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Abstract

Let F4 be the unique (up to isomorphism) connected semisimple algebraic group
over Q of type F4, with compact real points and split over Qp for all primes p. A
conjectural computation [Sha24, Proposition 6.3.6] predicts the existence of a family of
level one automorphic representations of F4, which are expected to be functorial lifts of
cuspidal representations of PGL2 associated with Hecke eigenforms. In this paper, we
study the exceptional theta correspondence for F4×PGL2, and establish the existence
of such a family of automorphic representations for F4. Motivated by [Pol23], our main
tool is a notion of “exceptional theta series” on PGL2, arising from certain automorphic
representations of F4. These theta series are holomorphic modular forms on SL2(Z),
with explicit Fourier expansions, and span the entire space of level one cusp forms.
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1 Introduction

Since the last century, automorphic representations of general linear groups and classical
groups have been widely studied. For those of exceptional groups, i.e. algebraic groups with
Lie type G2,F4,E6,E7 or E8, most of the known results are about the smallest exceptional
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group G2, either split or anisotropic. In this paper, we will study a family of automorphic
representations for F4, the unique (up to isomorphism) connected semisimple algebraic group
over Q of type F4, with compact real points and split over Qp for every prime p.

1.1 Motivation from [Sha24]

In [Sha24], we compute the number of level one automorphic representations for F4,
i.e. unramified at every finite place, with any given arbitrary archimedean component. Fur-
thermore, the discrete global Arthur parameters of these automorphic representations are
classified conjecturally, admitting the existence of the (level one) Langlands group and
Arthur’s multiplicity formula [Art89]. In particular, we conjecture the existence of a specific
family of automorphic representations for F4, which are related to classical modular forms
for SL2(Z). Before recalling this statement, we introduce some notations:

• Let ϖ4 be the highest weight of the 26-dimensional irreducible representation of F4(R).
• There is a morphism Sp6(C)×SL2(C) → F̂4(C) = F4(C) whose kernel is a cyclic group

of order 2, the image of this morphism is a maximal proper regular closed subgroup of
F4(C) (see [Sha24, §4.3.2]). Denote by ι the morphism:

SL2(C)× SL2(C)
(principal embedding, id)
↪−−−−−−−−−−−−−→ Sp6(C)× SL2(C) → F4(C).

• Denote by ep the conjugacy class of
(
p1/2

p−1/2

)
in SL2(C).

Conjecture A. [Sha24, Proposition 6.3.6] Let π be the level one algebraic automorphic
representation of PGL2 associated to a cuspidal Hecke eigenform of weight 2n + 12 for
SL2(Z), and cp the Satake parameter of πp, viewed as a semisimple conjugacy class in
P̂GL2(C) = SL2(C). There exists a level one automorphic representation Π of F4 such
that:

• Π∞ ≃ Vnϖ4, the irreducible representation of F4(R) with highest weight nϖ4;
• for every prime p, the Satake parameter of Πp is the conjugacy class of ι(ep, cp).

Motivated by the Langlands functoriality principle, the automorphic representation Π in
Conjecture A is expected to be a functorial lift of π with respect to the embedding

i : P̂GL2 = SL2

(1,id)
↪−−−→ Sp6 × SL2 ↪→ F̂4. (1.1)

One useful tool for constructing functorial lifts is the theta correspondence, which studies the
restriction of a minimal representation to reductive dual pairs. There exists a reductive dual
pair PGL2 × F4 inside certain algebraic group E7 of Lie type E7 (see §2 for more details).
For the theta correspondence associated with this dual pair over a characteristic 0 local field,
one already has the following results (see also §3):

• Over R, Gross and Savin describe the restriction of the minimal representation of
E7(R) to PGL2(R) × F4(R) [GS98, Proposition 3.2], which shows that the theta lift
Θ(π∞) of π∞ is isomorphic to Vnϖ4 ;
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• Over a p-adic field, this theta correspondence is studied by Karasiewicz and Savin
in [Sav94; KS23]. In particular, they demonstrate that the theta lift Θ(πp) of the
unramified tempered principal series representation πp is irreducible and has the desired
Satake parameter ι(ep, cp).

Based on these local results, it is natural to expect that the functorial lift Π is exactly the
global theta lift Θ(π) of π to F4. The main result in this paper confirms this expectation:

Theorem B. (Theorem 6.4.2) The global theta lift Θ(π) is a non-zero irreducible automor-
phic representation of F4, and satisfies the local-global compatibility of theta correspondence
Θ(π) ≃ ⊗′

vΘ(πv). In particular, Conjecture A holds.

1.2 Exceptional theta series

Our main tool is to develop a notion of “exceptional theta series”, motivated by Pollack’s
construction of Siegel modular forms for Sp6(Z). This is a variant of the classical weighted
theta series developed by Jacobi and Hecke, and gives an explicit theta lift from certain
automorphic forms of F4 to PGL2.

1.2.1 Classical theta series

We first recall the classical construction of theta series. Let L be an even unimodular
lattice in the Euclidean space Rn, i.e. a self-dual lattice for any element v of which the scalar
product v.v is even. A well-known result states that the series

ϑL(z) =
∑
v∈L

q
v.v
2 , where q = e2πiz, z ∈ H = {x+ iy | y > 0} ,

is a modular form of level SL2(Z) and weight n/2. One can weight this theta series by a
homogeneous harmonic polynomial P of degree d over Rn [Hec40]:

ϑL,P (z) =
∑
v∈L

P (v)q
v.v
2 , (1.2)

and the resulting weighted theta series is a modular form for SL2(Z) of weight n
2
+ d. It is a

cusp form when d > 0, and Waldspurger shows in [Wal79a] that for a fixed pair of integers
(n, d), the space Sn

2
+d(SL2(Z)) of weight n

2
+ d cusp forms is spanned by:

{ϑL,P |L ⊆ Rn is an even unimodular lattice, and P ∈ Hd(Rn)} ,

where Hd(Rn) is the space of homogeneous harmonic polynomials of degree d over Rn.

1.2.2 Corresponding structures in the exceptional case

We want to produce a family of modular forms analogous to (1.2), starting from automor-
phic representations for F4 with archimedean component Vnϖ4 . The table below highlights
the corresponding structures in the classical and exceptional settings:
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classical case exceptional case
underlying space Euclidean space Rn Euclidean Albert R-algebra JR

group of automorphisms On(R) F4(R)
integral structure even unimodular lattice Albert lattice

homogeneous polynomials harmonic polynomials a polynomial model of Vnϖ4

Table 1: Comparison between classical and exceptional cases

We briefly explain the objects appearing in Table 1, and the details will be provided in
§2.2 and §2.3:

• The 27-dimensional Euclidean Albert R-algbera (or Euclidean exceptional Jordan R-
algebra) JR = Her3(OR) is the space of “Hermitian” 3-by-3 matrices over the real
octonion division algebra OR, equipped with the distinguished element I = diag(1, 1, 1),
the adjoint map # : JR → JR, and the determinant det : JR → R. Precisely, together
with these structures, JR is a cubic Jordan R-algebra and furthermore it is an Albert
R-algebra. We call it Euclidean because its underlying vector space admits a symmetric
inner product (A,B) = 1

2
Tr(AB +BA) that is positive definite.

• The group of Albert R-algebra automorphisms of JR is the real points F4(R) of F4,
i.e.F4(R) = {g ∈ GL(JR) | gI = I, det(gA) = det(A), for any A ∈ JR}.

• By an Albert lattice, we mean a lattice J ⊆ JR satisfying that I ∈ J , J is stable under
#, det(J) ⊆ Z, and (J, I,#, det) is an Albebrt Z-algebra.

• In §4.1.2, we describe a polynomial model Vn(JC) of Vnϖ4 : the space spanned by degree
n homogeneous polynomials over JR of the form:

X 7→ (X,A)n , where 0 ̸= A ∈ JR ⊗R C, A2 = 0, Tr(A) = 0.

1.2.3 Weighting the theta series constructed by Elkies-Gross

The starting point of the exceptional theta series associated with JR is the work of Elkies
and Gross [EG96].

Let J be the set of Albert lattices, and equip it with the natural F4(R)-action. This
set is the disjoint union of two F4(R)-orbits [Gro96, Proposition 5.3]. We take a set of
representatives {J1, J2} for these two orbits, where J1 = JZ (see Example 2.2.9) is taken as
the base point of J. For J = J1 or J2, Elkies and Gross construct the following theta series:

ϑJ(z) = 1 + 240
∑

J∋T≥0,
rank(T )=1

σ3(cJ(T ))q
Tr(T ), q = e2πiz, z ∈ H,

where cJ(T ) is the largest integer c such that T/c ∈ J , and σ3(n) =
∑

d|n d
3. This theta

series is a modular form of weight 12 for SL2(Z). Moreover,

ϑJ1 = E12 −
65520

691
∆, ϑJ2 = E12 +

432000

691
∆,

where E12 is the normalized Eisenstein series of weight 12, and ∆ is the discriminant modular
form.

4



Remark 1.2.1. The coefficient 240σ3(c(T )) appearing in the Fourier expansion of ϑJ comes
from Kim’s modular form FKim, an Eisenstein series on the exceptional tube domain HJ

(see §4.2.1), which is constructed in [Kim93] and serves as our source for producing theta
series.

We extend the construction of Elkies-Gross to weighted exceptional theta series as follows:

Theorem C. (Theorem 5.1.2,Corollary 5.1.5) For any Albert lattice J ∈ J and a polynomial
P ∈ Vn(JC), the theta series

ϑJ,P (z) :=
∑

J∋T≥0,
rank(T )=1

σ3(cJ(T ))P (T )q
Tr(T ) (1.3)

is a modular form of weight 2n+12 for SL2(Z). When n = deg(P ) > 0, ϑJ,P is a cusp form.

Our proof of Theorem C follows Pollack’s method for the proof of [Pol23, Theorem 1.1.1].
For the automorphic form (or precisely, algebraic modular form) of F4 associated with J and
P , we construct its global theta lift to PGL2, taking certain (iterated) differential of Kim’s
modular form FKim as the kernel function. Then we show that this global theta lift arises
from a holomorphic modular form, whose Fourier expansion is exactly (1.3).

Remark 1.2.2. Here we explain briefly how we describe the global theta lift from F4 to
PGL2 in terms of exceptional theta series, and more details can be found in §4.1.1. The
space AVnϖ4

(F4) of level one “vector-valued” automorphic form of F4 with weight Vnϖ4 can
be identified with the space of functions f : J → Vn(JC) satisfying f(gJ) = g.f(J) for any
g ∈ F4(R) and J ∈ J. The global theta lift of f to PGL2 is the modular form

1

|Γ1|
ϑJ1,f(J1) +

1

|Γ2|
ϑJ2,f(J2) ∈ M2n+12(SL2(Z)),

where Γi is the automorphism group of the Albert Z-algebra Ji, i = 1, 2.

1.3 Strategy towards Theorem B

Now we illustrate our strategy for the proof of Theorem B.
Let φ ≃ ⊗φv ∈ π ≃ ⊗′

vπv be the automorphic form of PGL2 associated to a Hecke
eigenform f ∈ S2n+12(SL2(Z)). We want to show that its global theta lift Θϕ(φ), with
respect to some vector ϕ in the minimal representation of E7(A), is non-zero. For this goal,
we compute the Spin9-period integral of Θϕ(φ), where Spin9 is a maximal proper regular
closed subgroup of F4. The Spin9-period of an automorphic form f on [F4] = F4(Q)\F4(A)
is defined as follows, where dg is taken to be the Tamagawa measure:

PSpin9
(f) :=

∫
Spin9(Q)\Spin9(A)

f(g)dg.

Remark 1.3.1. One motivation for considering this Spin9-period is the global conjecture of
Sakellaridis-Venkatesh [SV17]. The homogeneous F4-space X = Spin9\F4 is a spherical
variety whose dual group is G∨

X = SL2, equipped with the embedding i : G∨
X → F̂4 as
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described in (1.1). Roughly speaking, the conjecture of Sakellaridis-Venkatesh predicts that
the cuspidal automorphic representations of F4 with non-zero Spin9-periods arise from func-
torial lifts with respect to the embedding i : P̂GL2 → F̂4. Therefore, we expect the global
theta lift Θϕ(φ) to have a non-zero Spin9-period (for some suitable choice of ϕ).

Using a see-saw duality argument, an exceptional Siegel-Weil formula that we prove in
§6.1 and a standard calculation of Rankin-Selberg integral (§6.2), we rewrite the Spin9-
period of Θϕ(φ) as an Eulerian integral over PGL2(A). Moreover, we prove the following
result, which verifies the prediction of Sakellaridis-Venkatesh [SV17, §17; Sak21, Table 1] for
the global period associated with spherical variety Spin9\F4:

Theorem D. (Corollary 6.3.2) For any smooth, holomorphic and spherical vector ϕ ≃ ⊗vϕv
in the minimal representation Πmin ≃ ⊗′

vΠmin,v of E7(A), the Spin9-period integral of Θϕ(φ)
is equal to:

PSpin9
(Θϕ(φ)) =

L(π, 5
2
)L(π, 11

2
)

ζ(4)ζ(8)
· I∞(ϕ∞, φ∞),

where L(π, s) = L(f, 2n+11
2

+ s) is the standard automorphic L-function of π (as an Euler
product over all the finite places), and I∞(ϕ∞, φ∞) is an integral over PGL2(R).

The L-factor in Theorem D is non-zero by the theory of Rankin-Selberg, thus the non-
vanishing of PSpin9

(Θϕ(φ)) is equivalent to that of I∞(ϕ∞, φ∞).
For any Hecke eigenform f in S2n+12(SL2(Z)), the associated automorphic form φ ≃ ⊗vφv

in π ≃ ⊗′
vπv satisfies that φ∞ is the unique (up to some scalar) lowest weight holomorphic

vector of the discrete series D(2n + 12) ≃ π∞. Therefore, fixing a vector ϕ ∈ Πmin as in
Theorem D, PSpin9

(Θϕ(φ)) ̸= 0 for any such φ, if and only if it holds for one such φ. Hence to
prove Theorem B it suffices to find a vector ϕ ∈ Πmin satisfying the conditions in Theorem D
and that PSpin9

(Θϕ(φ)) ̸= 0, where φ is the automorphic form associated to certain Hecke
eigenform f ∈ S2n+12(SL2(Z)).

Our proof of the existence of ϕ ∈ Πmin relies on an automorphic form of F4 that is
invariant under Spin9(R) and has a non-zero global theta lift to PGL2. As mentioned in
§1.2, in this paper the global theta lifting from F4 to PGL2 is realized via exceptional theta
series. If we take J = J1 = JZ and Pn the unique non-zero Spin9(R)-invariant polynomial in
Vn(JC), n ≥ 2, then Theorem C gives us a weight 2n+ 12 cusp form, which can be verified
to be non-zero by analyzing the Fourier coefficient of q (Theorem 5.2.1). This implies that
the automorphic form for F4 associated to JZ and Pn is the desired one!

As a corollary of Theorem B, we have the following analogue of Waldspurger’s result for
classical theta series:

Theorem E. (Corollary 6.4.3) For any n > 0, the space S2n+12(SL2(Z)) is spanned by the
set of weighted exceptional theta series {ϑJ,P | J = J1 or J2, P ∈ Vn(JC)}.

We end the introduction with a short summary of the contents of this paper. We re-
call the necessary preliminaries on exceptional groups in §2, and the results on local theta
correspondences in §3. We establish the global theta correspondence in §4, then study the
Fourier expansions of exceptional theta series and prove Theorem C in §5. The last section
§6 is for the proof of Theorem B, Theorem D and Theorem E.
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2 Preliminaries on exceptional groups

In this section we recall the definitions of two reductive algebraic groups F4 and E7 over
Q and construct the following two reductive dual pairs 1 inside E7:

F4 ×PGL2 and Spin9 × SO2,2.

2.1 Octonions

We first recall the notion of octonions, which are crucial for defining exceptional groups.

Definition 2.1.1. An octonion algebra over a commutative ring k is a locally free k-module
C of rank 8, equipped with a non-degenerate quadratic form N : C → k and a (possibly non-
associative) k-algebra structure admitting a 2-sided identity element e, such that N(xy) =
N(x)N(y), x, y ∈ C. The quadratic form N is referred as the norm on C.

Now we recall some basic properties of octonion algebras, for which we refer to [SV00].
There is a unique anti-involution of algebra x 7→ x called the conjugation on C, with the
property thatN(x) = xx = xx. The trace is defined as the linear map Tr : C → k, x 7→ x+x.
The symmetric bilinear form associated with N is ⟨x, y⟩ := N(x+y)−N(x)−N(y) = Tr(xy).

Although the multiplication law of C is not associative, it is still trace-associative in the
sense that Tr((xy)z) = Tr(x(yz)) for all x, y, z ∈ C, and we can define a trilinear form:
Tr(xyz) := Tr((xy)z) = Tr(x(yz)).

When considering octonion algebras over R, we have the following classification result:

Proposition 2.1.2. [Ada96, Theorem 15.1] Up to R-algebra isomorphism, there is a unique
octonion algebra OR over R whose norm N is positive definite, which is named as the real
octonion division algebra.

We choose a basis {e0, e1, . . . , e7} as in [Gro96, §4], where e0 is the 2-sided identity element.
Identify the real numbers R with the subalgebra Re0 of OR, and denote the identity element
e0 by 1. On OR, the conjugation is defined by 1 = 1 and ei = −ei for each i. For any element

x =
7∑
i=0

xiei ∈ OR, one has N(x) =
∑7

i=0 x
2
i and Tr(x) = 2x0.

Definition 2.1.3. Cayley’s definite octonion algebra OQ is the sub-Q-algebra of OR, gener-
ated by {e1, . . . , e7}, which is an octonion Q-algebra with the norm N|OQ .

1Actually we do not prove in this paper that Spin9 × SO2,2 is indeed a reductive dual pair, instead we
only give a homomorphism Spin9 × SO2,2 → E7, whose kernel is a central cyclic group of order 2.

7



The following definition gives an integral structure of Cayley’s definite octonion algebra:

Definition 2.1.4. Coxeter’s integral order OZ in OQ is the lattice spanned by Z ⊕ Ze1 ⊕
· · · ⊕ Ze7 and

h1 = (1 + e1 + e2 + e4)/2, h2 = (1 + e1 + e3 + e7)/2,

h3 = (1 + e1 + e5 + e6)/2, h4 = (e1 + e2 + e3 + e5)/2,

which is an octonion Z-algebra with the norm N|OZ .

2.2 Albert algebras

In this section, we will not generally define either an Albert algebra or a (cubic) Jordan
algebra, where precise definitions and details can be found in [GPR23]. Instead, we recall
some examples and properties of Albert algebras that are important for us.

2.2.1 Hermitian 3-by-3 matrices over octonion algebras

Given an octonion algebra C over a commutative ring k, we consider the space Her3(C)
consisting of “Hermitian matrices” in M3(C), i.e.matrices of the form

[a, b, c ;x, y, z] :=

a z y
z b x
y x c

 , a, b, c ∈ k, x, y, z ∈ C,

equipped with the following structures, where the maps are all polynomial laws in the sense
of [Rob63]:

• the identity matrix I = diag(1, 1, 1),
• the adjoint map # : Her3(C) → Her3(C), which is a quadratic map over k:a z y

z b x
y x c

 7→

bc−N(x) xy − cz zx− by
xy − cz ca−N(y) yz − ax
zx− by yz − ax ab−N(z)

 , (2.1)

• and the determinant, which is a cubic form over k:

det([a, b, c ;x, y, z]) := abc+ Tr(xyz)− aN(x)− bN(y)− cN(z). (2.2)

One can construct more polynomial laws from these structures:

• There exists a symmetric bilinear form on Her3(C):

(A,B) := (∇A det) (I) · (∇B det) (I)− (∇A∇B det) (I).

If A = [a, b, c ;x, y, z] and B = [a′, b′, c′ ;x′, y′, z′], then

(A,B) = aa′ + bb′ + cc′ + ⟨x, x′⟩+ ⟨y, y′⟩+ ⟨z, z′⟩.

• The trace Tr : Her3(M) → k is defined as Tr(A) = (A, I).
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• The linearization of # gives a symmetric cross product A×B := (A+B)#−A#−B#.

With these structures, we can define the rank of a matrix in Her3(C):

Definition 2.2.1. The rank of A ∈ Her3(C) is defined as follows:

• If A = 0, then rank(A) = 0;
• If A ̸= 0 and A# = 0, then rank(A) = 1;
• If A ̸= 0, A# ̸= 0 and det(A) = 0, then rank(A) = 2;
• Otherwise, rank(A) = 3.

2.2.2 Euclidean exceptional Jordan R-algebra and its Q-structure

One of the most important Albert algebras appearing in this article is the following:

Definition 2.2.2. The Euclidean exceptional Jordan R-algebra (or Euclidean Albert R-
algebra) is defined to be JR := Her3(OR), where OR is the real octonion division algebra.

The space JR is a commutative but not associative R-algebra with respect to the R-
bilinear multiplication law A ◦ B := 1

2
(AB + BA), where AB and BA denote the matrix

multiplication, and I is its 2-sided identity element. One can easily check that the symmetric
bilinear form ( , ) satisfies (A,B) = Tr(A ◦B) for any A,B ∈ JR, and it is positive definite.

Definition 2.2.3. A matrix A = [a, b, c ;x, y, z] ∈ JR is positive semi-definite if its seven
minor determinants

a, b, c, bc− N(x), ca− N(y), ab− N(z), det(A)

are all non-negative, and we write A ≥ 0. When these minor determinants are all positive,
we call A positive definite and write A > 0.

Similarly to Definition 2.1.3, this algebra JR admits a rational structure:

Definition 2.2.4. The Euclidean exceptional Jordan Q-algebra JQ is the sub-Q-algebra of
JR consisting of [a, b, c ;x, y, z], a, b, c ∈ Q, x, y, z ∈ OQ equipped with the multiplication ◦.

Notation 2.2.5. Here we fix some elements in JQ that will be used frequently in this paper:

E1 := [1, 0, 0 ; 0, 0, 0], E2 := [0, 1, 0 ; 0, 0, 0], E3 := [0, 0, 1 ; 0, 0, 0].

2.2.3 Albert algebras over Z

Let k be a commutative ring. Albert k-algebras are defined in [GPR23, Definition 7.1]
Roughly speaking, an Albert k-algebra is a projective k-module J together with a distin-
guished point 1J , a quadratic map # : J → J and a cubic form d : J → k (as polynomial
laws in the sense of [Rob63]) satisfying certain equations, such that for some faithfully flat
k-algebra K, J ⊗k K is isomorphic to Her3(CK) as Jordan K-algebras, where CK is an oc-
tonion K-algebra. For any ring homomorphism k → k′, the scalar extension J ⊗k k

′ of an
Albert k-algebra J is an Albert k′-algebra.
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Definition 2.2.6. [GPR23, Lemma 10.3] An isomorphism of Albert k-algebras ϕ : J → J ′

is a k-module isomorphism such that ϕ(1J) = 1J ′ and dJ ′ ◦ ϕ = dJ
2 as polynomial laws.

Example 2.2.7. The space of 3-by-3 Hermitian matrices Her3(C) defined in §2.2.1 is an Albert
k-algebra. In particular, JR and JQ defined in and §2.2.2 are Albert algebras over R and Q
respectively.

Here are several classification results in [SV00, §5.8; GPR23, §11, §14] about Albert
algebras that will be useful for us:

(1) There is a unqiue isomorphism class of Albert R-algebras that are Euclidean, i.e. the
associated symmetric bilinear form is positive definite, and this class is represented by
(JR, I,#, det) defined in §2.2.2.

(2) Euclidean Albert Q-algebras are also unique up to isomorphism.
(3) Albert Zp-algebras are unique up to isomorphism.
(4) There are exactly two isomorphism classes of Euclidean Albert Z-algebras.

In this article, we concentrate on the following family of Euclidean Albert Z-algebras:

Definition 2.2.8. An Albert lattice of JR is a lattice J ⊆ JR satisfying:

• The identity matrix I = diag(1, 1, 1) ∈ JR is contained in J ;
• It is stable under the adjoint map # defined in (2.1);
• The cubic form det defined in (2.2) takes integral values on J ;
• Together with I,# and det, J is an Albert Z-algebra.

Denote the set of Albert lattices inside JR by J.

Example 2.2.9. Let JZ := Her3(OZ), i.e. the rank 27 lattice

{[a, b, c ;x, y, z] ∈ JQ | a, b, c ∈ Z, x, y, z ∈ OZ}

inside JQ. It satisfies the conditions in Definition 2.2.8, thus it is an Albert lattice.
Example 2.2.10. An Albert Z-algebra not isomorphic to (JZ, I,#, det) defined in Exam-
ple 2.2.9 is constructed as follows, following [Gro96, §4; GPR23, Definition 14.1]. Take

E = [2, 2, 2; β, β, β], β =
1

2
(−1 + e1 + e2 + · · ·+ e7) ∈ OZ.

This element E ∈ JZ is positive definite and has determinant 1. Under the adjoint map # on
JR defined as (2.1), we have E# = [2, 2, 2 ; β, β, β] ∈ JZ. Using this element, we define another
quadratic map #E on JZ by X#E

:= (E#, X#)E# − E ×X#. Set J
(E)
Z := (JZ,E

#,#E, det),
where det is still the restriction of det : JR → R to JZ. This “isotopy” J

(E)
Z is an Albert

Z-algebra [GPR23, Corollary 13.11], and it is not isomorphic to (JZ, I,#, det) as Albert
Z-algebras [EG96, Proposition 5.5].

The associated symmetric bilinear form ( , ) on J
(E)
Z is positive definite [EG96, Proposition

2.10], thus J
(E)
Z is Euclidean. By the classification result about Euclidean Albert R-algebras

listed above, we have an isomorphism φ : J
(E)
Z ⊗Z R → JR of Albert R-algebras. Its image

φ(J
(E)
Z ) is an Albert lattice of JR in the sense of Definition 2.2.8.

2Here ◦ means the composition, not the multiplication defined in §2.2.2.
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Question. Can we find a simpler description of Albert lattices of JR? For example, is it
true that a unimodular lattice J ⊂ JR such that J contains I as a characteristic vector and
J is stable under # (or equivalently, under A 7→ A2) is an Albert lattice in JR?

2.3 F4

We start to define exceptional algebraic groups.

Definition 2.3.1. Define F4 to be the closed subgroup of the algebraic Q-group GLJQ , that
(as a functor) sends a commutative Q-algebra R to the group

F4(R) := {g ∈ GL(JQ ⊗Q R) | g(A ◦B) = g(A) ◦ g(B), for any A,B ∈ JQ ⊗Q R} .

By [SV00, Theorem 7.2.1], F4 is a semisimple and simply-connected Q-group of Lie type
F4. The real points F4 := F4(R) of F4 is contained in the isometry group O(JR, q) of the
positive definite quadratic form q, thus it is compact. For every prime p, F4 is split over Qp.
By [SV00, Proposition 5.9.4], the Q-group F4 coincides with the algebraic group consisting
of the Albert algebra automorphisms of JQ, i.e. sending any commutative Q-algebra R to

{g ∈ GL(JQ ⊗Q R) | g(I) = g, det(gA) = det(A), for any A ∈ JQ ⊗Q R} .

With this coincidence, we construct reductive Z-models of F4 in the sense of [Gro96] as group
of Albert algebra automorphisms of elements J ∈ J.

Definition 2.3.2. Given an Albert lattice J ∈ J, define AutJ/Z to be the Z-group scheme
sending a commutative Z-algebra R to the group

AutJ/Z(R) := {g ∈ GL(J ⊗Z R) | g(I) = I, det(gA) = det(A), for any A ∈ J ⊗Z R} .

If we take J to be JZ defined in Example 2.2.9, we denote the group scheme AutJZ/Z by F4,I.

The following result shows that AutJ/Z is a reductive Z-model of F4:

Proposition 2.3.3. [GPR23, Lemma 9.1] For any choice of Albert lattice J ∈ J, the group
scheme AutJ/Z is smooth and its fiber AutJ/Z ⊗Z Z/pZ is semisimple for every prime p.
Moreover, the generic fiber of AutJ/Z is F4.

In [Gro96, Proposition 5.3], Gross proves that there are exactly two F4(Q)-orbits on the
equivalence classes of reductive Z-models of F4 in the genus of F4,I. From now on we fix
a reductive Z-model F4,I of F4, and we have the following formulation of the double cosets
space F4(Q)\F4(A)/F4,I(Ẑ).

Proposition 2.3.4. There is a bijection J
≃−→ F4(Q)\F4(A)/F4,I(Ẑ) sending the base point

JZ to the double coset of the identity of F4(A).

Proof. For any J ∈ J, the Albert Q-algebras J ⊗Z Q and JZ ⊗Z Q are isomorphic, so there
exists an element g∞ ∈ F4(R) inducing J ⊗Z Q ≃−→ JZ ⊗Z Q. Set J ′ = g∞(J), which is an
Albert Z-algebra inside JZ⊗ZQ = JQ. Since J ′⊗ZZp and JZ⊗ZZp are isomorphic as Albert
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Zp-algebras, we can choose an element gp ∈ F4(Qp) that induces JZ ⊗Z Zp
≃−→ J ′ ⊗Z Zp. For

almost all prime numbers p, we have J ′ ⊗Z Zp = JZ ⊗Z Zp, so the element gp lies in F4,I(Zp)
for almost all p.

In this way, we associate with J ∈ J an element (g∞, g2, g3, . . .) ∈ F4(A), and it can be
easily verified that its image in F4(Q)\F4(A)/F4,I(Ẑ) does not depend on the choice of g∞
and gp. So we have a well-defined map J → F4(Q)\F4(A)/F4,I(Ẑ), and its inverse is:

(gv) 7→ g−1
∞

(⋂
p

(gp (JZ ⊗Z Zp) ∩ JQ)

)
∈ J.

Notation 2.3.5. We choose a set of representatives {1, γE} of F4(Q)\F4(Af )/F4,I(Ẑ), and
denote by JE ⊆ JQ the Albert lattice corresponding to γE. Equipped with the natural
F4(R)-action, J is the disjoint union of the F4(R)-orbits of JZ and JE.

2.3.1 An algebraic group of type E6

If we remove the condition of fixing the identity element I in the definition of F4,I, we get
the following group of type E6:

Definition 2.3.6. Define MJ to be the Z-group scheme sending any commutative ring R to{
(λ(g), g) ∈ R× ×GL(JZ ⊗Z R)

∣∣ det(gA) = λ(g) det(A), for any A ∈ JZ ⊗Z R
}
,

and M1
J to be kerλ.

By [Con15, Proposition 6.5], M1
J is a simply-connected semisimple group scheme of type

E6, and its generic fiber has Q-rank 2.

Remark 2.3.7. Notice that the bilinear form ( , ) on JZ⊗ZR is not MJ(R)-invariant. For any
m ∈ MJ(R), we denote by m∗ the unique element in MJ(R) such that (m(X),m∗(Y )) =
(m∗(X),m(Y )) = (X, Y ) for any X, Y ∈ JZ ⊗R.

Observe that we have already seen two Albert Z-algebras J
(E)
Z and JE that are both not

isomorphic to JZ and their extensions to Q are isomorphic to JQ, by the classification result
listed in §2.2.3 they are isomorphic, although they have different distinguished points. This
fact gives us an element that will be used in the proof of Theorem 5.1.2:

Lemma 2.3.8. There exists an element δ ∈ M1
J(Q) that induces an isomorphism of Albert

Z-algebras J
(E)
Z

≃−→ JE. Moreover, if we denote the image of δ under the diagonal embedding
M1

J(Q) ↪→ M1
J(A) = M1

J(R) × M1
J(Af ) by (δ∞, δf ), then δ∞(JZ) = JE, δ∞(E) = I and

δ−1
f γE ∈ M1

J(Ẑ).

Proof. Since the Albert Z-algebras J
(E)
Z , JE contained in JQ are isomorphic, there is a Q-

linear isomorphism δ of JQ such that δ(J(E)Z ) = JE, δ(E) = I and det(δA) = δ(A) for any
A ∈ JQ. In other words, δ is our desired element in M1

J(Q). The properties of δ∞ follows
immediately. Forgetting the Albert algebra structures, δ−1

f γE : JZ ⊗Z Ẑ → J
(E)
Z ⊗Z Ẑ is a

linear automorphism of JZ ⊗Z Ẑ preserving the determinant, thus δ−1
f γE ∈ M1

J(Ẑ).
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2.4 E7

Now we recall the definition of E7, a larger algebraic group over Q containing F4, and
our main references are [Pol20, §2.2; KY16, §3] 3.

Consider the 56-dimensional vector space WJ = JQ ⊕ Q ⊕ JQ ⊕ Q 4, equipped with the
following structures:

• A symplectic form: for wi = (Xi, ξi, X
′
i, ξ

′
i) ∈ WJ, i = 1, 2,

⟨w1, w2⟩J := ξ1ξ
′
2 − ξ2ξ

′
1 + (X1, X

′
2)− (X2, X

′
1);

• A quartic form: for w = (X, ξ,X ′, ξ′) ∈ WJ,

Q(w) = (ξξ′ − (X,X ′))
2
+ 4ξ det(X) + 4ξ′ det(X ′)− 4(X#, X ′#).

Definition 2.4.1. Define HJ to be the algebraic subgroup of GLWJ
consisting of elements

that preserve the forms ⟨ , ⟩J and Q up to some similitude ν : HJ → Gm, i.e.

HJ =
{
(ν(g), g) ∈ Gm ×GLWJ

∣∣ ⟨gv, gw⟩J = ν(g)⟨v, w⟩J,Q(gv) = ν(g)2Q(v),∀v, w ∈ WJ

}
.

Define H1
J to be the kernel of ν, which is simply-connected and has Q-rank 3 and Lie type

E7 [Fre54], and E7 to be the adjoint group of HJ.

Remark 2.4.2. The center of HJ consists of scalars, and it contains a specific element ι2 =
−IdWJ

, where ι ∈ HJ is defined as

ι(X, ξ,X ′, ξ′) = (−X ′,−ξ′, X, ξ). (2.3)

In [Gro96], we know that E7 has a unique (up to equivalence) reductive Z-models, and we
will also denote this Z-group scheme by E7 when there is no confusion. Note that E7(Z) is
the stabilizer in E7(R) of the lattice JZ ⊕ Z⊕ JZ ⊕ Z ⊆ WJ.

2.4.1 Siegel parabolic subgroup of E7

Definition 2.4.3. The Siegel parabolic subgroup PJ,sc of H1
J is defined as the stabilizer of

the line Q(0, 1, 0, 0) ⊆ WJ. A Levi subgroup of PJ,sc can be defined as the subgroup that
also stabilizes Q(0, 0, 0, 1). Denote by PJ the image of PJ,sc in E7.

This Levi subgroup is isomorphic to MJ, and the action of (λ(m),m) ∈ MJ on WJ is

m(X, ξ,X ′, ξ′) = (m∗X,λ(m)ξ,mX ′, λ(m)−1ξ′).

The unipotent radical NJ of PJ,sc is abelian and satisfies NJ(Q) ≃ JQ, and any element of
NJ(Q) has the following form:

n(A)(X, ξ,X ′, ξ′) =
(
X + ξ′A, ξ + (A,X ′) + (A#, X) + ξ′ det(A), X ′ +A×X + ξ′A#, ξ′

)
, A ∈ JQ.

We have the Levi decomposition PJ,sc = MJNJ, and the action of MJ on NJ is given by
the following lemma:

3Notice that there are some slight mistakes in [KY16, §3] and the correction is in [KY23, §2].
4In [Pol20], Pollack considers the space Q⊕ JQ ⊕ J∨Q ⊕Q. An element (X, ξ,X ′, ξ′) ∈ WJ corresponds to

(a, b, c, d) = (ξ′, X, (−, X ′) , ξ) under the notations of Pollack.
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Lemma 2.4.4. For any m ∈ MJ(Q) ⊆ PJ,sc and A ∈ JQ, we have the following identity:

mn(A)m−1 = n (λ(m)m∗A) .

Proof. This follows from a direct calculation using the property: for any m ∈ MJ(Q) and
X, Y ∈ JQ, we have m(X × Y ) = λ(m)(m∗X)× (m∗Y ).

The Levi subgroup of PJ ⊆ E7 induced by MJ is the quotient of MJ by µ2, where µ2 is
generated by the element X 7→ −X in MJ. We identify this Levi subgroup with MJ via the
short exact sequence:

1 → µ2 → MJ
m7→λ(m)m∗

−−−−−−−→ MJ → 1. (2.4)

Hence we still have the Levi decomposition PJ ≃ MJNJ, but with a different action:

mn(A)m−1 = n(mA), for any m ∈ MJ(Q), A ∈ JQ.

Remark 2.4.5. For any A ∈ JQ, we define n∨(A) = ιn(−A)ι−1. Set NJ = ιNJι
−1, then

PJ,sc = MJNJ is the parabolic subgroup opposite to PJ,sc. The action of MJ on NJ is:

mn∨(A)m−1 = n∨ (λ(m)−1mA
)
, for any m ∈ MJ(Q), A ∈ JQ.

2.4.2 The Lie algebra e7

Denote the Lie algebra of H1
J(C) by e7, which admits a decomposition

e7 = n∨
L(JC)⊕mJ ⊕ nL(JC), (2.5)

where

• mJ = Lie(MJ(C));
• for any A ∈ JC, define nL(A) to be the element in Lie(NJ(C)) such that exp(nL(A)) =
n(A), and denote Lie(NJ(C)) by nL(JC);

• for any A ∈ JC, define nL(A) to be the element in Lie(NJ(C)) such that exp(nL(A)) =
n∨(A), and denote Lie(NJ(C)) by n∨

L(JC).

Besides this decomposition, we also have the Cartan decomposition of e7. Let KE7 be the
subgroup of H1

J(R) that fixes the line in WJ⊗C spanned by (iI,−i,−I, 1), which is a maximal
compact subgroup of H1

J(R). Take kE7 to be the complexified Lie algebra of KE7 , then we
have the following Cartan decomposition of e7:

e7 = p−J ⊕ kE7 ⊕ p+J , (2.6)

where p+J ⊕ p−J is the natural decomposition of the −1 eigenspace for the Cartan involution.
We have the following relation between these two decompositions (2.5) and (2.6) of e7:

Proposition 2.4.6. [Pol23, Proposition 6.1.1] There exists an element Ch ∈ H1
J(C), called

the Cayley transform, satisfying:

(1) C−1
h nL(JC)Ch = p+J ;
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(2) C−1
h n∨

L(JC)Ch = p−J ;
(3) C−1

h mJCh = kE7.
By Proposition 2.4.6, we make the following identifications:

• Identify the factor p+J as J∨C, via the map

p+J ∋ X+
A := iC−1

h nL(A)Ch 7→ (−, A) ∈ JC,

and equip it with the following MJ(C)-action:

(m.ℓ)(X) = ℓ
(
λ(m)m−1(X)

)
, for any m ∈ MJ(C), ℓ ∈ J∨C, X ∈ JC.

• Identify p−J as JC, via the map

p−J ∋ X−
A := iC−1

h n∨
L(A)Ch 7→ A ∈ JC,

and equip it with the following MJ(C)-action:

m.X = λ(m)−1m(X) for any m ∈ MJ(C), X ∈ JC.

The natural MJ(C)-invariant pairing {−,−} : JC × J∨C → C can be extended to

{−,−} : J⊗nC ×
(
J∨C
)⊗n → C, (X1 ⊗ · · · ⊗Xn, ℓ1 ⊗ · · · ⊗ ℓn) 7→

∑
σ∈Sn

∏n
i=1

{
Xi, ℓσ(i)

}
n!

, (2.7)

which factors through Symn JC × Symn (J∨C).
Example 2.4.7. Identifying Symn (J∨C) with the space Pn(JC) of degree n homogeneous poly-
nomials over JC, the MJ(C)-action on it is (m.P )(X) = P (λ(m)m−1(X)) for any m ∈
MJ(C), P ∈ Pn(JC) and T ∈ JC, and the pairing {T⊗n, P} is equal to P (T ).

2.5 Dual pairs

Now we explain the two reductive dual pairs F4 ×PGL2 and Spin9 × SO2,2 in E7.

2.5.1 F4 ×PGL2

We study first the centralizer of F4 in MJ. For any element g in the centralizer CMJ
(F4),

it stabilizes the subspace J
F4(Q)
Q , which is a line spanned by I, thus g(I) is a non-zero multiple

of I. So we obtain a morphism CMJ
(F4) → Gm by restricting to the line spanned by I.

• This morphism is injective, since the center of F4 is trivial;
• For any scalar λ ∈ Q×, the map X 7→ λX is an element of CMJ

(F4)(Q), thus morphism
is also surjective.

Hence the centralizer of F4 in the Levi subgroup MJ of H1
J is a rank 1 torus.

The centralizer of F4 in PJ,sc = MJNJ is generated by CMJ
(F4) and the subgroup

{n(xI), x ∈ Ga} of NJ, and it is isomorphic to the standard Borel subgroup of SL2 via:

(X 7→ uX) 7→
(
u

u−1

)
, n(xI) 7→

(
1 x

1

)
.

Similarly, the centralizer of F4 in PJ,sc is isomorphic to the opposite Borel subgroup of SL2.
As a consequence, we get a subgroup F4×SL2 inside H1

J, which is a maximal proper subgroup
of H1

J [KS23, Lemma 2.4], so it gives a reductive dual pair in H1
J, and induces a dual pair

F4 ×GL2 (resp.F4 ×PGL2) inside HJ (resp.E7).
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2.5.2 Spin9 × SO2,2

By [Yok09, Theorem 2.7.4], the stabilizer of E1 = [1, 0, 0 ; 0, 0, 0] in F4 is isomorphic to
Spin9, the spin group of a positive definite 9-dimensional quadratic space. In the sequel we
refer to this group as Spin9. The 9-dimensional quadratic space can be found inside JQ:

Lemma 2.5.1. The group Spin9 preserves respectively the following subspaces of JQ:

J1 := {[0, ξ,−ξ ;x, 0, 0] | ξ ∈ Q, x ∈ OQ}

and
J2 := {[0, 0, 0 ; 0, y, z] | y, z ∈ OQ} .

Proof. Since
J1 = {X ∈ JQ |E1 ◦X = 0,Tr(X) = 0}

and
J2 = {X ∈ JQ | 2E1 ◦X = X} ,

the lemma follows from the definition that Spin9 is the stabilizer of E1 in F4.

Notation 2.5.2. In this article, SO2,2 is defined to be the special orthogonal group of
a split 4-dimensional quadratic space over Q, and we define Spin2,2,GSpin2,2 similarly.
Notice that GSpin2,2 ≃ {(g1, g2) ∈ GL2 ×GL2, det(g1) = det(g2)}, Spin2,2 ≃ SL2 × SL2,
and SO2,2 ≃ GSpin2,2/G

∆
m ≃ Spin2,2/µ

∆
2 .

We study first the centralizer of Spin9 in the Levi subgroup MJ ⊆ H1
J:

Lemma 2.5.3. The centralizer CMJ
(Spin9) is an extension of Gm ×Gm by µ2.

Proof. For any element g ∈ CMJ
(Spin9), it stabilizes the subspace J

Spin9(Q)
Q , which is

spanned by E1 and I − E1 = E2 + E3. The rank 1 elements in this subspace are non-
zero multiples of E1, and the rank 2 elements are non-zero multiples of E2+E3. As elements
of MJ preserve the rank, g acts on E1 (resp.E2 +E3) by a scalar. So we obtain a morphism
from CMJ

(Spin9) to Gm ×Gm, whose kernel is the center of Spin9, a cyclic group gener-
ated by the involution [a, b, c ;x, y, z] 7→ [a, b, c ;x,−y,−z] [Sha24, §4.3.1]. This morphism of
algebraic groups is also surjective, since for any non-zero scalars λ, µ, we have the following
element in CMJ

(Spin9):

mλ,µ : [a, b, c ;x, y, z] 7→ [λ−1µ2a, λb, λc ;λx, µy, µz].

Let C′ be the subgroup of CMJ
(Spin9) consisting of mλ,µ, then we have the following

commutative diagram:

1 µ2 CMJ
(Spin9) Gm ×Gm 1

1 µ2 C′ Gm ×Gm 1
µ 7→m1,µ mλ,µ 7→(λ−1µ2,λ)

,
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which shows that CMJ
(Spin9) = C′ is a split torus of rank 2. The centralizer of Spin9

in PJ,sc is generated by CMJ
(Spin9) and {n(xE1 + y(E2 + E3)), x, y ∈ Q} ⊆ NJ, and it is

isomorphic to the standard Borel subgroup of Spin2,2 = SL2 × SL2 via:

mλ,µ 7→
((

λ
λ−1

)
,

(
µ

µ−1

))
, n(xE1 + y(E2 + E3)) 7→

((
1 x

1

)
,

(
1 y

1

))
. (2.8)

Similarly, the centralizer of Spin9 in PJ,sc is isomorphic to the opposite Borel subgroup of
Spin2,2, thus we get a morphism Spin9 × Spin2,2 → H1

J. The kernel of this morphism is
{(id, id), (m1,−1,m1,−1)}, and we denote by Spin9×µ2Spin2,2 the quotient of Spin9×Spin2,2

by this kernel. The morphism Spin9 ×µ2 Spin2,2 ↪→ H1
J induces an embedding of Spin9 ×µ2

GSpin2,2 (resp.Spin9 ×µ2 SO2,2) into HJ (resp.E7).
The centralizer CE7(F4) ≃ PGL2 is embedded into SO2,2 ⊆ CE7(Spin9) via the map

induced from the diagonal embedding GL2 → GSpin2,2.

3 Local theta correspondence

In this section we recall some results on the minimal representation of E7 and the local
theta correspondences for the exceptional dual pairs constructed in §2.5.

3.1 Minimal representation of E7

The theory of theta correspondences studies the restrictions of minimal representations to
reductive dual pairs, so we first recall the definition of the minimal representation of E7(F )
for F = Qp or R, and also some properties that will be used.

Definition 3.1.1. (i) The minimal representation Πmin,p of E7(Qp) is the unramified rep-
resentation whose Satake parameter is the Ê7(C)-conjugacy class of φ

(
p1/2

p−1/2

)
.

Here the morphism φ : SL2(C) → Ê7(C) corresponds to the subregular unipotent
orbit of Ê7(C) = H1

J(C).
(ii) Let Π+ be the holomorphic representation of H1

J(R) with the smallest Gelfand-Kirillov
dimension among non-trivial representations, and Π− be the anti-holomorphic repre-
sentation contragradient to Π+. The minimal representation Πmin,∞ of E7(R) is the
unique representation whose restriction to H1

J(R) is Π+ ⊕ Π−.

The first property that we need is the following relation between the minimal represen-
tation and a principal series:

Proposition 3.1.2. [Sav94, Proposition 6.1][Sah93] For v = p or ∞, the minimal repre-
sentation Πmin,v of E7(Qv) is the unique irreducible submodule of the normalized degenerate
principal series

Ind
E7(Qv)
PJ(Qv)

δ
−1/2
PJ

|λ|2,

where δPJ
is the modulus character of PJ(Qv), and λ : MJ(Qv) → Q×

v is the similitude
character of MJ(Qv).
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The sections of IndE7(Qv)
PJ(Qp)

δ
−1/2
PJ

|λ|2 are smooth functions f : PJ(Qp) → C such that

f(pg) = |λ(p)|2pf(g), for all p ∈ PJ(Qp), g ∈ E7(Qp). (3.1)

From now on, we identify Πmin,v as the unique irreducible submodule of IndE7(Qv)
PJ(Qv)

δ
−1/2
PJ

|λ|2,
and normalize the spherical vector Φp in Πmin,v by the condition that Φp(1) = 1.

The second property is the KE7-types of the holomorphic part Π+ of Πmin. The maximal
compact subgroup KE7 of H1

J(R) is isomorphic to E6×U(1), where E6 is the simply-connected
compact Lie group of type E6.

Definition 3.1.3. (1) Define E(n) to be the irreducible representation of the compact Lie
group E6 with highest weight nλ, where λ is the highest weight of p+J as a E6-representation.
(2) For n, k ∈ N, define E(n, k) to be the irreducible representation of KE7 such that its
restriction to E6 is isomorphic to E(n) and its restriction to U(1) is the character z 7→ zk.

The restriction of Π+ to KE7 is given in [Wal79b]:

Π+|KE7
≃

∞⊕
n=0

E(n, 2n+ 12). (3.2)

3.2 p-adic correspondence for F4 ×PGL2

Over Qp, the exceptional theta correspondence for F4×PGL2 has been studied in [Sav94;
KS23]. Now we recall some results that we need.

Definition 3.2.1. Let π be a smooth irreducible representation of PGL2(Qp), then the
maximal π-isotypic quotient of Πmin,p admits an action of F4(Qp) and factors as π ⊠ Θ(π).
We call Θ(π) the big theta lift of π, and its maximal semisimple quotient θ(π) the small theta
lift of π.

Let B0 = T0N0 be the Borel subgroup of PGL2 consisting of upper triangular matrices,
and B0 be the opposite Borel subgroup. Let χ be a character of T0(Qp) = {( t 1 ) , t ∈ Q×

p }
satisfying χ = | − |s · χ0, where s ≥ 0 and χ0 is a unitary character of T0(Qp). When
s ̸= 1

2
or χ2

0 ̸= 1, the principal series Ind
PGL2(Qp)

B0(Qp)
(χ) is irreducible. It turns out the theta

lift of this principal series to F4(Qp) is also a principal series. Before stating the result of
Karasiewicz-Savin, we introduce a maximal parabolic subgroup of F4.

Definition 3.2.2. Using Bourbaki’s labeling for simple roots of F4, we define Q to be the
maximal parabolic subgroup of F4 obtained by removing α4 from the Dynkin diagram.

The Levi subgroup of Q is isomorphic to GSpin7, whose similitude map GSpin7 → GL1

is given by the fundamental weight ϖ4. Notice that Q̂ ≃ GSp6 ≃ Sp6 ×Gm.

Proposition 3.2.3. [KS23, Proposition 6.4] Let χ = | − |s · χ0 be a character of T0(Qp)

such that χ0 is unitary and 0 ≤ s < 1/2, then the big theta lift of IndPGL2(Qp)

B0(Qp)
(χ) to F4(Qp)

is irreducible, and

Θ(Ind
PGL2(Qp)

B0(Qp)
(χ)) = θ(Ind

PGL2(Qp)

B0(Qp)
(χ)) ≃ Ind

F4(Qp)

Q(Qp)
(χ ◦ϖ4).
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Remark 3.2.4. If χ is unramified, then Proposition 3.2.3 tells that the Satake parameter of
θ(Ind

PGL2(Qp)

B0(Qp)
(χ)) is the F̂4(C)-conjugacy class of the image of (ep, cp) under the embedding

SL2 × SL2 → Sp6 × SL2 → F̂4, where cp = diag(χ(p), χ(p)−1) and ep = diag(p1/2, p−1/2).

3.3 Archimedean theta correspondence

For the dual pair F4(R)×PGL2(R) inside E7(R), we have the following result:

Proposition 3.3.1. [GS98, Proposition 3.2] The restriction of Πmin,∞ to F4(R)×PGL2(R)
is isomorphic to ⊕

n≥0

Vnϖ4 ⊠D(2n+ 12),

where Vnϖ4 is the irreducible representation of F4(R) with highest weight nϖ4, and D(m)
is the unitary completion of dhol(m) ⊕ danti-holo(m), dhol(m) being the holomorphic discrete
series representation of SL2(R) with minimal SO2(R) type m and danti-holo(m) being its
contragradient.

Before stating the result for Spin9 × SO2,2, we define some notations for Spin9(R).
Notation 3.3.2. Let λ1 be the highest weight of the standard 9-dimensional representation
of Spin9(R), and λ2 that of the 16-dimensional spinor representation. Denote by Um,n the
irreducible representation of Spin9(R) with highest weight mλ1 + nλ2.

Proposition 3.3.3. The restriction of Πmin,∞ to Spin9(R)× SO2,2(R) is isomorphic to⊕
m,n≥0

Um,n ⊠D(n+ 4)⊠D(2m+ n+ 8),

where we view D(n+ 4)⊠D(2m+ n+ 8) as a representation of SO2,2(R).
Proof. The proof is parallel to the argument in [GS98, §3] for G2 × PGSp6, using the
branching laws in [Lep70].

4 Global theta correspondence

In this section, we recall an automorphic realization of the minimal representation of
E7(A), and then use it to define global theta lifts.

4.1 Automorphic forms

Let G be a connected reductive group over Q which admits a (reductive) Z-model G , in
the sense of [Gro96]. Let Ẑ =

∏
p Zp, Af = Ẑ ⊗ Q, and A = R × Af . We fix a maximal

compact subgroup K∞ of G(R) and let g = C⊗R Lie(G(R)).
For the simplicity we assume that the center of G is anisotropic, and denote the quo-

tient space G(Q)\G(A) by [G]. This topological space [G] admits a right invariant finite
Haar measure µ, with respect to which we can define the space L2([G]) of square-integrable
functions on [G]. The topological group G(A) acts on L2([G]) by right translation, and the
Petersson inner product makes it a unitary G(A)-representation.
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Definition 4.1.1. (1) An irreducible unitary representation π of G(A) is (square-integrable)
discrete automorphic in the sense of [BJ79, §4.6], if π is isomorphic to a G(A)-invariant
closed subspace of L2([G]). We denote by Πdisc(G) the set of equivalence classes of discrete
automorphic representations of G, and by L2

disc([G]) the discrete part of L2([G]).
(2) An irreducible unitary representation π of G(A) has level one if π can be decomposed as
π = π∞ ⊗ πf , where π∞ is an irreducible unitary representation of G(R) and πf is a smooth
irreducible representation of G(Af ) such that πG (Ẑ)

f ̸= 0. We denote the subset of Πdisc(G)
consisting of those with level one by Πunr

disc(G).
(3) The space of (square-integrable) automorphic forms A(G) is defined to be the space of
K∞ × G (Ẑ)-finite and Z(U(g))-finite functions in the discrete spectrum L2

disc([G]).

Definition 4.1.2. (1) A square-integrable Borel function f : [G] → C is cuspidal if for the
unipotent radical U of every proper parabolic subgroup of G, we have∫

[U]

f(ug)du = 0

for almost all g ∈ G(A). We denote the subspace of L2([G]) consisting of the classes of cus-
pidal functions by L2

cusp([G]), and the subspace of A(G) consisting of cuspidal automorphic
forms by Acusp(G).
(2) A discrete automorphic representation of G is cuspidal if it is a subrepresentation of
L2
cusp([G]). Denote by Πcusp(G) (resp. Πunr

cusp(G)) the subset of Πdisc(G) (resp. Πunr
disc(G))

consisting of cuspidal representations.

4.1.1 Automorphic forms of F4

Now we concentrate on the level one automorphic forms of F4, and describe them in a
manner similar to the case for orthogonal groups [CL19, §4.4]. The adelic quotient [F4] us
compact, so L2([F4]) = L2

disc([F4]) = L2
cusp([F4]), and every automorphic representation of

F4 is discrete and cuspidal.
A level one automorphic representation of F4 is generated by some automorphic form

φ ∈ A(F4)
F4,I(Ẑ) ⊆ L2([F4])

F4,I(Ẑ). The latter space can be viewed as the space of square-
integrable functions on F4(Q)\F4(A)/F4,I(Ẑ), endowed with the Radon measure that is the
image of µ by the canonical map [F4] → F4(Q)\F4(A)/F4,I(Ẑ). By the Peter-Weyl theorem,
L2([F4])

F4,I(Ẑ) can be decomposed into a direct sum of irreducible representations:

Lemma 4.1.3. Denote by Irr(F4(R)) the set of equivalence classes of irreducible represen-
tations of F4(R), then we have:

L2([F4])
F4,I(Ẑ) ≃

⊕
V ∈Irr(F4(R))

V ⊗AV (F4),

where AV (F4) is defined as{
f : F4(Q)\F4(A)/F4,I(Ẑ) → V

∣∣∣ f(gh) = h−1.f(g), for any g ∈ F4(A), h ∈ F4(R)
}
. (4.1)
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Under this isomorphism, an automorphic form φ ∈ A(F4)
F4,I(Ẑ) is identified with an

element of
⊕

V ∈Irr(F4(R))
V ⊗AV (F4). The number of π ∈ Πunr

disc(F4) such that π∞ ≃ V , counted

with multiplicities, is exactly dimAV (F4), which is computed explicitly in [Sha24].
Using Proposition 2.3.4, we identify F4(Q)\F4(A)/F4,I(Ẑ) with the set J of Albert lattices,

and equip J with the corresponding right F4(R)-invariant Radon measure. We can thus
identify L2([F4])

F4,I(Ẑ) with L2(J), equipped with the induced F4(R) action:

(g.f)(J) = f(g−1J), for any g ∈ F4(R), J ∈ J,

and identify AV (F4) with the space

{f : J → V | f(gJ) = g.f(J), for any g ∈ F4(R), J ∈ J} .

We will use either of these two formulations of AV (F4), depending on convenience.
A function f ∈ AV (F4) is determined by its values on the set of representatives {1, γE}

for F4(Q)\F4(Af )/F4,I(Ẑ) chosen in Notation 2.3.5. Furthermore, we have:

Lemma 4.1.4. The evaluation map f 7→ (f(1), f(γE)) (or equivalently f 7→ (f(JZ), f(JE)))
induces an isomorphism of vector spaces:

MV (F4) ≃ V ΓI ⊕ V ΓE ,

where ΓI = F4,I(Z) is the automorphism group of the Albert algebra JZ, and ΓE is that of JE.

4.1.2 A polynomial model of Vnϖ4

In this paper, we focus on automorphic representations of F4 with archimedean compo-
nent V = Vnϖ4 . Now we give a polynomial model of this family of irreducible representations.

When n = 1, a natural model for the 26-dimensional representation Vϖ4 is the trace 0
part of JC ≃ p−J . We choose the realization dual to this one, i.e. the subspace of P1(JC) ≃ p+J
consisting of linear functions ℓ on JC such that ℓ(I) = 0.

For n ≥ 1, Vnϖ4 is a subrepresentation of SymnVϖ4 ⊆ Symn p+J = Pn(JC), where the
action of F4(R) on Pn(JC) is given as:

(g.P )(X) = P (g−1x), for any g ∈ F4(R), P ∈ Pn(JC) and X ∈ JC.

Definition 4.1.5. Define X to be the following F4(C)-orbit in JC:

X := {A ∈ JC |Tr(A) = 0, rank(A) = 1} = {A ∈ JC |A ̸= 0,Tr(A) = 0, rank(A) = 1} .

For any n ≥ 1, we define Vn(JC) to be the subspace of Pn(JC) spanned by polynomials of
the form X 7→ (Tr (X ◦ A))n, A ∈ X.

Lemma 4.1.6. For any n ≥ 1, Vn(JC) is an irreducible representation of F4(R), and its
highest weight is nϖ4.

Proof. This lemma follows from the fact that X is the set of highest vectors in the irreducible
F4(R)-representation {A ∈ JC,Tr(A) = 0} ≃ Vϖ4 , and F4(R) acts on it transitively.
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4.2 Automorphic realization of minimal representation

Let Πmin = ⊗′
vΠmin,v be the (adelic) minimal representation of E7(A). To establish

the global theta correspondence for dual pairs inside E7, we need to choose an automorphic
realization of Πmin, i.e. an E7(A)-equivariant embedding θ : Πmin ↪→ L2([E7]). In this section,
we follow [KY16, §6] to give θ via an explicit modular form constructed by Kim in [Kim93].

4.2.1 Exceptional modular forms

Definition 4.2.1. The exceptional tube domain HJ of complex dimension 27 is the open
subset of JC = JR + iJR consisting of Z = X + iY with Y positive definite.

For any element Z ∈ JC, set r1(Z) :=
(
Z, det(Z), Z#, 1

)
∈ WJ⊗C. By [Pol20, Proposition

2.3.1], for any g ∈ H1
J(R) and Z ∈ HJ, there exist a unique scalar J(g, Z) ∈ C×, which is

called the automorphy factor for H1
J(R), and a unique Z ′ ∈ HJ such that

g.r1(Z) = J(g, Z)r1(Z
′).

Definition 4.2.2. The action of H1
J(R)-action on HJ is defined as follows: for g ∈ H1

J(R)
and Z ∈ HJ, g.Z is the unique Z ′ ∈ HJ satisfying g.r1(Z) ∈ C×r1(Z

′).

Example 4.2.3. We list the actions of some elements in H1
J(R):

• For n(A) ∈ NJ(R), n(A).Z = Z + A and J(n(A), Z) = 1;
• For m ∈ MJ(R), m.(X + iY ) = λ(m)(λ(X) + iλ(Y )) and J(m,Z) = λ(m)−1;
• For ι defined by (2.3), ι.Z = −Z−1 and J(ι, Z) = det(Z).

The center ±1 ≃ ⟨ι2⟩ of H1
J(R) acts trivially on HJ, and the group of holomorphic

transformations of HJ is H1
J(R)/± 1, the connected component of E7(R).

Definition 4.2.4. A holomorphic function F : HJ → C is a modular form of level 1 and
weight k if for any Z ∈ HJ and γ ∈ H1

J(Z) we have

F (γ.Z) = J(γ, Z)k · F (Z).

Kim’s modular form FKim is defined by the following Fourier expansion:

FKim(Z) := 1 + 240
∑

JZ∋T≥0,
rank(T )=1

σ3 (cJZ(T )) e
2πi(T,Z), for any Z ∈ HJ, (4.2)

where cJZ(T ) is the content of T , i.e. the largest integer c such that T/c ∈ JZ, and σ3(n) =∑
d|n d

3. The function FKim defined by (4.2) is a modular form of level 1 and weight 4.

4.2.2 Kim’s automorphic form

Kim’s modular form FKim gives rise to a level one automorphic form of E7. Using the
strong approximation property of E7, we have the following natural homemorphisms:

E7(Q)\E7(A)/E7(Ẑ) ≃ E7(Z)\E7(R) ≃ H1
J(Z)\H1

J(R),
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thus we write any element g ∈ E7(A) as g = gQg∞gẐ, where gQ ∈ E7(Q), gẐ ∈ E7(Ẑ) and
g∞ ∈ E7(R) is the image of an element in H1

J(R) under the projection HJ(R) → E7(R). In
other words, g∞ is an element of H1

J(R)/ ± 1, the group of holomorphic automorphisms of
HJ. Now for g = gQg∞gẐ ∈ E7(A), we define

ΘKim(g) := J(g∞, iI)
−4 · FKim(g∞.iI),

which is a well-defined 5 automorphic form of E7. Using the explicit action on HJ given in
Example 4.2.3, one gets the following:

Lemma 4.2.5. The automorphic form ΘKim ∈ A(E7) is invariant under F4(R)× E7(Ẑ).

Now we use ΘKim to embed Πmin into L2([E7]):

Definition 4.2.6. Let Φp ∈ Πmin,p be the normalized spherical vector, Φ∞ ∈ Π+ ⊆ Πmin,∞
the unique (up to scalar) holomorphic vector with the minimal KE7-type, and Φ0 := Φ∞ ⊗
Φf = ⊗vΦv ∈ Πmin. The automorphic realization θ : Πmin ↪→ L2([E7]) is defined to be the
unique E7(A)-equivariant map sending Φ0 to ΘKim.

4.2.3 Constructing automorphic forms with non-minimal KE7-types

The holomorphic vector Φ∞ lies in the minimal KE7-type of Π+ ⊆ Πmin,∞, and we follow
the method in [Pol20] to produce (holomorphic) automorphic forms with higher KE7-types.

For the two summands p±J in the Cartan decomposition (2.6) of e7, choose a basis {Xα}α
of p+J and its dual basis {X∨

α}α of p−J with respect to p+J × p−J ≃ J∨C × JC
{−,−}−−−→ C.

Definition 4.2.7. We define a linear differential operator D : A(E7) → A(E7)⊗ p−J by

Dφ(g) :=
∑
α

(Xαφ)(g)⊗ X∨
α, for every φ ∈ A(E7),

which is independent of the choice of {Xα}α. For any integer n ≥ 0, set Dn to be the n-times
composition of D.

Applying the differential operator Dn defined in Definition 4.2.7 to ΘKim, we obtain

Θn := DnΘKim ∈ A(E7)⊗ (p−J )
⊗n,

whose coordinates belong to the KE7-type E(n, 2n+ 12) in (3.2).

Notation 4.2.8. (1) For any Albert lattice J ∈ J, denote by J+ the set of rank 1 and
positive semi-definite elements in J , and set aJ(T ) := σ3(cJ(T )) for any T ∈ J , where
cJ(T ) is the content of T in J .

(2) For any element T ∈ JR, denote by hT the function:

g = gQg∞gẐ ∈ E7(A) 7→ J(g∞, iI)
−4 · e2πi(T,g∞.iI),

where gQ ∈ E7(Q), gẐ ∈ E7(Ẑ) and g∞ lies in the image of H1
J(R).

5Here we use the fact that J(γ, Z) = ±1 for any γ ∈ H1
J(Z) and Z ∈ HJ.
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With these notations, for any n ≥ 1, we rewrite Θn as:

Θn(g) = 240
∑
T∈J+Z

aJZ(T ) ·DnhT (g) = 240
∑
T∈J+Z

aJZ(T ) ·DnhT (g∞). (4.3)

We end this section by the following property of Θn:

Lemma 4.2.9. For any g∞ ∈ H1
J(R) and h∞ ∈ F4(R), we have Θn(g∞h∞) = h−1

∞ .Θn(g∞),
where the action of h−1

∞ is applied on (p−J )
⊗n.

Proof. By the definition of Θn = DnΘKim, we have:

Θn(g∞h∞) =
∑

α1,...,αn

(Xαn
· · ·Xα1

ΘKim)(g∞h∞)⊗X∨
α1

⊗ · · · ⊗X∨
αn

=
∑

α1,...,αn

d

dtn

∣∣∣∣
tn=0

· · · d

dt1

∣∣∣∣
t1=0

ΘKim(g∞h∞e
tnXαn · · · et1Xα1 )⊗X∨

α1
⊗ · · · ⊗X∨

αn

=
∑

α1,...,αn

d

dtn

∣∣∣∣
tn=0

· · · d

dt1

∣∣∣∣
t1=0

ΘKim(g∞e
tnAd(h∞)Xαn · · · et1Ad(h∞)Xα1h∞)⊗X∨

α1
⊗ · · · ⊗X∨

αn

=
∑

α1,...,αn

d

dtn

∣∣∣∣
tn=0

· · · d

dt1

∣∣∣∣
t1=0

ΘKim(g∞e
tnh∞.Xαn · · · et1h∞.Xα1 )⊗X∨

α1
⊗ · · · ⊗X∨

αn
,

where h∞.Xα = Ad(h∞)Xα and the last equality follows from Lemma 4.2.5. Since F4(R) is
a subgroup of the maximal compact subgroup KE7 of E7(R), {h∞.Xα}α also gives a basis of
p+J , and its dual basis of p−J is {h∞.X∨

α}α. As the differential operator D is independent of
the choice of {Xα}α, we have:

Θn(g∞h∞) =
∑

α1,...,αn

(Xαn · · ·Xα1ΘKim) (g∞)⊗ h−1
∞ .X∨

α1
⊗ · · · ⊗ h−1

∞ .X∨
αn

= h−1
∞ .Θn(g∞).

4.3 Global theta lifts

Let G×H be one of the two reductive dual pairs given in §2.5, i.e.G×H = F4×PGL2

or Spin9 × SO2,2.

Definition 4.3.1. For φ ∈ A(H) and ϕ ∈ Πmin, the global theta lift of φ with respect to ϕ is
the automorphic form of G defined by the following absolutely convergent integral:

Θϕ(φ)(g) :=

∫
[H]

θ(ϕ)(gh)φ(h)dh, for any g ∈ G(A).

For a cuspidal automorphic representation π ∈ Πcusp(H), its global theta lift Θ(π) is the
G(A)-subspace of L2([G]) generated by {Θϕ(φ) |φ ∈ π, ϕ ∈ Πmin}.

Remark 4.3.2. In this paper, we are always in the situation that either [H] is compact or
φ ∈ A(H) is cuspidal. For the second case, the absolute convergence comes from the rapid
decay of φ.

We also define the global theta lift of a “vector-valued automorphic form” α ∈ AVnϖ(F4)
defined as (4.1), which is compatible with Definition 4.3.1:
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Definition 4.3.3. For a function α : F4(Q)\F4(A)/F4,I(Ẑ) → Vnϖ4 in AVnϖ4
(F4), its global

theta lift Θ(α) is defined as:

Θ(α)(g) =

∫
[F4]

{Θn(gh), α(h)}dh, for any g ∈ PGL2(A), (4.4)

where {−,−} : J⊗nC × (J∨C)
⊗n → C is the pairing defined in (2.7), and we view α(h) ∈ Vnϖ4

as a homogeneous polynomial over JC.

5 Exceptional theta series

In this section, we compute the Fourier expansion of the theta lift Θ(α) of α ∈ AVnϖ4
(F4),

and prove Theorem C in the introduction. From now on, we will identify α with its values
αI ∈ Vn(JC)

ΓI , αE ∈ Vn(JC)
ΓE at 1, γE as in Lemma 4.1.4.

5.1 Fourier expansions of global theta lifts

Normalize the Haar measure dh of F4(A) in (4.4) so that F4(R)F4,I(Ẑ) has measure 1.
Write g ∈ PGL2(A) as g = gQg∞gẐ, where gQ ∈ PGL2(Q), gẐ ∈ PGL2(Ẑ) and g∞ is
the image of an element in SL2(R), then using Lemma 2.3.8, Lemma 4.2.9 and the F4(R)-
invariance of {−,−}, we obtain:

Θ(α)(g) =
1

|ΓI|

∫
F4(R)F4,I(Ẑ)

{Θn(gh∞hẐ), α(h∞hẐ)}dh+
1

|ΓE|

∫
F4(R)F4,I(Ẑ)

{Θn(gh∞γEhẐ), α(h∞γEhẐ)dh}

=
1

|ΓI|

∫
F4(R)F4,I(Ẑ)

{h−1
∞ .Θn(g∞), h−1

∞ .αI}dh+
1

|ΓE|

∫
F4(R)F4,I(Ẑ)

{h−1
∞ .Θn(δ

−1
∞ g∞), h−1

∞ .αE}

=
1

|ΓI|
{Θn(g∞), αI}+

1

|ΓE|
{Θn(δ

−1
∞ g∞), αE}.

(5.1)

If the global theta lift Θ(α) ∈ A(PGL2) is non-zero, then the following result shows that
it arises from a weight 2n+ 12 classical holomorphic modular form on SL2(Z):

Proposition 5.1.1. Let H ⊆ C be the Poincaré half plane, and j : SL2(R)×H → C× the
automorphy factor given by j (( a bc d ) , z) = cz + d. For any α ∈ AVnϖ4

(F4), the function

fΘ(α)(z) := j(g, i)2n+12Θ(α)(g), z = g.i ∈ H, g ∈ SL2(R),

is well-defined and is a level one holomorphic modular form of weight 2n+12. Furthermore,
it is a cusp form when n > 0.

We postpone the proof of Proposition 5.1.1 to §5.3, and prove the following main theorem
on the Fourier expansion of fΘ(α):
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Theorem 5.1.2. (Theorem C in §1) Let α ∈ AVnϖ4
(F4), n > 0 and fΘ(α) the cusp form

associated to its global theta lift Θ(α). Up to a non-zero constant, fΘ(α) has the following
Fourier expansion:

fΘ(α)(z) =
1

|ΓI|
∑
T∈J+Z

aJZ(T )αI(T )q
Tr(T ) +

1

|ΓE|
∑
T∈J+E

aJE(T )αE(T )q
Tr(T ), q = e2πiz.

Remark 5.1.3. The case when n = 0 is studied by Elkies and Gross in [EG96]. In this
case α ∈ A1(F4) can be identified as a pair of complex numbers. For α corresponding
to (|ΓI|, 0), fΘ(α) = E12 +

432000
691

∆; for α corresponding to (0, |ΓE|), fΘ(α) = E12 − 65520
691

∆,
where E12(z) = 1 + 2

ζ(−11)

∑
n≥1 σ11(n)q

n is the normalized weight 12 Eisenstein series, and
∆(z) = q

∏
n≥1(1− qn)24 is the discriminant modular form.

Before proving Theorem 5.1.2, we state a result that will be used in the proof, whose
proof is also postponed to §5.3.

Theorem 5.1.4. Let P ∈ Vn(JC) ≃ Vnϖ4 for any n > 0, T an element of JR, and hT (g) =
J(g∞, iI)

−4 · e2πi(T,g∞.iI) the function given in Notation 4.2.8, then we have:

{(DnhT )(g), P} = (−4π)n · j(g, i)−2n−12P (T ) e2πi(T, g.iI), for any g ∈ SL2(R).

Proof of Theorem 5.1.2. By (5.1), we have

fΘ(α)(z) = j(g, i)2n+12

(
1

|ΓI|
{Θn(g), αI}+

1

|ΓE|
{Θn(δ

−1
∞ g), αE}

)
, z = g.i ∈ H. (5.2)

Using the Fourier expansion (4.3) of Θn and Theorem 5.1.4, the first term in (5.2) equals

1

|ΓI|
j(g, i)2n+12{Θn(g), αI} =

240

|ΓI|
j(g, i)2n+12

∑
T∈J+Z

aJZ(T ){DnhT (g), αI}

=
240(−4π)n

|ΓI|
∑
T∈J+Z

aJZ(T )αI(T )q
(T,I)I ,

and the second term in (5.2) equals

1

|ΓE|
j(g, i)2n+12{Θn(δ

−1
∞ g), αE} =

240

|ΓE|
j(g, i)2n+12

∑
T∈J+Z

aJZ(T ){DnhT (δ
−1
∞ g), αE}

=
240

|ΓE|
j(g, i)2n+12

∑
T∈J+Z

aJZ(T )
{
Dnhδ∗∞T (g), αE

}
=

240(−4π)n

|ΓE|
∑
T∈J+Z

aJZ(T )αE(δ
∗
∞T )e

2πi(δ∗∞T,g.iI).

Since M1
J(R) preserves the rank and stabilizes the set of positive semi-definite elements

[EG96, Proposition 2.4], we have J+E = δ∞(J+Z ), thus∑
T∈J+Z

aJZ(T )αE(δ
∗
∞T )e

2πi(δ∗∞T,g.iI) =
∑
T∈J+E

aJE(T )αE(δ
∗
∞δ

−1
∞ T )e2πi(δ

∗
∞δ−1

∞ T,g.iI).
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The element δ∗∞δ−1
∞ is the archimedean part of δ∗δ−1 ∈ M1

J(Q). By Lemma 2.3.8, δ−1
f γE ∈

M1
J(Ẑ), so δ∗fδ

−1
f ∈ γ∗EM

1
J(Ẑ)γ−1

E = γEM
1
J(Ẑ)γ−1

E = Aut(JE ⊗Z Ẑ, det). As a direct conse-
quence, δ∗δ−1 induces an automorphism of the lattice JE, thus we have:∑

T∈J+E

aJE(T )αE(δ
∗
∞δ

−1
∞ T )e2πi(δ

∗
∞δ−1

∞ T,g.iI) =
∑
T∈J+E

aJE(T )αE(T )q
Tr(T ).

A direct corollary of Theorem 5.1.2 is the following:

Corollary 5.1.5. For any Albert lattice J ∈ J and any polynomial P ∈ Vn(JC), the
(weighted) theta series

ϑJ,P (z) :=
∑
T∈J+

aJ(T )P (T )q
Tr(T ), z ∈ H, q = e2πi, (5.3)

is a modular form on SL2(Z) of weight 2n+ 12, and it is cuspidal if P is not constant.

Proof. Since the theta series (5.3) is invariant under the F4(R)-action on the pair (J, P ) in
the sense that ϑgJ,gP = ϑJ,P , it suffices to prove the modularity for J ∈ {JZ, JE}. Here we
give the proof for J = JZ, and that for JE is almost the same.

Let α : J → Vn(JC) be the element in AVn(JC)(F4) that is supported on the F4(R)-orbit
of JZ and takes the value

∑
γ∈ΓI

γ.P at JZ ∈ J. By Theorem 5.1.2 and Remark 5.1.3, fΘ(α)

is a modular form on SL2(Z) of weight 2n+ 12. On the other hand, J+Z is stable under the
action of ΓI, thus one has:

fΘ(α)(z) =
1

|ΓI|
∑
T∈J+Z

aJZ(T )

(∑
γ∈ΓI

P (γ−1T )

)
qTr(T )

=
1

|ΓI|
∑
γ∈ΓI

(∑
T∈JZ

aJZ(γT )P (T )q
Tr(γT )

)
= ϑJZ,P (z)

If we view α ∈ AVnϖ4
(F4) as a function α : J → Vn(JC), the modular form fΘ(α) can be

written in the following forms:

fΘ(α) =
1

|ΓI|
ϑJZ,α(JZ) +

1

|ΓE|
ϑJE,α(JE).

5.2 Theta series attached to Spin9(R)-invariant polynomials

As an application of Theorem 5.1.2, we are going to show that for every weight k with
Sk(SL2(Z)) ̸= 0, there exists a polynomial P ∈ V k−12

2
(JC) such that the weighted theta series

ϑJZ,P defined as (5.3) is non-zero. This result will be used later in §6.4.
The F4 ↓ B4 branching law [Lep70, §2, Theorem 7] says that dimV

Spin9(R)
nϖ4 = 1 for

any n > 0, where Spin9 is defined as the stabilizer of E1 = [1, 0, 0 ; 0, 0, 0] in F4, thus the
Spin9(R)-invariant polynomial in Vn(JC) is unique up to a non-zero scalar.
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Theorem 5.2.1. For n ≥ 2 and any non-zero polynomial P ∈ Vn(JC)
Spin9(R), the weighted

theta series ϑJZ,P is non-zero.

Proof. We first construct an explicit polynomial Pn ∈ Vn(JC)
Spin9(R). In the real definite

octonion algebra OR, we pick three purely imaginary elements x0, y0, z0 such that R⊕Rx0⊕
Ry0 ⊕ Rz0 is isomorphic to Hamilton’s quaternion algebra, i.e.

x20 = y20 = z20 = −1 and x0y0 = −y0x0 = z0.

Take x1 = x0, y1 =
√
−2y0 and z1 =

√
−2z0, and choose B = [2,−1,−1 ;x1, y1, z1] ∈ JC. It

can be easily verified that B ∈ X, thus the polynomial Qn(X) := (Tr(X ◦B))n = (X,B)n lies
in Vn(JC), and take Pn(X) :=

∫
Spin9(R)

k.Qn(X)dk =
∫
Spin9(R)

(X, kB)ndk to be the average
of Qn over Spin9(R). Now it suffices to show that the associated theta series ϑJZ,Pn ̸= 0.

Consider the first Fourier coefficient a1 of ϑJZ,Pn . The elements in J+Z having contributions
to the coefficient of q are E1, E2 and E3, thus:

a1 =
3∑
i=1

Pn(Ei) =

∫
Spin9(R)

(
3∑
i=1

(Ei, kB)n

)
dk. (5.4)

By Lemma 2.5.1, Spin9(R) preserves the subspaces J1 = {[0, ξ,−ξ ;x, 0, 0] | ξ ∈ R, x ∈ OR}
and J2 = {[0, 0, 0 ; 0, y, z] | y, z ∈ OR} respectively. So for any k ∈ Spin9(R) we set:

k[0, 0, 0 ;x1, 0, 0] = [0, ξ(k),−ξ(k) ;x(k), 0, 0] ∈ J1,

k[0, 0, 0 ; 0, y1, z1] = [0, 0, 0 ; 0, y(k), z(k)] ∈ J2 ⊗ C.

We have the equality 2ξ(k)2 + ⟨x(k), x(k)⟩ = ⟨x1, x1⟩ = 2, as k preserves the inner product
on JR, which implies that |ξ(k)| ≤ 1. The three diagonal entries of kB are 2,−1 + ξ(k) and

−1−ξ(k), thus
3∑
i=1

(Ei, kB)n = 2n+(−1+ξ(k))n+(−1−ξ(k))n ∈ R≥0. When we take k = 1,
3∑
i=1

(Ei, B)n = 2n + (−1)n + (−1)n is positive for any n ≥ 2. Hence the integral in (5.4) is

strictly positive, and as a consequence the weighted theta series ϑJZ,Pn is non-zero.

5.3 Proof of Theorem 5.1.4

In this section, we will prove Proposition 5.1.1 and Theorem 5.1.4, following a similar
strategy to that of Pollack in [Pol23, §6].

We first define a basis {Xα}α of p+J as follows: for any A ∈ JC, write XA := X+
A =

iC−1
h nL(A)Ch as in §2.4.2, which is an element of p+J by Proposition 2.4.6. Choose a C-basis

{e1, . . . , e27} of JC, then we have a basis {Xei}1≤i≤27 of p+J , and we denote its dual basis by
{X∨

ei
}1≤i≤27. In [Pol23, §6.2], Pollack calculates the action of XAn · · ·XA1 on hT |MJ(R). Before

recalling his result, we explain some notations that will appear in the statement.

Let T(JC) =
∞⊕
k=0

J⊗kC be the tensor algebra of JC. Define a family of F4(R)-equivariant

maps Pk : J
⊗k
C → T(JC) inductively:

• let P0 = 1 be the constant map;
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• for k ≥ 0, define 6

Pk+1(A1 ⊗ · · · ⊗Ak ⊗Ak+1) =Pk(A1 ⊗ · · · ⊗Ak)⊗Ak+1 + 4Tr(Ak+1)Pk(A1 ⊗ · · · ⊗Ak)

+Ak+1 ◦ Pk(A1 ⊗ · · · ⊗Ak) + Pk(Ak+1 ◦ (A1 ⊗ · · · ⊗Ak)),

where A ◦ (A1 ⊗ · · · ⊗ Ar) :=
∑r

j=1A1 ⊗ · · · ⊗ (A ◦ Aj)⊗ · · · ⊗ Ar.

For any T ∈ JR and m ∈ MJ(R), we define a linear form wT,m on T(JC) by:

wT,m(A1 ⊗ · · · ⊗ Ar) = (−4π)r
r∏
j=1

(T,m(Aj)) , for any r ≥ 0.

Proposition 5.3.1. [Pol23, Proposition 6.2.2] Let the notations be as above, then for any
m ∈ MJ(R) and A1, . . . , An ∈ JC, we have

XAn · · ·XA1hT (m) = wT,λ(m)m∗(Pn(A1 ⊗ · · · ⊗ An))hT (m).

Remark 5.3.2. There is a slight mistake in [Pol23, Proposition 6.2.2], whose correct formula
should be

XAn · · ·XA1hT (M(δ,m)) = wT,m(Pn(A1 ⊗ · · · ⊗ An))hT (M(δ,m)),

where M(δ,m) is the element of MJ(R) such that M(δ,m)n(A)M(δ,m)−1 = n(m(A)).

Observe that Pn(A1 ⊗ · · · ⊗ An) is the sum of A1 ⊗ · · · ⊗ An with tensors of smaller
degrees. The following lemma enables us to consider only the leading term of Pn.

Lemma 5.3.3. Let P be an element in Vn(JC) ≃ Vnϖ4, then:∑
i1,...,in

Pn(ei1 ⊗ · · · ⊗ ein){X∨
ei1

⊗ · · · ⊗X∨
ein
, P} =

∑
i1,...,in

ei1 ⊗ · · · ⊗ ein{X∨
ei1

⊗ · · · ⊗X∨
ein
, P}. (5.5)

Proof. Since the pairing {−,−} is F4(R)-invariant and Pn is F4(R)-equivariant, for any
g ∈ F4(R), we have: ∑

i1,...,in

Pn(ei1 ⊗ · · · ⊗ ein){X∨
ei1

⊗ · · · ⊗ X∨
ein
, g.P}

=
∑
i1,...,in

Pn(ei1 ⊗ · · · ⊗ ein){X∨
g−1.ei1

⊗ · · · ⊗ X∨
g−1.ein

, P}

=
∑
i1,...,in

Pn(g.ei1 ⊗ · · · ⊗ g.ein){X∨
ei1

⊗ · · · ⊗ X∨
ein
, P}

=
∑
i1,...,in

g.Pn(ei1 ⊗ · · · ⊗ ein){X∨
ei1

⊗ · · · ⊗ X∨
ein
, P}.

Comparing this with the right-hand side of (5.5), it suffices to prove (5.5) for one non-zero
vector in Vnϖ4 , so we take P to be (Tr(X ◦ A))n ∈ Vn(JC) for an arbitrary A ∈ X, as
explained in §4.1.2.

6In [Pol23, §6.2], the Jordan product A ◦B is denoted by 1
2{A,B}, where {A,B} = AB +BA is defined

in [Pol20, §3.3.1].
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Both sides of (5.5) are independent of the choice of the basis {ei}1≤i≤27 of JC, thus
we choose a specific basis {ei}1≤i≤27 such that e1 = A. With this choice, it suffices to
prove Pn(e

⊗n
1 ) = e⊗n1 , which follows from the inductive definition of Pn and the fact that

Tr(e1) = 0, e1 ◦ e1 = 0.

Proposition 5.3.4. For m ∈ MJ(R) and P ∈ Vn(JC) ≃ Vnϖ4, we have

{DnhT (m), P} = (−4π)nP
(
λ(m)m−1T

)
hT (m).

Proof. Combining Proposition 5.3.1 and Lemma 5.3.3 together, we have:

{DnhT (m), P} =
∑
i1,...,in

Xein
· · ·Xei1

hT (m)
{
X∨
ei1

⊗ · · · ⊗ X∨
ein
, P
}

=
∑
i1,...,in

wT,λ(m)m∗(Pn(ei1 ⊗ · · · ⊗ ein))hT (m)
{
X∨
ei1

⊗ · · · ⊗ X∨
ein
, P
}

= hT (m)
∑
i1,...,in

wT,λ(m)m∗(ei1 ⊗ · · · ⊗ ein)
{
X∨
ei1

⊗ · · · ⊗ X∨
ein
, P
}

= (−4π)nhT (m)
∑
i1,...,in

(
n∏
j=1

(T, λ(m)m∗(eij))

){
X∨
ei1

⊗ · · · ⊗ X∨
ein
, P
}

= (−4π)nhT (m)
∑
i1,...,in

(
n∏
j=1

(
λ(m)m−1T, eij

)){
X∨
ei1

⊗ · · · ⊗ X∨
ein
, P
}

= (−4π)nhT (m)
{(
λ(m)m−1T

)⊗n
, P
}

= (−4π)nP
(
λ(m)m−1T

)
hT (m).

To prove Theorem 5.1.4, we use the Iwasawa decomposition to write g ∈ SL2(R) as:

g = tnk, where t = ( u u−1 ) , n = ( 1 x
1 ) , k =

(
cos θ sin θ
− sin θ cos θ

)
.

By a direct calculation, we have the following:

Lemma 5.3.5. For A1, . . . , An ∈ JC, we have the following identities:

(1) XAn · · ·XA1hT (mn(A)) = e2πi(T,λ(m)m∗A)XAn · · ·XA1hT (m), ∀A ∈ JC,m ∈ MJ(R);
(2) XAn · · ·XA1hT (gk) = J(k, iI)−4 (k.XAn) · · · (k.XA1)hT (g), ∀k ∈ KE7 , g ∈ H1

J(R).

Proof of Theorem 5.1.4. Let the notations be as above. By Lemma 5.3.5, we have:

DnhT (g) = DnhT (tnk)

= J(k, iI)−4
∑
i1,...,in

(k.Xei1
· · · k.Xein

)hT (tn)⊗ X∨
ei1

⊗ · · · ⊗ X∨
ein

= J(k, iI)−4e2πi(T,u
2xI)

∑
i1,...,in

(k.Xei1
· · · k.Xein

)hT (t)⊗ X∨
ei1

⊗ · · · ⊗ X∨
ein
.

= j(k, i)−2n−12e2πi(T,u
2xI) ·DnhT (t),
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where the last equality follows from k.XA = (cos θ+ i sin θ)2XA = j(k, i)−2XA. Now we take
the pairing of DnhT (g) with P , and use Proposition 5.3.4 to obtain the desired identity:

{DnhT (g), P} = j(k, i)−2n−12e2πi(T,u
2xI)(−4π)nP

(
u2T

)
J(t, iI)−4e2πi(T,t.iI)

= (−4π)nj(k, i)−2n−12j(t, i)−12u2nP (T )e2πi(T,t.(iI+xI))

= (−4π)nj(g, i)−2n−12P (T ) e2πi(T,g.iI).

Proof of Proposition 5.1.1. To show that fΘ(α)(z) := j(g, i)2n+12Θ(α)(g) is well-defined, it
suffices to verify that for k in the maximal compact subgroup of SL2(R), we have:

Θ(α)(gk) = j(k, i)−2n−12Θ(α)(g), for any g ∈ SL2(R).

This follows from Lemma 5.3.5 and the identity k.XA = j(k, i)−2 · XA. By the definition
of Θ(α) and Proposition 3.3.1, fΘ(α) is a level one holomorphic modular form with weight
2n+ 12, and when n > 0 it is a cusp form.

6 Global theta lifts from PGL2 to F4

We look at the other direction of the global theta correspondence, i.e. from PGL2 to F4.
Let π ≃ ⊗′

vπv be a level one algebraic cuspidal automorphic representation of PGL2 associ-
ated to a Hecke eigenform of SL2(Z) with weight 2n + 12, n > 0. We take an automorphic
form φ ∈ π corresponding to ⊗′φv under the isomorphism π ≃ ⊗′πv, such that:

• φ∞ is the unique lowest weight holomorphic vector in the discrete series representation
D(2n+ 12) of PGL2(R);

• for each prime p, φp is chosen to be the normalized spherical vector in the principal
series representation πp of PGL2(Qp).

Our goal is to prove Θ(π) ̸= 0. In other words, we need to find a vector ϕ ∈ Πmin such that
Θϕ(φ) ̸= 0. The strategy is to calculate the Spin9-period of the global theta lift Θϕ(φ):

PSpin9
(Θϕ(φ)) :=

∫
[Spin9]

Θϕ(φ)(g)dg.

As stated in Remark 1.3.1, one motivation for considering this period integral is the conjec-
ture of Sakellaridis-Venkatesh.

Plugging the definition of the global theta lift Θϕ(φ) in this period integral and changing
the order of integration, we obtain:

PSpin9
(Θϕ(φ)) =

∫
[Spin9]

∫
[PGL2]

θ(ϕ) (gh)φ(h)dhdg

=

∫
[PGL2]

φ(h)

(∫
[Spin9]

θ(ϕ) (gh) dg

)
dh.

(6.1)
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6.1 Exceptional Siegel-Weil formula

The integral
∫
[Spin9]

θ(ϕ)(gh)dg appearing in (6.1), as a function of h ∈ SO2,2(A), is the
global theta lift of the constant function on [Spin9] to SO2,2. In this section, we will prove
an exceptional Siegel-Weil formula for Spin9 × SO2,2, which represents this theta lift as an
Eisenstein series on SO2,2.

Definition 6.1.1. Let B = TN be the Borel subgroup of

SO2,2 = GSpin2,2/Gm = {(g1, g2) ∈ GL2 ×GL2 | det g1 = det g2} /G∆
m

consisting of the equivalence classes of (g1, g2), where g1and g2 are upper triangular matrices.
For s1, s2 ∈ C, we define a character χs1,s2 on T(A) by:

χs1,s2 ((
a1

b1 ) , (
a2

b2 )) := |a1/b1|
s1
2 · |a2/b2|

s2
2 ,

and define I(s1, s2) to be the (normalized) degenerate principal series Ind
SO2,2(A)
B(A) χs1,s2 .

By Proposition 3.1.2, we identify the (adelic) minimal representation Πmin of E7(A) as a
subrepresentation of IndE7(A)

PJ(A)δ
−1/2
PJ

|λ|2.

Lemma 6.1.2. The restriction of sections gives a morphism Ind
E7(A)
PJ(A)δ

−1/2
PJ

|λ|2 → I(3, 7).

Proof. A section f ∈ Ind
E7(A)
PJ(A)δ

−1/2
PJ

|λ|2 satisfies the functional equation (3.1). Combining the
explicit morphisms (2.4) and (2.8), the image of (( a1 b1 ) , (

a2
b2 )) ∈ T(A) in MJ ⊆ E7 has

similitude (a1/b1) · (a2/b2)2, thus the restriction of f to SO2,2(A) satisfies:

f(tng) = χ4,8(t)f(g), for any t ∈ T(A), n ∈ N(A), g ∈ SO2,2(A).

This shows that f |SO2,2(A) is a section of IndSO2,2(A)
B(A) δ

−1/2
B χ4,8 = I(3, 7).

Lemma 6.1.2 gives us a SO2,2(A)-equivariant map:

Res : Πmin ↪→ Ind
E7(A)
PJ(A)δ

−1/2
PJ

|λ|2 → I(3, 7).

Given a smooth vector ϕ ∈ Πmin, we have the following two automorphic forms on SO2,2:

• The theta integral:

Θϕ(1)(g) =

∫
[Spin9]

θ(ϕ)(gh)dh, for any g ∈ SO2,2(A),

• The Eisenstein series associated to ϕ̃ := Res(ϕ) ∈ I(3, 7):

E(ϕ̃)(g) :=
∑

γ∈B(Q)\SO2,2(Q)

ϕ̃(γg), for any g ∈ SO2,2(A).

Theorem 6.1.3. Let Φf := ⊗pΦp be the normalized spherical vector in Πmin,f chosen in
§4.2, then for any smooth holomorphic vector ϕ∞ ∈ Πmin,∞, up to some scalar we have:

E(Res(ϕ∞ ⊗ Φf )) = Θϕ∞⊗Φf
(1).
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Before proving this formula for any smooth vector ϕ∞ ∈ Πmin,∞, we verify it for the specific
vector Φ∞ chosen in §4.2.

Proposition 6.1.4. For the vector Φ0 = Φ∞ ⊗ Φf ∈ Πmin, up to some scalar we have:

E(Res(Φ0)) = ΘΦ0(1).

Proof. By the choice of Φ0, Res(Φ0)p is the normalized spherical vector of I(3, 7)p for each
prime p, and Res(Φ0)∞ is the unique holomorphic vector in I(3, 7)∞ with minimal KE7 ∩
Spin2,2(R)-type. As a result, the Eisenstein series E(Res(Φ0)) is a non-zero multiple of the
automorphic form associated to E4⊠E8, where Ek is the normalized holomorphic Eisenstein
series in Mk(SL2(Z)).

On the other side, the global theta lift is a non-zero multiple of

(g1, g2) ∈ SO2,2(A) 7→ j(g1,∞)−4j(g2,∞)−8FKim (diag(g1,∞.i, g2,∞.i, g2,∞.i)) ,

where (g1,∞, g2,∞) ∈ Spin2,2(R) is the archimedean component of (g1, g2) (up to some left
translation by SO2,2(Q)). It suffices to show that FKim(diag(z1, z2, z2)), as a function on
H ×H, is a non-zero multiple of E4(z1)E8(z2).

Since the space of modular forms Mk(SL2(Z)), k = 4 or 8, is 1-dimensional and spanned
by Ek, it suffices to show that as a function for the variable z1 (resp. z2), FKim(diag(z1, z2, z2))
is a modular form of weight 4 (resp. 8). The only hard part in the proof of the modularity
is to show that

z−4
1 FKim(diag(−1/z1, z2, z2)) = FKim(diag(z1, z2, z2)) = z−8

2 FKim(diag(z1,−1/z2,−1/z2)).

We only give the proof for the first equality here, and the second one can be proved similarly.
From the explicit actions on HJ given in Example 4.2.3, we have

diag(−1/z1, z2, z2) = (n(E1) · ι · n(E1) · ι · n(E1)) .diag(z1, z2, z2),

then the desired functional equation is implied by the modularity of FKim:

FKim(diag(−1/z1, z2, z2))

=J(ι, diag(z1/(z1 + 1),−1/z2,−1/z2))J(ι
−1, diag(z1 + 1, z2, z2))FKim(diag(z1, z2, z2))

=

(
z1

(z1 + 1)z22

)4

·
(
− (z1 + 1) z22

)4 · FKim(diag(z1, z2, z2))
=z41FKim(diag(z1, z2, z3)).

Proof of Theorem 6.1.3. For a smooth vector ϕ∞ ∈ Π+ ⊆ Πmin,∞ whose restriction Res(ϕ∞⊗
Φf ) to SO2,2(A) vanishes, we know from Proposition 3.3.3 that it is orthogonal to the space
(Π+)Spin9(R), thus the theta lift Θϕ∞⊗Φf

(1) = 0.
Now we can assume that the smooth vector ϕ∞ ∈ (Π+)Spin9(R) lies in the Spin2,2(R)-

orbit of Φ∞, then the theorem follows from Proposition 6.1.4 and the fact that the maps
E(Res(−)) and Θ−(1) are both SO2,2(A)-equivariant.
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6.2 Unfolding the period integral

Take the smooth vector ϕ ∈ Πmin to be ϕ∞ ⊗ Φf , where Φf is the normalized spherical
vector and ϕ∞ is a vector in Π+ ⊆ Πmin,∞ such that ϕ̃ := Res(ϕ) ∈ I(3, 7) is non-zero. Using
the Siegel-Weil formula Theorem 6.1.3 for Spin9 × SO2,2, we write the period integral (6.1)
as a Rankin-Selberg type integral and unfold it:

PSpin9
(Θϕ(φ)) =

∫
[PGL2]

φ(h)E(Res(ϕ))(h∆)dh

=

∫
[PGL2]

φ(h)
∑

B(Q)\SO2,2(Q)

ϕ̃
(
γh∆

)
dh

=
∑

γ∈B(Q)\SO2,2(Q)/PGL∆
2 (Q)

∫
γG(Q)\PGL2(A)

ϕ̃(γh∆)φ(h)dh,

(6.2)

where h∆ denotes the image of h ∈ PGL2(A) under PGL2(A) → SO2,2(A), and the reduc-
tive subgroup γG of PGL2 is defined to be PGL∆

2 ∩ γ−1Bγ.
By an easy calculation of orbits, the double coset in the summation of (6.2) has two

orbits, represented by 1 = (( 1 0
0 1 ) , (

1 0
0 1 )) and γ0 = (w0, 1) := (( 0 −1

1 0 ) , ( 1 0
0 1 )) respectively.

For the first orbit, 1G = B0 = T0N0 is the standard Borel subgroup of PGL2, and its
contribution to the Rankin-Selberg integral (6.2) is zero since φ is cuspidal. For the second
orbit, γ0G = T0 is the maximal torus consisting of diagonal matrices, thus we have:

PSpin9
(Θϕ(φ)) =

∫
T0(Q)\PGL2(A)

ϕ̃(γ0g
∆)φ(g)dg. (6.3)

Before calculating this integral, we make some normalization on the measure dg of PGL2(A):

Notation 6.2.1. Fix a Haar measure dx on Qp such that dx(Zp) = 1, and let d×t be the Haar
measure (1− p−1)−1 · dt|t| on Q×

p so that d×t(Z×
p ) = 1. We choose the following left-invariant

Haar measure db on B0(Qp):

db := d×tdx =
dtdx

|t|
, for b =

(
t

1

)(
1 x

1

)
∈ B0(Qp).

On the hyperspecial subgroup PGL2(Zp), we choose the invariant Haar measure dk such
that the volume of PGL2(Zp) is 1. Via the Iwasawa decomposition, we give PGL2(Qp) the
product measure dgp = dbdk, which makes PGL2(Zp) have measure 1. Take a non-trivial
invariant Haar measure dg∞ on PGL2(R) and set dg = ⊗′

vdgv.

The first step to calculate (6.3) is to rewrite it as an Euler product, for which we need
the following:

Definition 6.2.2. Fix a non-trivial continuous unitary character ψ = ψ∞ ⊗ ψf = ⊗vψv of
Q\A such that the conductor of ψp is Zp for each p and ψ∞(x) = e2πix for all x ∈ R. The
ψ-Whittaker coefficient of φ ∈ Acusp(PGL2) is defined to be:

Wφ,ψ(g) :=

∫
[N0]

φ(ng)ψ−1(n)dn.
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The global Whittaker function Wφ,ψ satisfies Wφ,ψ(ng) = ψ(n)Wφ,ψ(g) for any g ∈
PGL2(A) and n ∈ N0(A), and it factors as Wφ,ψ(g) =

∏
vWφv ,ψv(gv) [Cog04, Corollary

4.1.3], where Wφp,ψp is a spherical Whittaker function on PGL2(Qp). We normalize the
spherical vector φp ∈ πp so that Wφp,ψp |PGL2(Zp) = 1.

Expanding the automorphic form φ along N0, the right-hand side of (6.3) becomes:∫
T0(Q)\PGL2(A)

ϕ̃(γ0g
∆)
∑
a∈Q×

Wφ,ψ

((
a 0
0 1

)
g

)
dg =

∫
PGL2(A)

ϕ̃(γ0g
∆)Wφ,ψ(g)dg.

So far we have proved the following:

Proposition 6.2.3. Let ϕ = ϕ∞ ⊗Φf ∈ Πmin be a smooth vector such that ϕ̃ = Res(ϕ) ̸= 0,
then we have

PSpin9
(Θϕ(φ)) =

∫
PGL2(A)

ϕ̃(γ0g
∆)Wφ,ψ(g)dg =

∏
v

Iv(ϕ̃v, φv, ψv),

where the local zeta integral Iv(ϕ̃v, φv, ψv) is defined by:

Iv(ϕ̃v, φv, ψv) :=

∫
PGL2(Qv)

ϕ̃v(γ0,vg
∆
v )Wφv ,ψv(gv)dgv.

6.3 Unramified calculations

The goal of this section is to calculate the local zeta integral Ip(ϕ̃p, φp, ψp):

Proposition 6.3.1. Let φp be the normalized spherical vector of the unramified principal
series πp of PGL2(Qp) whose Satake parameter is

(
αp

α−1
p

)
∈ SL2(C)ss, and ϕ̃p = Res(Φp)

the normalized spherical section of I(3, 7)p, then we have:

Ip(ϕ̃p, φp, ψp) =
(1− p−4)(1− p−8)

(1− p−
5
2αp)(1− p−

5
2α−1

p )(1− p−
11
2 αp)(1− p−

11
2 α−1

p )
.

Proof. With the choice of measures in Notation 6.2.1, we write Ip as a double integral:

Ip(ϕ̃p, φp, ψp)

=

∫
B0(Qp)

∫
PGL2(Zp)

ϕ̃p(γ0b
∆k∆)Wφp,ψp(bk)dbdk

=

∫
Q×

p

∫
Qp

ϕ̃p

(
γ0

(
t

1

)∆(
1 x

1

)∆
)
Wφp,ψp

((
t

1

)(
1 x

1

))
d×tdx

(6.4)

As the normalized spherical section of I(3, 7)p, ϕ̃p satisfies that:

ϕ̃p

(
γ0

(
t

1

)∆(
1 x

1

)∆
)

=

{
|t|2 , x ∈ Zp

|t|2 · |x|−4 , x /∈ Zp
(6.5)
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On the other hand, the values of the spherical Whittaker function Wφp,ψp comes from a
standard result [Cog04, Proposition 7.4]:

Wφp,ψp

((
t

1

)(
1 x

1

))
=

{
0 , t /∈ Zp

p−n/2ψp(tx) · α
n+1
p −α−n−1

p

αp−α−1
p

, t ∈ pnZ×
p for some n ≥ 0

(6.6)

Plugging (6.5) and (6.6) into Equation (6.4), we have:

Ip(ϕ̃p, φp, ψp) =
∞∑
n=0

∫
pnZ×

p

p−
5
2
n
αn+1
p − α−n−1

p

αp − α−1
p

In(t)d
×t (6.7)

where

In(t) =

∫
Zp

ψp(tx)dx+

∫
Qp\Zp

|x|−4ψp(tx)dx = 1 +
∞∑
m=1

∫
p−mZ×

p

p−4mψp(tx)dx.

We set t = pnt0, t0 ∈ Z×
p and change the variable of integration by x = p−mt−1

0 y, which
induces that dx = pmdy, then we have:∫

p−mZ×
p

p−4mψp(tx)dx = p−3m

∫
Z×
p

ψp(pn−my)dy =


p−3m(1− p−1) , m ≤ n
−p−3(n+1) · p−1 , m = n+ 1

0 , m > n+ 1

Hence the integral In(t) is independent of t ∈ pnZ×
p and

In(t) = 1 +
n∑

m=1

p−3m(1− p−1)− p−3(n+1)−1 =
(1− p−4)(1− p−3n−3)

1− p−3
.

Putting this value in (6.7), we obtain:

Ip(ϕ̃p, φp, ψp) =
(1− p−4)

(1− p−3)(αp − α−1
p )

∞∑
n=0

p−
5
2
n(αn+1

p − α−n−1
p )(1− p−3n−3)

=
(1− p−4)

(1− p−3)(αp − α−1
p )

(
αp

1− p−
5
2αp

−
α−1
p

1− p−
5
2α−1

p

− p−3αp

1− p−
11
2 αp

+
p−3α−1

p

1− p−
11
2 α−1

p

)

=
(1− p−4)(1− p−8)

(1− p−
5
2αp)(1− p−

5
2α−1

p )(1− p−
11
2 αp)(1− p−

11
2 α−1

p )
.

As a direct consequence of Proposition 6.3.1, we have the following result, which corre-
sponds to Theorem D in the introduction:

Corollary 6.3.2. (Theorem D in §1) Let ϕ = ϕ∞ ⊗ Φf be a smooth holomorphic vector in
Πmin such that ϕ̃ = Res(ϕ) ̸= 0, and φ ≃ φ∞ ⊗ φf ∈ π the automorphic form of PGL2

associated to a (normalized) Hecke eigenform for SL2(Z) of weight 2n+12, n > 0. Then we
have:

PSpin9
(Θϕ(φ)) =

L(π, 5
2
)L(π, 11

2
)

ζ(4)ζ(8)
· I∞(Res(ϕ∞), φ∞, ψ∞). (6.8)

The L-function L(π, s) appearing in (6.8) is the standard automorphic L-function of π, de-
fined as the Euler product

∏
p(1− p−sαp)(1− p−sα−1

p ), where the SL2(C)-conjugacy class of
diag(αp, α

−1
p ) is the Satake parameter of πp.
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Remark 6.3.3. The L-factor L(π, 5
2
)L(π, 11

2
) appearing in (6.8) agrees with the prediction of

the global conjecture [SV17, §17; Sak21, Table 1] of Sakellaridis-Venkatesh for the spherical
variety Spin9\F4.

The Rankin-Selberg theory shows that the standard automorphic L-function L(π, s) has
no zero at s = 5

2
or 11

2
. As a consequence, the non-vanishing of PSpin9

(Θϕ(φ)) is equivalent
to that of the archimedean zeta integral I∞(Res(ϕ∞), φ∞, ψ∞).

6.4 Non-vanishing of Θϕ(φ)

By Corollary 6.3.2, for the non-vanishing of Θ(π), it suffices to find some smooth vector
ϕ∞ ∈ Π+ ⊆ Πmin,∞ such that I∞(Res(ϕ∞), φ∞, ψ∞) ̸= 0. Notice that for the cuspidal
automorphic form φ associated to any Hecke eigenform of weight 2n + 12, its archimedean
component φ∞ is the unique (up to some scalar) holomorphic lowest weight vector in dhol(2n+
12) ⊆ D(2n+ 12), thus we only need to prove the following:

Proposition 6.4.1. For any n > 1, there exist an automorphic form φn ∈ Acusp(PGL2)
associated to some Hecke eigenform in S2n+12(SL2(Z)), and a smooth vector ϕn ∈ Π+ ⊆
Πmin,∞, such that I∞(Res(ϕn), φn,∞, ψ∞) ̸= 0, or equivalently, PSpin9

(Θϕn⊗Φf
(φn)) ̸= 0.

Proof. For each n > 1, Theorem 5.2.1 shows that there exists a non-zero Spin9(R)-invariant
polynomial Pn in Vn(JC) such that the weighted theta series ϑJZ,Pn defined as (5.3) is non-
zero. Let αn ∈ AVnϖ4

(F4) to be the vector-valued automorphic form such that αn(1) =∑
γ∈ΓI

γ.Pn ∈ Vn(JC)
ΓI and αn(γE) = 0, then the global theta lift Θ(αn) is a non-zero

holomorphic cuspidal automorphic form of PGL2. Hence there exists an automorphic form
φn ∈ Acusp(PGL2) associated to some Hecke eigenform in S2n+12(SL2(Z)), such that the
Petersson inner product ∫

[PGL2]

Θ(αn)(g)φn(g)dg (6.9)

is non-zero. Putting the definition of Θ(αn) into (6.9), we have:

0 ̸= 1

|ΓI|

∫
[PGL2]

{
Θn(g),

∑
γ∈ΓI

γ.Pn

}
φn(g)dg =

∫
[PGL2]

{Θn(g), Pn}φn(g)dg. (6.10)

Take the following smooth vector in Π+ ⊆ Πmin,∞:

ϕn := {DnΦ∞, Pn} =
∑

α1,...,αn

{X∨
α1

⊗ · · ·X∨
αn
, Pn} · (Xαn · · ·Xα1 .Φ∞) ,

where Φ∞ is the specific vector chosen in §4.2 and D is the operator Π+ → Π+ ⊗ p−J sending
ϕ to

∑
αXαϕ ⊗ X∨

α, with an arbitrary choice of basis {Xα} of p+J and its dual basis {X∨
α}.

By Definition 4.2.6, the automorphic realization θ : Πmin ↪→ L2([E7]) maps ϕn ⊗ Φf to

θ(ϕn ⊗ Φf ) = {Dnθ(Φ∞ ⊗ Φf ), Pn} = {DnΘKim, Pn} = {Θn, Pn}.
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Use θ(ϕn ⊗ Φf ) as the kernel function to define a global theta lift of φn, then we calculate
the Spin9-period integral of this global theta lift:

PSpin9
(Θϕn⊗Φf

(φn)) =

∫
[PGL2]×[Spin9]

{Θn(gh), Pn}φn(g)dgdh.

Since we have the strong approximation property Spin9(A) = Spin9(Q)Spin9(R)Spin9(Ẑ),
the Spin9-period integral is a non-zero multiple of∫

[PGL2]

∫
Spin9(R)

{Θn(gh∞), Pn}φn(g)dgdh∞ =

∫
[PGL2]

∫
Spin9(R)

{h−1
∞ .Θn(g), Pn}φn(g)dgdh∞

=

∫
Spin9(R)

dh∞ ·
∫
[PGL2]

{Θn(g), Pn}φn(g)dg,

where we use Lemma 4.2.9 and the Spin9(R)-invariance of Pn. Combining this with (6.10),
we obtain the non-vanishing of PSpin9

(Θϕn⊗Φf
(φn)), which is equivalent to the non-vanishing

of I∞(Res(ϕn), φn,∞, ψ∞) by Corollary 6.3.2.

Our main theorem is a direct consequence of Corollary 6.3.2 and Proposition 6.4.1:

Theorem 6.4.2. (Theorem B in §1) Let π ∈ Πunr
cusp(PGL2) be the automorphic representation

associated to a Hecke eigenform in Sk(SL2(Z)), then its global theta lift Θ(π) to F4 is non-
zero. Furthermore, we have the local-global compatibility of theta correspondence, i.e.

Θ(π) ≃ ⊗′
vθ(πv).

Proof. The case when k ≥ 16 is a corollary of Proposition 6.4.1 and Corollary 6.3.2. When
k = 12, this is a result in [EG96] (see also Remark 5.1.3). The local-global compatibility of
theta correspondence follows from Proposition 3.2.3 and Proposition 3.3.1.

Corollary 6.4.3. (Theorem E in §1) For n ≥ 2, the following map is surjective:

AVnϖ4
(F4) → S2n+12(SL2(Z))

(α : J → Vnϖ4) 7→ fΘ(α) =
1

|ΓI|
ϑJZ,α(JZ) +

1

|ΓE|
ϑJE,α(JE)

Proof. Suppose that the map α 7→ fΘ(α) is not surjective, then there exists a non-zero Hecke
eigenform f ∈ S2n+12(SL2(Z)), such that its associated automorphic form φ ∈ A(PGL2) is
orthogonal to Θ(α) for all α ∈ AVnϖ4

(F4), with respect to the Petersson inner product. In
particular, φ is orthogonal to Θ(αn), where αn is the algebraic modular form chosen in the
proof of Proposition 6.4.1. Take ϕn ∈ Πmin to be the one in Proposition 6.4.1, we have:

0 =

∫
[PGL2]×[Spin9]

{Θn(gh), Pn}φ(g)dgdh = PSpin9
(Θϕn⊗Φf

(φ)),

which leads to a contradiction.
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