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January 10, 2025

Abstract

This is the lecture note of the CIRM-IHP research school [CIRM2025].

1 Monica Nevins: Introduction to representation theory

1.1 Definitions

Definition 1.1.1. A representation of a group G is a pair (π, V) where V is a C-vector space
and π is a homomorphism G → GL(V). If G is topological, the map G×V → V has to be
continuous. A morphism of G-representations between (π, V) and (σ, W) is a linear map
T : V →W commuting with G-actions, and such T are called intertwining operators.

Example 1.1.2. (1) Zero representation: V = 0.

(2) Trivial representation: V = C and π : G → GL(V) = C×, g 7→ 1, denoted by 1.

(3) G = S3. Permutation representation πP : S3 → GL(C3), sending g to its associated
permutation matrix. Sign representation σ : S3 → C×, g 7→ det(πP(g)).

A subrepresentation of (π, V) is a G-invariant subspace W ⊆ V. For example, W =
C(1, 1, 1) is a subrepresentation of πP. In other words, T : (1, C)→ (πP, C3), 1 7→ (1, 1, 1)
lies in HomS3(C, C3).

Example 1.1.3. Let B = {
(

a b
0 c
)
} ⊆ GL2(C). The natural representation of B on C2 has a

subrepresentation W = C(1, 0)T.

Definition 1.1.4. An irreducible representation of G is one with no non-trivial G-invariant
closed subspace.

Example 1.1.5. (1) Any 1-dimensional representation is irreducible.

(2) (πP, C3) is not irreducible.

Exercise 1.1.6. Any irreducible representation of a finite group is finite dimensional, and
an irreducible representation of an abelian group is 1-dimensional.
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Theorem 1.1.7 (Schur’s lemma). Suppose (π, V) and (σ, W) are irreducible representations of
G, then dim HomG(V, W) = 1 if π ≃ σ, and 0 otherwise.

The goals of representation theory:

• Classify all irreducible representations of G.

• Describe every representation of G in terms of its irreducible subrepresentations and
irreducible subquotients.

1.2 Unitary representations

Definition 1.2.1. A representation (π, V) of G on a Hilbert space (V, ⟨ , ⟩) is unitary if π
factors through U(V).

Theorem 1.2.2. Any representation of a compact group G on a Hilbert space is unitarizable.

Exercise 1.2.3. Let W ⊆ V be a subrepresentation of a unitary representation, then W⊥ is
a subrepresentation of V and V = W ⊕W⊥.
Exercise 1.2.4. Any finite dimensional (unitary) representation of a compact group is com-
pletely reducible.

1.3 Group algebras

Let G be a finite group. Define C[G] =
{

∑g∈G cgg
∣∣∣ cg ∈ C

}
to be the group algebra,

equipped with the multiplication:

∑
g

cgg ·∑
h

dhh = ∑
k

(
∑
g

cgdg−1k

)
k.

For a representation (π, V), we get a homomorphism of algebras:

π : C[G]→ End(V), ∑ cgg 7→∑ cgπ(g).

The group algebra C[G] is a left regular representation of G:

λ : G → GL(C[G]), λ(g)∑
h

chh := ∑
h

chgh = ∑
k

cg−1kk.

It is also a C∗-algebra with the operator norm from λ and the involution sending ∑ cgg to
∑ cg−1 g.

Theorem 1.3.1. (1) Every irreducible representation of G occurs as a subrepresentation of the
group algebra (λ, C[G]) with multiplicity equal to its degree.

(2)
C[G] =

⊕
(σ,W) irreducible

W ⊗HomG(W, C[G]), w⊗ T 7→ T(w).

(3) C[G] ≃ ⊕(σ,W) End(W) as an algebra.

Exercise 1.3.2. C[S3] = 1⊕Csign ⊕M2(C
2) and πP = 1⊕C2.
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1.4 Beyond finite groups

We view ∑ cgg ∈ C[G] as a function in Cc(G), whose value at g is cg, and the multipli-
cation as the convolution.

Now we drop the finite group assumption. For a representation π : G → GL(V), we
have a homomorphism of algebras:

π : Cc(G)→ End(V), π( f )v =
∫

G
f (g)π(g)vdg.

The left regular representation

λ : G → B(L2(G)), (λ(g) f ) (k) := f (g−1k)

is an analogue of G → GL(C[G]). We denote the closure of λ(Cc(G)) by C∗r (G).
When G is compact, we have the Peter-Weyl theorem and this case behaves like in the

finite group setting. When G is not compact,

• not every irreducible representation is unitary, or finite dimensional;

• not every unitary representation occurs in L2(G), for instance 1.

1.5 Induction and restriction

Let H be a subgroup of G and (σ, W) a representation of G. The restriction ResG
H(σ) :=

(σ|H, W) is a representation of H, but it is usually not irreducible even if σ is.

Definition 1.5.1 (Induction). Let (σ, W) be a representation of H.

• If G is finite, V = IndG
H(σ) := C[G]⊗C[H] W ⊇ W is a representation of G. We have

dim V = [G : H]dim W.

• For a general G, consider the vector bundle G ×H W over G/H. The induction is
defined via sections of this vector bundle:

IndG
HW : =

{
f : G →W

∣∣∣ f (gh) = σ(h−1) f (g)
}

(π(g) f )(k) = f (g−1k).

Suppose that G is compact.

Proposition 1.5.2 (Frobenius reciprocity).

HomG(W, IndG
HU) = HomH(ResG

HW, U)

T 7→ T′(w) = T(w)(1G).
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2 Tyrone Crisp: Tempered representations from the point
of view of C∗-algebras

The goal of this course: for a real or p-adic reductive group G, compute its reduced
group C∗-algebra C∗c (G).

Theorem 2.0.1 (Wassermann). Let G be a real reductive group. There is a Morita equivalence

C∗r (G) ∼
⊕
[P,σ]

C0(a
∗
P/W ′σ)⋊ Rσ.

2.1 Lecture 1
Definition 2.1.1. A C∗-algebra is an algebra A over C, with

• a conjugate-linear involution ∗ : A→ A satisfying (ab)∗ = b∗a∗;

• a norm ∥ ∥ in which A is complete; ∥ab∥ ≤ ∥a∥∥b∥ and ∥a∗a∥ = ∥a∥2.

Example 2.1.2. Let X be a locally compact Hausdorff space, the space

C0(X) := { f : X → C continuous | f (x)→ 0 at ∞}

is a C∗-algebra.
For a Hilbert space, B(H) is a C∗-algebra.

Theorem 2.1.3. Every C∗-algebra is isomorphic to a subalgebra of some B(H).

Example 2.1.4. For the ideal of compact operators K(H) ⊂ B(H), C0(X, K(H)) is also a
C∗-algebra.
Example 2.1.5. For a C∗-algebra A equipped with an action of a finite group W, we have
two new C∗-algebras:

• the fixed-point algebra AW ;

• the crossed product A ⋊W := {∑w∈W aww | aw ∈ A}.

Let X be a locally compact Hausdorff space, H a Hilbert space and W a finite group
acting on X by homeomorphisms. Let {Iw,x ∈ U(H) |w ∈W, x ∈ X} be unitary operators
such that

• Iw1,w2x Iw2,x = Iw1w2,x (in particular, I1,x = idH).

• For each w ∈W, x 7→ Iw,x is continuous in the strong operator topology.

Let W act on C0(X, K(H)) by

βw( f )x := Iw,w−1x f (w−1x)Iw−1,x.

The fixed-point algebra C0(X, K(H))W will be the second-most important example of a
C∗-algebra in these lectures.
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Example 2.1.6. W = {1, w} acts on X = R by wx = −x. H = C2 so K(H) = M2(C).
Iw,x =

( cos x − sin x
sin x cos x

)
. We have C0(R, M2)

W ≃ C0
C([0, ∞), M2).

Let G be a locally compact group with a left Haar measure dg.

Definition 2.1.7. The reduced group C∗-algebra is

C∗r (G) := λ(Cc(G))
∥ ∥operator ,

where λ : Cc(G)→ B(L2(G)).

Definition 2.1.8. A representation of a C∗-algebra A is a homomorphism π : A → B(H)

for some Hilbert space H. The spectrum Â is the set of equivalence classes of irreducible
representations of A. The Jacobson topology on Â has one open subset {π |π(J) ̸= 0} for
an ideal J.

A state on A is a bounded linear φ : A → C with φ(a∗a) ≥ 0 and ∥φ∥ = 1. Gelfand-
Naimark-Segal construction: given a state φ, define

• Jφ = {a ∈ A | φ(aa∗) = 0},

• Hφ = A/Jφ.

• πφ(a)(b + Jφ) = ab + Jφ.

It is irreducible if φ is pure, i.e. not a convex combination of other states.

Theorem 2.1.9. Let A be a C∗-algebra.

• Every irreducible representation is equivalent to a GNS representation.

• If a ̸= b ∈ A, then π(a) ̸= π(b) for some π.

• We have a nice induction from a representation of a subalgebra of A.

Theorem 2.1.10. The followings are equivalent:

• π is irreducible;

• π ≃ πφ for φ pure;

• Schur’s lemma;

• π(A) is dense in B(H).

A unitary representation π : G → U(H) extends to Cc(G) → B(H). It extends to
C∗r (G) if and only if ∥π( f )∥ ≤ ∥λ( f )∥operator. Denote by Ĝr ⊆ Ĝ to be those that extend
to C∗r (G).

Theorem 2.1.11. Ĝr ≃ Ĉ∗r (G).
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Example 2.1.12. When G is abelian or compact, Ĝr = Ĝ. In general, π ∈ Ĝr if and only if
π is tempered, i.e. its K-finite matrix coefficients are L2+ε modulo the center.

Strategy for computing C∗r (G): match up tempered representations with representa-
tions of simpler C∗-algebras.

Theorem 2.1.13. Ĉ0(X) ≃ X, evx ↔ x.

Theorem 2.1.14. Every irreducible representation of K(H) is equivalent to the identity represen-
tation K(H) ↪→ B(H).

Theorem 2.1.15. ̂C0(X, K(H)) ≃ X, evx ↔ x.

Consider X, H, W, Iw,x as before. Note that w 7→ Iw,x is a unitary representation of
Wx = {w ∈W |wx = x}, and evx(C0(X, K(H))W) = K(H)Wx .

Theorem 2.1.16. The maps ξ ⊗ t 7→ (dim Hρ)1/2t(ξ) give an isomorphism:⊕
ρ∈Ŵx

Hρ ⊗HS(ρ, Ix)
Wx ≃ H.

Theorem 2.1.17. • The irreducible representations of C0(X, K(H))W are

πx,ρ : C0(X, K(H))W evx−→ K(H)Wx k 7→k⊗−−−−−→ K(HS(ρ, Ix)
Wx).

• Two representations πx1,ρ1 , πx2,ρ2 are equivalent if and only if there exists some w ∈W such
that x2 = wx1 and ρ2 ≃ wρ1 : v 7→ ρ1(w−1vw).

A C∗-algebra A is CCR if π(A) ⊆ K(Hπ) for every π ∈ Â. The examples that we have
seen are all CCR.

Theorem 2.1.18 (Harish-Chandra,Bernstein). If G is a real and p-adic reductive group, then
C∗r (G) is CCR.

A subalgebra B ⊆ A is separating if the restrictions of irreducible representations re-
main irreducible, and the restrictions of inequivalent representations remain inequiva-
lent. We say that A has the Stone-Weierstrass property if B separating implies B = A.

Theorem 2.1.19 (Kaplansky). Every CCR algebra has the SWP.

Remark 2.1.20. This is a tool for computing the range of a Fourier transform.

2.2 Lecture 2

Plan: replace C∗r (G) by a simpler C∗-algebra that is Morita equivalent to C∗r (G). This
is reasonable since Morita equivalent C∗-algebras have the same K-theory and represen-
tations.

For left (resp. right) Hilbert module of a C∗-algebra, we use the notation of inner prod-
uct [ , ] (resp. ⟨ , ⟩).
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Example 2.2.1. Let H be a Hilbert space. It is a right C-module, and a left Hilbert B(H)-
module ([ξ, η] : ζ 7→ ξ⟨η, ζ⟩). The left module structure is not full, i.e. span({[ξ|η]}) ̸= A.

Example 2.2.2. C0(X, H) is

• a full right Hilbert C0(X)-module;

• a full left Hilbert C0(X, K(H))-module.

Example 2.2.3. Let E be a left Hilbert A-module. It is a left Hilbert AW-module

W [ξ|η] :=
1
|W| ∑

w∈W
βw([ξ|η]).

If E is full over A, then it is also full over AW .

Example 2.2.4. π : W → U(H) a representation, C∗r (W) = C ⋊ W. H is a left Hilbert
K(H)W-module:

W [ξ|η] = 1
|W| ∑

w∈W
π(w)[ξ|η]π(w)−1,

and a right Hilbert C∗r (W)-module:

ξ.w = π(w−1)ξ, ⟨ξ, η⟩W :=
1
|W| ∑

w∈W
⟨ξ, π(w)η⟩w.

Given a A-B bimodule E. If π : B→ B(V) is a Hilbert representation of B, then E⊗B V
is a Hilbert representation of A:

⟨ξE ⊗ ξV , ηE ⊗ ηV⟩ := ⟨ξV , π(⟨ξE, ηE⟩)ηV⟩.

Example 2.2.5. Let H ⊆ G be a closed unimodular subgroup, then Cc(G) is a Cc(G)-Cc(H)
bimodule:

⟨ξ, η⟩(h) :=
∫

G
ξ(g)η(gh)dg.

Complete it to get a C∗(G)-C∗(H) bimodule E. The unitary induction is given by E⊗C∗ :
URep(H)→ URep(G).

An A-B bimodule E is a Morita equivalence if

• E is a full left Hilbert A-module and a full right Hilbert B-module;

• [ξb|η] = [ξ|ηb∗], ⟨aξ, η⟩ = ⟨ξ, a∗η⟩;

• [ξ|η]ζ = ξ⟨η, ζ⟩.

We say A, B are (strongly) Morita equivalent, denoted by A ∼M B, which is an equiva-
lence relation.

• A ∼M B⇒ Â ≃ B̂ and K∗(A) ≃ K∗(B).
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• A ∼M B⇔ A⊗K(H) ≃ B⊗K(H) assuming countable approximate identities.

• A ∼M B ⇔ equivalent categories of operator modules. If they have 1, we can
replace by the categories of (algebraic) modules.

• Equivalence of categories URep does not imply (strong) Morita equivalence.

Let H ⊆ G be closed, and E the induction bimodule.

Theorem 2.2.6 (Rieffel). THe induction bimodule E can be made into a Morita equivalence be-
tween C∗(H) and C0(G/H)⋊ G.

Corollary 2.2.7 (Mackey). Unitary induction gives an equivalence between URep(H) and the
category of unitary representations G admitting a compatible representation of C0(G/H).

Example 2.2.8. A ⋊ K, A abelian, K compact. Let π : A ⋊ K → U(H) be irreducible. It is
an irreducible representation of C0(Kφ)⋊ K ≃ C0(K/Kφ)⋊ K, and is induced from Kφ.

Example 2.2.9. K(H) ∼M C.

In a Morita equivalence, we always have [ξ|η] = |ξ⟩⟨η|.
Now given W, π : W → U(H) and K(H)W .

Theorem 2.2.10. H is a Morita equivalence between K(H)W and the ideal

J := span {⟨ξ, η⟩W} ⊆ C∗r (W),

and
J =

⊕
ρ∈Ŵ,ρ⊆π

K(Hρ).

Theorem 2.2.11. Given X, H, W, Iw,x as before, then C0(X, H) is a Morita equivalence between
C0(X, K(H))W and certain ideal in C0(X)⋊W.

Set Wx = {w ∈W |wx = x} and W ′x = {x ∈Wx | Iw,x ∈ CidH}.

• Normalisation:

• Completeness: for all x, the unitary representation I−,x : Wx → U(H) contains every
ρ ∈ Ŵx/W ′x.

C(X, W, I) things

Theorem 2.2.12. C0(X, H) can be made into a Morita equivalence between C0(X, K(H))W with
the ideal

C(X, W, I) =

{
∑

w∈W
fww ∈ C0(X)⋊W

∣∣∣∣∣ fw′w(x) = fw(x), ∀x ∈ X, w ∈W, w′ ∈W ′X

}
.

Corollary 2.2.13. Suppose that W = W ′ ⋊ R, where for each x we have W ′x = Wx ∩W ′, then

C0(X, K(H))W ∼M C0(X/W ′)⋊ R.
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2.3 Lecture 3
The main reference is [CCH16]. The Langlands decomposition G = MG × AG where

MG has compact center and exp : aG → AG.
An irreducible unitary representation σ of M is square-integrable if for all ξ, η ∈ Hσ, the

matrix coefficient cξ,η(m) = ⟨σ(m)ξ, η⟩ is in L2(M).

Theorem 2.3.1. M̂L2 ⊆ M̂r.

Theorem 2.3.2. If σ ∈ M̂L2 , then σ(C∗r (M)) = K(Hσ).

For each χ ∈ a∗ and σ ∈ M̂L2 , we define an irreducible unitary representation σ⊗ χ :
G → U(Hσ), ma 7→ σ(m)χ(a).

Theorem 2.3.3. For f ∈ Cc(G) and χ ∈ a∗, let

πG,σ( f )(χ) := (σ⊗ χ)( f ) =
∫

M

∫
A

f (ma)σ(m)χ(a)dadm.

This map πG,σ extends to a homomorphism of C∗-algebras:

πG,σ : C∗r (G)→ C0(a
∗, K(Hσ)).

Proof. Study functions of the form ma 7→ fM(m) fA(a), which form a dense subset.

Not every irreducible tempered representation is of this form, but it can be obtained
by parabolic induction from some σ⊗ χ of a parabolic subgroup.

Now let P = LPNP = MP APNP a parabolic subgroup of G.

Definition 2.3.4 (Parabolic induction). For σ ∈ (M̂P)L2 and χ ∈ a∗P, IndG
P (σ ⊗ χ) is the

unitary representation of G induced from σ⊗ χ.

Compact picture: G = KP implies that IndG
P (σ⊗ χ) ≃ IndK

K∩P(σ) over K. Fix σ, then
all these parabolic inductions are isomorphic as K-representations.

Theorem 2.3.5. We have a homomorphism of C∗-algebras:

πP,σ : C∗r (G)→ C0(a
∗
P, K(IndG

P Hσ)).

Theorem 2.3.6 (Complete Fourier transform). We have an injective homomorphism of C∗-
algebras: ⊕

πP,σ : C∗r (G)→
⊕
[P,σ]

C0(a
∗
P, K(IndG

P Hσ)).

Question: What is the image of this Fourier transform? We need to understand the
intertwining operators between IndG

P (σ⊗ χ)’s.

Theorem 2.3.7 (Bruhat). The intertwining operators between IndG
P (σ⊗ χ)’s are controlled by a

certain finite group.
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Fix P = MAN, then

• WP the Weyl group associated to AP.

• For each σ ∈ M̂L2 , Wσ := {w ∈WP |wσ ≃ σ}.

• For each χ ∈ a∗P, Wσ,χ := {w ∈Wσ |wχ = χ}.

Theorem 2.3.8 (Knapp-Stein). There are unitary operators:

Iw,χ ∈ U(IndG
P Hσ), w ∈Wσ, χ ∈ a∗P,

satisfying

• χ 7→ Iw,χ is continuous in the strong operator topology,

• Iw1,w2χ Iw2,χ = Iw1w2,χ,

• Iw,χ is an intertwining operator IndG
P (σ⊗ χ)→ IndG

P (σ⊗ wχ).

Define an action of Wσ on C0(a
∗
P, K(IndG

P Hσ)): βw( f )(χ) = Iw,w−1x f (w−1χ)Iw−1χ, and we
have

πP,σ(C∗r (G)) ⊆ C0(a
∗
P, K(IndG

P Hσ))
Wσ .

Theorem 2.3.9. The Fourier transform⊕
πP,σ : C∗r (G)→

⊕
[P,σ]

C0(a
∗
P, K(IndG

P Hσ))
Wσ

is an isomorphism of C∗-algebras.

2.4 Lecture 4

Theorem 2.4.1 (Knapp-Stein). Let W ′σ := W ′σ,0.

(1) There is a subgroup Rσ ⊆Wσ such that Wσ = W ′σ ⋊ Rσ.

(2) W ′σ,χ = Wσ,χ ∩W ′σ.

(3) The Iw,χ’s can be chosen so that they satisfy the normalisation and completeness conditions.

Corollary 2.4.2 (Wassermann). For each real reductive group G, we have

C∗r (G) ∼M
⊕
[P,σ]

C0(a
∗
P/W ′σ)⋊ Rσ.

Example 2.4.3. Let G = SL2(R), then

C∗r (G) ∼M C0(Z\{0})⊕C0([0, ∞))⊕C0(R)⋊W,

where W ≃ Z/2Z.
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Now let G be a p-adic reductive group.

Theorem 2.4.4. ĜL2 ̸= 0.

Define XG = {χ : G → U(C) | χ(g) = 1 if contained in a compact subgroup}, which
is a compact torus. We get a Fourier transform:

πG,σ : G → C(XG, K(Hσ)).

The complete Fourier transform is also injective due to Harish-Chandra and Bernstein.

• We define Wσ as a subgroup of XP ⋊WP.

• Iw1,w2x Iw2,x = γP,σ(w1, w2)Iw1w2,χ for some 2-cocycle. So we deal with projective
representations and twisted crossed products.

• We need to keep track of a projective character w 7→ iw,χ of W ′σ,χ for each χ.

Theorem 2.4.5 (Plymen,Harish-Chandra). The Fourier transform⊕
πP,σ : C∗r (G)→

⊕
[P,σ]

C0(XP, K(IndG
P Hσ))

Wσ

is an isomorphism.

Theorem 2.4.6. The bimodule C(XP, IndG
P Hσ) gives a Morita equivalence between C∗r (G)(P,σ)

with the ideal C(XP, Wσ, I).

Some calculation of the K-theory for this reduced group C∗-algebra, with an example of

Ind
Sp(4,Qp)
Pmin

1.

3 Omar Mohsen: Representation theory of nilpotent groups
and Kirillov’s orbit method

3.1 Lecture 1

Let V be a commutative monoid (abelian group without inverse). Define

K(V) := {(a, b) | a, b ∈ V} / ∼,

where (a, b) ∼ (c, d) if there exists f ∈ V such that a + d + f = b + c + f .

Proposition 3.1.1. K(V) is an abelian group, and we have V → K(V), a 7→ [(a, 0)].

In this lecture, we will write [(a, b)] as a− b.
Let A be a C∗-algebra with a unit.

Definition 3.1.2. If E is an A-module, we say that E is finitely generated projective if there
exists an A-module F such that E⊕ F = An for some n.

11



If E, F are finitely generated projective, then so is E⊕ F. When A = C(X) for a compact
Hausdorff X.

Theorem 3.1.3. Finitely generated projective A-modules are in bijection with vector bundles over
X. If L→ X is a vector bundle, then E = Γ(L) is a finitely generated projective module.

Definition 3.1.4. Define V(A) := {[E] | E is finitely generated projective}, which is a com-
mutative monoid with identity [0], and the group law [E] + [F] = [E⊕ F].

Definition 3.1.5.

K0(A) := K(V(A)) = {[E]− [F] | E, F are finitely generated projective} .

Example 3.1.6. K0(B(H)) = 0 for any infinite dimensional Hilbert space H.

Let φ : A → B be a ∗-homomorphism. We can define a map φ∗ : K0(A) → K0(B) by
sending [E] to [φ∗(E)], where φ∗(E) = E⊗A B is a right B-module.

If E⊕ F = An, let L : An → An be the projection over E. In fact, any finitely generated
projective module appears as E = pAn for some n and some projection p : An → An.

• A (self-adjoint) projection p ∈ Mn(A) is an element such that p2 = p and p∗ = p.

• Let p and q are two projections, then pAn ≃ qAn if and only if there exist x, y ∈
Mn(A) such that xy = p and yx = q (Von Neumann relation). We write p ∼v q if they
satisfy the Von Neumann relation.

• We have
V(A) =

⋃
n

proj(Mn(A))/ ∼v .

Definition 3.1.7. For projections p, q ∈ Mn(A), define p ∼s q if there exists z ∈ U(Mn(A))
such that zpz−1 = q.

Remark 3.1.8. If p ∼v q with x invertible, then p ∼s q. The relation p ∼s q implies p ∼v q,
but the converse fails.

Proposition 3.1.9. If p ∼v q, then
(

p 0
0 0

)
∼s

(
q 0
0 0

)
as projections in M2n(A).

Proof. Take E = pAn and E′ = qAn, which are isomorphic since p ∼v q. There exist
F, F′ such that E ⊕ F = An and E′ ⊕ F′ = An. We have E ⊕ (F⊕ An) ≃ A2n, where
F⊕ An ≃ F⊕ E′ ⊕ F′ ≃ F⊕ E⊕ F′ ≃ F′ ⊕ An, thus we get an isomorphism between the
complements of E, E′ in A2n.

Corollary 3.1.10.
V(A) =

⋃
n

proj(Mn(A))/ ∼s .

Proposition 3.1.11. If p, q are projections in Mn(A), such that ∥p− q∥ < 1/4, then p ∼s q.

Proof. Take z = 2pq− p− q + 1. This element satisfies pz = pq and zq = pq. We need z
to be unitary, which can be implied by ∥2pq− p− q∥ < 1. This inequality follows from
∥p− q∥ < 1/4.
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Let φ0, φ1 be two homomorphism from A to B. If there exists a homomorphism

φ̃ : A→ B[0, 1] = { f : [0, 1]→ B continuous}

such that ev0 ◦ φ̃ = φ0 and ev1 ◦ φ̃ = φ1, then φ0,∗ = φ1,∗.

3.2 Lecture 2

If we have C∗-algebras A1
φ1−→ B

φ2←− A2 such that φ1 is surjective, then we have the
fiber product C = A1 ×B A2.

Proposition 3.2.1. Let E1, E2 be finitely generated modules over A1, A2 respectively, and L :
φ1,∗E1 ≃ φ2,∗E2, then

M(E1, E2, L) := {(e1, e2) ∈ E1 × E2 | L(e1 ⊗ 1) = e2 ⊗ 1}

is finitely generated projective, and all finitely generated projective C-modules come this way.

Proof. One can assume that E1 = An
1 and E2 = An

2 , using the complement trick yesterday.

Lemma 3.2.2. If L ∈ GLn(B) has invertible preimage under φ1, thenM(E1, E2, L) ≃ Cn.

Proof of Lemma 3.2.2. Take a basis e1, . . . , en the corresponding basis of E1, and ẽ1, . . . , ẽn of
E2. Let K be the element in GLn(A1) such that φ1(K) = L−1. The elements (∑j Ki,jei, ẽi)

lie inM(E1, E2, L) and generate Cn.

One has

M(An
1 , An

2 , L)⊕M(An
1 , An

2 , L−1) =M(A2n
1 , A2n

2 , diag(L, L−1)).

The projectivity ofM(E1, E2, L) follows from the following lemma, where every matrix
on the right hand side can be lifted to A1:

Lemma 3.2.3. (
L 0
0 L−1

)
=

(
1 L
0 1

)(
1 0
−L−1 1

)(
1 L
0 1

)(
0 −1
1 0

)
.

Now we get a sequence K0(C)
(π1,π2)−−−−→ K0(A1)⊕ K0(A2)

(φ1,φ2)−−−−→ K0(B).

Exercise 3.2.4. This sequence is exact.

We will define a map K1(B) → K0(C) such that this makes a longer exact sequence,
and K1 should come from automorphisms.

Definition 3.2.5. Let A be a unital C∗-algebra. Define K1(A) to be the abelian group⋃
n π0 (GLn(A)), the product defined as

[M1] · [M2] = [M1M2], M1, M2 ∈ GLn(A).

13



Lemma 3.2.6 (Whitehead). If x, y ∈ GLn(A), then(
xy 0
0 1

)
,
(

yx 0
0 1

)
,
(

x 0
0 y

)
,
(

y 0
0 x

)
are all in the same connected component of GL2n(A).

Proof. Idea: using rotations in GL2n(A). Set Rθ =
( cos θ − sin θ

sin θ cos θ

)
and Mθ = diag(y, 1) · R−θ ·

diag(1, x) · Rθ, and Mkπ/2, k = 0, 1, 2, 3 give the matrices in the lemma.

Alternatively, one can define K1(A) by

{[(E, L)] | E is a finitely generated projective module, L ∈ Aut(E)} / ∼,

where (E, L) ∼ (E′, L′) if there exists (F, K) such that (E, L) + (F, K) and (E′, L′) + (F, K)
are homotopic.

3.3 Lecture 3

The boundary map K1(B)→ K0(C) is given by: for L ∈ GLn(B),

∂(L) = [M(An
1 , An

2 , L)]− [Cn].

Example 3.3.1. K1(C(S1)) = Z.

The space A⊗ C(S1) is the space of functions f : S1 → A, which is a C∗-algebra. It is
the fiber product of two copies of A⊗C([0, 1]) over A⊗ A. From the exact sequence,

K1(A) ≃ ker
(

K0(A⊗C(S1))
ev1−→ K0(A)

)
.

Theorem 3.3.2 (Bott).

β : K0(A) ≃ ker
(

K1(A⊗C(S1))
ev1−→ K1(A)

)
[P] ∈ Proj(Mn(A)) 7→ [z 7→ zP + (1− P) ∈ GLn(A)].

Proof of the surjectivity. Suppose f : S1 → GLn(A) such that [ f ] ∈ ker(K1(A⊗ C(S1)) →
K1(A)). We may assume that f (z) = z−m(a0 + za1 + · · · + zm′am′), then [ f ] = [z−m] +

[a0 + · · ·+ zm′am′ ].
Since [z−m] = −m[z] = −mβ(1), now we assume f (z) = a0 + · · ·+ amzm ∈ GLn(A).

Define

µ(z) =


a0 a1 · · · am
−z 1

. . .
−z 1

 .
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Using

1 −am
. . .

1

 µ(z)



1

0 . . .
... . . .
... . . .
0 z · · · z 1


we can assume that f (z) = a0 + za1, and f (1) = a0 + a1 is invertible and homotopic to Id.
So (a0 + a1)

−1 f (z) = (a0 + a1)
−1a0 + z(a0 + a1)

−1a1 = (1− a) + za.
Since f (z) is invertible for any z ∈ S1, if λ ∈ Spec(a), then 1− λ + zλ ̸= 0 for any z ∈

S1. This is equivalent to that Re(λ) ̸= 1/2. Now define g(z) = 0 if Re(z) ≤ 1/2 and 1 if
Re(z) > 1/2, and P = g(a). It suffices to show that β(P) is homotopic to (1− a) + za.

If A is non-unital, we define K0(A) := ker(K0(A+)
a+λ1 7→λ−−−−−→ K0(C) = Z), and K1(A) :=

K1(A+).
Let G be a simply-connected nilpotent Lie group.

• exp : g→ G is a diffeomorphism.

• If h ⊆ g is a Lie subalgebra, then exp(h) is a closed subgroup of G, i.e. connected
subgroups of G are closed.

Goal: classification of unitary irreducible representations of G.
For a closed subgroup H, χ : H → S1 is unitary, and we take Π = IndG

H(χ). If H ⊊ H′,
χ admits an extension to H′. The differential of χ takes values in iR, and χ([h, h]) = 0.

Take ξ : g→ R, and look at B : g× g→ R, (v, w) 7→ ξ([v, w]), which is anti-symmetric.
The kernel of B is {v | B(v, w) = 0, ∀w}. The codimension of ker(B) is even. We look for
h ⊆ g such that

(1) h is a Lie subalgebra;

(2) B(h, h) = 0;

(3) dim h = dim(ker B) + 1
2codim(ker B).

Theorem 3.3.3. There exists such an h (not unique).

Theorem 3.3.4. For such an H, the induction πξ := IndG
H(eiξ) is irreducible and unitary, and

its isomorphism class is independent of the choice of h.

Theorem 3.3.5. All irreducible unitary representations come from this construction.

In conclusion, we have a surjection g∗ → Ĝ.
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3.4 Lecture 4

Theorem 3.4.1 (Kirillov). The map Ad∗(G)\g∗ → Ĝ, ξ 7→ πξ is bijective.

Theorem 3.4.2 (Brown). The map Ad∗(G)\g∗ → Ĝ is a homeomorphism, where the topology
on Ĝ is the Fell topology.

Recall a subquotient of A is I/J for ideals I ⊆ A, J ⊆ I.

Theorem 3.4.3. There is a bijection between locally closed subsets of Â, and isomorphism classes
of subquotients of A.

Remark 3.4.4. Given an irreducible unitary representation π : I → B(H), one can extend
it uniquely to A→ B(H).

Recall that if π : A→ U(H) is a unitary representation, then

supp(π) =
{
[π′]

∣∣ ker(π) ⊆ ker(π′)
}

.

Theorem 3.4.5. Let h be a subalgebra of g and ℓ : h→ R a linear map such that ℓ|[h,h] = 0, then

supp(IndG
H eiℓ) = Ad∗(G) {ξ ∈ g∗ | ξ|h = ℓ}/Ad∗(G).

Particularly, if ℓ = 0, then

supp(L2(G/H)) =
⋃

g∈G
(ghg−1)⊥/Ad∗(G).

Theorem 3.4.6. (1) S(G) is a ∗-subalgebra of C∗(G).

(2) S(G) is closed under smooth functional calculus.

(i) If f ∈ S(G) and g : U → C, g(0) = 0 holomorphic on an open neighborhood of
Spec( f ), then g( f ) ∈ S(G).

(ii) If f ∈ S(G) is normal and g : W → C smooth on an open neighborhood of Spec( f )
and g(0) = 0, then g( f ) ∈ S(G).

Definition 3.4.7. A C∗-algebra A is called liminal (or CCR) if for any [π] ∈ Â, π(A) =
K(Hπ), and is of type I if for any [π] one has K(H) ⊆ π(A).

Theorem 3.4.8 (Dixmier). C∗G is liminal. In fact if f ∈ S(G) and π ∈ Ĝ, then π( f ) is a trace
class operator:

Tr π( f ) =
∫
O

f̂ ◦ exp dµ,

where O ⊆ g∗ is the corresponding co-adjoint orbit.
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IfO ⊂ g∗ is a co-adjoint orbit, thenO is a symplectic smooth manifold: fix ξ ∈ O, then
O ≃ G/Stab(ξ) and TξO = g/ ker Bξ . O is also a closed subset of g∗, which is equivalent
to that Ĝ is T1 (consequence of C∗G being liminal). There exists a measure µ on Ĝ such
that for any f ∈ S(G),

f (1) =
∫

Ĝ
Tr(π( f )) dµ(π).

If we replace f with f ∗ ⋆ f , then∫
G
| f (g)|2dg =

∫
Ĝ
∥π( f )∥2

HSdµ(π).

Theorem 3.4.9 (Beltita-Beltita-Ludwig). (Fourier transform of C∗-algebras of nilpotent Lie
groups) There exist ideals 0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ In = C∗G corresponding to Ĝ = V1 ∪ · · · ∪Vn
with each subset locally closed is Hausdorff, such that

Ii+1/Ii ≃ C0(Vi)⊗K(H).

All H’s have infinite dimension, except one.

Conjecture 3.4.10. If J ⊆ I ⊆ C∗G such that Î/J is Hausdorff, then I/J is Morita equivalent to
C0( Î/J).

4 Hang Wang: Group C∗-algebras and their K-theory

The aim is Connes-Kasparov isomorphism as K-theoretic Mackey analogy.

4.1 Lecture 1

4.1.1 What is Mackey analogy?

Let G be a connected Lie group, and K the maximal compact subgroup of G. Let g and
k be their real Lie algebras. The space g/k is a metric space and an abelian group. For any
k ∈ K, we have the adjoint action Ad(k) on g/k.

Definition 4.1.1. The motion group is defined to be

G0 := K ⋉ (g/k), (k1, v1) · (k2, v2) = (k1k2, Adk−1
2
(v1) + v2).

Example 4.1.2. For G = SL(2, R) and K = SO(2, R) ⊆ G, k =
{( 0 t
−t 0

) ∣∣ t ∈ R
}
⊆ g, and

g/k =
{(

a b
b a

) ∣∣ a, b ∈ R
}
≃ R2. The action of

( cos θ sin θ
− sin θ cos θ

)
on (a, b)T ∈ g/k is the natural

one. The motion group G0 = SO(2)⋉ R2 is the group of rigid motions.

Mackey analogy is a prediction of a 1-1 correspondence between:

Ĝt = { tempered representations }/ ≃

and Ĝ0 (unitary dual).
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4.1.2 Structure of the unitary dual of G0

Let K be a compact Lie group, X an abelian group, and α : K → Aut(X). One studies
the unitary dual of K̂ ⋉ X. The unitary dual X̂ is isomorphic to X∗ = Hom(X, U(1)). For
φ ∈ X̂, take Kφ = {k ∈ K | φ(k.x) = φ(x), ∀x ∈ X} to be the isotopy subgroup.

Remark 4.1.3. When G is complex semisimple, Kφ is connected.

Given φ ∈ X̂ and (τ, Wτ) ∈ K̂φ, we construct the following representation of Kφ ⋉ X:

τ ⊗ φ : Kφ ⋉ X → GL(Wτ)

(k, x) 7→ φ(x)τ(k).

Induce τ ⊗ φ to G0:
πτ,φ := IndK⋉X

Kφ⋉Xτ ⊗ φ.

Theorem 4.1.4 (Mackey). Let G be complex semisimple and X = g/k. The representation πτ,φ

lies in Ĝ0, and the map ⊔
φ∈X̂

K̂φ → Ĝ0, (τ, φ) 7→ πτ,φ

is surjective. Moreover, πτ1,φ1 ≃ πτ2,φ2 if and only if there exists k ∈ K such that φ2(x) =
φ1(k.x) and τ2 = τ1 ◦Ad(k).

In summary,

K̂ ⋉ X ≃

 ⊔
φ∈X̂

K̂φ

 /K.

Now let X = g/k. In the following we assume that G is connected complex semisimple.
We use the Iwasawa decomposition G = KAN, where A is the abelian component, and
N is the unipotent subgroup. Let M be the centralizer of A in K, and B = MAN the Borel
subgroup.

Example 4.1.5. If G = SL(3, C), we have: K = SU(3),

A = {diag(x1, x2, x3) | x1 > 0, x1x2x3 = 1} ≃ R2,

M =
{

diag(eiθ1 , eiθ2 , eiθ3)
∣∣∣ θi ∈ R, θ1 + θ2 + θ3 = 0

}
≃ (S1)2,

and N =
{( 1 ∗ ∗

1 ∗
1

)}
.

We write X as a ⊕ a⊥. For φ ∈ (g/k)∗, there exists a w in the Weyl group W :=
NK(M)/M such that φ′ = φ ◦Ad(w) has zero restriction to a⊥, called the balanced charac-
ter. The character φ′ can be identified with φ′|a ∈ â.

Remark 4.1.6. For a balanced character φ′, then for any k ∈ M ⊆ K, k.x = x for any x ∈ a,
thus k ∈ M ⊆ Kφ. Hence M is a maxiaml torus of Kφ.
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If K is a general connected compact Lie group with a maximal torus T, then K̂ ≃ T̂/W,
where W is the Weyl group. Applying this to Kφ, we have K̂φ = M̂/Wφ, where Wφ =
W(Kφ, M).

Theorem 4.1.7.
Ĝ0 = ̂K ⋉ (g/h) =

⊔
φ∈â/W

M̂/Wφ = (M̂× â)/W.

4.1.3 Tempered dual of G

Assume that G is complex semisimple with Iwasawa decomposition G = KAN.

Definition 4.1.8. For σ ∈ M̂ and φ ∈ Â, the principal series associated to (σ, φ) is

Pσ,φ := IndG
MANσ⊗ φ⊗ 1.

Under our assumption, Pσ,φ is irreducible, and Pσ1,φ1 ≃ Pσ2,φ2 if and only if there exists
w ∈ W = NG(MA)/MA such that w(σ1, φ1) = (σ2, φ2). All tempered representations of
G are such principal series.

Theorem 4.1.9. (
M̂× Â

)
/W ≃ Ĝt, (σ, φ) 7→ Pσ,φ.

Via the exponential map a→ A, one has Ĝ0 ≃ Ĝt.

Example 4.1.10. For G = SL(3, C), M̂ ≃ Z2 and Â ≃ R2. The tempered dual Ĝt is (M̂×
Â)/W. A fundamental domain of M̂/W is

{
(m1, m2) ∈ Z2

∣∣m2 ≥ m1 ≥ 0
}

, and

Ĝt ≃
( ⊔

m2>m1>0
R2

)
⊔
( ⊔

m2=m1 or m1=0
R2/Z2

)
⊔ (R2/S3)(0,0).

4.2 Lecture 2

4.2.1 Cartan decomposition

Let G be a non-compact semisimple Lie group with finite center. Let K be a maximal
compact subgroup of G, then:

(1) There is a homomorphism Θ : G → G with θ = dΘ : g→ g such that Θ2 = Id. This
homomorphism is called a Cartan decomposition.

(2) Let k and p be the 1,−1 eigenspaces of θ. Then we have g = k⊕ p, and we call (k, p)
a Cartan pair.

(3) The morphism K× p→ G, (k, X) 7→ k exp X is a diffeomorphism. We write G = KP.

Example 4.2.1. • If G is a complex semisimple Lie group, then p = k+ ik and θ(g) =
−gT. For instance, if G = SL(2, C), then k = su(2).
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• If G = SL(2, R), then sl(2) = k⊕ p, where p consists of symmetric matrices. In this
case, θ(g) = −gT.

The motion group G0 = K ⋉ (g/k) = K ⋉ p, and we can view p as the tangent space of
G/K.

The Killing form B(x, y) = Tr(ad(x) ◦ ad(y)) is positive definite, and makes G/K a
G-invariant Riemannian manifold.

4.2.2 Tangent groupoid (family of groups connecting G and G0)

Define G = K × p × [0, 1] to be a family of groups with parameter t ∈ [0, 1], with
multiplication defined for each t:

• When t = 0, (k1, v1) ◦0 (k2, v2) := (k1k2, Ad(k−1
2 )v1 + v2), thus G0 = G0.

• When t > 0, we first define a diffeomorphism φt : K× p → G, (k, X) 7→ k exp(tX).
Set

(k1, v1) ◦t (k2, v2) := φ−1
t (φt(k1, v1) ◦ φt(k2, v2).)

Exercise 4.2.2. (k1, v1) ◦t (k2, v2)
t→0−−→ (k1, v1) ◦0 (k2, v2).

Remark 4.2.3. We can perform this construction whenever there is a submanifold inclusion
S ⊆ M. For each t > 0, the fiber is N, and the fiber at t = 0 is the normal bundle N(S, M).
If we take N to be M × M with M = M∆ ⊆ N, the fiber at t = 0 is TM. A sequence
(xn, yn, tn) ∈ M×M× (0, 1] tends to (Xx, 0) ∈ TM if yn−xn

tn
→ Xx.

Remark 4.2.4. We have a diffeomorphism

K× a× n→ G
(k, X, Y) 7→ k exp X exp Y.

Using this we can perform a similar thing K × a× n× [0, 1] → G. When t > 0, it sends
(k, X, Y, t) to k exp(tX) exp(tY), and when t = 0, it sends that to (k, X + Y, 0).

4.2.3 Continuous field of C∗-algebras

We write the fiber of G over t as Gt. Take the completion of Cc(Gt), and we get C∗r (Gt).
Consider continuous sections in this family, i.e. f : [0, 1] → {C∗r (Gt)}t∈[0,1] such that t 7→
∥ f (t)∥C∗r (Gt) is continuous. We define

∥ f ∥ := sup
t∈[0,1]

∥ f (t)∥C∗r (Gt).

The completion of continuous sections in this norm becomes a C∗-algebra, denoted by
C∗r G[0,1].

The evaluation map ev0 sending f ∈ C∗r G[0,1] to f (0) is a C∗-algebra homomorphism,
and we denote its kernel by C∗r G(0,1]. We have a short exact sequence:

0→ C∗r G(0,1] → C∗r G[0,1] → C∗r (G0)→ 0.
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For any f in the kernel, one can construct a homotopy H(t, s) = f (st) between 0 and f (t),
thus the K-theory of C∗r G(0,1] is 0. On the K-theory level, the algebras C∗r G[0,1] and C∗r (G0)

are the same, thus K1(C∗r (G0))
ev0←−
≃

K1(C∗r G[0,1])
ev1−→ K1(C∗r (G)). This also exists for i = 2.

Connes-Kasparov morphism states that Ki(C∗r (G0)) ≃ Ki(C∗r (G)). The point is that the
K-theory of C∗r (G0) is easy to compute. One has

Ki(C∗r (G0)) ≃ Ki

(
C0(p

∗, K(L2(K))K)
)

≃ Ki(C0(p
∗)⋊ K)

≃ KK
i (C0(p

∗))

≃ Ki
K(p
∗).

In certain nice situation, this is isomorphic to Ki+dim p∗

K (pt) 1, and isomorphic to the rep-
resentation ring R(K) if r + dim p∗ is even.

4.3 Lecture 3

4.3.1 Some calculation of K(C∗r (G))

Let G = KAN be a complex simisimple Lie group, then

C∗r (G) ≃ C0(M̂× Â, K(L2(K)))W ≃
⊕

σ∈M̂/W

C0(Â/Wσ, K(IndG
M Hσ)),

where Wσ = {w ∈W |wσ ≃ σ}. This C∗-algebra is Morita equivalent to⊕
σ∈M̂/W

C0(Â/Wσ),

thus Ki(C∗r (G)) ≃ ⊕σ∈M̂/W Ki(Â/Wσ).

Set Â ≃ Rn. If Wσ = 1, then Ki(Rn)
Bott periodicity−−−−−−−−→

≃
Ki+n(pt) equals Z if i ≡ n mod 2,

and 0 otherwise.
Example 4.3.1. Let G = SL(3, C), then A ≃ R2, M ≃ (S1)2, W ≃ S3. The fundamental
domain M̂/W =

{
(m1, m2) ∈ Z2

∣∣m2 ≥ m1 ≥ 0
}

. We have

K0(C∗r (SL(3, C))) ≃
⊕

m2≥m1≥0
K0(R2/Wσ) ≃

⊕
m2>m1>0

Z,

since K0(half plane) = 0, and trivial K1.
Example 4.3.2. Let G = SL2(C), then M ≃ Z, A ≃ R, W = Z/2Z and we have

K1(C∗r (SL(2, C))) ≃
⊕

m
K1(R/Wm) = K1(R/W)⊕

⊕
m>0

K1(R) =
⊕
m>0

Z,

and trivial K0.
1Here the subscript K means K-equivariant.
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Now instead of a general real reductive group, we look at SL(2, R). In this case, we
have two parabolic subgroups: the Borel P1 and P2 = G.

C∗r (SL(2, R)) ∼M

 ⊕
σ∈(M̂2)ds

C

⊕C0(R/Z2)⊕C0(R)⋊ Z2.

Considering the K-theory:

K0(C∗r (SL(2, R))) =

 ⊕
σ∈Ĝds

Z

⊕Z.

Here we use K0(C0(R)⋊ Z2). The algebra C0(R)⋊ Z2 has a model

A = { f : [0, ∞)→ M2(C) | f (∞) = 0, f (0) = ( ∗ ∗ )} .

Take A0 = { f ∈ A | f (0) = f (∞) = 0}, which is Morita equivalent to C0(0, 1). The evalu-
ation map ev0 gives a short exact sequence:

0→ A0 → A
ev0−→ C2 → 0

is used to calculate K0(A).

4.3.2 K(C∗r (G0))

Recall that given f ∈ Cc(G), one can define the generalized Fourier transform

f̂ : Ĝ → {B(Hσ)}π∈Ĝt
,

f̂ (π) =
∫

G
f (g)π(g)dg.

We have G0 = K ⋉ p. We define the Fourier transform

C∗r (G0)
≃−→ C0(p

∗, K(L2(K)))K,

f 7→ f̂ (φ)(k1, k2) :
∫
p

f (k1k−1
2 x)φ(k−1

2 (x))dx,

where we identify an operator with its integral kernel. For any h ∈ K, f̂ (h−1φ)(k1h, k2h) =
f̂ (φ)(k1, k2). For the right hand side,

C0(p
∗, K(L2(K)))K ≃ C0(p

∗)⋊ K.

If K acts on X trivially,

C(X, K(L2(K)))K = C(X)⊗K(L2(K))K = C(X)⊗C∗r (K) ≃ C(X)⋊ K,

In Lecture 2, we have Ki(C∗r (G0)) ≃ K under some nice conditions: where nice means
K-action on p∗ preserves the orientation. In this situation, the K-action factors through
K → SO(p∗). Assume this lifts to K → Spin(p∗), then

Kdim p∗

K (p∗) ≃ R(K).

Remark 4.3.3. Removing the conditions, we refer to a paper of Echterhoff-Pfante.
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4.4 Lecture 4
Let G be a complex semisimple Lie group and G0 = K ⋉ p the motion group. We have

Ĝt =
⊔

τ∈M̂/W

Â/Wσ,

with W = NG(MA)/MA, and
Ĝ0 =

⊔
σ∈M̂/W

â/W,

with W = NK(M)/M.

Definition 4.4.1. For τ ∈ K̂, it is a K-type for π ∈ Ĝ if it appears in the decomposition
of π|K. A K-type τ of π is called a minimal K-type if the highest weight of τ is minimal
among all K-types.

For any σ ∈ M̂, we have

Ĝt =
⊔

τσ∈K̂

Cσ, Ĝ0 =
⊔

τσ∈K̂

Cσ,

where Cσ (resp. Cσ) is the set consisting of π with minimal K-type τσ.

4.4.1 Compact group representation

Let K be a compact Lie group. The Fourier transform gives a C∗-algebra homomor-
phism:

C∗r (K)→ C0(K̂, {Mdπ
(C)}π∈K̂), C(K) ∋ f 7→ f̂ (π) =

∫
K

f (k)π(k)dk.

For (π, Hπ) ∈ K̂, let u, v ∈ Hπ, and we define ϕu,v(x) := ⟨π(x)u, v⟩. If e1, . . . , edπ
is an

orthogonal normal basis of Hπ, we set πi,j = ϕei,ej and π(x) =
(
πi,j(x)

)
1≤i,j≤dπ

. We have
the orthogonal relation: ∫

K
πi,j(x)πi′,j′(x)dx =

1
dπ

δi,jδi′,j′ .

Let e1 be a unit vector in the highest weight space of π. The matrix coefficient pπ :=
dππ1,1 ∈ C(K) is an idempotent in C∗(K), and∫

K
pπ(x)pπ′(x)dx = dπδπ,π′ .

For τ ∈ K̂, then p̂τ(ηi,j) =
∫

K pτ(x)ηi,j(x)dx = δτ,ηδi,1δj,1. So p̂τ = (0, . . . , (E11)π=τ, . . . , 0).
Under the Fourier transform, the subalgebra C∗(K)pτC∗(K) correspond to

Mdτ
(C)E1,1Mdτ

(C) = Mdτ
(C).

The subalgebra C∗(K)pτC∗(K) is Morita equivalent to pτC∗(K)pτ. Observe that under
the Fourier transform, pτC∗(K)pτ becomes E11Mdτ

(C)E11 ≃ C.
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4.4.2 Idea of proof

Let M ⊆ K be the maximal torus, then M̂/W is in bijection with K̂. For any σ ∈ M̂/W,
we get a projection pτσ ∈ C∗r (K). Consider the subalgebra C∗r (G)pτσC∗r (G) ⊆ C∗r (G). It
corresponds to the component Â/Wσ, i.e. equals C0(Â/Wστ , K(Hστ))

Fact: For σ ∈ M̂, φ ∈ Â, pσ,φ ∈ Ĝt has lowest K-type τσ. The representation πσ,φ =

IndK⋉a
Kφ⋉a(σ⊗ φ) ∈ Ĝ0 has lowest K-type τσ.

The subalgebra C0(Â/Wσ, K(Hσ)) is Morita equivalent to pτσC∗r (G)pτσ , which be-
comes C0(Â/Wσ) under the Fourier transform.

In order to show K0(C∗r (G0)) ≃ K0(C∗r (G)), it is equivalent to show that

ev1 :
⊕

σ∈M̂/W

K0(Cσ) = K0(C∗r (G[0,1]))
≃−→ K0(C∗r (G)) =

⊕
σ∈M̂/W

K0(Cσ).

Using the Morita equivalence,

K0(Cσ) ≃ K0(Cσ pσCσ)
≃−−−→

Morita
K0(pσCσ pσ) ≃ K0 (C0(â/Wσ)× [0, 1]) ,

and on the other side similarly K0(Cσ) ≃ K0(C0(Â/Wσ)).

5 Erik Van Den Ban: Harmonic analysis on non-Riemannian
symmetric spaces

There are a lot of details missing in this note! It is painful to take the notes, and the
slides can be found in the website of trimester program.

5.1 Lecture 1

Settings:

• G real connected semisimple Lie group with finite center

• σ involution of G

• Gσ the fixed group of σ

• H ⊆ Gσ open subgroup

• X = G/H semisimple symmetric space

• σ∗ = dσ : g→ g infinitesimal involution

One has the decomposition g = h⊕ q as eigenspaces of σ. The tangent space Te(X) ≃
g/h ≃ q, and the Killing form of q makes X a pseudo-Riemannian symmetric space.

Example 5.1.1. • Riemannian case: σ a Cartan involution, H = K, q = p.
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• Group case: G = G′ × G′, H = (G′)∆, and G acts on G′ by (x, y)g = xgy−1, G′ ≃
G/H.

• Hyperbolic case.

Lemma 5.1.2. There exists a Cartan involution θ of g that commutes with σ. The composition θσ
is also an involution.

Theorem 5.1.3. The map K × (p ∩ q)× (p ∩ h) → G, (k, X, Y) 7→ k exp X exp Y is a diffeo-
morphism.

Corollary 5.1.4. The map K× (p∩ q)→ G induces a diffeomorphism G/H ≃ K×K∩H (p∩ q),
which is a vector bundle over K/K ∩ H with fiber p∩ q.

If σ = θ, G/K ≃ K×K p = {∗} × p.

Theorem 5.1.5. There are finitely many Ad(H)-conjugacy classes of Cartan subspaces of q. They
all have the same dimension, called the rank of G/H.

Fix aq ⊂ p∩ q a maximal abelina subspace.

Lemma 5.1.6. Σ =
{

α ∈ a∗q \ {0}
∣∣ gα ̸= 0

}
is a possibly non-reduced root system.

Fix Σ+ positive system and ∆ simple roots, and take W = W(aq) the Weyl group.

Definition 5.1.7. WK∩H := the image of NK∩H(aq) in W.

Put gα± := gα ∩ g±, eigenspaces of σθ, and m±α the dimension. G+ := Gσθ is reductive,
and Σ+ is a root system of (g+, aq). Define Σ+

+ and W+.

Remark 5.1.8. W+ ⊆WK∩H is an equality if and only if H is essentially connected.

Definition 5.1.9. Define a
reg
q to be W.a+q , and also a

reg
q,+ := WK∩Ha

+
q,+.

Lemma 5.1.10. G = KA+
q,+H, with unique A+

q,+-part.

Corollary 5.1.11. The space X+ = KAreg
q H is an open dense subset of X.

SupposeW ⊂ NK(aq) is finite, then

X+ =
⊔

v∈W
KA+

q vH ⇔W 1−1−−→W/WK∩H.

Definition 5.1.12. Define gd ⊆ gC by g+ ⊕ ig−.

Put kd := hC ∩ gd, pd := gC ∩ qd, then gd = kd ⊕ pd is a Cartan decomposition, with
θd = σC|gd . Put σd := θC|gd and hd := kC ∩ gd, qd := pC ∩ gd.

We construct a duality (g, σ, θ)↔ (gd, σd, θd).

Example 5.1.13. The dual space of GL(n, R)/ O(n) is U(n)/ O(n), and in the group case,
the dual of a compact Lie group G = (G× G)/G∆ is GC/G, where GC is the complexifi-
cation of G.
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Definition 5.1.14. Let D(G/H) be the space of linear partial differential operators on
C∞(G/H), and D(G/H) its H-invariant subspace.

We have a map R : U (g) → EndC(C∞(G)), and it induces r : U (g)H ↠ D(G/H),
Suppose that G ⊆ GC, and let Gd, Kd be the analytic subgroups of GC with Lie algebras
gd, kd. One has U (g)H = U (gd)Kd

. There exists a unique homomorphism of algebras
D(G/H) → D(Gd/Kd), D 7→ dD commuting with the identity of U , and it is an isomor-
phism.

We have the Harish-Chandra isomorphism: γd : D(Gd/Kd)
≃−→ P(ad,∗)W(gd,ad).

5.2 Lecture 2

When H is reductive, X = G/H has a left invariant measure dx and L2(G/H, dx)
carries the left regular representation Lg φ(x) = φ(g−1x). A goal of the harmonic analy-
sis is to study the Plancherel decomposition of L2(G/H) in terms of irreducible unitary
representations.

5.2.1 Basic representation theory

Setting: V is Fréchet (or complete locally convex space).
For a continuous representation (π, V), the space V∞ of smooth vectors is a represen-

tation of U (g). The subspace of K-finite smooth vectors V∞ ∩VK is dense in V.

Definition 5.2.1. For δ ∈ K̂, define V[δ] to be the image of Vδ ⊗ HomK(Vδ, V). Then
VK = ⊕δ∈K̂V[δ]. A representation V is admissible if dim V[δ] < ∞ for any δ ∈ K̂.

Lemma 5.2.2. If V is admissible, then VK ⊆ V∞ (and this is a (g, K)-module).

Lemma 5.2.3. If (π, V) is admissible, then VK is an admissible (g, K)-module. Furthermore,

(1) the map W 7→ W ∩VK defines a bijection between the closed invariant subspaces of V and
VK. The inverse is given by taking the closure.

(2) (π, V) is irreducible if and only if VK is irreducible.

Definition 5.2.4. A Harish-Chandra module is a finitely generated admissible (g, K)-module.

A motivating result of Harish-Chandra: suppose that (π,H) is irreducible unitary,
then π is admissible. Two irreducible unitary representations are equivalent if their asso-
ciated (g, K)-modules are equivalent.

Define Z = Z(g) to be the center of U (g).

Theorem 5.2.5 (Harish-Chandra). Let (π,H) be irreducible unitary. Then π is quasi-simple,
i.e. Z acts by scalars on V∞ (through an infinitesimal character χ ∈ Ẑ).
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5.2.2 Back to D(G/H)

For D ∈ D(G/H), we can define its formal adjoint D′ ∈ D(G/H).

Theorem 5.2.6. If D = D′, then D is essentially self-adjoint with operator core L2(X)∞.

Definition 5.2.7. A discrete series of G/H is an irreducible unitary G-representation (π,H)
that admits G-equivariantH → L2(G/H). For ξ ∈ (G/H)∧ds, we denote the isotopic space
by L2(G/H)ξ .

Lemma 5.2.8. R induces an injective homomorphism Z ↪→ D(G/H). Accordingly, D(G/H) is
a finite Z-module.

For each ξ, one can decompose the finite D(G/H)-module L2(G/H)∞
ξ,K into a direct

sum of (g, K)-submodules on which D(G/H) acts by scalars.
For χ ∈ D(G/H)∧, put ξχ(G/H) the space of smooth eigenfunctions of χ. Our goal is

for each χ to describe the irreducible (g, K)-submodules of ξχ(G/H)K ∩ L2(G/H)∞. The
idea of Flensted-Jensen is to use the duality G/H ↔ Gd/Kd.

For simplicity, assume G ⊆ GC and define Gd, Kd, Hd as Lie subgroups of GC with
corresponding Lie algebras.

Recall that G+ = exp(p ∩ q)(K ∩ H) is contained in G ∩ Gd. For f ∈ C∞(G/H)K and
x ∈ G+, the function k 7→ f (kx) has a unique analytic extension to fx : KC → C.

Theorem 5.2.9 (F-J). There exists a unique map C∞(G/H)K → C∞(Gd/Kd)Hd , f 7→ d f such
that

• d f = f on G+,

• for all x ∈ G+, h ∈ Hd, d f (hx) = fx(h).

For all D ∈ D(G/H), d(D f ) = dDd f .

Corollary 5.2.10. The duality f 7→ d f fives ξχ(G/H)K ↪→ ξdχ(G
d/Kd)Hd , where dχ is defined

by dχ(dD) = χ(D).

5.2.3 Poisson transform on G/K

Setting: G = KAN and the minimal parabolic P = MAN. For λ ∈ a∗C, define χλ(D) =
γ(D, λ) = (γ(D)) (λ), which is a character in D(G/H)∧. Denote ξχλ

(G/K) by ξλ(G/K).
For ξ ∈ a∗C, set aξ := eξ(log a), a ∈ A.

For λ ∈ a∗C, we define πλ = IndG
P (1⊗ (−λ)⊗ 1) to be

C0(G/P;−λ) =
{

f ∈ C0(G)
∣∣∣ f (gman) = aλ−ρP f (g)

}
with the action πλ(g) f (x) = f (g−1x).

Definition 5.2.11. The Poisson transform Pλ : C0(G/P;−λ)→ C∞(G/K) is defined by

Pλ φ(x) =
∫

K
φ(xk)dk, x ∈ G.
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Lemma 5.2.12. Pλ maps C0(G/P;−λ) into ξλ(G/K), and intertwines πλ with L.

The Poisson transform Pλ factors through res : C0(G/P;−λ)
≃−→ C(K/M), and we

still denote that by Pλ.

Definition 5.2.13. B′(K/M) := [Cω(K/M)dk]′ (hyperfunctions in K/M) 2.

Theorem 5.2.14 (Helgason’s conjecture; proved by Kashiwara-Kowata-Minewasa-Oshi-
ma-Okamoto-Tanaka). Pλ admits a unique extension to a continuous linear map B′(K/M)→
ξλ(G/K), which intertwines πλ and L. For ρ(λ) ̸= 0, this extension is a topological linear
isomorphism.

Theorem 5.2.15. rank G/H = rank K/K ∩ H implies that (G/H)∧ds ̸= ∅.

Theorem 5.2.16 (Oshima-Matsuki,1982). (G/H)∧rs ̸= ∅⇔ rank G/H = rank K/K ∩ H.

5.3 Lecture 3

5.3.1 Parabolic induction

Definition 5.3.1. A parabolic subgroup of G is a subgroup P such that P = NG(Lie(P)).

Given such a P, take a maximal abelian a ⊆ g, Σ+(g, a) the positive system, M = ZK(a)
and we have the Iwasawa decomposition G = KAN. The group P0 = MAN is a minimal
parabolic subgroup. One has K ∩ P0 = M, G = KP0 ≃ K ×M P0 and k ⊆ g induces
a diffeomorphism K/M ≃ G/P0. Every parabolic subgroup of G is K-conjugate to a
standard parabolic subgroup.

For a parabolic Q ⊆ G, set M1,Q = Q ∩ θ(Q). The parabolic Q decomposes as Q =
M1,QNQ. Set aQ = Z(m1,Q) ∩ p and AQ = exp aQ. We have M1,Q = MQ AQ = ZG(aQ).
THe Langlands decomposition of Q is Q = MQ AQNQ.

Let P(A) to be set of parabolic subgroups containing A, and

Definition 5.3.2. Given Q ∈ P(A), define

a+Q =
{

X ∈ aQ
∣∣ α(X) > 0, ∀α ∈ Σ(nQ, aQ)

}
.

For X ∈ a, define Σ(X) = {α ∈ Σ | α(X) > 0}.

Remark 5.3.3. Set X ∼ Y if Σ(X) = Σ(Y), and this defines an equivalence relation on a.

Lemma 5.3.4. Q 7→ a+Q gives a bijection from P(A) to a/ ∼. The inverse is given by Φ 7→
PΦ = M1,ΦNΦ, where M1,Φ = ZG(Φ), nΦ = ∑α∈Σ,α|Φ>0 gα.

The classes a/ ∼ are facets, where G has the smallest dimension, and minimal parabol-
ics have the maximal dimension.

Remark 5.3.5. • P ⊆ Q⇔ a+P ⊇ a+Q;

2Here C∞(K/M)dk stands for the space of real analytic densities.
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• a+wPw−1 = w(a+P ), w ∈W(Σ).

Given:

• ξ ∈ M̂P, λ ∈ ia∗P ↪→ ÂP;

• ξ ⊗ λ is a unitary representation of M1,P.

• The unitary induction: IndG
P (ξ ⊗ λ).

The space of the unitary induction is

L2(P; ξ; λ) :=
{

f ∈ L2(G,HP)loc

∣∣∣ f (manx) = aλ+ρP ξ(m)−1 f (x)
}

.

This representation is unitary for λ ∈ iaP, and

L2(P; ξ; λ)× L2(P, ξ,−λ)→ C

( f , g) 7→
∫

K
⟨ f (k), g(k)⟩dk

is G-equivariant.
The restriction gives a topological linear isomorphism

L2(P; ξ; λ) ≃ L2(K; ξ|K∩MP) = IndK
K∩MP

(ξ|K∩MP).

Theorem 5.3.6. L2(P; ξ; λ)∞ = C∞(P; ξ, λ).

Define the dual C−∞(P; ξ; λ) = C∞(P; ξ;−λ)′ ←↩ C∞(P; ξ; λ).
The idea is to construct j ∈ C−∞(P; ξ; λ)H, then have G-matrix coefficient

mj : C∞(P; ξ;−λ) ↪→ C∞(G/H).

On open orbit PvH ⊆ G, one must have j|PvJ ∈ C∞(PvH,H−∞
ξ )H and

Consider parabolic subgroups stable under σθ.
I am lost here.

5.4 Lecture 4

Definition 5.4.1. The unnormalized Fourier transform u f̂ of f ∈ C∞(G/H) is defined by

u f̂ (P, ξ, λ) :=
∫

G/H
f (x)πP,ξ,λ(x)j(P, ξ, λ)dx ∈ VP(ξ)

∗ ⊗C∞(K; ξ|KP).

Example 5.4.2. If H = K, f̂ (P∅, 1, λ) = πP∅,1,λ( f )1P∅,λ.

The Fourier transform intertwines L with 1⊗ πP,ξ,λ.

Theorem 5.4.3 (Plancherel identity). For f ∈ C∞
c (G/K),

∥ f ∥2
L2(X) = ∑

P∈Pσ

[W : W∗P] ∑
ξ∈X∧P,∗,ds

∫
ia∗P,q

∥u f̂ (P, ξ, λ)∥2
HSdµP,ξ(λ).
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Remark 5.4.4. VP(ξ) plays the role of multiplicity space.

Suppose that P ∈ Pσ(Aq), ξ ∈ M̂P and ξ has real infinitesimal character.

Theorem 5.4.5 (Knapp-Stein, Vogan-Wallach). There is a unique meromorphic family:

a∗P,C ∋ λ 7→ A(P, P, ξ, λ)

of intertwining operators πP,ξ,λ → πP,ξ,λ such that for ⟨Re(λ), α⟩ >> 0 for each α, then for
f ∈ C∞(P; ξ; λ),

A(Q, P, ξ, λ) f (x) =
∫

NP∩NQ

f (nx)dn.

Remark 5.4.6. A(P, P, ξ, λ) ◦ A(P, P, ξ, λ) = η(P, P, ξ, λ) · Id, with η(P, P, ξ, ·) a meromor-
phic function.

Lemma 5.4.7. η(P, P, ξ, λ) ≥ 0 for λ ∈ ia∗P.

The Plancherel measure dµP,ξ(λ) is η(P, P, ξ, λ)−1 · dµP(λ), where dµP is the Lebesgue
measure on ia∗P.

Definition 5.4.8. We normalize j by

j◦(P, ξ, λ) := A(P, P, ξ, λ)−1 j(P, ξ, λ),

and define f̂ as u f̂ but with j◦ in place of j.

Corollary 5.4.9. For f ∈ C∞
c (G), f̂ (P, ξ, λ) = A(P, P, ξ, λ)−1u f̂ (P, ξ, λ).

Theorem 5.4.10 (Normalized Plancherel indentity). For f ∈ C∞
c (G/H),

∥ f ∥2
L2(X) = ∑

P∈Pσ

[W : W∗P] ∑
ξ∈X∧P,∗,ds

∫
ia∗P,q

∥ f̂ (P, ξ, λ)∥2
HSdµP(λ).

5.5 Lecture 5
I give up...

6 Toshiyuki Kobayashi: Basic questions in group-theoretic
analysis on manifolds

(1) Is representation theory useful to the global analysis on the G-manifold X? Does the
group sufficiently control the space of functions?

(2) What can we say about the “spectrum” on L2(X)?
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Given a G-manifold X, G acts on C∞(X) and L2(X, νX), where νX is a G-invariant Radon
measure. More generally, L2(X) is defined by using the half-density bundle or a multi-
plier representation built on the cocycle c(g, x) where g∗νX = c(g, x)νX.

For any unitary representation Π, one has

Π ≃
∫ ⊕

Ĝ
mππdµ(π),

where m : Ĝ →N∪ {∞}.
• Smallest units of representations: irreducible ones;

• Smallest units of Lie groups: 1-dim abelian groups and simple Lie groups;

• Reductive Lie groups “are” products of abelian groups and simple Lie groups.

6.1 Spectral analysis

Let X be a (pseudo-)Riemannian manifold with a G-action.

• Spectral analysis of ∆X: L2(X) ≃
∫
Hλdτ(λ);

• Representation theory: Plancherel decomposition. This induces the spectral decom-
position if mπ ≤ 1.

Example 6.1.1. O(n + 1) acts on Sn, O(n, 1) acts on Hn (hyperbolic), and O(p, q) acts of the
space of forms (pseudo-Riemannian).
Hint for rigorous formulation. In group representations:

• strong point: can distinguish inequivalent irreducible representations even they are
infinite-dimensional.

• weak point: multiplicity.

For π ∈ Irr(G), consider the multiplicity dim HomG(π, C∞(X)) (infinite, finite, bounded,
multiplicity free).

Let GC be a complex reductive Lie group and B a Borel subgroup of GC. Suppose that
GC acts on a connected complex manifold XC.

Definition 6.1.2. XC is spherical if B has an open orbit in XC.

Example 6.1.3. Grassmannian varieties, flag varieties and symmetric spaces.
For reductive G ⊇ H, consider X = G/H.

Theorem 6.1.4. The followings are equivalent:

(1) (Global analysis and representation theory) There exists C > 0 such that

dim HomG(π, C∞(X)) ≤ C, for any π ∈ Irr(G).

(2) (Complex geometry) XC is spherical.

(3) (Algebra) The ring DGC
(XC) is commutative.

(4) (Algebra) The ring DGC(XC) is a polynomial ring.
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6.2 Branching problems

Example 6.2.1 (Induction). IndG
H 1 ≃ C∞(G/H), L2(G/H), . . ..

Example 6.2.2 (Restriction). π′ ⊗ π′′|G∆
1
≃?.

Given G′ ⊆ G, the branching problem is to understand how the restriction behaves, i.e.

[Π|G′ : π] := dim HomG′(ΠG′ , π), π ∈ Irr(G′), Π ∈ Irr(G).

Theorem 6.2.3 (Uniformly bounded multiplicity criterion). For a pair G ⊇ G′ of real reduc-
tive groups, the followings are equivalent:

(1) supΠ supπ[Π|G′ : π] < ∞.

(2) (GC × G′C)/diag(G′C) is spherical.

(3) The ring U (gC)
G′C is commutative.

(4) The ring U (gC)
G′C is a polynomial ring.

Remark 6.2.4. We also have (G× G′) /diag(G′) is spherical (replacing Borel subgroup by
minimal parabolic subgroup) if and only if [Π|G′ ; π] < ∞ for any π and Π.

6.3 Tempered homogeneous spaces

Let G be a locally compact group.

Definition 6.3.1. A unitary irreducible representation π of G is tempered if π is weakly
contained in L2(G).

A basic question: when is L2(X) tempered? In other words, for which G-space X,
L2(X) ≺ L2(G)?

Suppose that G is a real reductive Lie group, one has

Irr(G) ⊇ Ĝ ⊇ Ĝtemp.

Irr(G) is classified by Langlands, Ĝtemp is classified by Knapp-Zuckerman, but Ĝ is still
mysterious over 70 years.

Even when G/H is a reductive symmetric space, the question involves a hard prob-
lem regarding vanishing conditions of cohomological parabolic inductions with singular
parameters. How about more general space X = G/H?

Example 6.3.2. Let G = GL(p + q + r, R), and the subgroup H = GL(p)×GL(q)×GL(r),
then L2(G/H) is tempered if and only if

p ≤ q + r + 1, q ≤ p + r + 1, r ≤ p + q + 1.

Definition 6.3.3. A continuous G-action on X is proper if GS = {g ∈ G | gS ∩ S ̸= ∅} is
compact for any compact subset S ⊆ X.
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Theorem 6.3.4. Let H be a connected subgroup of a real reductive Lie group G, then the followings
are equivalent:

(1) L2(G/H) is tempered.

(2) 2ρh ≤ ρg(Y) for any Y ∈ h.

Remark 6.3.5. For the example G = GL(p + q + r), this combinatorial condition is equiva-
lent to 2 max(p, q, r) ≤ p + q + r + 1.

Theorem 6.3.6. Let g be a complex reductive Lie algebra, then the followings are equivalent:

(1) L2(G/H) is tempered.

(2) 2ρh ≤ ρg.

(3) h has a solvable limit in g.

(4) h⊥ ∩ g∗reg ̸= 0 in g∗.

7 Nigel Higson: C∗-algebras and tempered representation
theory: a look backward and a look forward

7.1 Some (selective) history

• 1943, Gelfand-Naimark C∗-algebras

• 1946, Gelfand-Naimark unitary representations of SL(n, C) and Plancherel formula

• 1947, Segal C∗r (G)

• 1955-1975, Harish Chandra

• 1959, Bott periodicity, Atiyah-Hirzebruch K-theory

• 1965, Seeley C∗-algebra extension from pseudo-differential operators

• 1973, Brown-Donglas-Fillmore theory of

0→ χ(H)→ E→ C(X)→ 0

• 1980, Pimsner-Voiculescu: K∗(Aθ)

• 1984, Connes-Kasparov conjecture

• 1983, Kasparov (ICM) on K-theory and non-commutative geometry and representa-
tions:“At present this is a non-existent math region...”

33



7.2 The present
V.Lafforgue (1998-2000) Proof of Connes-Kasparov conjecture over p-adic fields using

index theory, and a new proof for Harish-Chandra’s classification of discrete series using
Connes-Kasparov.

Remark 7.2.1. V.Lafforgue uses Kasparov’s “dual Dirac” method (a left-inverse to Connes-
Kasparov, following Lusztig and Atiyah). Note that for a discrete series π, Hπ is projective
over C∗r (G). He uses Weyl’s ∑(nk)

2 = 1 trick (in K-theory, not L2).

7.3 Bradd-Higson-Yuncken paper [BHY24]

A tidied up picture of ̂SL(2, R)tempered, indexed by ŜO(2) and Ẑ/2Z, also for SL(3, R).
Let a be the one in the Iwasawa decomposition, and a∗dom the dominant chamber. De-

fine a∗I,+ to be facets of a∗dom, and MI to be the M-part of the centralizer of aI in G.

Definition 7.3.1. We have Im(InfChar(π)) ∈ a∗dom. An unitary representation is tempiric
if Im(InfChar(π)) = 0.

Theorem 7.3.2 (Bruhat 1954, Harish-Chandra 1960s, Vogan 2000).

Ĝtempered =
⊔

I

(
M̂I

)
tempiric

× a∗I,+.

Theorem 7.3.3 (Vogan 1981). There is a natural bijection(
M̂I

)
tempiric

≃ K̂I ,

where KI is the maximal compact subgroup of MI .

Theorem 7.3.4 (Bradd-Higson-Yuncken). The followings are equivalent:

(1) Connes-Kasparov isomorphism for every real reductive group G.

(2) The group morphism

Z[K̂]→ Z[Ĝtempiric], τ 7→∑
π

mult(τ, π) · π

is an isomorphism for every G.

8 Monica Nevins: Wonders of p-adic representation theory

Je suis fatiguée.
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