 1/]is Hausdorff, then 1/ ] is Morita equivalent to
Co(1/]).

4 Hang Wang: Group C*-algebras and their K-theory

The aim is Connes-Kasparov isomorphism as K-theoretic Mackey analogy.

4.1 Lecturel
4.1.1 What is Mackey analogy?

Let G be a connected Lie group, and K the maximal compact subgroup of G. Let g and
£ be their real Lie algebras. The space g/¢ is a metric space and an abelian group. For any
k € K, we have the adjoint action Ad(k) on g/¢.

Definition 4.1.1. The motion group is defined to be
Go:= KK (g/?), (kl,vl) . (kz, 02) = (klkZ'Adkz—l (’01) + 02).

Example 4.1.2. For G = SL(2,R) and K = SO(2,R) C G, ¢ = {( %) |t € R} C g, and
g/t = {(f, Z) ~ IR?. The action of (_Co-sg Sing) on (a,b)T € g/tis the natural

sin @ cos 0
one. The motion group Gy = SO(2) x R? is the group of rigid motions.

Mackey analogy is a prediction of a 1-1 correspondence between:
Gi = { tempered representations }/ ~

and Go (unitary dual).
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4.1.2 Structure of the unitary dual of G

Let K be a compact Lie group, X an abelian group, and « : K — Aut(X). One studies

the unitary dual of K x X. The unitary dual X is isomorphic to X* = Hom(X, U(1)). For
¢ € X, take K, = {k € K| ¢(k.x) = ¢(x),Vx € X} to be the isotopy subgroup.

Remark 4.1.3. When G is complex semisimple, Ky is connected.

Given ¢ € X and (7, W;) € Iz;, we construct the following representation of K, x X:

T® @ : Ky x X — GL(Wr)
(k,x) = @(x)7 (k).

Induce T ® ¢ to Go:
KxX

7-(1-’4) = IndK([;D(XT ® (P
Theorem 4.1.4 (Mackey). Let G be complex semisimple and X = g/t. The representation 7t
lies in Go, and the map
|_| KQO — GO, (T, QO) — 7TT,¢
peX
is surjective. Moreover, Ty, o, ~ Tir, g, if and only if there exists k € K such that ¢p(x) =
¢1(k.x) and 7 = 7 o Ad(k).

In summary,
Kx X ~ (|_| f(;) /K.
peX

Now let X = g/¢. In the following we assume that G is connected complex semisimple.
We use the Iwasawa decomposition G = KAN, where A is the abelian component, and
N is the unipotent subgroup. Let M be the centralizer of A in K, and B = MAN the Borel
subgroup.

Example 4.1.5. If G = SL(3,C), we have: K = SU(3),

A = {diag(x1,x2,x3) | x1 > 0,x1%2%3 = 1} ~ R?,

M= {diag(eiel, etz ei93)

N ={("15)}.

We write X as a@® at. For ¢ € (g/¥)*, there exists a w in the Weyl group W :=
N (M) /M such that ¢’ = ¢ o Ad(w) has zero restriction to a*, called the balanced charac-
ter. The character ¢’ can be identified with ¢'|, € a.

0, e R,01+0,+ 05 = O} ~ (51)2,

Remark 4.1.6. For a balanced character ¢/, then for anyk € M C K, kx = xforany x € g,
thusk e M C Kyp. Hence M is a maxiaml torus of K.
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If K is a general connected compact Lie group with a maximal torus T, then K ~ T /W,
where W is the Weyl group. Applying this to K,, we have K, = M/ Wy, where W, =
W(Ky, M).

Theorem 4.1.7. - - N N
Go=Kx(g/b)= || M/W,=(Mxa)/W.
pca/W

4.1.3 Tempered dual of G

Assume that G is complex semisimple with Iwasawa decomposition G = KAN.

Definition 4.1.8. For ¢ € M and ¢ € A, the principal series associated to (o, @) is
Prp = Ind§uno ® ¢ @ 1.

Under our assumption, P, , is irreducible, and Py, o, ~ Pp, ¢, if and only if there exists
w e W = Ng(MA)/MA such that w(cy, ¢1) = (02, ¢2). All tempered representations of
G are such principal series.

Theorem 4.1.9. R .
(M X A> /W =Gy, (0,¢) = P

Via the exponential map a — A, one has Go ~ Gt.

Example 4.1.10. For G = SL(3,C), M ~ Z2 and A ~ RR2. The tempered dual G; is (M x
A)/W. A fundamental domain of M/W is { (my, my) € Z? | my > my >0}, and

Gi ~ ( | | lRZ> L ( | ] ]R2/Zz> U (R?/S3) (0,0)-
mp >mq >0 mo=mq or m1=0

4.2 Lecture 2

4.2.1 Cartan decomposition

Let G be a non-compact semisimple Lie group with finite center. Let K be a maximal
compact subgroup of G, then:

(1) There is a homomorphism @ : G — G with § = d® : g — g such that ® = Id. This
homomorphism is called a Cartan decomposition.

(2) Let t and p be the 1, —1 eigenspaces of 6. Then we have g = £ & p, and we call (¢, p)
a Cartan pair.

(3) The morphism K x p — G, (k, X) + kexp Xis a diffeomorphism. We write G = KP.

Example 42.1. o If G is a complex semisimple Lie group, then p = £+ it and 6(g) =
—3g". For instance, if G = SL(2,C), then ¢ = su(2).
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e If G =SL(2,R), then sl(2) = £ & p, where p consists of symmetric matrices. In this
case, (g) = —3g'.
The motion group Gy = K x (g/¢) = K x p, and we can view p as the tangent space of
G/K.
The Killing form B(x,y) = Tr(ad(x) oad(y)) is positive definite, and makes G/K a
G-invariant Riemannian manifold.

4.2.2 Tangent groupoid (family of groups connecting G and Go)

Define § = K x p x [0,1] to be a family of groups with parameter ¢t € [0,1], with
multiplication defined for each t:

e When t =0, (ki,v1) o (ka, v2) := (kika, Ad(ky')v1 + v2), thus Gy = Go.

e When t > 0, we first define a diffeomorphism ¢; : K x p — G, (k, X) — kexp(tX).
Set

(k1,01) ot (ka, v2) := @; ! (@s(k1,01) © @1 (ka, 02).)

Exercise 4.2.2. (k1,v1) ot (ko, v7) =9 (k1,v1) og (ko, v2).

Remark 4.2.3. We can perform this construction whenever there is a submanifold inclusion
S C M. For each t > 0, the fiber is N, and the fiber at t = 0 is the normal bundle N(S, M).
If we take N to be M x M with M = M? C N, the fiber att = 0is TM. A sequence

(Xn, Yn, tn) € M x M x (0,1] tends to (Xy,0) € TM if 27 — X,
Remark 4.2.4. We have a diffeomorphism

Kxaxn—G
(k,X,Y) — kexp XexpY.

Using this we can perform a similar thing K x a x n x [0,1] — G. When t > 0, it sends
(k, X,Y,t) to kexp(tX) exp(tY), and when t = 0, it sends that to (k, X + Y, 0).
4.2.3 Continuous field of C*-algebras

We write the fiber of G over t as G;. Take the completion of C,(G;), and we get C;(Gy).
Consider continuous sections in this family, i.e. f : [0,1] = {C}(Gt)};¢[o,1 such that t —

1f(t)llcs(c,) is continuous. We define

1£1l == sup [If(£)]

te[0,1]

G (Gr)-

The completion of continuous sections in this norm becomes a C*-algebra, denoted by
CrGpoar

The evaluation map evy sending f € C; Gy to f(0) is a C*-algebra homomorphism,
and we denote its kernel by C;G g ;). We have a short exact sequence:

0— C;kG(Oll] — C;kG[O,l} — Cj(Go) — 0.
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For any f in the kernel, one can construct a homotopy H(t,s) = f(st) between 0 and f(t),
thus the K-theory of C;G g ) is 0. On the K-theory level, the algebras C; Gy ;) and C}(Go)

evy evy

are the same, thus K (C;(Go)) «— Ki(C;Gjgq)) — Ki(C;(G)). This also exists for i = 2.
Connes-Kasparov morphism states that K;(C}(Gp)) ~ K;(C;(G)). The point is that the

K-theory of C}(Gp) is easy to compute. One has
Ki(C;(Go)) = Ki (Colp™, K(L2(K))X))
~ Ki(Co(p") % K)
~ Kf(Co(p*))
=~ Ky (p7)-

In certain nice situation, this is isomorphic to K?dimp* (pt) !, and isomorphic to the rep-
resentation ring R(K) if » + dim p* is even.

4.3 Lecture 3

4.3.1 Some calculation of K(C}(G))
Let G = KAN be a complex simisimple Lie group, then
Ci(G) ~ Co(M x A K(L2(K))W ~ P Cyo(A/W,,K(Ind§; Hy)),
ceEM/W
where W, = {w € W |wo ~ ¢}. This C*-algebra is Morita equivalent to
D C(AIW,),
ceEM/W
thus K;(C7(G)) =~ @UGM/WKi(A\/WU)-
Set A ~ R™. If W, = 1, then K!(R")

and 0 otherwise.

Example 43.1. Let G = SL(3,C), then A ~ R?>,M =~ (§')2, W ~ S3. The fundamental
domain M/W = {(my,my) € Z*|my > my > 0}. We have

Ko(Ci(SL(3,0)))~ P K (R*/W,)~ P 2z

my >y >0 my>mq >0

Bott seriodicite .
R, K (pt) equals Z if i = nmod 2,

since K(half plane) = 0, and trivial K.
Example 4.3.2. Let G = SL,(C), then M ~Z, A ~ R, W = Z/2Z and we have
Ki(C;(SL(2,C))) ~ P K (R/Wy) = KH(R/W) & P K'(R) = P Z,
m m>0 m>0

and trivial Kj.

'Here the subscript K means K-equivariant.
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Now instead of a general real reductive group, we look at SL(2,R). In this case, we
have two parabolic subgroups: the Borel P; and P, = G.

Ci(SL(2,R)) ~M( > c) & Co(R/Zs) & Co(R) % Zs.
ae(@)ds

Considering the K-theory:

Ko(C;(SL(2,R))) (@ Z) ®Z.

O’GGds

Here we use Ko(Cy(IR) x Z,). The algebra C,(IR) x Z; has a model

A={f:]0,00) = Mz(C)[f(e0) =0, f(0) = (")}
Take Ag = {f € A| f(0) = f(c0) = 0}, which is Morita equivalent to C;(0, 1). The evalu-
ation map evy gives a short exact sequence:

0= Ay — A% C2—0

is used to calculate Ky(A).

432 K(C:(Go))

Recall that given f € C.(G), one can define the generalized Fourier transform
f:G = {B(Ho)} g,

= [ f(e)n(g)a

We have Gy = K x p. We define the Fourier transform
C7(Go) = Co(p", K(L*(K))),
fro Flo)haka) : [ fliaky x)gtky " (1),
where we identify an operator with its integral kernel. Forany 1 € K, F(h=1) (kih, koh) =
f(¢)(kq,ky). For the right hand side,
Co(p", K(L*(K)))" = Co(p*) x K.
If K acts on X trivially,
C(X,K(L*(K)))* = C(X) ® K(L*(K))* = C(X) ® C; (K) ~ C(X) x K,

In Lecture 2, we have K;(C;(Gp)) ~ K under some nice conditions: where nice means
K-action on p* preserves the orientation. In this situation, the K-action factors through
K — SO(p*). Assume this lifts to K — Spin(p*), then

KSmP™ (5*) ~ R(K).

Remark 4.3.3. Removing the conditions, we refer to a paper of Echterhoff-Pfante.
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4.4 Lecture 4

Let G be a complex semisimple Lie group and Gy = K x p the motion group. We have
é\t = |_| A\/ WU’I
TEM/W

with W = Ng(MA)/MA, and
Go= || a/w,
ceEM/W
with W = Ng(M)/M.

Definition 4.4.1. For T € K, it is a K-type for 1 € G if it appears in the decomposition
of 1t|g. A K-type T of 7t is called a minimal K-type if the highest weight of T is minimal
among all K-types.

For any o € M, we have
Gt = |_| CU’I GO = |_| CO’/
€K €K

where C, (resp. C,) is the set consisting of 7t with minimal K-type 7.

4.4.1 Compact group representation
Let K be a compact Lie group. The Fourier transform gives a C*-algebra homomor-
phism:
CF(K) = Co(R, {Ma, (©)},e), C(K) 3 f = film) = [ FK)

For (7, Hz) € K, let u,v € Hy, and we define ¢, »(x) := (m(x)u,v). If ey,..., eq_is an
orthogonal normal basis of Hy, we set 71;; = ¢, ¢; and 7(x) = (71;,i(x)), <ij<dy We have

the orthogonal relation:
/K 7t () 7Ty jr (x)dx = i (51]51 2

Let e; be a unit vector in the highest weight space of 7r. The matrix coefficient p, :=
drm1 1 € C(K) is an idempotent in C*(K), and

/Kpn(x)pn/(x)dx =dndy .

For T € K, then p7(1;;) = [i pr(x)1;j(x)dx = 67,0;16;1. So pz = (0,..., (E11) =, - - ., 0).
Under the Fourier transform, the subalgebra C*(K)pC*(K) correspond to

My, (C)E1,1Mg, (C) = My, (C).

The subalgebra C*(K)p.C*(K) is Morita equivalent to p-C*(K)p,. Observe that under
the Fourier transform, p.C*(K)p, becomes E;;M,_(C)E;; ~ C.
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4.4.2 Idea of proof

Let M C K be the maximal torus, then M/W isin bijection with K. For any o € M/ W,
we get a projection p, € C*(K) Consider the subalgebra C;(G)p.,C;(G) C C;(G). It
corresponds to the component A/ Wo, i.e.equals C o(A/ Wy, K(Hy,))

Fact: Foroc € M, ¢ € A, Po,p € G; has lowest K-type 7,. The representation Tl,p =
IndX*® (0 ® @) € Gy has lowest K-type ;.

Kpxa

The subalgebra Cy(A/W,, K(H,)) is Morita equivalent to pr,C}(G)pz,, which be-
comes Co(A/ W, ) under the Fourier transform.

In order to show Ko(C;(Gp)) =~ Ko(C;(G)), it is equivalent to show that

D Ko(Co) = Ko(C(G)) = Ko(CH(G) = D Kol(Co).
ceM/W ceEM/W

Using the Morita equivalence,

Ko(Co) =~ Ko(CopoCy) m Ko(poCopo) =~ Ko (Co(a/ W) x [0,1]),

and on the other side similarly Ko(Cy) =~ KO(CO(A\ /We)).

5 Erik Van Den Ban: Harmonic analysis on non-Riemannian
symmetric spaces

There are a lot of details missing in this note! It is painful to take the notes, and the
slides can be found in the website of trimester program.

51 Lecturel
Settings:
* G real connected semisimple Lie group with finite center

¢ ¢ involution of G

GY the fixed group of ¢

H C GY open subgroup

X = G/H semisimple symmetric space
® 0, = do : g — ginfinitesimal involution

One has the decomposition g = h) @ q as eigenspaces of o. The tangent space T,(X) =~
g/b ~ g, and the Killing form of ¢ makes X a pseudo-Riemannian symmetric space.

Example 5.1.1. ¢ Riemannian case: ¢ a Cartan involution, H = K, q = p.
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e Group case: G = G’ x G', H = (G")%, and G acts on G’ by (x,y)g = xgy~!, G' ~
G/H.

* Hyperbolic case.

Lemma 5.1.2. There exists a Cartan involution 0 of g that commutes with o. The composition 8¢
is also an involution.

Theorem 5.1.3. The map K x (pNq) x (pNh) = G, (k,X,Y) — kexp XexpY is a diffeo-
morphism.

Corollary 5.1.4. The map K x (p Nq) — G induces a diffeomorphism G/H ~ K xgqp (pNq),
which is a vector bundle over K /K N H with fiber p N q.

Ifo=6,G/K~Kxgp={«}xp.

Theorem 5.1.5. There are finitely many Ad(H)-conjugacy classes of Cartan subspaces of q. They
all have the same dimension, called the rank of G/ H.

Fix a; C p N g a maximal abelina subspace.
Lemma 5.1.6. ¥ = {a € a; \ {0} | g # 0} is a possibly non-reduced root system.

Fix 7 positive system and A simple roots, and take W = W (a,) the Weyl group.
Definition 5.1.7. Wiy := the image of Nxnp(aq) in W.

Put g+ = g« N g+, eigenspaces of o8, and m; the dimension. GT := GY? is reductive,
and ¥ is a root system of (g, aq). Define £= and W,.

Remark 5.1.8. W, C Wknp is an equality if and only if H is essentially connected.

Definition 5.1.9. Define a;® to be W.a;, and also affi = Wkn Ha;/ "

Lemma 5.1.10. G = KA; | H, with unique A | -part.

Corollary 5.1.11. The space X = KA ®H is an open dense subset of X.

Suppose W C Nk (ayq) is finite, then

X: = || KAjvH & W 15 W/ Winp.
veEW

Definition 5.1.12. Define g? C gc by g4 @ ig_.

Put ¢ := hc Ng?, p? := gc N, then g¢ = ¢ @ p? is a Cartan decomposition, with
07 = 0C|gd- Put ¢’ := 9C|gd and [jd =t ﬂgd, qd = Ppc ﬂgd.

We construct a duality (g, c,8) < (g,0%,0%).

Example 5.1.13. The dual space of GL(n,R)/ O(n) is U(n)/ O(n), and in the group case,
the dual of a compact Lie group G = (G x G)/G* is G/G, where G is the complexifi-
cation of G.
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Definition 5.1.14. Let D(G/H) be the space of linear partial differential operators on
C®(G/H),and ID(G/H) its H-invariant subspace.

We have a map R : U(g) — Endc(C*®(G)), and it induces r : U(g)" — ID(G/H),
Suppose that G C G¢, and let G, K? be the analytic subgroups of G¢ with Lie algebras

g?,t4. One has U(g)H = U(g")K’. There exists a unique homomorphism of algebras
D(G/H) — D(G%/K%), D + D commuting with the identity of ¢/, and it is an isomor-
phism.

We have the Harish-Chandra isomorphism: 4 : D(G?/K?) S P(ad*)W(e"a"),

5.2 Lecture 2
When H is reductive, X = G/H has a left invariant measure dx and L?(G/H,dx)

carries the left regular representation Lgg(x) = @(g 'x). A goal of the harmonic analy-
sis is to study the Plancherel decomposition of L?(G/H) in terms of irreducible unitary
representations.

5.2.1 Basic representation theory

Setting: V' is Fréchet (or complete locally convex space).
For a continuous representation (77, V'), the space V*° of smooth vectors is a represen-
tation of U (g). The subspace of K-finite smooth vectors V*° N Vk is dense in V.

Definition 5.2.1. For § € K, define V[J] to be the image of V5 ® Homg(Vj, V). Then
Vk = @4,V I[0]. A representation V is admissible if dim V5] < oo for any ¢ € K.

Lemma 5.2.2. If V is admissible, then Vg C V* (and this is a (g, K)-module).
Lemma 5.2.3. If (71, V) is admissible, then Vi is an admissible (g, K)-module. Furthermore,

(1) the map W — W N Vi defines a bijection between the closed invariant subspaces of V and
Vk. The inverse is given by taking the closure.

(2) (7, V) is irreducible if and only if Vi is irreducible.
Definition 5.2.4. A Harish-Chandra module is a finitely generated admissible (g, K)-module.

A motivating result of Harish-Chandra: suppose that (71, ) is irreducible unitary,
then 7 is admissible. Two irreducible unitary representations are equivalent if their asso-
ciated (g, K)-modules are equivalent.

Define 3 = 3(g) to be the center of U (g).

Theorem 5.2.5 (Harish-Chandra). Let (7r, i) be irreducible unitary. Then  is quasi-simple,
i.e. 3 acts by scalars on V= (through an infinitesimal character x € 3).
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5.2.2 BacktoID(G/H)
For D € D(G/H), we can define its formal adjoint D' € D(G/H).
Theorem 5.2.6. If D = D, then D is essentially self-adjoint with operator core L2(X).

Definition 5.2.7. A discrete series of G/ H is an irreducible unitary G-representation (7r, H)
that admits G-equivariant H — L>(G/H). For & € (G/H)),, we denote the isotopic space
by L>(G/H)e.

Lemma 5.2.8. R induces an injective homomorphism 3 — ID(G/H). Accordingly, D(G/H) is
a finite 3-module.

For each ¢, one can decompose the finite ID(G/H)-module L>(G/H )&k into a direct

sum of (g, K)-submodules on which D(G/H) acts by scalars.

For x € D(G/H)", put {,(G/H) the space of smooth eigenfunctions of x. Our goal is
for each x to describe the irreducible (g, K)-submodules of &, (G/H)g NL?(G/H)*. The
idea of Flensted-Jensen is to use the duality G/H < G1/KA.

For simplicity, assume G C G¢ and define G4, K%, H? as Lie subgroups of G¢ with
corresponding Lie algebras.

Recall that G4 = exp(p N q)(K N H) is contained in G N G¥. For f € C®(G/H)g and
x € G4, the function k — f(kx) has a unique analytic extension to fy : K¢ — C.

Theorem 5.2.9 (F-]). There exists a unique map C*°(G/H)x — C®(G*/K%) g, f — °f such
that

« f=fonGy,

e forallx € Gy, h € H%, f(hx) = fy(h).
Forall D € D(G/H),*(Df) = “D"f.
Corollary 5.2.10. The duality f + °f fives &, (G/H)x < CdX(Gd/Kd)Hd, where @ is defined
by “x(*D) = x(D).

5.2.3 Poisson transform on G/K

Setting: G = KAN and the minimal parabolic P = MAN. For A € a¢, define x,(D) =
v(D,A) = (7v(D)) (A), which is a character in D(G/H)". Denote &, (G/K) by &,(G/K).
For & € af, seta := ¢6(1989) g € A,

For A € af, we define 77, = Ind§(1® (—A) ® 1) to be

C(G/P;=A) = {f € CUGC) | flgman) = " " f(g)}

with the action 7 (¢) f(x) = f(g x).
Definition 5.2.11. The Poisson transform P, : C°(G/P; —A) — C®(G/K) is defined by

Pro(x) = /Kgo(xk)dk, x€G.
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Lemma 5.2.12. P, maps C°(G/P; —A) into &, (G/K), and intertwines 7t with L.

The Poisson transform P, factors through res : C°(G/P; —A) = C(K/M), and we
still denote that by P,.

Definition 5.2.13. B'(K/M) := [C¥(K/M)dk]" (hyperfunctions in K/ M) 2.

Theorem 5.2.14 (Helgason'’s conjecture; proved by Kashiwara-Kowata-Minewasa-Oshi-
ma-Okamoto-Tanaka). P, admits a unique extension to a continuous linear map B'(K/ M) —
&r(G/K), which intertwines 7, and L. For p(A) # 0, this extension is a topological linear
isomorphism.

Theorem 5.2.15. rank G/ H = rank K/K N H implies that (G/H)}. # @.

Theorem 5.2.16 (Oshima-Matsuki,1982). (G/H)/, # @ < rank G/H = rank K/K N H.

5.3 Lecture3

5.3.1 Parabolic induction

Definition 5.3.1. A parabolic subgroup of G is a subgroup P such that P = Ng(Lie(P)).

Given such a P, take a maximal abelian a C g, 2" (g, a) the positive system, M = Zg(a)
and we have the Iwasawa decomposition G = KAN. The group Py = MAN is a minimal
parabolic subgroup. One has KNPy = M, G = KPy >~ K Xxp Py and ¢ C g induces
a diffeomorphism K/M ~ G/Py. Every parabolic subgroup of G is K-conjugate to a
standard parabolic subgroup.

For a parabolic Q C G, set Mj o = QN 6(Q). The parabolic Q decomposes as Q =
Mi oNg. Set ag = Z(my o) Npand Ag = expag. We have My o = MgAg = Zg(ag).
THe Langlands decomposition of Q is Q = MgAgQNg.

Let P(A) to be set of parabolic subgroups containing A, and

Definition 5.3.2. Given Q € P(A), define
ab, = {X €ag|a(X) >0,Va € Z(ng,aq)}.
For X € a, define (X) = {a € | a(X) > 0}.
Remark 5.3.3. Set X ~ Y if (X) = X(Y), and this defines an equivalence relation on a.

Lemma 5.34. Q — ag gives a bijection from P(A) to a/ ~. The inverse is given by ®
Py = My,0No, where My, = Zg(P), 1o = Laex alp>0 Ja-

The classes a/ ~ are facets, where G has the smallest dimension, and minimal parabol-
ics have the maximal dimension.
Remark 5.3.5. e PCQ«& % D) ag,'

2Here C®(K/M)dk stands for the space of real analytic densities.
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o &€ Mp,A € iab s Ap;
* ¢ ® Ais aunitary representation of M p.
o The unitary induction: Ind$ (¢ @ A).

The space of the unitary induction is

L2(P;&A) = {f € L*(G, Hp)1oc

f(manx) = a**0rg(m) = f(x) }
This representation is unitary for A € iap, and
L2(P;&A) x L2(P, & —A) — C
(£,8) = [ F(R),g(k))ak

is G-equivariant.
The restriction gives a topological linear isomorphism

L2(P;¢;A) = L2(K; Elkrmp) = Indira, (Elkrny)-

Theorem 5.3.6. L2(P; & A)® = C®(P; ¢, A).

Define the dual C~®(P; & A) = C®(P; & —A) <= C®°(P; & A).
The idea is to construct j € C™*°(P; ¢; A)H , then have G-matrix coefficient

m;: C*(P;¢; —A) < C®°(G/H).

On open orbit PvH C G, one must have j|p,; € C*(PvH, ng)H and

Consider parabolic subgroups stable under c6.
I am lost here.

5.4 Lecture 4

Definition 5.4.1. The unnormalized Fourier transform “fof f € C*(G/H) is defined by

-~

(PG A) = o/ (¥)7tpg 0 (x)j(P, ¢, A)dx € Vp(§)" @ C¥(K; Eky)-

~

Example 54.2. If H = K, f(Pg,1,A) = 7tp,, , (f)1p, -

The Fourier transform intertwines L with 1 ® 7tp g 5.

Theorem 5.4.3 (Plancherel identity). For f € CZ®(G/K),

Flg = X Wil Y [ FEA) sdurg (1)

per, [-:GX;’\ *,ds
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Remark 5.4.4. Vp(¢) plays the role of multiplicity space.
Suppose that P € Py (A,),¢ € Mp and  has real infinitesimal character.

Theorem 5.4.5 (Knapp-Stein, Vogan-Wallach). There is a unique meromorphic family:
apc 3 A— A(P,P,E,A)

of intertwining operators 7tp g\ — Tp g ) such that for (Re(A),a) >> 0 for each a, then for
feC(PigA),

AQPEN(x) = [ flnx)dn

NpﬁNQ

Remark 5.4.6. A(P,P,& A)o A(P,P,& A) =n(P,P,& A)-1d, with (P, P,&,-) a meromor-
phic function.

Lemma 5.4.7. 7(P,P,&,A) > 0 for A € ia}.

The Plancherel measure dyupz(A) is (P, P,&,A) "1 - dup(A), where dup is the Lebesgue
measure on iap.

Definition 5.4.8. We normalize j by
i°(P, & A) == A(P,P,&,A) (P, ¢, A),
and define fas ”fbut with j° in place of ;.

Corollary 5.4.9. For f € C(G), f(P,&,A) = A(P,P,& A) " f(P,E A).
Theorem 5.4.10 (Normalized Plancherel indentity). For f € C®(G/H),

IFlo = 5 Wil & [ 1780 sdnn(2).

A 1
PeP, gGXp/*/ds P,q

5.5 Lecture 5
I give up...

6 Toshiyuki Kobayashi: Basic questions in group-theoretic

analysis on manifolds

(1) Is representation theory useful to the global analysis on the G-manifold X? Does the
group sufficiently control the space of functions?

(2) What can we say about the “spectrum” on L?(X)?
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Given a G-manifold X, G acts on C®(X) and L?(X, vx), where vy is a G-invariant Radon
measure. More generally, L?(X) is defined by using the half-density bundle or a multi-
plier representation built on the cocycle c(g, x) where g.vx = ¢(g, x)vx.

For any unitary representation I, one has

@
H:/A myrd, (),
G

where m : G — N U {oo}.

¢ Smallest units of representations: irreducible ones;
* Smallest units of Lie groups: 1-dim abelian groups and simple Lie groups;

¢ Reductive Lie groups “are” products of abelian groups and simple Lie groups.

6.1 Spectral analysis

Let X be a (pseudo-)Riemannian manifold with a G-action.

e Spectral analysis of Ax: L?(X) ~ [ Hdt());

* Representation theory: Plancherel decomposition. This induces the spectral decom-
position if m,; < 1.

Example 6.1.1. O(n+1) actson S”, O(n, 1) acts on H" (hyperbolic), and O(p, q) acts of the
space of forms (pseudo-Riemannian).

Hint for rigorous formulation. In group representations:

* strong point: can distinguish inequivalent irreducible representations even they are
infinite-dimensional.

¢ weak point: multiplicity.

For 7t € Irr(G), consider the multiplicity dim Homg (71, C* (X)) (infinite, finite, bounded,
multiplicity free).

Let G¢ be a complex reductive Lie group and B a Borel subgroup of G¢. Suppose that
Gc acts on a connected complex manifold Xc.

Definition 6.1.2. X¢ is spherical if B has an open orbit in Xc¢.

Example 6.1.3. Grassmannian varieties, flag varieties and symmetric spaces.
For reductive G O H, consider X = G/H.

Theorem 6.1.4. The followings are equivalent:
(1) (Global analysis and representation theory) There exists C > 0 such that
dim Homg (77, C*(X)) < C, for any 7 € Trr(G).
(2) (Complex geometry) Xc is spherical.
(3) (Algebra) The ring D¢ (Xc) is commutative.
(4) (Algebra) The ring D¢ (Xc) is a polynomial ring.
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6.2 Branching problems

Example 6.2.1 (Induction). Ind$ 1 ~ C*®(G/H),L2(G/H),....
Example 6.2.2 (Restriction). 77’ @ 7" |GlA ~?.
Given G’ C G, the branching problem is to understand how the restriction behaves, i.e.
[I1|c : 7] := dim Homg/ (I, ), 7w € Irr(G'), 11 € Irr(G).

Theorem 6.2.3 (Uniformly bounded multiplicity criterion). For a pair G 2 G’ of real reduc-
tive groups, the followings are equivalent:

(1) supysup, [l : 7] < co.
(2) (Ge x G¢)/diag(Gy) is spherical.
(3) The ring U (gc)Cc is commutative.
(4) The ring U (g¢)Cc is a polynomial ring.
Remark 6.2.4. We also have (G x G’) /diag(G’) is spherical (replacing Borel subgroup by

minimal parabolic subgroup) if and only if [IT|g/; 71] < oo for any 7t and IT.

6.3 Tempered homogeneous spaces

Let G be a locally compact group.

Definition 6.3.1. A unitary irreducible representation 7t of G is tempered if 7 is weakly
contained in L?(G).

A basic question: when is LZ(X) tempered? In other words, for which G-space X,
L2(X) < L?(G)?
Suppose that G is a real reductive Lie group, one has

II‘I‘(G) 2 é\ 2 é\tgmp.

Irr(G) is classified by Langlands, @temp is classified by Knapp-Zuckerman, but G is still
mysterious over 70 years.

Even when G/H is a reductive symmetric space, the question involves a hard prob-
lem regarding vanishing conditions of cohomological parabolic inductions with singular
parameters. How about more general space X = G/H?

Example 6.3.2. Let G = GL(p + g +r,R), and the subgroup H = GL(p) x GL(gq) x GL(r),
then L?(G/H) is tempered if and only if

p<qg+r+1l,g<p+r+1,r<p+g+1

Definition 6.3.3. A continuous G-action on X is proper if Gs = {g € G|gSNS # @} is
compact for any compact subset S C X.

32



Theorem 6.3.4. Let H be a connected subgroup of a real reductive Lie group G, then the followings
are equivalent:

(1) L2(G/H) is tempered.
(2) 20y < pg(Y) forany Y € .

Remark 6.3.5. For the example G = GL(p + g + r), this combinatorial condition is equiva-
lent to 2max(p,q,7) < p+q+r+1.

Theorem 6.3.6. Let g be a complex reductive Lie algebra, then the followings are equivalent:

(1) L2(G/H) is tempered.

(3) b has a solvable limit in g.

(4) bt Ngpeg # 0in g*,

7 Nigel Higson: C*-algebras and tempered representation

7.1

theory: a look backward and a look forward

Some (selective) history
1943, Gelfand-Naimark C*-algebras

1946, Gelfand-Naimark unitary representations of SL(n, C) and Plancherel formula
1947, Segal C;(G)

1955-1975, Harish Chandra

1959, Bott periodicity, Atiyah-Hirzebruch K-theory

1965, Seeley C*-algebra extension from pseudo-differential operators

1973, Brown-Donglas-Fillmore theory of

0— x(H) - E—C(X)—0

1980, Pimsner-Voiculescu: K. (Ay)
1984, Connes-Kasparov conjecture

1983, Kasparov (ICM) on K-theory and non-commutative geometry and representa-
tions:” At present this is a non-existent math region...”
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7.2 The present

V.Lafforgue (1998-2000) Proof of Connes-Kasparov conjecture over p-adic fields using
index theory, and a new proof for Harish-Chandra’s classification of discrete series using
Connes-Kasparov.

Remark 7.2.1. V.Lafforgue uses Kasparov’s “dual Dirac” method (a left-inverse to Connes-
Kasparov, following Lusztig and Atiyah). Note that for a discrete series 7r, H is projective
over C}(G). He uses Weyl’s Y(11;)? = 1 trick (in K-theory, not L?).

7.3 Bradd-Higson-Yuncken paper [ ]

—_—

A tidied up picture of SL(2, R) tempereds indexed by 86@ and Z//Z\Z, also for SL(3,R).
Let a be the one in the Iwasawa decomposition, and a} = the dominant chamber. De-
fine af , tobe facets of aj; , and M to be the M-part of the centralizer of a; in G.

Definition 7.3.1. We have Im(InfChar(7r)) € aj, . An unitary representation is tempiric
if Im(InfChar(7t)) = 0.

Theorem 7.3.2 (Bruhat 1954, Harish-Chandra 1960s, Vogan 2000).

o~

~ *
Gtempered = |_| (MI X a4
I

) tempiric

Theorem 7.3.3 (Vogan 1981). There is a natural bijection

(MI )tempiric =K,
where Kj is the maximal compact subgroup of M.
Theorem 7.3.4 (Bradd-Higson-Yuncken). The followings are equivalent:
(1) Connes-Kasparov isomorphism for every real reductive group G.

(2) The group morphism

Z[K] - Z[étempiric]/ T Zmlﬂt(T, 7'[) < 7T

7T

is an isomorphism for every G.

8 Monica Nevins: Wonders of p-adic representation theory

Je suis fatiguée.
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