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Abstract

In this thesis, we study level one automorphic representations for the Q-form F,4 of the
exceptional compact group of Lie type F4, The work is divided into the following two parts.

Level one automorphic representations of F,; with a given weight. First, following

the method of Chenevier and Renard, we calculate the number of level one automorphic rep-
resentations for F, with any given archimedean component. More explicitly, we study the
automorphism group of the two Albert Z-algebras studied by Gross, as well as the dimension of
the invariants of these groups in any irreducible representation of Fy(R).

Next, assuming standard conjectures by Arthur and Langlands on automorphic representa-
tions, we refine this counting by studying the contribution of the representations whose global
Arthur parameter has any possible image. This includes a detailed description of all those
images, and precise statements for the Arthur’s multiplicity formula in each case. Our result
provides in particular a conjectural but explicit formula for the number of algebraic, cuspidal,
level one automorphic representations of GLog over Q with any given “Fy-reqular” weight and
of Sato-Tate group F4(R).

Exceptional theta correspondence for F; x PGL,. We study the global exceptional

theta correspondence for the reductive dual pair Fy x PGLs. Our main result states that
for any automorphic representation of PGLy associated with a cuspidal Hecke eigenform for
SLy(Z), its global theta lift to F4 is a non-zero irreducible automorphic representation. This
verifies a conjectural calculation made in the previous part. Motivated by Pollack’s work, our
main tool is to construct a family of exceptional theta series, which are holomorphic cusp forms

of SLy(Z), and we show that this family spans the entire space of level one cusp forms.

Keywords : Automorphic forms, Exceptional groups, Langlands program, Theta correspon-

dence






Résumé

Dans cette thése, nous étudions les représentations automorphes de niveau un pour la Q-
forme F4 du groupe exceptionnel compact de type de Lie F4. Ce travail est divisé en les deux
parties suivantes.

Représentations automorphes de niveau un de F; avec un poids donné. D’abord,

en suivant la méthode de Chenevier et Renard, nous calculons le nombre de représentations au-
tomorphes de niveau un pour F4 avec une composante archimédienne donnée. Plus précisément,
nous étudions le groupe d’automorphismes des deux algébres d’Albert sur 7, étudiées par Gross,
ainsi que la dimension des invariants de ces groupes dans toute représentation irréductible de
F4(R).

Ensuite, en admettant les conjectures standards d’Arthur et Langlands sur les représentations
automorphes, nous affinons ce comptage en étudiant la contribution des représentations dont
le parameétre global d’Arthur a n’importe quelle image possible. Cela inclut une description
détaillée de toutes ces images, et des énoncés précis pour la formule de multiplicité d’Arthur
dans chaque cas. Notre résultat fournit en particulier une formule conjecturale mais explicite
pour le nombre de représentations automorphes algébriques, cuspidales, de niveau un de GLog
sur Q ayant un poids « Fy-régulier » donné, et pour groupe de Sato-Tate F4(R) tout entier.

Correspondance théta exceptionnelle pour F; x PGLs. Nous étudions la correspon-

dance théta exceptionnelle globale pour la paire duale réductive Fy x PGL3y. Notre résultat
principal affirme que pour toute représentation automorphe de PGLy associée a une forme
parabolique propre de Hecke pour SLg(Z), son ©-lift global est une représentation automorphe
irréductible non nulle de Fy4. Cela vérifie un calcul conjectural effectué dans la partie précé-
dente. Motivés par les travaux de Pollack, notre principal outil consiste a construire une famille
de séries théta exceptionnelles, qui sont des formes paraboliques holomorphes de SLy(Z), et

nous montrons que cette famille engendre tout ’espace des formes paraboliques de niveau un.

Mots clés : Formes automorphes, Groupes exceptionnels, Programme de Langlands, Corre-

spondance théta
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Chapter
Introduction

The work developed in this thesis belongs to the area of automorphic representations, espe-
cially those with level one for an anisotropic exceptional algebraic Q-group F4. The first part
(from Chapter 3 to Chapter 7) corresponds to [Shan, 2024], in which we study the number of
level one automorphic representations for F4 with a given arbitrary weight, and (conjecturally)
classifies their global Arthur parameters. The second part (Chapter 8) corresponds to [Shan,
2025], and we consider the global exceptional theta correspondence for F4 x PGL; in this part.

1.1 A motivation: geometric Galois representations with given

image

The absolute Galois group Gal(Q/Q) encodes a lot of arithmetic information about number
fields, and a natural way to study Gal(Q/Q) is to consider its representations, especially those
arising from algebraic geometry. Motivated by the inverse Galois problem, the following question

has been studied by a lot of mathematicians:

Problem 1. Let ¢ be a prime number and H a connected reductive algebraic group over Q.
Is there an (-adic Galois representation p : Gal(Q/Q) — H(Qy) such that it is semisimple and
geometric (in the sense of Fontaine-Mazur [Taylor, 2004, Conjecture 1.1]), and whose image is
Zariski dense in H(Qy) ?

In the case H = GLy ~ GSp, or GSp,, or more generally, a (similitude) classical group,
there are many well-known constructions and examples. For instance, one can use the Poincaré
pairing on f-adic cohomologies of algebraic varieties to construct Galois representations with im-
ages in classical groups. The case of exceptional groups, i.e. groups with Lie types Go, Fy, Eg, E7
and Eg, is harder, but we still have some examples in [DettweilerReiter, 2010; GrossSavin, 1998;
Yun, 2014; Patrikis, 2016; BoxerCalegariEmertonLevinMadapusi PeraPatrikis, 2019]. Notice
that when H has Lie type Go or Eg, this question is related to Serre’s question on motives
[Serre, 1994, Question 8.8, §1].

Composing Gal(Q/Q) — H(Qy) with an algebraic representation H — GL,,, we obtain an n-

dimensional geometric ¢-adic representation. One can associate two invariants with a geometric

1



Chapter 1. Introduction

(-adic Galois representation p : Gal(Q/Q) — GL,(Qy): the (Artin) conductor N(p) € N, and
the Hodge-Tate weights HT(p), a multiset of n integers (see, for example, [Taylor, 2004]). In the
aforementioned works, the conductors of the geometric f-adic representations that they construct

are usually not controlled. One may refine Problem 1 naturally by fixing these two invariants:

Problem 2. Let £ be a prime number, n > 1 and H a connected reductive subgroup of GL,,
over Qp. What is the number (up to equivalence) of geometric (-adic Galois representations
p: Gal(Q/Q) — GL,(Qy) of given conductor and Hodge-Tate weights such that the Zariski
closure of Tm(p) is H(Qy)?

For (H,n) = (GL2,2) or (SO24+1,2¢g+ 1), this question is for instance related to the dimen-
sion of spaces of classical or Siegel modular forms. We have less knowledge of the cases of other
groups H. When the conductor N = 1, Problem 2 is solved conjecturally by Chenevier and
Renard in [ChenevierRenard, 2015] for the following groups (n is chosen to be the dimension of
the standard representation when H is a (similitude) classical group, and to be 7 when H has
type Go):

GL; ~ GSp,, GSp,, SOy, SO5, GSpg, GSpg, SOs, Ga,

via the conjectural connection between n-dimensional geometric ¢-adic representations and cus-
pidal automorphic representations of GL,. See also [Taibi, 2017; ChenevierTaibi, 2020] for
higher dimensions. In [Lachaussée, 2020], Lachaussée extends the results for GSpy,, 1 <g <4
to the case of Artin conductor N = 2. Now we concentrate on the case of conductor one (see
Remark 1.6.3 for more explanations about this assumption).

In this thesis, following [ChenevierRenard, 2015], we give a conjectural solution to Problem 2

when N = 1, H has Lie type F4, and n = 26. For a 26-dimensional geometric ¢-adic Galois

representation p such that Im(p) has type Fy, its multiset of Hodge-Tate weights only depends
on 4 variables a, b, c,d € N, and has the form

HT(a,b,c. d) :_{ 0,0,4a,4b,+(a+b),£(b+c),£(a+b+c),x(b+c+d),£(a+b+c+d),£(a+2b+c), }

t(a+2b+c+d),£(a+2b+2c+d), £(a + 3b+ 2c + d), £(2a + 3b + 2¢ + d).
As a conjectural corollary of our results in this thesis, we propose the following conjecture

on Fy-type geometric f-adic representations:

Conjecture A. The number of equivalence classes of 26-dimensional conductor one geometric

L-adic Galois representations p such that

o the Zariski closure of Im(p) is a connected reductive group of type Fy,
e and HT(p) = HT(a,b,c,d), a,b,c,d > 1,

is Fy(a —1,b—1,¢ — 1,d — 1), where F4(\) is the computable function on N* given by Proposi-
tion 7.4.1.

Remark 1.1.1. The formula for F4()\) has so many terms that we will not write down the full
formula in this paper. However, under some hypothesis this formula becomes much simpler. For
instance, when a > b+c+d+3, b,c,d > 0 and ¢, d are both odd, a short formula for F4(a, b, ¢, d)

is given in Remark 7.4.2.



1.2. An automorphic variant of the counting problem

1.2 An automorphic variant of the counting problem

Now we send Problem 2 to the automorphic side. Let G be a connected reductive group over
Q with a reductive Z-model (see Section 3.2). As we will talk about Galois representations, it
will be convenient to assume that its Langlands dual group G is defined over Q, and we fix two
embeddings: C £5Q N Q. We also fix a maximal compact subgroup G, of G(C)

Let 7 be an L-algebraic' level one automorphic representation of G. By a conjecture of
Buzzard and Gee [BuzzardGee, 2014, Conjecture 3.2.1], one should be able to associate with 7
a compatible conductor one geometric (-adic representation p,, : Gal(Q/Q) — G(Qy), which
depends on the choice of embeddings ¢ = (1o, t¢). By the standard conjectures of Fontaine-
Mazur and Langlands, every conductor one geometric ¢-adic representation into é(@g) should
arise in this way. If any two element-conjugate homomorphisms from a connected compact Lie
group into G, are conjugate (see Section 5.1 for a detailed explanation), the following question

gives an automorphic variant of Problem 2 for H = G X, Q
Problem 3. Let G be a connected reductive group over Q admitting a reductive Z-model.

(1) (Counting) Count the number (up to equivalence) of level one algebraic® discrete automor-
phic representations for G with an arbitrary given archimedean component.

(2) (Refinement) Refine this counting by “Sato-Tate groups” of automorphic representations.

Remark 1.2.1 (“Sato-Tate groups”). In the above question, the “Sato-Tate group” H(m) of a level
one automorphic representation 7 for G is a certain conjugacy class of subgroups of G, that
we will explain carefully in Section 6.3.1, and we can briefly introduce it as follows. Based on
Arthur’s parametrization of automorphic representations, one can conjecturally associate with
7 a group homomorphism

'(ﬂﬁ : EZ X SU(Q) — Gc,

where Lz is the hypothetical Langlands group of Z, which is connected and compact (see Sec-
tion 6.3). We define H(m) to be the conjugacy class of the image of 1, in G.. When the
restriction of ¢ to 1 x SU(2) C Lz x SU(2) is trivial, this notion H(7) coincides with the usual
notion of Sato-Tate groups. In general, we decided to include the SU(2) factor in the definition

as it provides convenience for stating some of our results.

The point of the refinement part in Problem 3 is that in general many level one discrete
automorphic representations 7 for G, for example the endoscopic ones, will have a Sato-Tate
group strictly smaller than G.. For these 7, m should be a proper subgroup of (A}(@)
Hence we have to find a way to exclude these representations to obtain the desired number in
Problem 2.

In [ChenevierRenard, 2015], Chenevier and Renard solve the part (1) of Problem 3 for a

number of classical groups of small ranks, namely, G is one of the following groups:

SL2 = Sp27 Sp4, 80272, 80372, SO7, SOg and SOg,

!For the definition of L-algebraicity, see [BuzzardCee, 2014, Definition 2.3.1]. For a representation which is
algebraic in the sense of Definition 6.4.3 but not L-algebraic, one should replace G by some “similitude” group.
20ne can remove this algebraicity condition by restricting to semisimple Q-groups.

3



Chapter 1. Introduction

and also for a connected semisimple Q-group of type Gg with compact real points. For the
part (2) of Problem 3, their method relies in an important way on Arthur’s classification of
automorphic representations [Arthur, 1989; Arthur, 2013]. Their results for SO7, SOg, SOg and
Go are conditional to Arthur’s conjectures for these groups, since SO7,SOg and SOg are not
quasi-split, and Gy is not covered by Arthur’s results. In [Taibi, 2017; Taibi, 2019], Taibi makes
these results unconditional (except for Gg), and he also extends them to the following split

classical groups:
Sp29 with g <7, SOp41,, with n < 8 and SOay;, 2, With m < 4.

In particular, Taibi’s solution to Problem 3 for Spg will be important in our work.

In the first part of this thesis, we apply the method of [ChenevierRenard, 2015] to Fy,
the unique (up to isomorphism) connected semisimple algebraic group over Q of type Fy4, with
compact real points and split over Q, for every prime p (see Section 3.1). For this group, au-
tomorphic representations are automatically L-algebraic. Moreover, it turns our that there is
no local-global conjugacy problems for connected subgroups of (Fy). = F4(R) (see Proposi-
tion 5.1.5). As a consequence, Conjecture A follows from standard conjectures and our answer
to Problem 3 for Fy.

Remark 1.2.2. The automorphic representations for F4 (and their local components) have been
studied in [Savin, 1994; MagaardSavin, 1997; Gan, 2000; Pollack, 2023; KarasiewiczSavin, 2023]
via exceptional theta correspondences, and we will explain some links between these correspon-
dences with our work in Section 7.5. Let us mention also that automorphic representations
for F4 have also been studied in the past by Seth Padowitz in [Padowitz, 1998, §9]. Padowitz
rather considers the automorphic representations which are Steinberg at a fixed non-empty set
of primes and unramified elsewhere, and he tries to enumerate them using the stable trace for-
mula, in the spirit of works of Gross-Pollack [GrossPollack, 2005]. The results are only partial,
as several stable local orbital integrals there are not determined®, and we hope to go back to

this question in the future.

1.3 Counting level one automorphic representations

In [Gross, 1996], Gross proves the following result for Fy, which is important in our solution
to the part (1) of Problem 3 for Fy:

Theorem B. (Proposition 3.5.6) Up to Z-isomorphism, there are two smooth affine group
schemes over Z with generic fiber isomorphic to ¥4, whose special fiber over Z/pZ is reductive

for all primes p.

The Z-group schemes in Theorem B are reductive Z-models of F4. Their constructions are
related to integral structures of the 27-dimensional definite exceptional Jordan algebra over Q.

Gross proves this result via the mass formula for F4 and some results in [ATLAS]. The goal

3 Another minor problem is that the author asserts on [Padowitz, 1998, P.42] that the 26-dimensional irreducible
representation of Fy is “excellent” in his sense, which is not correct. See Remark 4.5.5 for a counterexample.
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of Chapter 3 is to recall the construction of F4 and to give a new proof of Theorem B without
using [ATLAS].

Since the method of counting in [ChenevierRenard, 2015] can be applied to any algebraic
Q-group that has compact real points and admits a reductive Z-model, we recall and apply this
method to Fy in Chapter 4. One important input is the structure (e.g. generators, conjugacy
classes) of the finite subgroup ¥(Z) of F4(R), where ¢ is one of the two reductive Z-models
in Theorem B. This input is given by our analysis in the proof of Theorem B. We obtain the

answer for the part (1) of Problem 3 for Fy:

Theorem C. (Theorem 4.6.1 and Corollary 6.1.8)

(1) For an irreducible representation Vy of Fy(R) with highest weight A\, we have an explicit
and computable formula for the number d(\) of equivalence classes of level one automorphic
representations m with ms ~ V.

(2) For dominant weights X\ = Yy N\jwi* satisfying 2\ + 3Xa 4+ 2X3 + Ay < 13, we list the
numbers d(X\) in Table A.3, Appendiz A.

1.4 Candidates for Sato-Tate groups

The part (2) of Problem 3 involves a classification of all possible Sato-Tate groups for level one
automorphic representations of F4. For this Q-group, its Langlands dual group ﬂ is isomorphic
to Fy xg C, and as mentioned in Remark 1.2.1, Sato-Tate groups in this case are conjugacy
classes of subgroups of the compact Lie group F4(R). Our goal of Chapter 5 is to exclude some

subgroups of F4(R), and to give a list of candidates for Sato-Tate groups in this case:

Theorem D. (Theorem 5.6.7) There are 13 conjugacy classes of proper connected subgroups H
of F4(R) such that:

o the centralizer of H in F4(R) is isomorphic to the product of finitely many copies of Z./27;
e the zero weight appears twice in the restriction of the 26-dimensional irreducible represen-

tation of F4(R) to H.

We will prove this classification result step by step, following Dynkin’s strategy in [Dynkin,

1952]. It is worth mentioning two important ingredients in the proof:

o A local-global conjugacy result (Proposition 5.1.5) for F4(R), which we have already men-
tioned in the end of Section 1.2. This relies on a result about Lie algebras (Theorem 5.1.3)
proved by Losev in [Losev, 2010].

o A useful criterion (Proposition 5.2.1) given in Section 5.2 for the conjugacy of two homo-

morphisms from a connected compact Lie group into F4(R).

Ezxample 1.4.1. Among the conjugacy classes of subgroups classified in Theorem D, we have

Spin(9), Spin(8), Gz xSO(3), (Sp(3) x SU(2)) /u3', (Sp(2) x SU(2) x SU(2)) /p5,

*Here we follow the notations in [Bourbaki, 2002, §VI1.4.9].
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where the notations will be explained in Notation 5.3.1 and Notation 5.3.3. The remaining
subgroups are all centrally isogenous to products of n copies of SU(2), n < 4. Note that among
the subgroups listed above, only Spin(9) and (Sp(3) x SU(2)) /u4* are maximal proper connected
regular subgroups of F4(R).

1.5 Arthur’s conjectures

As in [ChenevierRenard, 2015], for the part (2) of Problem 3, we need some conjectures
on automorphic representations. For a connected reductive algebraic group G over QQ, Arthur
introduces in [Arthur, 1989] a conjectural parametrization of discrete automorphic representa-
tions, via discrete global Arthur parameters for G. In the level one case, these parameters are

(A}(C)—conjugacy classes of admissible morphisms
¥ : L7, % SLy(C) — G(C),

where Ly is the hypothetical Langlands group of Z (see Section 6.3 for more details), and G is
the Langlands dual group of G. Arthur proposes a conjectural formula for the multiplicity of
an irreducible G(A)-representation in the discrete automorphic spectrum of G, in terms of the
associated global Arthur parameters.

In [Arthur, 2013], Arthur reformulates his conjectures for any quasi-split classical group G,
avoiding the appearance of the hypothetical Langlands group L£z. In this case, he relates the
global Arthur parameters for G to cuspidal automorphic representations of linear groups, and
proves the endoscopic classifications, relying in particular on the works of Meeglin-Waldspurger
[MoeglinWaldspurger, 2014], Ngo [Ngo, 2010] and many others. We refer to [ChenevierLannes,
2019, §8] for precise statements of Arthur’s results in [Arthur, 2013] in the case of level one
cohomological automorphic representations of classical groups.

Of course Fy is not a classical group, and Arthur’s general conjectures [Arthur, 1989] are
still open in this case. Nevertheless, they can still be formulated quite precisely if we admit
the existence of Lz. See also [ChenevierLannes, 2019, §6.4] for some general forms of Arthur’s

conjectures in the level one case.

Notation 1.5.1. In the rest of the thesis, we will mark any result conditional to the existence

of £z and Arthur’s multiplicity formula (Conjecture 6.6.5) with a star *.

Now we briefly explain Arthur’s conjectures for F4, and a more precise description in the
general case for simply-connected anisotropic groups admitting reductive Z-models will be pro-
vided in Chapter 6. For a level one automorphic representation 7 of Fy with global Arthur
parameter ¢ : L7 x SLa(C) — F4(C), we may compose ¢ with the 26-dimensional irreducible
representation 1 : F4(C) — GLag(C)°, and thus obtain a representation of £z x SLy(C). This

representation is decomposed as:

roy ~mi[d] ® - ® my[dy], (*)

5The image of r is even inside SO4%(C) C SL26(C) C GL26(C).
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where 7; is an n;-dimensional irreducible representation of Lz and [d;] stands for the irreducible
d;-dimensional representation of SLo(C), and Zle n;d; = 26. We identify m; as a level one
cuspidal representations of PGL,,, and observe that it is always self-dual and algebraic in this
case (see Section 6.4). In a similar way as in [Arthur, 2013], we view the global Arthur parameter
¥ as a formal sum of m;[d;]’s.

We derive from Theorem D that the Sato-Tate group of any 7; appearing in the decomposition

(%) is one of the following compact Lie groups:
SU(2), Sp(2), Sp(3), SO(8), SO(9), G2, Fa(R). (%)

Cuspidal representations with Sato-Tate group F4(R) conjecturally correspond to the desired
¢-adic representations in Problem 2, and those with other Sato-Tate groups in (xx) are related

to level one automorphic representations for the following Q-groups:
PGL27 803727 SO77 SOSJ Sp87G27

which have already been studied in [ChenevierRenard, 2015; Taibi, 2017; ChenevierTaibi, 2020].

Conversely, for a global Arthur parameter ¢ : L7 x SLo(C) — F4(C) whose “archimedean
component” is an Adams-Johnson parameter (see Definition 6.6.1 and Remark 6.6.2), the mul-
tiplicity of its corresponding irreducible F4(A)-representation in the automorphic spectrum can
be calculated via Arthur’s formula in [Arthur, 1989], and an explicit formula for F4 will be given

in Section 7.2.

1.6 Refinement of the counting

The goal of Chapter 7 is to refine the counting in Theorem C. For a global Arthur parameter
¥ : L7, x SLy(C) — F4(C), one can associate two invariants:

o its Sato-Tate group H(v) := ¢(Ly x SU(2)), viewed as a conjugacy of subgroups in the
compact group F4(R);
e its “weights”, i.e. eigenvalues of its infinitesimal character under the 26-dimensional irre-

ducible representation r : F4 — SLog.

Given any conjugacy class of proper subgroups H of F4(R) classified in Theorem D, in
Section 7.3 we classify all the possible decompositions (x) of r o ¢ for global Arthur parameters
¢ with H(¢)) = H. If ¢ corresponds to an irreducible level one F4(A)-representation 7, an
important part of our work is to give an exact formula for the multiplicity of m, for each case
of Sato-Tate groups. Roughly speaking, the multiplicity depends on how the weights of ¢ are

distributed in the summands 7;[d;]’s of (x). In conclusion, we have the following result:

Theorem™ E. (Theorem 7.5.1)

(a) The Sato-Tate group of a level one automorphic representation for ¥y is either F4(R) or

one of the proper subgroups of F4(R) classified in Theorem D except Spin(8).
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(b) For global Arthur parameters of ¥4 with a given Sato-Tate group, the multiplicity of its
corresponding irreducible level one F4(A)-representation (0 or 1) is given explicitly by the

formulas in Proposition 7.3.4 to Proposition 7.3.18.

Remark 1.6.1. We observe that not all subgroups in Theorem D come from endoscopic groups of
F4, in the sense of [Arthur, 2013]. For example, the subgroup Ga x SO(3) has trivial centralizer
in F4(R), thus it can not be the centralizer of any element in Fy(R). As a result, our conjectural

refinement is finer than Arthur’s endoscopic classification.

Given an irreducible representation V) of F4(R), from Theorem C we know the number
of equivalence classes of level one automorphic representations « for ¥4 with 7o >~ V). The
weights of the global Arthur parameter 1, of m are determined by V). We can enumerate all the
possible global Arthur parameters with these weights, and then use the multiplicity formulas in
Theorem E to determine their multiplicities. In this way, we obtain a conjectural refinement of
the counting in Theorem C. As a consequence, we obtain a conjectural solution to Problem 2,

stated in terms of automorphic representations:

Theorem™F. (Proposition 7.4.1 and Proposition 7.4.3) The number of algebraic, cuspidal, level

one automorphic representations of GLag over Q satisfying:

o the Sato-Tate group is F4(R),
o and the multiset of weights® is HT(a, b, c,d) for a,b,c,d > 1,

is Fy(a—1,b—1,c—1,d—1), where F4(\) is an explicit function on N* given by Proposition 7.4.1.

Example 1.6.2. The quadruples (a, b, c,d) € N* such that

o the largest weight 2a 4+ 3b + 2¢ + d + 8 in the multiset HT(a + 1,0+ 1,¢+ 1,d 4+ 1) is not
larger than 22,
o and Fy(a,b,c,d) # 0,

are listed in Table A.8, Appendix A. We also list the values of Fy(a, b, ¢, d) for these quadruples.

Remark 1.6.3. One may want to remove the level one condition, like in [Lachaussée, 2020]. For
the part (1) of Problem 3 for Fy4, one can probably calculate the dimension of invariants under
other congruence subgroups, and obtain results similar to Theorem C for higher levels. However,
for the part (2) of Problem 3 for F4, what we use is a simplified version of Arthur’s recipe in
[Arthur, 1989]. When allowing ramifications at some finite place p, one needs some properties

of local Arthur packets for F4(Qy), which are still unknown to us.

1.7 Connection with exceptional theta correspondences

Roughly speaking, for a reductive dual pair G x H inside E, where E is an algebraic Q-
group admitting a minimal representation, the local (resp. global) theta correspondence studies

the “restriction” of a minimal representation of E(F'), F being a local field (resp. E(A)) to

6See Section 6.4 for the precise definition of weights for an algebraic cuspidal level one automorphic represen-
tation of GL,,.
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G(F) x H(F) (resp. G(A) x H(A)), and gives a correspondence between representations of G
and H. In the second part (Chapter 8), we study the global theta correspondence for the dual
pair F4y x PGLs inside E7, an exceptional group of type E7 and real rank 3, and the main goal

is to prove the following theorem:

Theorem G. (Theorem 8.6.12) Let 7 be the level one algebraic automorphic representation of
PGLy associated to a non-zero cuspidal Hecke eigenform for SLa(Z). Under the global theta
correspondence for Fqy x PGLq, the global theta lift () is a non-zero irreducible automorphic

representation of Fy.

We have a detailed introduction in Chapter 8 for this global exceptional theta correspondence,
here we present a motivation arising from our conjectural computation in Theorem E.

By Flath’s theorem, the automorphic representation m in Theorem G can be factorized
as a restricted tensor product ®! m,, where m, is an irreducible representation of PGLy(Qy).
The results of the local exceptional theta correspondence for Fy x PGLy [GrossSavin, 1998,
Proposition 3.2; Savin, 1994; KarasiewiczSavin, 2023] show that for any place v = p or oo, the
(big) local theta lift ©(m,) is a non-zero irreducible representation of F4(Q,). We take II to be
the irreducible representation ®/0(m,) of F4(A). Using the explicit (conjectural) multiplicity
formula in Proposition 7.3.6, we find that the multiplicity of II in the automorphic spectrum of
F, is always 1, no matter the choice of 7. It is natural to expect the global theta lift ©(7) to

be non-zero for any 7 associated to some cuspidal Hecke eigenform of level SLy(Z).

Remark 1.7.1. Another exceptional theta correspondence related to Theorem E in a similar
way is the that for the dual pair Fy x G35, where G is the generic fiber of the split Chevalley
group of Lie type Gy. In [Pollack, 2023], Pollack shows that any level one cuspidal automorphic
representation associated to some quaternionic modular form of G3 has non-zero global theta
lift to Fy.

1.8 Exceptional theta series

Our main tool for proving Theorem G is to develop a notion of “exceptional theta series”,
motivated by [Pollack, 2023]. This is a variant of the classical weighted theta series associated
with an even unimodular lattice L inside the Euclidean space R"™ and a homogeneous harmonic

polynomial P on R":

dp=Y P)g?

veL

, where g = ™ 2 e H = {z +iy|z,y € R,y > 0}.

This (classical) theta series is a modular form of level SLy(Z) and weight n/2 + deg P, and is
cuspidal if P is not constant. In [Waldspurger, 1979], Waldspurger shows that for any fixed pair
of natural numbers (n,d), where 8|n, the space S, /91 4(SLa(Z)) of weight n/2 + d cusp forms
is spanned by 97, p, L varying over even unimodular lattices in the Euclidean space R"™ and P
varying over homogeneous harmonic polynomial of degree d on R™.

In the exceptional case, we replace the classical setting by the corresponding objects in the

following table:
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classical case exceptional case

Euclidean space R™ Exceptional Jordan algebra R-algebra Jg (Definition 3.1.3)

even unimodular lattice Albert lattice inside Jg (Definition 8.2.12)

harmonic polynomials “Fa-harmonic” polynomials (Definition 8.4.5)

Table 1.1: Comparison between classical and exceptional cases

The starting point of the exceptional theta series is the work of Elkies and Gross [ElkiesGross,
1996]. For any Albert lattice J inside Jg, they construct the following theta series:

9y =1+240 > o3(cs(1))¢™ ") € Mi2(SL(Z)),
J>T>0,

rank T'=1
where c; (7)) is the largest integer c such that T'/c € J, and o3(n) = 3 g, d®. We extend the

construction of Elkies-Gross by weighting this exceptional theta series:

Theorem H. (Theorem 8.5.2 and Corollary 8.5.5) For any Albert lattice J inside Jg and any

homogeneous F4-harmonic polynomial P on Jgr, the theta series:

Iopi= > o3(cs(T)P(T)g" ™
J3T>0,
rank T=1

is a modular form of weight 2deg P+ 12 for SLa(Z), and it is a cusp form if P is not constant.
As a consequence of Theorem G, we prove the following analogue of [Waldspurger, 1979]:

Theorem 1. (Corollary 8.6.13) For any d > 0, the space Saq+12(SLa(Z)) is spanned by the
set of weighted theta series Ujp, as J varies over Albert lattices inside Jr and P varies over

F4-harmonic polynomial of degree d over Jg.

Organization

Chapter 3 recalls the definition of Fy4 and some results of Gross [Gross, 1996] on reductive
Z-models of Fy, and we also give a new proof for Theorem B. We prove Theorem C in Chapter 4.
In Chapter 5, we study the subgroups of the compact Lie group F4(R) and prove Theorem D.
In Chapter 6, we recall the theory of level one automorphic representations and the conjectures
by Arthur and Langlands, mainly following [ChenevierRenard, 2015; ChenevierLannes, 2019].
Then we apply these conjectures to ¥4 and prove Theorem E and Theorem F in Chapter 7.
Finally, Chapter 8, a reproduction of [Shan, 2025], studies the exceptional theta correspondence
for the dual pair PGLy x Fy, and proves Theorem G, Theorem H and Theorem I. Some figures
and tables used in this thesis are provided in Appendix A.
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Chapter
Introduction en francais

Les travaux développés dans cette these appartiennent au domaine des représentations auto-
morphes, en particulier de celles de niveau un pour un groupe algébrique exceptionnel anisotrope
F, défini sur Q. La premiére partie (du Chapitre 3 au Chapitre 7) correspond a [Shan, 2024],
dans lequel nous étudions le nombre de représentations automorphes de niveau un pour Fy
ayant un poids arbitraire donné, et (conjecturalement) classifions leurs parametres d’Arthur
globaux. La second partie (le Chapitre 8) correspond & [Shan, 2025], et nous y considérons la

correspondance théta globale pour la paire duale Fy x PGLo.

2.1 Une motivation : Représentations galoisiennes géométriques

avec image donnée

Le groupe de Galois absolu Gal(Q/Q) encode beaucoup d’informations arithmétiques sur
les corps de nombres, et une maniére naturelle d’étudier Gal(Q/Q) consiste a considérer ses
représentations, notamment celles provenant de la géométrie algébrique. Motivée par la théorie

de Galois inverse, la question suivante a été étudiée par de nombreux mathématiciens :

Probléme 1. Soit £ un nombre premier et H un groupe algébrique réductif connexe défini sur Q.
Existe-t-il une représentation galoisienne (-adique p : Gal(Q/Q) — H(Qy) qui soit semisimple
et géométrique (au sens de Fontaine-Mazur [Taylor, 2004, Conjecture 1.1]), et dont l’image soit

dense dans H(Qy) pour la topologie de Zariski?

Dans le cas ou H = GL2 ~ GSp, ou GSp,, ou plus généralement un groupe classique (des
similitudes), il existe de nombreuses constructions et exemples bien connus. Par exemple, on
peut utiliser I’accouplement de Poincaré sur la cohomologie /-adique des variétés algébriques
pour construire des représentations galoisiennes dont 'image tombe dans un groupe classique.
Le cas des groupes exceptionnels, c’est-a-dire les groupes de types de Lie Go, Fy4, Eg, E7 et
Eg, est plus difficile, mais nous avons encore quelques exemples dans [DettweilerReiter, 2010;
GrossSavin, 1998; Yun, 2014; Patrikis, 2016; BoxerCalegariEmertonLevinMadapusi PeraPa-
trikis, 2019]. Remarquons que lorsque H est de type de Lie Gy ou Eg, cette question est liée a

la question de Serre sur les motifs [Serre, 1994, Question 8.8, §1].
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Composant Gal(Q/Q) — H(Qy) avec une représentation algébrique H — GL,,, on obtient
une représentation galoisienne f-adique géométrique de dimension n. On peut associer deux
invariants & une représentation galoisienne f-adique géométrique p : Gal(Q/Q) — GL,(Qy):
le conducteur (d’Artin) N(p) € N et les poids de Hodge-Tate HT(p), un multiensemble de n
entiers (voir, par exemple, [Taylor, 2004]). Dans les travaux susmentionnés, les conducteurs
des représentations galoisiennes /f-adiques géométriques construites ne sont généralement pas

controlés. On peut affiner naturellement le Probleme 1 en fixant ces deux invariants :

Probléme 2. Soit { un nombre premier, n > 1 et H un sous-groupe réductif connexe de GL,
défing sur Qq. Quel est le nombre (a équivalence prés) des représentations galoisiennes (-adiques
géométriques p : Gal(Q/Q) — GL,,(Q,) de conducteur et de poids de Hodge-Tate donnés, telles
que ladhérence de Zariski de Im(p) soit H(Q,) ?

Pour (H,n) = (GL2,2) ou (SOg24+1,2g + 1), cette question est, par exemple, liée a la
dimension des espaces de formes modulaires classiques ou de Siegel. Nous avons moins de
connaissances sur les cas concernant d’autres groupes H. Lorsque le conducteur N = 1, le
Probleme 2 est résolu conjecturalement par Chenevier et Renard dans [ChenevierRenard, 2015]
pour les groupes suivants (n est choisi comme étant la dimension de la représentation standard

lorsque H est un groupe classique (ou de similitudes), et n = 7 lorsque H est de type Go) :
GL; ~ GSp,, GSp,, SOy, SO5, GSpg, GSpg, SOs, Ga,

via la connexion conjecturale entre les représentations galoisiennes f-adiques géométriques de di-
mension n et les représentations automorphes cuspidales de GL,,. Voir également [Taibi, 2017;
ChenevierTaibi, 2020] pour les dimensions supérieures. Dans [Lachaussée, 2020], Lachaussée
étend les résultats pour GSpyy, 1 < g < 4 au cas du conducteur d’Artin N = 2. Nous nous con-
centrons maintenant sur le cas du conducteur un (voir la Remarque 2.6.3 pour plus d’explications
sur cette hypothese).

Dans cette these, a la suite de [ChenevierRenard, 2015], nous donnons une solution conjec-
turale au Probléeme 2 dans le cas ou N = 1, H est de type de Lie Fy4, et n = 26. Pour une
représentation galoisienne f-adique géométrique de dimension 26, p, telle que m est de type
F4, son multiensemble de poids de Hodge-Tate ne dépend que de 4 variables a,b,c,d € N et a
la forme:

HT(a, b, c.d) :_{ 0,0,+a,4b,+(a+b),2(b+c),+(a+b+c),£(b+c+d),+(a+b+c+d),+(a+2b+c), }

t(a+2b+c+d),£(a+2b+2c+d), £(a+ 3b+ 2c+ d), £(2a + 3b+ 2¢c + d).

Comme corollaire conjectural de nos résultats dans cette thése, nous proposons la conjecture

suivante sur les représentations f-adiques géométriques de type Fy :

Conjecture A. Le nombre de classes d’équivalence de représentations galoisiennes (-adiques

géométriques de dimension 26 et de conducteur un, p, telles que :

o l'adhérence de Zariski de Im(p) est un groupe réductif connexe de type Fy,

o et HT(p) = HT(a, b, c,d), avec a,b,c,d > 1,

12



2.2. Une variante automorphe du probléeme de comptage

est Fyla—1,b—1,c—1,d —1), ot F4()\) est la fonction calculable sur N* donnée par la Propo-
sition 7.4.1.

Remarque 2.1.1. La formule pour F4(\) contient tellement de termes que nous ne donnerons
pas la formule compléte dans cet article. Cependant, sous certaines hypotheses, cette formule
devient beaucoup plus simple. Par exemple, lorsque a > b+ c+d+ 3, b,c,d > 0 et ¢,d sont

impairs, une formule simplifiée pour Fy(a, b, ¢, d) est donnée dans la Remarque 7.4.2.

2.2 Une variante automorphe du probleme de comptage

Nous transférons maintenant le Probleme 2 du c6té automorphe. Soit G un groupe réductif
connexe sur QQ avec un modele réductif sur Z (voir la Section 3.2). Comme nous allons parler
de représentations galoisiennes, il sera pratique de supposer que son groupe dual de Langlands
G est défini sur Q, et nous fixons deux plongements : C &2 Q & Q. Nous fixons également
un sous-groupe compact maximal G, de @(C)

Soit 7 une représentation automorphe L-algébrique’ de niveau un pour G. D’aprés une
conjecture de Buzzard et Gee [BuzzardGee, 2014, Conjecture 3.2.1], on devrait pouvoir as-
socier a 7 une représentation galoisienne f-adique géométrique compatible de conducteur un,
pr.  Gal(Q/Q) — G(Qy), dépendant du choix de plongements ¢ = (o0, ). Selon ces con-
jectures standards de Fontaine-Mazur et Langlands, toute représentation galoisienne f-adique
géométrique de conducteur un vers (A}(@Z) devrait provenir de cette maniére. Si deux mor-
phismes élément-conjugués d’un groupe de Lie compact connexe dans G sont conjugués (voir la
Section 5.1 pour une explication détaillée), la question suivante fournit une variante automorphe
du Probléme 2 pour H = G X, Qg :

Probléme 3. Soit G un groupe réductif connexe sur Q admettant un modéle réductif sur Z.

(1) (Comptage) Compter le nombre (a équivalence prés) de représentations automorphes dis-
crétes algébriques® de niveau un pour G avec une composante archimédienne donnée arbi-
trairement.

(2) (Raffinement) Raffiner ce comptage par les « groupes de Sato-Tate » des représentations

automorphes.

Remarque 2.2.1 (« Groupes de Sato-Tate »). Dans la question ci-dessus, le « groupe de Sato-
Tate » H(m) d’une représentation automorphe de niveau un 7 pour G est une certaine classe de
conjugaison de sous-groupes de G, que nous expliquerons en détail dans la Section 6.3.1. Nous
pouvons l'introduire brievement comme suit. En se basant sur la paramétrisation d’Arthur des

représentations automorphes, on peut conjecturalement associer & m un morphisme de groupes

Un : L7 % SU2) — G,

Pour la définition de L-algébricité, voir [BuzzardGee, 2014, Definition 2.3.1]. Pour une représentation qui est

algébrique au sens de la Définition 6.4.3 mais pas L-algébrique, il faut remplacer G par un certain groupe de «
similitude ».
20n peut enlever cette condition d’algébricité en se restreignant aux Q-groupes semi-simples.
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ou Lz est I'hypothétique groupe de Langlands de Z, qui est connexe et compact (voir la Sec-
tion 6.3). Nous définissons H(m) comme la classe de conjugaison de 'image de 1, dans G..
Lorsque la restriction de ¢, a 1 x SU(2) C Lz x SU(2) est triviale, cette notion H(m) coin-
cide avec la notion usuelle des groupes de Sato-Tate. En général, nous avons décidé d’inclure le

facteur SU(2) dans la définition car il permet d’énoncer plus facilement certains de nos résultats.

Le point de la partie « raffinement » dans le Probleme 3 est que, en général, de nombreuses
représentations automorphes discretes de niveau un 7 pour G, par exemple les représentations
endoscopiques, auront un groupe de Sato-Tate strictement plus petit que G.. Pour ces m, m
devrait étre un sous-groupe propre de G(@) Nous devons donc trouver un moyen d’exclure
ces représentations pour obtenir le nombre souhaité dans le Probleme 2.

Dans [ChenevierRenard, 2015], Chenevier et Renard résolvent la partie (1) du Probleme 3

pour plusieurs groupes classiques de petits rangs, a savoir, G est 'un des groupes suivants :
SL2 = Spy, Spy, SO22, SO32, SO7, SOg et SOy,

ainsi que pour un groupe semisimple connexe de type Go sur QQ avec des points réels compacts.
Pour la partie (2) du Probléme 3, leur méthode repose de maniere essentielle sur la classification
d’Arthur des représentations automorphes [Arthur, 1989; Arthur, 2013]. Leurs résultats pour
SO7,S0g,S0g et Go sont conditionnels aux conjectures d’Arthur pour ces groupes, puisque
SO7,SOg et SOg ne sont pas quasi-déployés, et (Go n’est pas couvert par les résultats d’Arthur.

Dans [Taibi, 2017; Taibi, 2019], Taibi rend ces résultats inconditionnels (sauf pour Ga), et il

les étend également aux groupes classiques déployés suivants :
SpQQ avec g <7, SOp41,, avec n < 8 et SOgyy, 2, avec m < 4.

En particulier, la solution de Taibi au Probléme 3 pour Spg sera importante dans notre travail.

Dans la premiére partie de cette thése, nous appliquons la méthode de [ChenevierRenard,
2015] & Fy, le groupe algébrique semisimple connexe unique (& isomorphisme pres) sur Q de type
Fy4, avec des points réels compacts et déployé sur Q,, pour chaque premier p (voir la Section 3.1).
Pour ce groupe, les représentations automorphes sont automatiquement L-algébriques. De plus,
il s’avere qu’il n’y a pas de problemes de conjugaison local-global pour les sous-groupes connexes
de (F4). = F4(R) (voir la Proposition 5.1.5). En conséquence, la Conjecture A découle des

conjectures standards et de notre réponse au Probleme 3 pour Fy.

Remarque 2.2.2. Les représentations automorphes de Fy (et leurs composantes locales) ont été
étudiées dans [Savin, 1994; MagaardSavin, 1997; Gan, 2000; Pollack, 2023; KarasiewiczSavin,
2023] via les correspondances théta exceptionnelles, et nous expliquerons certains liens entre
ces correspondances et notre travail dans la Section 7.5. Nous mentionnons également que les
représentations automorphes pour Fy ont été étudiées dans le passé par Padowitz [Padowitz,
1998, §9]. Padowitz considére plutot les représentations automorphes qui sont Steinberg pour un
ensemble fixe non vide de nombres premiers et non ramifiées ailleurs, et il tente de les énumérer
en utilisant la formule de trace stable, dans Iesprit des travaux de Gross-Pollack [GrossPollack,

2005]. Les résultats sont partiels, car plusieurs intégrales orbitales locales stables ne sont pas
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déterminées®, et nous espérons revenir sur cette question a ’avenir.

2.3 Comptage des représentations automorphes de niveau un

Dans [Gross, 1996], Gross prouve le résultat suivant pour Fy, qui est important pour notre

solution & la partie (1) du Probleme 3 pour Fy :

Théoréme B. (Proposition 3.5.6) A isomorphisme prés sur Z, il existe deux schémas en groupes
affines lisses sur Z dont la fibre générique est isomorphe a Fy, et dont la fibre spéciale sur Z/pZ

est réductive pour tous les nombres premiers p.

Les schémas en groupes sur Z dans le Théoreme B sont des modeles réductifs de F4. Leurs
constructions sont liées aux structures intégrales de 'algebre de Jordan exceptionnelle définie
de dimension 27 sur Q. Gross démontre ce résultat en utilisant la formule de masse pour Fy et
certains résultats dans [ATLAS]. L’objectif du Chapitre 3 est de rappeler la construction de Fy
et de donner une nouvelle preuve du Théoreme B sans utiliser [ATLAS].

Puisque la méthode de comptage dans [ChenevierRenard, 2015] peut étre appliquée & tout
groupe algébrique défini sur Q qui a des points réels compacts et qui admet un modele réductif sur
7, nous rappelons et appliquons cette méthode a F4 dans le Chapitre 4. Une donnée importante
est la structure (par exemple les générateurs, les classes de conjugaison) du sous-groupe fini
G(Z) de F4(R), ou 4 est I'un des deux modeles réductifs sur Z dans le Théoréeme B. Cette
donnée est fournie par notre analyse dans la démonstration du Théoreme B. Nous obtenons la

réponse pour la partie (1) du Probleme 3 pour Fy:

Théoréme C. (Théoréme 4.6.1 et Corollaire 6.1.8)

(1) Pour une représentation irréductible Vy de Fy(R) de plus haut poids \, nous avons une for-
mule explicite et calculable pour le nombre d(X\) de classes d’équivalence de représentations
automorphes de niveau un ™ avec Moo =~ V.

(2) Pour les poids dominants X = Y}, Niwi* satisfaisant 2X1 4+ 3Xo + 2X3 + Ay < 13, nous
listons les nombres d(\) dans la Table A.S5.

2.4 Candidats pour les groupes de Sato-Tate

La partie (2) du Probleme 3 implique une classification de tous les groupes de Sato-Tate
possibles pour les représentations automorphes de niveau un de F4. Pour ce groupe défini sur
Q, son groupe dual de Langlands ﬁ est isomorphe a F4 xg C, et comme mentionné dans
la Remarque 2.2.1, les groupes de Sato-Tate dans ce cas sont des classes de conjugaison de
sous-groupes du groupe de Lie compact F4(R). Le but du Chapitre 5 est d’exclure certains

sous-groupes de F4(R), et de donner une liste de candidats pour les groupes de Sato-Tate :

3Un autre probléme mineur est que 'auteur affirme dans [Padowitz, 1998, P.42] que la représentation irré-
ductible de 26 dimensions de F4 est « excellente » dans son sens, ce qui n’est pas correct. Voir la Remarque 4.5.5
pour un contre-exemple.

“Nous suivons ici les notations de [Bourbaki, 2002, §VI.4.9].
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Théoréme D. (Théoréme 5.6.7) Il existe 13 classes de conjugaison de sous-groupes propres et

connexes H de Fy(R) tels que :

o le centralisateur de H dans F4(R) est isomorphe au produit d’un nombre fini de copies de
7)27 ;
e le poids nul apparait deuzx fois dans la restriction de la représentation irréductible de di-

mension 26 de F4(R) a H.

Nous prouverons ce résultat de classification étape par étape, en suivant la stratégie de
Dynkin dans [Dynkin, 1952]. Il convient de mentionner deux ingrédients importants dans la

démonstration :

o Un résultat de conjugaison local-global (Proposition 5.1.5) pour F4(R), que nous avons
déja mentionné a la fin de la Section 2.2. Cela repose sur un résultat concernant les
algebres de Lie (Théoréme 5.1.3) prouvé par Losev dans [Losev, 2010].

o Un critere utile (Proposition 5.2.1) donné dans la Section 5.2 pour la conjugaison de deux

morphismes d’un groupe de Lie compact connexe dans F4(R).

Ezemple 2.4.1. Parmi les classes de conjugaison des sous-groupes classifiés dans le Théoreme D,

Spin(9), Spin(8), Gz xSO(3), (Sp(3) x SU(2)) /i, (Sp(2) x SU(2) x SU(2)) /us,

ou les notations seront expliquées dans les Notations 5.3.1 et 5.3.3. Les sous-groupes restants
sont tous centralement isogénes a des produits de n copies de SU(2), n < 4. Notons que parmi
les sous-groupes listés ci-dessus, seuls Spin(9) et (Sp(3) x SU(2)) /u5* sont des sous-groupes

réguliers connexes propres maximaux de Fy(R).

2.5 Les conjectures d’Arthur

Comme dans [ChenevierRenard, 2015], pour la partie (2) du Probleme 3, nous avons besoin
de quelques conjectures sur les représentations automorphes. Pour un groupe algébrique réductif
connexe G sur Q, Arthur introduit dans [Arthur, 1989] une paramétrisation conjecturale des
représentations automorphes discretes, via les parametres d’Arthur globaux discrets pour G.
Dans le cas du niveau un, ces parametres sont des classes de conjugaison par CA}((C) de morphismes

admissibles
¥ : L7, x SLy(C) — G(C),

ou Ly est 'hypothétique groupe de Langlands de Z (voir la Section 6.3 pour plus de détails),
et G est le groupe dual de Langlands de G. Arthur propose une formule conjecturale pour la
multiplicité d’une représentation irréductible de G(A) dans le spectre automorphe discret de G,
en termes des parametres d’Arthur globaux associés.

Dans [Arthur, 2013], Arthur reformule ses conjectures pour tout groupe classique quasi-
déployé G, évitant I'apparition du groupe de Langlands L£7. Dans ce cas, il relie les parametres

globaux d’Arthur pour G aux représentations automorphes cuspidales des groupes linéaires, et il
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démontre les classifications endoscopiques, en s’appuyant notamment sur les travaux de Moeglin-
Waldspurger [MoeglinWaldspurger, 2014], Ng6 [Ngd, 2010] et bien d’autres. Nous renvoyons a
[ChenevierLannes, 2019, §8] pour des énoncés précis des résultats d’Arthur dans le cas des
représentations automorphes cohomologiques de niveau un pour les groupes classiques.

Bien entendu, F4 n’est pas un groupe classique, et les conjectures générales d’Arthur [Arthur,
1989] restent ouvertes dans ce cas. Néanmoins, elles peuvent encore étre formulées assez pré-
cisément si 'on admet l’existence de Lz. Voir aussi [ChenevierLannes, 2019, §6.4] pour quelques

formes générales des conjectures d’Arthur dans le cas du niveau un.

Notation 2.5.1. Dans le reste de la these, nous marquerons tout résultat conditionnel &

lexistence de Lz et a la formule des multiplicités d’Arthur (Conjecture 6.6.5) par *.

Nous expliquons brievement les conjectures d’Arthur pour Fy4, et une description plus précise
dans le cas général des groupes simplement connexes anisotropes admettant des Z-modeles
réductifs sera donnée au Chapitre 6. Pour une représentation automorphe de niveau un 7 de
F4, avec un parametre d’Arthur global ¢ : L7 x SLo(C) — F4(C), nous pouvons composer 1)
avec la représentation irréductible r : F4(C) — GLgg(C)® de dimension 26, et nous obtenons

ainsi une représentation de Lz x SLo(C). Cette représentation se décompose comme suit :
ro¢2wl[d1]@'~~@ﬂk[dk], (*)

ou 7; est une représentation irréductible de £z de dimension n;, et [d;] désigne la représentation
irréductible de SLo(C) de dimension d;, et Zle n;d; = 26. Nous identifions m; comme une
représentation cuspidale de niveau un de PGL,,, et observons qu’elle est toujours auto-duale
et algébrique dans ce cas (voir la Section 6.4). De maniére similaire & [Arthur, 2013], nous
considérons le parametre d’Arthur global ¢ comme une somme formelle des 7;[d;].

Nous déduisons du Théoreme D que le groupe de Sato-Tate de tout m; apparaissant dans la

décomposition (x) est 'un des groupes de Lie compacts suivants :
SU(2), Sp(2), Sp(3), SO(8), SO(9), G2, F4(R). (%)

Les représentations cuspidales avec le groupe de Sato-Tate F4(R) correspondent conjecturale-
ment aux représentations f-adiques souhaitées dans le Probleme 2, et celles ayant d’autres
groupes de Sato-Tate dans (%*) sont liées aux représentations automorphes de niveau un des
groupes suivants :

PGLy, SO32, SO7, SOg, Spg, Go,

qui ont déja été étudiés dans [ChenevierRenard, 2015; Taibi, 2017; ChenevierTaibi, 2020].
Réciproquement, étant donné un parametre d’Arthur global ¢ : L7 x SLg(C) — F4(C) dont
la « composante archimédienne » est un paramétre d’Adams-Johnson (voir la Définition 6.6.1
et la Remarque 6.6.2), la multiplicité de sa représentation irréductible correspondante de F4(A)
dans le spectre automorphe peut étre calculée via la formule d’Arthur dans la [Arthur, 1989], et

une formule explicite pour F,4 sera donnée dans la Section 7.2.

5L’image de r est méme incluse dans SO4%(C) C SL26(C) C GL26(C).
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2.6 Raffinement du comptage

Le but du Chapitre 7 est de raffiner le comptage dans le Théoreme C. Pour un parametre
d’Arthur global ¥ : £z x SLy(C) — F4(C), on peut associer deux invariants :

 son groupe de Sato-Tate H(v) := (L7 x SU(2)), vu comme une classe de conjugaison de
sous-groupes dans le groupe compact F4(R) ;
e ses « poids », c’est-a-dire les valeurs propres de son caractere infinitésimal sous la représen-

tation irréductible de dimension 26, r : F4 — SLog.

Etant donné une classe de conjugaison de sous-groupes propres H de F4(R) apparaissant
dans le Théoréme D, nous classifions toutes les décompositions possibles (x) de r o ¢ pour
les parametres d’Arthur globaux ¢ avec H(¢)) = H dans la Section 7.3. Si 1) correspond a
une représentation irréductible de niveau un de F4(A), une partie importante de notre travail
consiste & donner une formule exacte pour la multiplicité de 7, pour chaque cas de groupes de
Sato-Tate. Grossierement, la multiplicité dépend de la fagon dont les poids de v sont répartis

dans les termes 7;[d;] de (). En conclusion, nous obtenons le résultat suivant :

Théoréme™* E. (Théoréme 7.3.1)

(a) Le groupe de Sato-Tate d’une représentation automorphe de niveau un pour ¥4 est soit
F4(R), soit l'un des sous-groupes propres de F4(R) apparaissant dans le Théoréme D a
lexception de Spin(8).

(b) Pour les paramétres d’Arthur globaux de F4 ayant un groupe de Sato-Tate donné, la mul-
tiplicité de sa représentation irréductible de niveau un de F4(A) correspondante (0 ou 1)

est donnée explicitement par les formules des Proposition 7.3.4 d Proposition 7.3.18.

Remarque 2.6.1. Nous observons que tous les sous-groupes du Théoreme D ne proviennent
pas de groupes endoscopiques de Fy, au sens de [Arthur, 2013]. Par exemple, le sous-groupe
G2 X SO(3) a un centralisateur trivial dans F4(R), il ne peut donc pas étre le centralisateur d’un
élément de F4(R). En conséquence, notre raffinement conjectural est plus fin que la classification

endoscopique d’Arthur.

Etant donné une représentation irréductible Vy de F4(R), d’apres le Théoreme C, nous
connaissons le nombre de classes d’équivalence de représentations automorphes de niveau un m
pour Fy telles que mo ~ V. Les poids du parametre d’Arthur global ¢, de 7 sont déterminés
par V). Nous pouvons énumérer tous les parametres d’Arthur globaux possibles avec ces poids,
puis utiliser les formules de multiplicité dans le Théoreme E pour déterminer leurs multiplicités.
De cette maniere, nous obtenons un raffinement conjectural du comptage dans le Théoreme C.
Comme conséquence, nous obtenons une solution conjecturale au Probléme 2, énoncée en termes

de représentations automorphes :

Théoréme* F. (Proposition 7.4.1 et Proposition 7.4.3) Le nombre de représentations automor-

phes cuspidales, algébriques, de niveau un pour GLgg, satisfaisant :

e le groupe de Sato-Tate est F4(R),
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e et le multiensemble de poids® est HT (a,b,c,d) pour a,b,c,d > 1,

est Fyla — 1,b — 1,¢ — 1,d — 1), ou F4()\) est une fonction explicite sur N* donnée par la

Proposition 7.4.1.

Ezemple 2.6.2. Les quadruplets (a, b, c,d) € N* tels que :

o le plus grand poids 2a + 3b+ 2¢ + d + 8 dans le multiensemble HT(a+ 1,6+ 1,c+1,d+ 1)
n’est pas plus grand que 22,
o et Fy(a,b,c,d) #0,

sont listés dans la Table A.8. Nous listons également les valeurs de F4(a, b, ¢, d) pour ces quadru-

plets.

Remarque 2.6.3. On pourrait vouloir enlever la condition de niveau un, comme dans [Lachaussée,
2020]. Pour la partie (1) du Probleme 3 pour Fy, il est possible de calculer la dimension des
invariants sous d’autres sous-groupes de congruence, et d’obtenir des résultats similaires au
Théoreme C pour des niveaux supérieurs. Cependant, pour la partie (2) du Probleme 3 pour
F4, ce que nous utilisons est une version simplifiée de la recette d’Arthur dans [Arthur, 1989]. En
autorisant les ramifications en un certain nombre premier p, on a besoin de certaines propriétés

des paquets d’Arthur locauz pour F4(Q,), qui nous restent encore inconnues.

2.7 Lien avec les correspondances théta exceptionnelles

En gros, pour une paire duale réductive G x H a lintérieur de E, ou E est un groupe
algébrique défini sur Q admettant une représentation minimale, la correspondance théta locale
(resp. globale) étudie la « restriction » d’une représentation minimale de E(F), F' étant un
corps local (resp. E(A)), & G(F) x H(F) (resp. G(A) x H(A)), et donne une correspondance
entre les représentations de G et de H. Dans la deuxieme partie (Chapitre 8), nous étudions
la correspondance théta globale pour la paire duale Fy x PGLsg a l'intérieur de E7, un groupe
exceptionnel de type E7 et de rang réel 3, et 'objectif principal est de démontrer le théoreme

suivant :

Théoréme G. (Théoréme 8.6.12) Soit 7 la représentation automorphe algébrique de niveau un
de PGLy associée a une forme parabolique propre de Hecke pour SLo(Z). Sous la correspondance
théta globale pour Fy xPGLay, le O-lift global O () est une représentation automorphe irréductible

non nulle de Fy.

Nous renvoyons & l'introduction détaillée du Chapitre 8 concernant cette correspondance
théta exceptionnelle globale. Ici, nous présentons une motivation issue de notre calcul conjectural
dans le Théoreme E.

D’apres le théoréme de Flath, la représentation automorphe 7 dans le Théoreme G est
factorisée commme un produit restreint ®/m,, o m, est une représentation irréductible de

PGL3(Q,). Les résultats de la correspondance théta exceptionnelle locale pour Fy x PGLy

5Voir la Section 6.4 pour la définition précise des poids pour une représentation automorphe cuspidale al-
gébrique de niveau un de GL,,.
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[GrossSavin, 1998, Proposition 3.2; Savin, 1994; KarasiewiczSavin, 2023] montrent que, pour
toute place v = p ou oo, le (grand) relevement théta local ©(m,) est une représentation irré-
ductible non nulle de F4(Q,). Nous prenons pour II la représentation irréductible ®,O(m,) de
F4(A). En utilisant la formule explicite (conjecturale) de multiplicité dans la Proposition 7.3.6,
nous trouvons que la multiplicité de II dans le spectre automorphe de F4 est toujours égale a 1,
quel que soit le choix de 7. Il est donc naturel de s’attendre que le ©-lift global ©(7) soit non

nul pour tout 7 associé a une forme parabolique propre de niveau SLo(Z).

Remarque 2.7.1. Une autre correspondance théta exceptionnelle liée au Théoreme E de maniere
similaire est celle de la paire F4 x G§, ou G3 est le groupe déployé de type Gz sur Q. Dans
[Pollack, 2023], Pollack montre que toute représentation automorphe cuspidale de niveau un

associée a une forme modulaire quaternionique de G3 possede un ©-lift global non nul vers Fy.

2.8 Séries théta exceptionnelles

Notre principal outil pour démontrer le Théoreme G est de développer une notion de « séries
théta exceptionnelles », motivée par [Pollack, 2023]. Il s’agit d’une variante de la séries théta
(pondérée) classique associée a un réseau unimodulaire pair L dans I'espace euclidien R™ et un

polynéme harmonique homogene P sur R™ :

dpp=Y P)g?
veL

,oug=e"% 2z eH ={z+iy|z,y R,y >0}.

Cette série théta est une forme modulaire de niveau SLy(Z) et de poids n/2 4 deg P, et est
parabolique si P n’est pas constant. Dans [Waldspurger, 1979], Waldspurger montre que,
pour toute paire fixée de nombres naturels (n,d), ou 8|n, I'espace S,, /51 4(SL2(Z)) des formes
paraboliques de poids n/2+d est engendré par les 91, p, ou L varie sur les réseaux unimodulaires
pairs dans I’espace euclidien R™ et P varie sur les polyndémes harmoniques homogenes de degré
d sur R"™.

Dans le cas exceptionnel, nous remplagons le cadre classique par les objets correspondants

dans le tableau suivant :

Cas classique Cas exceptionnel

Espace euclidien R” Algebre de Jordan exceptionnelle Jg (Définition 3.1.3)

Réseau unimodulaire pair Réseau d’Albert dans Jr (Définition 8.2.12)

Polynémes harmoniques Polynémes « Fy-harmoniques » (Définition 8.4.5)

Table 2.1: Comparaison entre les cas classique et exceptionnel

Le point de départ de la séries théta exceptionnelle est le travail d’Elkies et Gross [Elkies-

Gross, 1996]. Pour tout réseau d’Albert J dans Jg, ils construisent la série théta suivante :

Oy=1+240 > o3(cs(T)g™ ™) € M1a(SLy(2)),

J3T>0,
rang T'=1
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ot c;(T') est le plus grand entier ¢ tel que T'/c € J, et o3(n) = >4, d®. Nous étendons la

construction d’Elkies-Gross en pondérant cette série théta exceptionnelle :

Théoréme H. (Théoréme 8.5.2 et Corollaire 8.5.5) Pour tout réseau d’Albert J dans Jr et tout

polynome homogene F4-harmonique P sur Jr, la série théta :

dypi= Y. o3(cs(T))P(T)g™ ™
J>T>0,
rang T'=1
est une forme modulaire de poids 2 deg P + 12 pour SLo(Z), et c’est une forme parabolique si P

n’est pas constant.
En conséquence du Théoréme G, nous prouvons ’analogue suivant de [Waldspurger, 1979] :

Théoréme 1. (Corollaire 8.6.13) Pour tout d > 0, lespace Soq412(SLa(Z)) est engendré par
l’ensemble des séries théta pondérées ¥ jp, ot J varie sur les réseaux d’Albert dans Jr et P varie

sur les polynomes Fy-harmoniques de degré d sur Jg.

Organisation

Le Chapitre 3 rappelle la définition de Fy4 et certains résultats de Gross [Gross, 1996] sur
les modeles réductifs de F4 sur Z. Nous y donnons également une nouvelle démonstration du
Théoreme B. Nous prouvons le Théoreme C dans le Chapitre 4. Dans le Chapitre 5, nous étu-
dions les sous-groupes du groupe de Lie compact F4(R) et prouvons le Théoréme D. Dans le
Chapitre 6, nous rappelons la théorie des représentations automorphes de niveau un et les con-
jectures d’Arthur et Langlands, principalement en suivant [ChenevierRenard, 2015; Chenevier-
Lannes, 2019]. Nous appliquons ensuite ces conjectures a Fy et prouvons les Théoreme E et
Théoreme F dans le Chapitre 7. Enfin, le Chapitre 8, qui est une reproduction de [Shan, 2025],
étudie la correspondance théta exceptionnelle pour la paire duale PGLy x Fy, et prouve les
Théoreme G, Théoreme H et Théoreme 1. Certaines figures et tables utilisées dans la these sont

fournies dans ’annexe.
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Chapter

Exceptional group F4 and its reductive
Z-models

This chapter introduces the algebraic group F, that we will discuss in this thesis, with a

focus on its reductive Z-models.

3.1 The compact group F, and its rational structure

To construct Lie groups of exceptional types, we need to recall the notion of octonions, and

our main reference is [Conrad, 2015, §5].

Definition 3.1.1. An octonion algebra C over a field k is a non-associative k-algebra of k-
dimension 8 with 2-sided identity element e such that there exists a non-degenerate quadratic
form N on C satisfying N(zy) = N(z)N(y),z,y € C. The quadratic form N is referred as the

norm on C.
When considering octonion algebras over R, we have the following classification result:

Proposition 3.1.2. [Adams, 1996, Theorem 15.1] Up to R-algebra isomorphism, there is a
unique octonion algebra QOr over R whose norm N is positive definite, which is named as the

real octonion division algebra.

The multiplication law Or x Or — Qg can be given as follows: as a vector space O admits
a basis {e,eq,...,er} such that e is the identity element and as an R-algebra Op is generated
by {ei1,...,er} subject to the relations

o foralli, e? = —e;

o viewing subscripts as elements in Z/7Z, the subspace of Or generated by {e,e;,e;11,€;+3}

is an associative algebra with relations

2 2 2
€ = €41 =613 = —6,6i€4+1 = —€;+16; = €;43.

23



Chapter 3. Exceptional group F4 and its reductive Z-models

We identify the real numbers R with the subalgebra Re of Or and the identity element of Ok will
be denoted as 1. Now we recall some basic properties of O, for which we refer to [Conrad, 2015,
§5]. There is an anti-involution of algebra z — T called the conjugation on Og, defined by 1T =1

and € = —e; for each 7. The trace and norm on Qg are defined as:
Tr(z)=x+7%, N(z)=2-T=T-x.
The multiplication law on Qg implies that

Tr(zy) = Tr(yz) = Tr(z - g) for all z,y € Og. (3.1)

For an element = = ¢ + 27: z;e; € Op, its norm N(z) equals Y7_,2?, from which we can
see that N is a positive d:—:-ﬁlnite quadratic form. Its associated symmetric bilinear form is
(z,y) =N(@@+y) —N(@@) -Ny) =z -y+y-7=Tr(z7).
Although the multiplication law of Qg is not associative, it is still trace-associative in the
sense that
Tr((z-y)-2)=Tr(x- (y-2)) for all z,y, z € O,

and we can define Tr(zyz) := Tr((x - y) - z) = Tr(x - (y - 2)).
We also recall the exceptional Jordan algebra over R, following [Conrad, 2015, §6]:

Definition 3.1.3. The (positive definite) real exceptional Jordan algebra, denoted by Jg, is the

27-dimensional R-vector space consisting of “Hermitian” matrices in M3(Og), i.e. matrices of

the form
a z Yy
z b x|, abceR, x,y,z € O,
Yy T cC

equipped with the R-bilinear multiplication law
1
Jr X Jg = Jr, Ao B := i(AB—i_BA)’
where AB and BA denote the usual product of octonionic matrices, and with 2-sided identity
element I given by the standard matrix identity element diag(1,1,1).

As an R-algebra, Jr is commutative but not associative.

Notation 3.1.4. To compress the space, when we do not need to emphasize the matrix structure

of elements in Jg, we denote the element

a z Yy
z b z|,abceR, z,y,z€ O
Yy T c

by [a,b,c;x,y, 2] for short.
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The trace of A =[a,b,c;z,y,z] € Jg is defined as Tr(A) := a + b+ c¢. The underlying vector

space of Jr is equipped with the non-degenerate positive definite quadratic form:

Q(A) = Tr(Ao A)/2 = %(cﬂ + 1%+ ) + N(z) + N(y) + N(2). (3.2)

Its associated bilinear form is Bq(A,B) = Q(A + B) — Q(4) — Q(B) = Tr(Ao B). The

determinant of the matrix A is defined by
det(A) := abc + Tr(zyz) — aN(z) — bN(y) — cN(z). (3.3)

It defines a cubic form on Jg.

We denote by Fy4 the subgroup Aut(Jg, o) of GL(Jr) consisting of elements g € GL(Jgr) such
that for all A, B € Jg, g(AoB) = g(A)og(B). It is a compact Lie group of type F4 [Adams, 1996,
Theorem 16.7].

In this paper, we deal with automorphic forms so we want a reductive group over Q whose

real points is isomorphic to F4. For this purpose, we first define the following Q-algebras:

Definition 3.1.5. Cayley’s definite octonion algebra Qg is the sub-Q-algebra of Or generated
by {e1,...,er}. The (positive definite) rational exceptional Jordan algebra Jg is the sub-Q-space
of Jg consisting of [a,b,c;z,y,2],a,b,c € Q,z,y, z € Og equipped with the multiplication o.

The main object considered in this paper is the following algebraic group:

Definition 3.1.6. We define Fy to be the closed subgroup of the algebraic Q-group GLyj,,

which as a functor sends a commutative unital Q-algebra R to the group
F4(R) := Aut(Jg ®q R,0) = {9 € GL(Jg ®g R) | g(A o B) = g(A) 0 g(B),VA, B € Jg ®q R}.

From the definition we have F4(R) = F4. By [SpringerVeldkamp, 2000, Theorem 7.2.1], Fy

is a semisimple and simply-connected group over Q.

Remark 3.1.7. We have an alternative description of Fy that will be used later: the closed
subgroup Aut(j, det.1)/0 of GLj, consisting of linear automorphisms that preserve both the
cubic form det and the identity element I. The closed subgroups Fy = Aut(j, )0 and
Aut (g, det,1)/q inside GL;,, are both smooth and they have the same geometric points according
to [SpringerVeldkamp, 2000, Proposition 5.9.4], so they coincide.

3.2 Reductive Z-models of reductive Q-groups

Now we recall some results in [Gross, 1996; Gross, 1999b]. In this section, let G be a
connected reductive algebraic group over Q. Denote the product [[,, Z, by Z and let A = Z@ZQ
be the ring of finite adeles, and A =R x A;.

Definition 3.2.1. A reductive Z-model of G is a pair (¢, ) consisting of:
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Chapter 3. Exceptional group F4 and its reductive Z-models

o an affine smooth group scheme ¥ of finite type over Z such that ¢4 @z Z/pZ is reductive
over Z/pZ for each prime number p,

e an isomorphism ¢ : ¥ ®z Q ~ G of algebraic groups over Q.

Two reductive Z-models (41, 1) and (%, t2) are said to be isomorphic if there exists an isomor-

phism f : 4 — % over Z such that the following diagram commutes:

fo
G 0;Q ——— % e,Q

R

Remark 3.2.2. When there is no confusion about ¢, we simply say that ¢ is a reductive Z-model
of G.

From the theory of Chevalley groups in [SGA3, §XXV], every group G split over Q admits
a reductive Z-model. Indeed, we can take the Chevalley group with the same root datum of G
to be its reductive Z-model.

When G is not split, in general the existence of reductive Z-models of G is no longer ensured.
Now we consider the case when G is anisotropic, i.e. G does not contain any non-trivial split Q-
torus. When G has a reductive Z-model, being anisotropic is equivalent to that G(R) is compact,
which is due to [PlatonovRapinchuk, 1994, Theorem 5.5(1)] and [Gross, 1996, Proposition 2.1].
In [Gross, 1996, §1], Gross proves the following result:

Theorem 3.2.3. Let G be an anisotropic semisimple simply-connected Q-group such that the
root system of G¢ is irreducible, then G admits a reductive Z-model if and only if the Lie type
of G is among:

B(d—l)/2 (d = +1mod 8), Dd/2 (d = Omod 8), GQ, F4, Eg .

The next question is to classify reductive Z-models of a given anisotropic group G up to

some equivalence relation.

Definition 3.2.4. Let (¢,id) be a reductive Z-model of its generic fiber G := 4 @7 Q. A
reductive Z-model (¥,.') of G is said to be in the same genus as ¢, if //(4'(Z)) and 9(Z) are
conjugate in G(Ay).
Remark 3.2.5. This condition is equivalent to that for each prime p, J/(4'(Z,)) is conjugate to
9 (Zp) in G(Qyp), and /(9 (Zy)) = 4(Z,) for almost all p.

By [Gross, 1999b, Proposition 1.4], the equivalence classes of reductive Z-models in the genus

of 4 can be identified with the coset space G(Af)/%(z)
The group G(Q) acts on reductive Z-models in the genus of ¢ by the formula:

9(9',/) = (¢’ ad(g) o),

where ad(g) is the conjugation by ¢g. This induces an action of G(Q) on the equivalence classes
of reductive Z-models in the genus of 4. We say two reductive Z-models in the genus of ¢ are

G(Q)-conjugate if their equivalence classes are in the same G(Q)-orbit.
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3.3. Reductive Z-models of F4

Now the set of G(Q)-orbits on the equivalence classes of reductive Z-models in the genus of

¢ can be identified with the double coset space G(Q)\G(Ay)/9 (Z), which is finite by Borel’s
famous result [Borel, 1963].

3.3 Reductive Z-models of Fy

For our Q-group Fy, the Fy(Q)-orbits of equivalence classes of reductive Z-models of Fy in
some genus is determined by Gross in [Gross, 1996, Proposition 5.3], using the mass formula
[Gross, 1996, Proposition 2.2]. In this section we provide an alternative proof for his result,

which will be helpful for our computations in Chapter 4.

3.3.1 Integral structures of Og and Jg

Parallel to the construction of F4 in Section 3.1, we want to define integral structures of Qg

and Jg and then use them to construct reductive Z-models of Fy.

Definition 3.3.1. Cozeter’s integral order Qg is the Z-lattice of rank 8 inside Qg spanned by
the lattice Z & Ze1 @ - - - @ Zey and the four elements

hy = (I +er+ea+eq)/2,hy = (1+e; +e3+e7)/2,
hs = (1—!—61 +e5+66)/2,h4 = (e1+eg+e3+e5)/2,

equipped with the multiplication of Og. This lattice contains the identity element of Qg and is

stable under the multiplication, i.e.is an order in Q.

Remark 3.3.2. The underlying lattice of Oz equipped with the quadratic form N|g, is isometric

to the even unimodular lattice

Es = {(xi) e 78U (Z + %)8

Zwi EOmon}.

Let J7 be the unimodular lattice
{la,b,c;x,y,2] € Jg|a,b,c € Z,x,y,z € Oz}

of rank 27 inside the Q-vector space Jg.

Remark 3.3.3. This lattice is not stable under the Jordan multiplication o defined on Jg, since
[1,0,0;0,0,0]0[0,0,0;0,1,0] = %[0,0,0;0,1,0] ¢ Jg.

As in Remark 3.1.7, the Q-group F4 coincides with the group Aut Jg.det,T)/@- The restriction
of the cubic form det to Jz has integral values, and it is a polynomial law in the sense of [Roby,
1963]. The triple (Jg, det, I) has a natural integral structure (Jz, det, I), and the Z-group scheme

Aut( Jz.,det,1)/Zs sending any commutative Z-algebra R to
{g € GL(Jz ®z R) | g1 =1,det(¢gX) = det(X) for any X € Jz ®z R},
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Chapter 3. Exceptional group F4 and its reductive Z-models

is expected to be a reductive Z-model of F4. We are going to consider the Z-group scheme
Aut(j, get,e)/z for any e € Jz satisfying certain conditions, in order to produce several reductive

Z-models of F4 uniformly.

Definition 3.3.4. An element

a z Yy
A=z b x| el
Yy T c

is said to be positive definite if its seven “minor determinants”
a,b,c,ab— N(z),bc — N(x),ca — N(y),det(4) € R

are all positive. A positive definite element e in Jg with dete = 1 is called a polarization.

Given a polarization e contained in the lattice Jz, one constructs a Z-group scheme Fj, :
= Aut(j, get,c)/z in the same way as Aut(j, get,1)/z- The following result shows that this group

scheme is a reductive Z-model of Fy.

Proposition 3.3.5. [Conrad, 2015, Proposition 6.6, Example 6.7] For any choice of polarization
e € Jz, the fiber Fu®7Z[/pZ is semisimple for every prime number p, and Fy(R) is a compact
Lie group of type Fy.

Taking e to be the identity element I, the generic fiber of Fyy is Aut(j, qet,1)/Q = Fa, thus
Fu1 is a reductive Z-model of Fy.
If we take e to be

1
E:= [2,2,2;5,5,5],525(*1+€1+62+--'+e7) GJZ,

as in [ElkiesGross, 1996, (5.4)], by [Conrad, 2015, Example 6.7] the generic fiber of Fy4  is also
isomorphic to F4. We denote the natural isomorphism F4 i ®7 Q — F4 by ¢. Actually ¢ can be
given as the conjugation by an element in Aut(Jg, det) that sends E to I.

In [Gross, 1996, Proposition 5.3], Gross proves the following result:

Proposition 3.3.6. There are two F4(Q)-orbits on the equivalence classes of reductive Z-models

of Fy in the genus of Fu1, whose representatives are given by (Fag,id) and (Fug,t) respectively.
Applying the mass formula [Gross, 1996, Proposition 2.2] to Fy, we have

691
215.36.52.72.13’

S i = IR = (34)

(@)

where (¢,1) varies over the Fy(Q)-conjugacy classes of reductive Z-models of F4 in the genus
of ]:471. AS

691 B 1 n 1
215.36.52.72.13 915.36.52.7 212.35.72.13’

(3.5)
in order to prove Proposition 3.3.6 it suffices to prove the following two things:

28



3.3. Reductive Z-models of F4

o Fy1and Fug are not F4(Q)-conjugate.
o |Fu1(Z)| <2'°.35.52. 7 and |Fup(Z)| <2'2-3%-7%.13.

In his proof, Gross cites some results from [ATLAS], We are going to give another proof of
Proposition 3.3.6, which avoids using results in [ATLAS].
3.3.2 Fur(Z)
Now we deal with the finite group Fy g(Z). Our goal is to prove:
Proposition 3.3.7. |Fyg(Z)| < 2'2-3%-7%.13.

With the choice of polarization E, we can define a new bilinear form on Jg:
(A,B)g = (A,E,E)(B,E,E) — 2(A, B,E),

where the trilinear form ( , , ): J% — Q is defined by

(A, B,C) = [det(A + B +C) — det(A + B) — det(B + C) — det(C + 4)
+ det(A) + det(B) + det(C)].

This bilinear form is positive definite and integral on Jz by [ElkiesGross, 1996, Proposition 7.2].

Notation 3.3.8. Here we give some notations for elements in Jg: we write
E;:=[1,0,0;0,0,0],E2 :=1[0,1,0;0,0,0], E3 := [0,0,1;0,0,0]
and for any z € Og,
Fi(z):=10,0,0;2,0,0],Fs(x) :=[0,0,0;0,z,0],Fs(x) :=[0,0,0;0,0, z].

Note that 1,e1,e2,e3,h1,hs,h3, hy is a basis of the lattice Oz, thus we have the following
basis of Jy:

B E1,E2,E3,F1(1),Fi(e1), Fi(ez2), Fi(es), F1(h1), F1(h2), F1(h3), F1(ha), F2(1), Fa(e1), F2(e2), (3.6)
' Fa(es),Fa(h1),Fa(h2),Fa(hs),Fa(ha),F3(1),F3(e1),Fa(e2),Fa(es), F3(hi),Fs(h2),Fs(hs), Fa(hs) ' '

In the basis B, we give the Gram matrix of the quadratic lattice (Jz,( , )g) in Fig. A.1,
Appendix A.

Proof of Proposition 3.53.7. Each element in F4g(Z) = Aut(Jz,det,E) preserves the bilinear
form ( , )g by the definition, thus this finite group is a subgroup of the isometry group
O(Jz, (, )r) of the quadratic lattice (Jz,( , )g)-

The order of O(Jz,( , )r) can be determined with the help of the Plesken-Souvignier algo-
rithm. Concretely, we can apply the gfauto function in [PARI/GP] to the Gram matrix Fig. A.1
of (Jz,(, )r), and we find

0(Jz, (, )g)| =2"-3%-7%.13.
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Chapter 3. Exceptional group F4 and its reductive Z-models

Notice that the isometry group contains an involution —id, which does not fix E, thus we
have .
Fin(@)] < 3 00, {, Jp)| =228 713 .

Remark 3.3.9. The orthogonal complement of E in (Jz,( , )r) is a 26-dimensional even lattice
of determinant 3 and with no roots [ElkiesGross, 1996, Proposition 7.2]. In Borcherds’ the-
sis [Borcherds, 1999, §5.7], he proves that a lattice satisfying these conditions is unique up to
isomorphism and calculates the order of its isometry group, giving another proof of Proposi-
tion 3.3.7.

Furthermore, the gfauto function also give us a set of generators {—id, —o1,092} of the
isometry group O(Jz, (, )r), where the matrices of o1, 02 in the basis B chosen in Eq. (3.6) are
given in Fig. A.2, Appendix A. Here we write —o; instead of o1 because the second element in
the result given by [PARI/GP] sends E to —E. The isometry group O(Jz,( , )r) is the direct
product of the subgroup generated by o1, 09 and the order 2 central subgroup +id. In the proof
of Proposition 3.3.7, we find that Fy g(Z) is a subgroup of the group (o1, 02).

In the basis B, the cubic form det on Jg can be written down as a 27-variable polynomial
of degree 3, and we give this polynomial function as MatDet in our [PARI/GP] program [Codes
and tables]. Using [PARI/GP], we verify that o; and o2 both preserve the cubic form det and

the element E, which implies the following result:

Proposition 3.3.10. The finite groups Fyg(Z) and (o1,02) coincide, and
\Fur(Z)| =2'%.3°.72.13.

3.3.3 Fu(Z)

Now we look at the finite group F41(Z) = Aut(Jz, det, I), and we want to prove the following

proposition:

Proposition 3.3.11. The reductive Z-model Fy1 of Fy is not F4(Q)-conjugate to Fyg, and
| Far(Z)] < 2%5.36.52.7,

Denote the subset of Jz consisting of diagonal matrices by D, and the subset of elements
whose diagonal entries are zero by Dg. The formula Eq. (3.2) for the quadratic form Q on Jz
shows that equipped with Q we have Jz; = Dg @ D as quadratic lattices. By Remark 3.3.2, the
quadratic lattice (Qz, N) is isometric to Eg, thus Dy is isometric to Eg @ Eg @ Eg. On the other

hand, the lattice D is isometric to
1
I3 =7Z3,q: (21, 29, 23) 3 (:U% + 3 —i—x%) .

Any element of Fy 1(Z) preserves the quadratic form Q on Jz, so Fy1(Z) is a subgroup of the
isometry group O(Jz) of the quadratic lattice Jz. By the theory of root lattices, we have

O(Jz) ~ O(Ig) X (O(@Z) ! Sg) ,
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3.3. Reductive Z-models of F4

where S3 is the permutation group of three elements and ! stands for the wreath product. Let
p be the restriction map Fy1(Z) — O(Jz) - O(D), g — g|p, where O(D) ~ O(I3) is isomorphic
to {£1}3 x Ss.

Let O(D;I) be the group {¢ € O(D)|o(I) = I}, which is isomorphic to the permutation
group S3. Since elements in Fy 1(Z) fix I, the image of p is contained in O(D;I).

Lemma 3.3.12. The image of p is O(D;I) ~ Ss.

Proof. For an element o € S3, we denote by g, the element

la1, ag, az; x1, 2, T3] = [a5-1(1), Ag-1(2), Go-1(3) ; €(0) (To-1(1)), €(0) (Tg-1(2)), €(0) (T5-1(3))]
(3.7)

in GL(Jz), where the map €(o) : Oz — Qg is defined as identity when o is even, and as the
conjugation when o is odd. In this proof, we write 2* := €(o)(z) for short.
For any A = [a1,a9,a3;x1,z2, 23] € Jz, by the formula Eq. (3.3) for the cubic form det, we

have
det ga Haa 1 + TI' (1).1':._1 —1(3) ZCLU 1(1)N _1(1))
=a10a203 -+ Tr(x:__1(1)$;_1(2)$:§._1(3)) — ZazN(xz)

The property Eq. (3.1) of Tr implies that for any z,y, z € Oy,
Tr(zyz) = Tr(yza) = Tr(zzy) =Te(z-z2-9) =Tr(Z-5-7) = Tr(y - T - 2),

which can also be stated as Tr(x;,l(l)xz,l(2)1':,,1(3)) = Tr(zixex3) for any o € S3. Hence
det(gs(A)) = det(A). Since g, also fixes I, it is an element in Fy1(Z) and its restriction
p(90) € O(D;1) ~ S3 is o, thus Im(p) = O(D;1). O

Let 2 be the kernel of p, then we have a short exact sequence of finite groups:
1—-9— .7:471(2) — O(D;I) ~ S3 — 1. (38)

Lemma 3.3.13. The map k : S3 = F41(Z),0 — g, defined in Eq. (3.7) gives a splitting of the
short exact sequence Eq. (3.8).

Proof. 1t suffices to show that o — g, is a group homomorphism. For o,7 € Sz, we have

9790 (a1, a2, a3 ; 21, 2, x3])

=9r ([aa—l(l)’ Ag=1(2); Ag=1(3) 5 6(0')(xa—1(1))7 6(0) (xo—l(Z))7 E(U) ($U_1(3))])

l A(ro)=1(1)s (o) ~1(2)> U(r0)~1(3) 5 1 )
e(T)e(0) (T (ro)-1(1)), E(T)E(0) (T (r0)-1(2) ), €(T)€(0) (T (70)-1(3))
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Chapter 3. Exceptional group F4 and its reductive Z-models

It can be easily seen that the map € : S3 — GL(Qz) is a group homomorphism, thus g9, = gro
and o — g, is also a group homomorphism. O

This lemma tells us Fy4 1(Z) = 2 x k(S3) and |Fy1(Z)| = 3! |Z|. Now we study the structure
of 7.

Lemma 3.3.14. The group 2 is isomorphic to the group

—_—~—

SO(0z) = {(a, 8.7) € SO(02)" | a(@)By) = (7). Var,y € O .

Proof. Fix g € & and x € Oy, we define y, 2z, w € Oz by the formula

0 0 0 0 w z
g.10 0 z|=|w 0 y
0z O z ¥ 0

Since g € F41(Z) C F4(Q) preserves the Jordan multiplication o, we have

000 0 0 0 0 00
N@)[0o 1 0] =y 0 0 z|o|0 O =z
0 01 0z O 0z 0
0 w z 0 w z
=|lw 0 ylo|lw 0 y
z ¥y 0 z ¥y 0
N(z) + N(w) Yz wy
= yz N(w) +N(y) ZW ,
wy zw N(y) +N(z)

which implies that z = w = 0 and N(y) = N(z). This gives us a homomorphism g — «, from
2 to O(0z) such that ¢[0,0,0;2,0,0] =[0,0,0;a4(x),0,0] for € Oz.
Symmetrically, we also get 34,7, € O(0z) such that

9[0,0,0;z,y,2] =[0,0,0; a4(x), By(z), v4(z)] for all z,y, z € 0.

Taking determinants of both sides, we get

Tr(zyz) = Tr(ag(x)Be(y)ve(2)) for all z,y, z € Og.

This is equivalent to (ay(x)B4(y),v4(2)) = (TY, 2). Since (TY, z) = (74(TY), v4(2)), we have

(ag(2)By(y) — T, 7g(2)) = 0

for any z € @z. The bilinear form ( , ) is non-degenerate, so a4(x)By(y) = 74(Zy) holds for any
z,y € Oz. By [Yokota, 2009, Lemma 1.14.4], we have ayg, 4,74 € SO(0z).
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—_—~—

Now we have obtained an injective homomorphism 2 — SO(Qz). Conversely, by the defini-

—_—

tion of the multiplication o and the condition on («, 8,7) € SO(Qz), the morphism

[a,b,c;x,y, 2] = [a,b,c; a(x), B(y),(2)]

P

lies in 2, thus 2 ~ SO(0z). O

—_—~—

Let ¢ : SO(Qz) — SO(0z) be the homomorphism sending a triple (a, 5,7) € SO(Oz) to its
third entry v € SO(Qyz).

Proof of Proposition 3.5.11. For the bound on |Fy1(Z)|, it suffices to prove

P

ISO(0y)| < 21 .35 .52.7.

Let (o, 8,id) be an element in ker ¢, so a(x)B(y) = xy for all z,y € Qy. Set r = 5(1) and we
have a(z) = zr~! and S(y) = ry. Setting z = xr~!, the relation satisfied by (o, 3,id) becomes:

z(ry) = (zr)y, for all y,z € Q.

According to [ConwaySmith, 2003, §8, Theorem 1], the octonion r of norm 1 is real, thus r = £1
and ker ¢ = {(id, id, id), (—id, —id,id)}. As a consequence, we have

—_~—

SO(0z)| < 2-[SO(0z)| = 0(0z)| = [W(Es)| =24 - 3% 5% 7,

which gives us the desired upper bound for |Fy 1(Z)].

Suppose that the reductive Z-model Fy4 1 of Fy4 is F4(Q)-conjugate to Fy g, then their Z-points
have the same order as finite groups. In the end of Section 3.3.2, we prove that |Fyg(Z)| =
212.35.72.13, thus with the same order, the group F11(Z) contains an element of order 13.
However, Fy 1(Z) is isomorphic to 86@) X S3, whose order is not divided by 13. This leads to

a contradiction. O

Now Proposition 3.3.7 and Proposition 3.3.11 together imply Proposition 3.3.6, and as a
corollary the equality in the upper bound in Proposition 3.3.11 holds:

Corollary 3.3.15. The finite group F41(Z) has order 215.36.52.7, and ¢ is surjective.
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Chapter
Dimensions of spaces of invariants for Fy

For a finite subgroup I' and an irreducible representation U of the compact Lie group Fy, an
interesting problem is to compute the dimension of the space of invariants U'. In this chapter,
we will give an algorithm to compute dim UT for I' = Fu1(Z) or Fyr(Z). These dimensions will
play an important role in our computation of spaces of automorphic forms in Section 6.1.1. The

code of the computations in this chapter can be found in [Codes and tables].

4.1 Ideas and obstructions

By the highest weight theory, the isomorphism classes of irreducible C-representations of the
compact Lie group F4 are in natural bijection with dominant weights of the irreducible root
system Fj4. Using notations in [Bourbaki, 2002, §VI1.4.9], we denote the weight A\jww; + Agwws +
Asws + Mg by A = (A1, A2, A3, Ag), where wy, w9, w3, wy are the four fundamental weights
of F4. Let V) be a representative of the isomorphism class of irreducible representations of Fy4
with highest weight A. From now on we call V), the irreducible representation of F4 with highest
weight A for short.

The starting point of the computation of dim VE for some finite subgroup I' of F4 is the

following classic lemma:

Lemma 4.1.1. For a finite subgroup I' C Fy4, we have

. 1 1
dim V} = T > Trlv,(7) = ol Y Trlv, () el,
~yerl c€Conj(T")

where Conj(T") is the set of conjugacy classes of T' and |c| denotes the cardinality of c.

Because of this lemma, it is enough to solve the following two problems to compute dim VE:

(i) Find all conjugacy classes of I', and choose a representative in a fixed maximal torus
T C F4 for each conjugacy class;

(ii) For an element ¢t € T', compute its trace Tr|v, (¢).

Problem (ii) can be dealt with the following degenerate Weyl character formula:

35



Chapter 4. Dimensions of spaces of invariants for Fy

Proposition 4.1.2. [ChenevierRenard, 2015, Proposition 2.1] Let G be a connected compact
Lie group, T a maximal torus, X = X*(T') the character group of T', and ® the root system of
(G, T) with Weyl group W. Choose a system of positive roots ®* C ® with base A and also
fix a W-invariant inner product ( , ) on X ®z R. Let X\ be a dominant weight in X and t
an element in T. Denote the connected component C(t)° of the centralizer of t by M. Set
df, = (M, T)N®+ and WM = {w € W : w™l®}, C ®}. Let p and pys be the half-sum of
the elements of ®T and @}& respectively. We have:

ZweWM €(w)tw()\+,0)*,0 . Ha@bx/[ (a,w(Ap))

(a,pnr)
, 4.1
Haeqyr\@]‘&(l - tia) ( )

Trly, (t) =

where € : W — {£1} is the signature and t* denotes x(t) for convenience.

Using this approach, problem (i) is thus the main difficulty for our computation, and we will

solve it in the following sections.

4.2 Generators of F,1(Z) and Fyr(Z)

The finite groups I' we are interested in are F,1(Z) and F4 (Z). To find all their conjugacy
classes, we first determine generators of these groups in this section.

In the end of Section 3.3.2, we have already showed that the group Fyg(Z) is generated
by two elements o1, 09. Their matrices in the basis B, given in Eq. (3.6), are written down in
Fig. A.2, Appendix A.

Based on Corollary 3.3.15, we have F41(Z) = 2 x k(S3), where k : S3 — Fu1(Z) is the
morphism defined in Eq. (3.7). The group Z is isomorphic to the group Sm), which is a
double cover of SO(Qyz) by Corollary 3.3.15. Therefore it suffices to find generators of .

Since O(0z) ~ O(Eg) is equal to the Weyl group of Eg, we can take the following set of
generators for SO(Qz):

{ref(a) oref(1) |a € Oz, N(a) = 1},

where for a root a in Qg, i.e. an element with (o, a) = 2, the reflection ref(«) is defined as
ref(a)(z) ==z — (z,a)a.

For a root a € Oy, let L, (resp.Rq) be the left (resp.right) multiplication on Qz by «, and
define B, := L, o Ry, = Ry 0 Ly. These elements are contained in SO(Qyz). Notice that for a
root « € Oy, ref(a) oref(1) = B,

—_—~—

Lemma 4.2.1. For any root o € Qgz, the triple (Lg, Ra, Ba) is an element in SO(Qy).

Proof. For any x,y € Oy, La(z)Ra(y) = (azx)(y@). By Moufang laws [ConwaySmith, 2003,
§6.5],
(@z)(ya) = (a(zy))@ = Ba(zy),

thus La(x)Ra(y) = Ba(zy) = Ba(77). O
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By this lemma, we can take
{(La,Ra,Ba) | € Oz, N(a) = 1} U {(—id, —id,id)}

as generators of 2. Together with a set of generators of x(S3) we have obtained generators of
Fu1(Z).

4.3 Enumeration of conjugacy classes

Now with generators of F;(Z) and Fy (Z), we can start to enumerate their conjugacy classes.
The ConjugationClasses function in [GAP] can assist us in enumerating the conjugacy classes
of subgroups of permutation groups. Therefore it is enough to realize these two finite groups as
permutation groups.

For F41(Z), we consider its action on the set of vectors v € Oz with Bg(v,v) < 2. The
function gfminim in [PARI/GP] can list all these vectors in the basis B. There are 738 such
vectors and they span the vector space Jg, so the action of F41(Z) on this set is faithful, which
gives us an embedding Fy1(Z) < Sr3z. We can thus use this embedding to obtain a set of
representatives of conjugacy classes of F41(Z) via the help of [GAP].

For the other group Fyg(Z) we use a similar strategy. As mentioned in Remark 3.3.9, the
quadratic lattice (Jz, (, )r) has no roots, so we consider the set of v € Jz such that (v,v)g = 3,
which has cardinality 1640 and generates Jg. This gives an embedding F4 5(Z) < Sie40, then
we can use [GAP].

Here we present the results, and all the codes are available in [Codes and tables].

Proposition 4.3.1. There are 113 conjugacy classes in F1(Z), while F4g(Z) has 49 conjugacy

classes.

Furthermore, [GAP] gives the size of each conjugacy class ¢, and selects a representative for

¢ in the form of permutation. We rewrite these representatives as matrices in the basis B.

4.4 Kac coordinates

In the previous section, for I' = Fy 1(Z) or F4r(Z), we obtained a list of its conjugacy classes
and a representative element g, € I' for each conjugacy class c.

However, the representative g. may not be contained in the fixed maximal torus in Propo-
sition 4.1.2. Notice that in the computation of the trace of g. for a I'-conjugacy class ¢, what
really matters is the F4-conjugacy class containing c¢. Furthermore, since ¢ is included in the
finite group I', the F4-conjugacy class containing it must be torsion.

In [Reeder, 2010], it is shown that we can choose a representative for a torsion Fy-conjugacy
class in a fixed maximal torus using its Kac coordinates. Here we provide a brief review, and
more details can be found in Reeder’s paper.

Let G be a simply-connected simple compact Lie group, T a fixed maximal torus, X := X*(T)

and Y := X, (7T') the groups of characters and cocharacters respectively, and ® the root system
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of (G,T). Denote the natural pairing X x Y — Z by (, ). Let A = {aq,...,a,} be a set of
simple roots of ®, and {<o1, ..., 0, } its dual basis in Y, i.e. (a;,205) = d;;.

We have a surjective exponential map exp : Y ®zR — T determined uniquely by the property
a(exp(y)) = 2™y Vo € X,y €Y @z R.

and Y is the kernel of this exponential map. This induces an isomorphism (Y ®7z R)/Y ~T.
T
Let ag = Y a;a; be the highest root with respect to the choice of simple roots A, and set
i=1

(2

,

ag =1—agp,ap =1 and g = 0. Now we have > a;a; = 1. The alcove determined by A is the
i=0

intersection of half-spaces:

C={reY®zR|{(a;,z) >0,Vi=0,1,...,7},
or

6 = {Z xizvm

=0

T
Zaixi = 1,.7}7; > O,VizO,l,...,r}.
1=0

Each torsion element s € G is conjugate to exp(z) for a unique z € C N (Y ®7 Q) since the

group G is simply-connected. Let m be the order of s, thus

1 r
$:f5 Sﬂvﬂi
m
i=1

for some non-negative integers si, ..., s, satisfying ged{m, s1,...,s,.} = 1.
— T
Since x € C, we set so := m — >, a;8; > 0. Now the non-negative integers sg, S1,..., S,
i=1

satisfy ged{so,...,s,} =1 and the equation
T
Z%’Si =m with ag = 1.
i=0

The coordinates (s, s1,...,s,) are called the Kac coordinates of s, which are uniquely deter-
mined by the G-conjugacy class of s.

In our case, the compact group F4 is simply-connected and the highest root ayg = 21 +
3ag + 4as +2ay. Here aq, ag, ag, oy are still chosen as in [Bourbaki, 2002, §VI.4]. In conclusion,

we have:

Proposition 4.4.1. Let T be a fized maximal torus of Fq. Any element of order m in Fy is

4
. . l Ei:l iy . . ..
conjugate to a unique element exp(T) for some non-negative integers s1, 2, 83, S4 arisSing

from a 5-tuple (so, $1, S2, S3, S4) in
{(xo, co.,y) € N° ‘ xo + 221 + 3xo + 4x3 + 224 = m, ged{xg, ..., x4} = 1} . (4.2)

By solving the equation in Eq. (4.2), we enumerate all the torsion F4-conjugacy classes of

order m.
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4.5 Comparison of conjugacy classes

Now we can enumerate F4-conjugacy classes of a given order, but there are more constraints
on the F4-conjugacy classes containing I'-conjugacy classes obtained in Section 4.3. So we define

the following class of F4-conjugacy classes:

Definition 4.5.1. Let ¢ be an F4-conjugacy class, and we say that ¢ is a rational conjugacy

class if it satisfies:

« its trace Tr(c)|;, on the adjoint representation f4 of Fy is a rational number;
o its characteristic polynomial P.(X) := det(X -id — g|3.) on J¢ := Jr ®r C, g € F4 being

a representative of ¢, has rational coefficients.

For I' = F41(Z) or Fur(Z), since I' is a subgroup of GL(Jz), the F4-conjugacy class contain-
ing a I'-conjugacy class of I' must be rational in the sense of Definition 4.5.1.

Our strategy in this section is:

(1) find all rational torsion F4-conjugacy classes, and for each of them choose a representative
in the maximal torus T fixed before in Section 4.4;
(2) determine which Fy4-conjugacy class contains a given I'-conjugacy class by comparing their

traces and characteristic polynomials.

Before explaining the algorithm for step (1), we state the following lemma:

Lemma 4.5.2. If m is the order of an element in Fy whose characteristic polynomial on J¢
has rational coefficients, then m = 66, 70,72,78,84 or 90, or m < 60.

Proof. As a representation of Fy, J¢ is isomorphic to V5, @ C, where C stands for the trivial
representation. Since the zero weight appears twice in the weights of V,, the characteristic
polynomial is divisible by (X — 1)3. On the other hand, the roots of this polynomial contain
a primitive mth root of unity, thus the polynomial is also divisible by the mth cyclotomic
polynomial. Hence we have ¢(m) < 24, where ¢ denotes the Euler function. This implies
m < 60, or m = 66,70,72,78,84 or 90. ]

With the help of [PARI/GP], we enumerate all the Kac coordinates s = (so, s1, s2, 3, 54)

satisfying the conditions in Eq. (4.2) for each integer m in
{n < 60| p(n) < 24} U {66, 70,72, 78, 84, 90}.

For each such s, we compute the trace on f4 and the characteristic polynomial on J¢ of the

4 . .
corresponding element ¢ = exp(#) € T'. Using this algorithm, we get the Kac coordinates

of all rational torsion F4-conjugacy classes.

Proposition 4.5.3. There are exactly 102 rational torsion conjugacy classes in ¥y, whose Kac

coordinates are listed in Table A.1.

Our result coincides with [Padowitz, 1998, Table 9.1]. In Table A.1, we also list the invariants

defined below for all rational torsion F4-conjugacy class.
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Chapter 4. Dimensions of spaces of invariants for Fy

For a representative ¢ € F4 of a rational torsion conjugacy class ¢, we can compute its

characteristic polynomial on J¢:

27

Py(X) =det (X -id — gls.) = Y _(=1)"a;(g) X".
1=0

Now we assign to g a quadruple

i(g) = (a26(9); a25(9), a24(g), Tr(Ad(g)l5,)) ,
and set i(c) :=1i(g).

Corollary 4.5.4. Let g1,g2 be two elements in either Fy1(Z) or Fyr(Z), then g1 and go are
conjugate in Fy if and only if i(g1) = i(g2).

Proof. This follows from Table A.1. For each rational torsion conjugacy class ¢, we list its order
o(c) and the associated quadruple i(c). We observe that two different classes ¢ have different
i(c). O

Remark 4.5.5. There exist examples of two different rational torsion conjugacy classes in Fy
whose characteristic polynomials on J¢ are the same. For instance, the order 12 conjugacy
classes ¢; and co represented by the Kac coordinates (1,1,1,1,1) and (2,1,0, 1,2) respectively

share the same characteristic polynomial on J¢:
X¥ - xHMooxPpox? 4 X3 -1

However, the trace of ¢; on f4 is 0, while that of ¢y is 3. This shows that the 26-dimensional
irreducible representation of Fy is not “excellent” in the sense of Padowitz. It is also observed
in Padowitz’s table [Padowitz, 1998, Table 9.1] that the motives attached to the centralizers of

these two conjugacy classes, in the sense of Gross, are different.

Now we explain our algorithm for step (2). For each I'-conjugacy class c and its representative
ge chosen in Section 4.3, we compute the quadruple i(g.) and compare it with Table A.1. By
Corollary 4.5.4 we can determine the F4-conjugacy class containing c¢. In Table A.2 we list all the
Kac coordinates s whose corresponding rational conjugacy class ¢, in Fy satisfies that ¢, NFy 1(Z)
or ¢cs N Fyr(Z) is non-empty, as well as the cardinalities of intersections ni(s) = |cs N Fa1(Z)]
and na(s) = |cs N Far(Z)|.

4.6 The formula for dim V}

Now we can deduce the formula for d;(\) := dimV}’,i = 1,2, where Ty := F;1(Z) and
Iy := F4r(Z), for a given dominant weight \:

. ) 1
dmVy'= = 3 Trlv,(c)-le| =
‘ Z‘ c€Conj(T';) ‘

1
I

> T, (@ fentil
c€Conj(F4)
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4.6. The formula for dim VK

For each rational conjugacy class ¢ whose contribution to this formula is nonzero, we have already
given [¢NT;| in Table A.2, and according to Proposition 4.1.2 the trace Tr|v, (¢/) is an explicit
function of A1, Ao, A3, A4.

This gives us the following theorem, which is the main computational result of this paper:

Theorem 4.6.1. For each dominant weight A of the compact Lie group F4, we have an explicit
formula for
d;(\) = dim V37,5 = 1,2.

For dominant weights A = (A1, A2, Az, Ag) with 2A1 + 3o+ 2X3 4+ Ay < 13, we list all the nonzero
d(A) :=di1(X) + da(N) in Table A.3.
Remark 4.6.2. Later we will see the condition on A in Theorem 4.6.1 is equivalent to that the

maximal eigenvalue of the infinitesimal character associated to V) is not larger than 21.

In [Codes and tables], we also provide a larger table of [, d1 (), d2(N), d(N)] for weights with
2A1 + 3Xo 4+ 2A3 + A4 < 40.
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Chapter
Subgroups of Fy

In this chapter, we will classify subgroups of the compact Lie group F4 = Aut(Jg, o) satisfying
certain conditions and determine their centralizers in F4. Our results will be used in Chapter 7,
but this problem also has its own interest. Our precise aim is to find all the conjugacy classes

of closed subgroups H of F4 such that:

(1) H is connected;

(2) The centralizer of H in Fy is an elementary finite abelian 2-groups, i.e.it is a product of
finitely many copies of Z/27Z.

(3) The multiplicity of zero weight in the restriction of the 26-dimensional irreducible repre-
sentation Vg, of Fy to H is 2.

If we only consider the first condition, the problem is equivalent to classifying connected
semisimple Lie subalgebras of the complexified Lie algebra f4, up to the adjoint action of F4(C).
This has been studied by Dynkin in [Dynkin, 1952] for all simple complex Lie algebras, without
giving full details. So we will give a detailed classification for Fy in this chapter, following
Dynkin’s original idea and Losev’s result [Losev, 2010, Theorem 7.1].

Briefly, our strategy is to enumerate first all the connected simple subgroups of F, inside
maximal proper compact subgroups, and to index them by the restrictions of V,. Then we com-
pute their centralizers case by case, and combine these results together to get all the connected

subgroups satisfying our conditions.

5.1 Element-conjugacy implies conjugacy

To be more precise, what we want to classify, up to F4-conjugacy, are embeddings from
connected compact Lie groups to Fy satisfying two additional conditions. In this section we
will explain why it is enough to consider their element-conjugacy classes, where the notion of

element-conjugacy is defined as follows:

Definition 5.1.1. [FangHanSun, 2016, §1] Let G and H be two compact Lie groups and ¢, ¢’ :
H — G be two Lie group homomorphisms. We say that ¢ and ¢’ are conjugate if there is an
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Chapter 5. Subgroups of Fy

element g € G such that
gp(h)g~t = ¢/(h), for all h € H.

They are said to be element-conjugate if for every h € H, there is a ¢ € GG such that

gd(h)g~" = ¢ (h).

The element-conjugacy can be rephrased in the following way:

Lemma 5.1.2. Let ¢,¢' : H — G be two homomorphisms between compact Lie groups, then
they are element-conjugate if and only if for each linear representation @ : G — GL(V) the

compositions o ¢ and wo ¢’ are conjugate in GL(V).

Proof. 1t is a consequence of the Peter-Weyl theorem for compact Lie groups, which says that
two elements of G are conjugate if and only if they have the same trace on all the irreducible

representations of G. O]

It is obvious that two conjugate homomorphisms are element-conjugate, but the converse
fails in general. Fortunately, the converse holds when G = F4 and H is connected, due to the

following result for Lie algebras:

Theorem 5.1.3. [Losev, 2010, Proposition 6.2, Theorem 7.1] Let f4 be a simple complex Lie
algebra of type F4 and F4c the complexification of F4. Let b be a reductive algebraic Lie algebra,
i.e.h is the Lie algebra of some reductive complex group, and ¢,¢' : h — f4 two injective Lie
algebra homomorphisms. If the restrictions of ¢ and ¢' to a Cartan subalgebra s of b are
conjugate in the sense that ¢ o ¢|s = ¢'|s for an inner automorphism ¢ of f4, then ¢ and ¢’ are

conjugate.

Remark 5.1.4. Actually, in [Losev, 2010] Losev uses the following equivalence relation on Lie
algebra homomorphisms: two Lie algebra homomorphisms ¢, ¢’ : h — g are equivalent if there
exist liftings H — G of ¢, ¢’ to reductive complex groups which are G-conjugate in the sense of
Definition 5.1.1. By Lie group-Lie algebra correspondence this equivalence relation is the same

as p o ¢ = ¢’ for an inner automorphism ¢ of fy.

This theorem implies the result we need for Fy:

Proposition 5.1.5. For any connected compact Lie group H, two element-conjugate homomor-

phisms from H to Fy4 are conjugate.

Proof. The argument that deduces this result from Theorem 5.1.3 can be found in the proof of
[FangHanSun, 2016, Proposition 3.5]. O

5.2 A criterion for element-conjugacy

According to Lemma 5.1.2 and Proposition 5.1.5, to check whether two homomorphism ¢
and ¢’ from a connected compact Lie group H to F4 are conjugate, it suffices to verify that for
every irreducible representation m of Fy, m o ¢ and 7o ¢’ are equivalent as H-representations.

Moreover, we have the following useful fact:
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Proposition 5.2.1. Let (mg,Jo) be the 26-dimensional irreducible representation of F4. Two
homomorphisms ¢, ¢ from a connected compact subgroup H to F4 are conjugate if and only if

two H -representations mg o ¢ and mg o ¢' are equivalent.

This result is a part of [Dynkin, 1952, Theorem 1.3], but Dynkin only gives a short sketch
of the proof, so in this section we will give the proof of Proposition 5.2.1.

We first give a preliminary discussion on orders. Let X be an abelian group and ¢: X — R
a Z-linear map. This map induces a total preorder < on X defined by x < y if and only if
{(z) < (y). A preorder on X of this form will be called an L-preorder. If the map ¢ is injective,
the L-preorder it induces is an order and we call this order an L-order. For instance, any free

abelian group of finite rank admits L-orders.

Lemma 5.2.2. Let f : X — Y be a homomorphism between finitely generated free abelian
groups X and Y, with an L-order on Y, and S a finite subset of X — {0}. There exists an
L-preorder < on X such that for any s € S we have either s > 0 or s < 0, and if s > 0 then
f(s)>0inY.

Proof. We choose £ : Y — R such that the L-order on Y is defined by ¢. Write S = Sp U 57,
with Sop = S Nker f. If Sy is empty, then the L-preorder on X defined by £ o f satisfies the
conditions.

If Sy is not empty, we choose an arbitrary injective Z-linear map j : X — R and set

We claim that the L-preorder on X defined by j' = £ o f + ¢ satisfies the desired conditions.
Indeed, for s € Sy, j'(s) = €j(s) is nonzero. Also for s € Si, by our choice of &, we have
lej(s)] < [€(f(s))], so j'(s) is nonzero and of the same sign as £(f(s)). O

The next lemma concerns the partial order < of the weights of the 26-dimensional irreducible
representation my of Fy. Recall that for two weights A and p of Fy, fixing a positive root system

of Fy, we write A = p if A\ — u is a finite sum of positive roots.

Lemma 5.2.3. The 26-dimensional irreducible representation (mg,Jo) of Fa has four unique
weights A\1 = Ag = A3 = Ag satisfying that X < Mg for all other weights A. Moreover, those 4
weights A1, Ao, A3, A4 form a Z-basis of the weight lattice of F4.

Proof. Fix a maximal torus T of Fy, and let X = X*(T') be its character lattice and ®* C X a
positive root system with respect to (Fy,T"). We still use Bourbaki’s notations [Bourbaki, 2002,
§VI.4.9] for the root system Fy. The simple roots with respect to ®* are given by

1
aq 282—63,a2283—€4ya3=€4,a4=5(61—62—63—84),

where €1, €2, €3,¢4 is the basis of X ®z R ~ R* chosen in [Bourbaki, 2002] satisfying

€1t+éex+eg3tey

X:Z€1+Z€2+Z€3+Z€4+Z 5
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The highest weight of 7 is wy = a1 + 2a9 + 3asg + 2a4 = €1. The orbit of wy under the
Weyl group consists of +¢; for ¢ = 1,2, 3,4 and %(iel + e9 + €3+ ¢4). These 24 weights have
multiplicity 1, and the zero weight appears with multiplicity 2.

We claim that the weights

1
Al =¢€1, 2 = 5(81 +ea+e3+¢€4),

1 1
A3 = 5(51—1—82—1-53—54),)\4 = 5(51 +e9 —e3+¢€4)

satisfy the desired properties. Indeed, this follows from the following table:

positive weight A relation with A1, Ao, A3, \g
€1 )\1

€9 Ay —ag —ay

€3 A —op —a3— oy

€q )\4—a1—a2—a3—a4

e1+teatesteg)/2 ] o= A —ay
e1teates—e4)/2 | A3 =X — a3
e1+e2—e34+¢€4)/2 | M= A3 —
)/2 | A — a3

)

)

)

)

€1 t€2—€3—¢€4

/2 )\4—041

€1 — €2+ €3 —¢&4 /2 A — o1 — a3

€1 — €2+ €3+ ¢4

51—52—€3+€4/2 A — o1 — Qg — Qg

(
(
(
(
(
(
(
(

61*62*53*54/2 )\4*011*042*2043

Table 5.1: Positive weights of the 26-dimensional irreducible representation V, of Fy

and the following identities:

€1 +€E2+€E3+¢€4
2

€1 =A1,82=—A1 + A3+ A\g,63 = Ao — Mg, 64 = Ao — A3, = Ao O

Proof of Proposition 5.2.1. By Proposition 5.1.5 it suffices to show that if my o ¢ and mp o ¢’ are
equivalent as H-representations, then ¢ and ¢’ are element-conjugate. Since any element of H
is included in some maximal torus, we may assume that H is a torus.

We fix a maximal torus 7" of F4. As all maximal tori are conjugate in Fy, up to replacing
¢ and ¢’ by some Fs-conjugate, we assume that both ¢(H) and ¢/'(H) are contained in T'. Let
X =X*(T) and Y = X*(H), then ¢ and ¢’ induce Z-linear maps ¢*, ¢"* : X — Y respectively.

Choose an arbitrary L-order on Y, and denote by ® C X the root system of (Fy,T). By
Lemma 5.2.2, there is an L-preorder < (resp. <) on X such that for any o € ® we have either
a > 0or a <0 (resp.either « > 0 or a <’ 0), and the Z-linear map ¢* (resp. ¢"*) preserves
the preorders on X,Y. We denote the positive root system determined by the L-preorder <
(resp. <') by ®* (resp. d+/).

A general fact about root systems is that the Weyl group of (Fy4,T") acts transitively on
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the set of positive root systems of (Fy,T). Up to conjugating ¢’ by a suitable element in the
normalizer N, (T'), we may assume that &/ = &*. Now our aim is to show ¢ = ¢/, which is
equivalent to ¢* = ¢"*.

Let W be the multiset of X consisting of the weights appearing in mg. Let A1 = Ao = A3 = \g
be the 4 weights of my defined in Lemma 5.2.3 and all of them have multiplicity 1 in 7. For
the Z-linear map f = ¢* or ¢"*, the preorder-preserving property of f and Table 5.1 imply
that f(A1) > f(A2) = f(A3) > f(Ag) and f(Ag) > f(A) for all other weights A of my. In other
words, f(A1) is the greatest element of f(W), and for i = 2, 3,4, f(\;) is the greatest element of
FTOVN{f(A1),--., f(Ni—1)}. By the assumption mgo¢p = mgo¢’, the multisets ¢* (W) and ¢"* (W)
of Y coincide. It follows that we have ¢*(\;) = ¢"*(\;) for i = 1,2,3,4, and as A\, g, A3, A4
form a basis of X by Lemma 5.2.3, we deduce ¢* = ¢"*. O

Hence the conjugacy class of a homomorphism from a connected compact Lie group H to Fy

is determined by the restriction of the 26-dimensional irreducible representation to H.

5.3 Maximal proper connected subgroups

Up to conjugacy, the compact group F4 has five maximal proper connected subgroups by
[Dynkin, 1952, Theorem 5.5, Theorem 14.1]. We will recall these five subgroups in this section
and show that there are no other maximal proper connected subgroups.

We first introduce the following notations, which will be used a lot of times in this section:

Notation 5.3.1. In this article, we use the following notations of compact Lie groups:

o Forn > 2, denote by SU(n) the compact special unitary group with respect to the standard
Hermitian form on C™.

o For n > 3, denote by SO(n) the compact special orthogonal group with respect to the
standard quadratic form on R™, and by Spin(n) the compact spin group, which is a double
cover of SO(n).

o For n > 1, denote by Sp(n) the compact symplectic group: the group of invertible n x n

quaternionic matrices that preserve the standard Hermitian form
(T,y) =T1y1 + -+ + Tl

on H", where H is Hamilton’s quaternions.
o The group Gg is defined as Aut(Og,o), the automorphism group of the real octonion

division algebra, which is simply connected and has trivial center.

Remark 5.3.2. The complexification of the compact symplectic group Sp(n) is the usual complex
symplectic group Sp(2n,C) = Sps,,(C), which is defined as the group of linear transformations

of C?" preserving the standard symplectic bilinear form.

Notation 5.3.3. We denote by pu,, the group of nth roots of unity. If m groups Gi,...,Gy, all

have a unique central subgroup isomorphic to u, with an embedding ¢; : u, — G;, we denote
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by u,% the diagonal subgroup

{(1(9); s tm(9)) |9 € pn} C G1 X -+ X G

Note that when n = 2 the embedding ¢; is unique, but when n > 3 we have to give ¢1,...,im

for defining p2.

Following Dynkin’s definitions of R-subalgebras and S-subalgebras in [Dynkin, 1952, §7], we

give the following definition for subgroups:

Definition 5.3.4. Let G be a connected compact Lie group and H a connected closed subgroup.
We say that H is a reqular subgroup if it is normalized by a maximal torus of G. If there is only
one regular subgroup of G containing H, namely G itself, we call H an S-subgroup, otherwise

we call it an R-subgroup.

Ezamples 5.3.5. (1) Subgroups with maximal ranks are regular.
(2) A proper regular subgroup is an R-subgroup.
(3) The principal 3-dimensional subgroups are S-subgroups by [Dynkin, 1952, Theorem 9.1].

(4) A maximal proper regular subgroup has maximal rank.

Let H be a maximal proper regular subgroup of G, i.e. if there is another regular subgroup
H' of G containing H, then we have H' = G. The Borel-de Siebenthal theory tells us the Dynkin
diagram of the root system of H is obtained by deleting an ordinary vertex with prime label
from the extended Dynkin diagram of the root system of G.

For our compact group Fy, the extended Dynkin diagram is:

1 2 3 4 2

o—eo—e——e—o,

«@q aq a ag Qy
The vertex a; corresponds to (Sp(1) x Sp(3)) /u5', az corresponds to (SU(3) x SU(3)) /us* (we
will define this ,ugA in Section 5.3.3), and ay corresponds to Spin(9). The vertex as corresponds
to (SU(2) x SU(4)) /u4", which is also regular but not maximal since we have the embedding:

(SU(2) x SU(4)) /g = (Spin(3) x Spin(6)) /u3" < Spin(9).

These three maximal proper regular subgroups are also maximal among proper connected sub-
groups of Fy, because any connected subgroup containing one of them has maximal rank and
must be regular.

Besides these three regular subgroups, F4 also admits other maximal proper connected sub-
groups that are not regular. A non-regular maximal connected subgroup H of Fy must be an
S-subgroup. As a subgroup of Fy containing an S-subgroup is also an S-subgroup, it suffices to

find all maximal S-subgroups of Fy.

Theorem 5.3.6. [Dynkin, 1952, Theorem 14.1] Up to conjugacy, there are two mazimal S-
subgroups in Fy: the principal PSU(2) and Ga xSO(3), where PSU(2) := SU(2)/{£id} is the
adjoint group of SU(2).
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Putting the Borel-de Siebenthal theory and Theorem 5.3.6 together, we have:

Theorem 5.3.7. Up to conjugacy, there are five maximal proper connected subgroups of Fy.

They are respectively isomorphic to
Spin(9), (Sp(1) x Sp(3)) /5’ (SU(3) x SU(3)) /u5', G x SO(3), (principal) PSU(2).

In the rest of this section, we will give the explicit embeddings of these five maximal proper

connected subgroups into F4 and compute their centralizers in Fjy.

5.3.1 Spin(9)

There is an involution o € F4 on Jg defined by:
o la,b,c;x,y, 2] =la,b,c;x,—y,—2], for all a,b,c € R, z,y, z € Og.

By [Yokota, 2009, Theorem 2.9.1], the centralizer Cg,(c) of o in Fy is also the stabilizer of
E: = diag(1,0,0) € Jg.

Lemma 5.3.8. The group Cyg, (o) preserves respectively the subspaces
J1:={[0,b,-b;2,0,0]|b € R,z € Og}

and
J2 = {[0,0,0;O,y,z] |yaZ € ®R}
OfJR.

Proof. The first subspace J; is exactly {X € Jg | E1oX = 0, Tr(X) = 0} and the second subspace
is {X € Jg|2F; 0o X = X }. The lemma follows from the fact that Cp, (o) is the stabilizer of E;
in F4. O

This lemma gives the following group homomorphism:
Cp,(0) = SO(J1) ~SO(9),9 — g3,

which induce an isomorphism Cg,(¢) ~ Spin(9) by [Adams, 1996, Theorem 16.7(ii)]. Since the
Borel-de Siebenthal theory shows that the regular connected subgroup of type By is unique up
to F4-conjugacy, so we shall thus refer to this group Cr, (o) as Spin(9) in the sequel, by a slight
abuse of language.

The restriction of the 26-dimensional irreducible representation (g, Jo) to Spin(9) is isomor-

phic to

16 V9 ¥ VSpina (51)
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where 1 is the trivial representation, Vg is the standard 9-dimensional representation and Vspin
is the 16-dimensional spinor module. These two representations Vg and Vgpin can be realized

on J; and Jo respectively.

Notation 5.3.9. To make the restriction of Jy not too messy when it involves both direct
sums and tensor products, we will replace & by + when writing down the decomposition. For

example, we write Jo|spin(9) as 1 + Vo + Vgpin.

The restriction of the adjoint representation f4 of F4 to Spin(9) is isomorphic to:
/\2V9 + Vspin, (5.2)

where A2V is the adjoint representation of Spin(9).

Now we compute the centralizer of Spin(9). If an element g centralizes Spin(9), then it must
commute with o € Spin(9). Hence Cg,(Spin(9)) is contained in Cp,(c) = Spin(9), thus it is
isomorphic to the center of Spin(9), which is isomorphic to Z/27Z and generated by o.

Remark 5.3.10. By symmetry, the stabilizer of Eo = diag(0, 1,0) (resp. E5 = diag(0,0,1)) is also
the centralizer of the map [a,b,c;x,y, 2] — |a,b,c;—x,y,—2] (resp.[a,b,c; —x,—y, z]) in Fy,

and is isomorphic to Spin(9).

5.3.2  (Sp(1) x Sp(3)) /u3’

The subalgebra of Or generated by 1, eq,es,e4 is isomorphic to the quaternion division alge-
bra H, and as a real vector space Qg can be decomposed as H & Hes. Using this decomposition,

the conjugation on Ogr becomes
T + yes — T — yes, for all x,y € H.

As Jg = Herms(Og) is the space of “Hermitian” matrices in M3(Og), we embed the space
Herms(H) of “Hermitian” matrices in M3(H) into Jg via our identification of H as a subalgebra

of Or. Then we have the following isomorphism of vector spaces:

Herms(H) @ H? — Jg,

(M, a= (al, as, ag)) — M + [O, 0,0;ayes5, ases, (1365].
With this identification, we have an involution ~ in F4 defined as
v(M,a) = (M, —a).

Proposition 5.3.11. [Yokota, 2009, Theorem 2.11.2] Let ¢ : Sp(1) x Sp(3) — GL(Jr) be the

morphism defined as

o(p,A) (M,a) = (AMAil,paAfl) , for M € Herms(H), a € H°.
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Then the kernel of ¢ is the diagonal subgroup uQA generated by vy, and the image of ¢ is Cp, (7).

In particular, ¢ induces an isomorphism:

(Sp(1) x Sp(3)) /5" ~ Cr, (7).

From now on we refer to the regular connected subgroup Cr, () as (Sp(1) x Sp(3)) /u5".

The restriction of the irreducible representation Jg of F4 to this subgroup is isomorphic to
St ® Vg +1® Vig, (5.3)

where St is the 2-dimensional standard representation of Sp(1) ~ SU(2), Vg is the standard
6-dimensional representation of Sp(3) and Vi, is the 14-dimensional irreducible representation
of Sp(3) which satisfies A2V ~ V14 @ 1. The first component St ® Vg is realized on H? and the
second component 1 ® V4 is realized on the trace-zero part of Hermg(H).

The restriction of the adjoint representation f4 of F4 to (Sp(1) x Sp(3)) /u4 is isomorphic to
Sym? St ® 14 St ® Vi, + 1 ® Sym? Vg, (5.4)

where V', is another 14-dimensional irreducible representation of Sp(3).

By a similar argument in the case of Spin(9), the centralizer of (Sp(1) x Sp(3)) /us* in Fy
is isomorphic to Z((Sp(1) x Sp(3)) /ug) ~ Z/27. Tt is generated by the involution v, which
corresponds to (—1,1) in Z(Sp(1) x Sp(3)) =~ ua X pa.

Remark 5.3.12. It may help to notice that there are exactly two conjugacy classes of involutions

in F4, whose centralizers in Fy are Spin(9) and (Sp(1) x Sp(3)) /u5" respectively.

5.3.3 (SU(3) x SU(3)) /us

Take w = 71%‘/773 and identify the center of SU(3) with us by identifying w with the scalar
matrix wl3. Then the diagonal subgroup p5 C SU(3) x SU(3) is generated by (w,w).

By [Yokota, 2009, Theorem 2.12.2], the centralizer in F4 of an order 3 element in Fy is
isomorphic to (SU(3) x SU(3)) /u4. As before, by an abuse of language we will refer to this
subgroup as (SU(3) x SU(3)) /u4'. Notice that the roots of the first copy of SU(3) are short
roots of Fy, and those of the second copy are long roots of Fy.

Since SU(3) admits an outer automorphism, this unique (up to conjugacy) 2 As-type sub-
group (SU(3) x SU(3)) /us of F4 has two embeddings into F4 which are not conjugate. The

restrictions of the irreducible representation Jy along those embeddings are isomorphic to
sl3®1+ V3@ Vi+Vi®V; (5.5)
and

sl3e1+ V3@ Vy+ VeV, (5.6)
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respectively. Here V3 is the standard 3-dimensional representation of SU(3), V4 is the dual
representation of Vs, and sl3 is the adjoint representation of SU(3).
The restriction of the adjoint representation f4 of Fy to (SU(3) x SU(3)) /ug* is isomorphic

to
sl3 @14 1®sl3 + Sym? Vi ® V5 4 Sym? V5 ® V3 (5.7)
or
sl3 ®1 4+ 1®sl3 + Sym? V3 ® V3 4 Sym? V; @ V. (5.8)
Again, we have an isomorphism Cp, ((SU(3) x SU(3)) /u§') ~ Z/3Z.
5.3.4 Gs x SO(3)
We define an injective morphism ¢ : Ga xSO(3) — GL(Jr) by
(g,0)[a,b,c;x,y,2] = Ola,b,c; g(x), g(y), 9(2)]O Y, for all a,b,c € R, z,y,z € Qg, (5.9)

by viewing O € SO(3) as an element in GL3(Og) with entries in R. This morphism is well-defined
since real numbers R is the center of the octonion division algebra Qgr. For any g € Go and
O € SO(3), the linear automorphism ¢(g, O) preserves the cubic form det and the polarization
I, thus ¢ induces an embedding of Go xSO(3) into F4. In the sequel we will refer to the image
of ¢ as G2 xSO(3).

The restriction of the irreducible representation Jo to Ga xSO(3) is isomorphic to
V; ® Sym? St 4+ 1 ® Sym* St, (5.10)

where V7 is the fundamental 7-dimensional representation of Go (the trace-zero part of O¢) and
St denotes the standard 2-dimensional representation of SU(2). Here we use the exceptional
isomorphism SO(3) ~ PSU(2) = SU(2)/u2 to view odd dimensional irreducible representations
Sym?*St,n € N of SU(2) as irreducible representations of SO(3). The first component V7 &

Sym? St is realized on the space
{10,0,0:2,4,2] |,y = € Op, Te(x) = Tx(y) = Tx(z) = 0}
and the second component 1 ® Sym* St is realized on the space
{la,b,c;z,y, 2] |a,b,c,x,y,z € Ria+b+c=0}.
The restriction of the adjoint representation f4 of Fy to Ga xSO(3) is isomorphic to

g2 ® 1+ V; ® Sym* St + 1 ® Sym? St, (5.11)
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where go is the adjoint representation of Go.
Proposition 5.3.13. The centralizer of Go xSO(3) in Fy is trivial.

Proof. Let g be an element in Cp, (G2 xSO(3)). Because the image of diag(1,—1,—1) € SO(3)
in Fy is the involution o defined in Section 5.3.1, g lies in Cg,(0), thus it stabilizes E;. By
Remark 5.3.10, we also have g stabilizes Eo and Ej3 respectively. According to [Adams, 1996,

Theorem 16.7(iii), Lemma 15.15], g is an element of the form
[a,b,c;x,y, z] = [a,b,c;a(x), B(y),v(z)], for all a,b,c € R, z,y, z € O,
where «, 3,7 € SO(OR) satisfy
a(z)B(y) = v(z7) for all ,y € Op. (5.12)

The image of ( _8

OO
oo

) ) € SO(3) in Fy is the map

[avbvc;xayvz] = [G,C,b; _f7 _Zay]'

The fact that it commutes with g implies that «(Z) = a(z) and 5(%) = v(z) for all x € Og. By
symmetry we get « = = and Eq. (5.12) shows that

a(z)a(y) = a(Ty) = a(Ty) = a(zy), for all z,y € Og.

Hence a € G and we have proved that Cp,(SO(3)) = Ga, thus the centralizer of Go xSO(3) in
F4 is the center of G, which is trivial. ]

5.3.5 The principal PSU(2)

The image of the principal embedding from SU(2) into Fy, in the sense of [CollingwoodMcGov-
ern, 1993, Theorem 4.1.6], is also a maximal proper connected subgroup of F4. The restriction

of the irreducible representation Jg to this SU(2) is isomorphic to
Sym® St + Sym?0 St,

where St is the standard 2-dimensional representation of SU(2). This implies that the image is
isomorphic to PSU(2), and we call it the principal PSU(2) of F4.
By the general property of principal embeddings, its centralizer is the center of Fy. It is

well-known that the center of Fy is trivial.

5.4 Classification of A;-subgroups

In this section we will classify Aj-subgroups of Fy, i.e. subgroups that are isomorphic to SU(2)
or PSU(2). By [Dynkin, 1952, Theorem 9.3] every Aj-subgroup X of Fy is either the principal
PSU(2) or an R-subgroup, i.e. X is contained in some proper regular subgroup of Fy. When X
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is an R-subgroup, up to conjugacy it is contained in one of the three regular maximal proper
connected subgroups of Fy we have found in Section 5.3. All these three regular subgroups arise
from classical groups, thus their Aj-subgroups are well-known.

By Proposition 5.2.1, a conjugacy class of Aj-groups of F4 is determined uniquely by the

restriction of the 26-dimensional representation Jy to it.

Notation 5.4.1. An isomorphism class of n-dimensional representation of SU(2) gives a parti-
tion of the integer n. We will use the notation [N*N (N — 1)fv-1 . 2k2 1k where ky # 0
and Zf\il ik; = n, for a partition of n. For example, the restriction of Jy to the principal PSU(2)
is isomorphic to Sym® St 4+ Sym!® St, thus we index this A;-subgroup by the partition [17, 9] of
dim Jg = 26.

5.4.1 A;-subgroups of Spin(9)

We start from Aj-subgroups of SO(9). According to [CollingwoodMcGovern, 1993, Theorem
5.1.2], the conjugacy classes of morphisms SU(2) — SO(9) are in bijection with partitions of 9

in which each even number appears even times.

Lemma 5.4.2. (1) There are 12 different conjugacy classes of Aq-subgroups of Spin(9), which

correspond to the following partitions of 9:
(9], [7.12), [5, 3, 1], [5,2%), [5, 1%], [4%, 1], [3%], (3%, 1°], [3,2%,1%], [3,1°), [2*, 1], [22, 1°).

(2) There are 10 different conjugacy classes of Aj-subgroups of ¥y that are contained in the
subgroup Spin(9) given in Section 5.3.1. The restrictions of the 26-dimensional irreducible rep-

resentation Jo of Fy to these Ai-subgroups correspond to the following partitions of 26:

[11,9,5,1],[73,1°], [5%, 3%,17],[35,1%],

(5.13)
[52,42,3,2%,1],[5,4%,1%], [4%,33, 2%, 1], [3%, 26, 19], 3, 2%, 17], [2¢, 114].

Proof. By the lifting property of covering maps and the fact that SU(2) is simply connected,
every Aj-subgroup of SO(9) is lifted uniquely to an Aj-subgroup of Spin(9). The assertion (1)
follows directly from [CollingwoodMcGovern, 1993, Theorem 5.1.2], and the assertion (2) follows
from the equivalence Eq. (5.1). O

The Aj-subgroups in the first row of Eq. (5.13) are isomorphic to PSU(2) and the A;-
subgroups in the second row are isomorphic to SU(2).
5.4.2 A;-subgroups of (Sp(1) x Sp(3)) /us

We apply the same argument for Aj-subgroups of (Sp(1) x Sp(3)) /u4*. By [CollingwoodM-
cGovern, 1993, Theorem 5.1.3], the set of conjugacy classes of morphisms SU(2) — Sp(3) are in

bijection with partitions of 6 in which each odd number appears even times.
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Lemma 5.4.3. (1) There are 7 different conjugacy classes of Ai-subgroups of Sp(3), which

correspond to the following partitions of 6:
(6], [4,2], 4, 17], [3%], [2°], [2, 7], [2, 7).

(2) There are 11 different conjugacy classes of Aj-subgroups of Fy that are contained in the
subgroup (Sp(1) x Sp(3)) /ug given in Section 5.4.2. The restrictions of the 26-dimensional
irreducible representation Jo of Fy to these Ai-subgroups correspond to the following partitions
of 26:

9,7,5%, [5%,3%,1%], [5,37], [3%, 18],

(5.14)
9,62,5], [52,42, 3,22, 1], [5,4%,1°], [5, 42, 3%,22], [33,26,19], 3,28,17), [2, 1%4].

Proof. The assertion (1) follows directly from [CollingwoodMcGovern, 1993, Theorem 5.1.3].
A morphism from SU(2) to (Sp(1) x Sp(3)) /ub arises from the product of two morphisms
SU(2) — Sp(1) and SU(2) — Sp(3). The assertion (2) follows from the equivalence Eq. (5.3). O

The Aj-subgroups in the first row of Eq. (5.14) are isomorphic to PSU(2) and the A;-

subgroups in the second row are isomorphic to SU(2).

5.4.3 A, subgroups of (SU(3) x SU(3)) /us

The restriction of the standard representation V3 of SU(3) to an A;-subgroup of SU(3) can
only be [3] or [2,1]. By the equivalences Eq. (5.5) and Eq. (5.8), we have the following result:

Lemma 5.4.4. There are 8 different conjugacy classes of Ai-subgroups of F4 that are con-
tained in the subgroup (SU(3) x SU(3)) /ug* given in Section 5.3.3. The restrictions of the 26-
dimensional irreducible representation Jg of Fy to these A1-subgroups correspond to the following
partitions of 26:

[5%,3%, 17, 5,37, [3°, 17

(5.15)
[5,42,3%,22), 42, 33,24 1],[3%,25,17],[3,2%,17], [26, 114].

The A;-subgroups in the first row of Eq. (5.15) are isomorphic to PSU(2) and subgroups in

the second row are isomorphic to SU(2).

5.4.4 Conclusion

Now we have enumerated (up to conjugacy) all A;j-subgroups of F4 and indexed them by the

restriction of the 26-dimensional irreducible representation Jg of Fy.

Proposition 5.4.5. (1) There are 7 conjugacy classes of subgroups of Fy that are isomorphic
to PSU(2), corresponding to the following partitions of 26:

(17,9],[11,9,5,1],[9,7,5%], [73,17],[5%, 3%, 1%], 5, 37], [3%, 1%].
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(2) There are 7 conjugacy classes of subgroups of F4 that are isomorphic to SU(2), corresponding
to the following partitions of 26:

9,62,5], [52,42,3,22,1],[5,4%,1°], [5, 42, 33,22], [42, 33,24, 1], [33,25,1°], [3, 2%, 17], [25, 11].

The theory of Jacobson-Morozov shows that the set of conjugacy classes of morphisms
SU(2) — F4 is in bijection with the set of nilpotent orbits of the semisimple Lie algebra f4.
The nilpotent orbits of f4 are labeled in [CollingwoodMcGovern, 1993, §8.4], and we will use the

same labelings for Aj-subgroups of Fy:

Label | Restriction of Jj Label Restriction of Jg || Label | Restriction of Jj
A, [26,114] Ay +A, [42, 3%, 24 1] B [73,15]
A [3,28,17] B, [5,44,1°] Cs 9,62, 5]
Al +A, 33,26, 19] Ay+Ay | [5,42,33,22] || Fy(as) [9,7,52]
A (36,18 Cs(ay) [52,42,3,22,1] || Fa(a1) [11,9,5,1]
A, [5,37] F4(as) [53,33,12] F4 [17,9]

Table 5.2: Labels of Aj-subgroups of Fy

Notation 5.4.6. With Table 5.2, for a conjugacy class of Aj-subgroups of Fy, we have two
ways to refer to it. For example, for the conjugacy class of principal PSU(2), we call it the class
[17,9] or the class with label Fy.

5.4.5 Centralizers

The next thing we are going to do is to compute the centralizer, or the neutral component
of the centralizer, of each Aj-subgroup of F4. In the rest of this section, we will choose a
representative SU(2) — Fy4 for each conjugacy class of Aj-subgroups, whose image is denoted
by X, and then determine Cy,(X) or Cp,(X)°.

The following lemma will be used when computing the centralizer of a subgroup in Fjy:

Lemma 5.4.7. Let G be the quotient of a Lie group Goy by a finite central subgroup I'. If Hy
is a connected subgroup of Gy, whose image in G is denoted by H, then the inverse image of
Cq(H) in Gy is Cgy(Hp) and Cg(H) ~ Cq,(Hp)/T.

Proof. Tt suffices to prove that any go € Gy whose image ¢ lies in Cg(H) centralizes Hy. For any
ho € Hy with image h in H, we have ghg”'h™' =1 in G, thus gohogalhal € I'. The continuous
map o : Hy — ', hg — gohogalhal for hg € Hy must be constant, because H| is connected and
I is discrete as a finite group. The map ¢ sends 1 € Hg to 1 € T', thus ¢ = 1, which implies
that go centralizes Hy in Gy. ]
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In some cases we can not compute the centralizer Cr,(X) easily, then we use the following

lemma to determine its neutral component Cg, (X)°:

Lemma 5.4.8. Let H be a connected subgroup of a compact Lie group G, and d the multiplicity
of 1 in the restriction of the adjoint representation g of G to H. If there is a d-dimensional
connected subgroup C of Cq(H), then we have Cq(H)® = C. In particular, the centralizer
Ca(H) is a finite group when d = 0.

Proof. As subalgebras of g, the Lie algebra Lie(Cq(H)) of Co(H)® is contained in
Cy(H):={X e€g|Ad(9)X = X for all g € Hc},

where Hc is the complexification of H. The dimension of Cy(H) equals the multiplicity d of 1
in glq.

Let ¢ be the complexified Lie algebra of C. We have the inclusions ¢ C Lie(Cq(H)°) C Cyq(H).
Since dimc¢ = d = dim Cy(H), these three subspaces of g are equal. It is well known that a
connected Lie group is generated by a neighborhood of the identity element, thus the connected
subgroups C' and Cg(H)® of G coincide. O

5.4.5.1 [17,9]

We choose X to be the principal PSU(2) in F4, whose centralizer in Fy is trivial.

5.4.5.2 [11,9,5,1]

We choose X to be the principal PSU(2) of the Spin(9) given in Section 5.3.1. The restriction
of the adjoint representation f; of F4 to X corresponds to the partition [15,112,7,5,3] of 52,
which implies that Cp,(X) is a finite group by Lemma 5.4.8.

5.4.5.3 [9,7,5%]

We choose X to be the principal PSU(2) of the (Sp(1) x Sp(3)) /u4* given in Section 5.3.2.
The restriction of the adjoint representation f4 to X corresponds to the partition [112,9, 7,5, 33
of 52, thus Cp,(X) is a finite group by Lemma 5.4.8.

5.4.5.4 [73,19]

We choose X to be the principal PSU(2) of the factor Go in the subgroup G2 xSO(3) given
in Section 5.3.4. The other factor SO(3) of Ga xSO(3) centralizes this Aj-subgroup X. The
restriction of the adjoint representation f4 of Fy to X corresponds to the partition [11,7°,3, 1]
of 52, thus Cr, (X)° is the SO(3) in G2 xSO(3) by Lemma 5.4.8, which is in the class [5, 37] and
labeled by As.

o7



Chapter 5. Subgroups of Fy

5.4.5.5 [5%,33, 12

We choose X to be the principal PSU(2) of the (SU(3) x SU(3)) /u§* given in Section 5.3.3.
The restriction of the adjoint representation f4 of F4 to X corresponds to the partition [72, 5%, 3]
of 52, thus Cr, (X) is a finite group by Lemma 5.4.8. The center of (SU(3) x SU(3)) /u§', which

is a cyclic group of order 3, is contained in Cp,(X).

5.4.5.6 [5,37]

We choose X to be the factor SO(3) in the subgroup G2 xSO(3) of F4 given in Section 5.3.4.
In the proof of Proposition 5.3.13, we have shown that the centralizer C,(X) is the other factor
Ga.

5.4.5.7 30,18

We choose X to be the principal PSU(2) of the second copy of SU(3) in the subgroup
(SU(3) x SU(3)) /us* given in Section 5.3.3. The first copy of SU(3) centralizes X and has
dimension 8. The restriction of the adjoint representation f4 of F4 to X corresponds to the
partition [5,3'3,18] of 52, thus Cp,(X)° is the first copy of SU(3) in (SU(3) x SU(3)) /uf* by

Lemma 5.4.8, whose roots are short roots of Fy.

5.4.5.8 [9,62,5]

We choose X to be the principal SU(2) of Sp(3), and X to be the image of Xy in the
subgroup (Sp(1) x Sp(3)) /u5* given in Section 5.3.2. The group (Sp(1) x Sp(3)) /u4 is defined
as Cp,(7), where v is an involution in Fy and is the image of (1,—I3) € Sp(1) x Sp(3) in the
quotient group.

Since X contains the element -y, the centralizer of X in Fy4 is contained in Cg,(y) =
(Sp(1) x Sp(3)) /ub', thus Cp,(X) = Csp1)xSp(3))/ud (X). By Lemma 5.4.7, we have:

C(Sp(l)XSp(S))//JQA (X) = Csp(1)xsp(3) (1 x Xo)/p5' = (Sp(1) x Z(Sp(3))) /5" =~ Sp(1).
Hence C,(X) is an Aj-subgroup in the class [25,1'4] and labeled by Aj.

5.4.5.9 [52,42,3,22 1]
We choose X to be the image of

SU(2) < Sp(1) x Sp(2) < Sp(3),

where the first arrow is the principal morphism , and the second is defined as (x, A) — (8 9‘),
for any x € Sp(1), A € Sp(2). Let X be the image of Xp in (Sp(1) x Sp(3)) /us* = Cr, (7).
The element «y corresponds to (1, —I3) in Sp(1) x Sp(3), thus it is contained in X, so Cg,(X) C
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Cr,(7) and Cp,(X) = C(sp(1)xSp(3))/ud (X). Again by Lemma 5.4.7, we have:
C(Sp(l)XSp(B))/#QA (X) = Cspayxsp() (1 x Xo) Jus = (Sp(1) x (1) X (32)) /5,

_ 10 0
where v; = ( 81 g §) and vy = (8 —01 01> are two order 2 elements in Sp(3). Hence Cp,(X) is
the product of Sp(1) and an order 2 group, and this Aj-subgroup Sp(1) is in the class [2¢,1'4]

and labeled by A;.

5.4.5.10 [5,4% 19

We choose a morphism:
SU(2) < Spin(5) < Spin(5) x Spin(4) — Spin(9) — Fy,

where the first arrow is the principal morphism of Spin(5), and the subgroup Spin(9) of Fy is
defined as Cp, (o) in Section 5.3.1. This morphism is injective since the factor Spin(5) has zero
intersection with the kernel of Spin(5) x Spin(4) — Spin(9), and we denote its image by X.
The element o defined in Section 5.3.1 is contained in X, hence the centralizer of X in Fy
is contained in Spin(9), thus Cg,(X) = Cgpin(9)(X). Denote the natural projection Spin(9) —
SO(9) by p. The centralizer of p(X) in SO(9) is SO(4), the image of Spin(4) under p. By

Lemma 5.4.7, we have
Cspin(9)(X) = p~(SO(4)) = Spin(4) =~ SU(2) x SU(2),
and as a result Cp,(X) is the product of two Aj-subgroups in the class [26,114].
5.4.5.11 [5,4% 3 27|
We choose an embedding:
SU(2) < Sp(1) x SO(3) < Sp(1) x Sp(3),

where the first arrow is the principal morphism of Sp(1) x SO(3), and the embedding SO(3) —
Sp(3) is given by viewing an orthogonal 3 x 3 matrix as an matrix in GL(3,H) preserving the
standard Hermitian form on H3. Let X be the image of this embedding, and X the image of
X in the subgroup (Sp(1) x Sp(3)) /us* = Cr, () of F4 given in Section 5.3.2.

The group X contains (—1,13), thus the element 7 is contained in X. So the centralizer

Cp,(X) is contained in Cp, () and Cp,(X) = C(Sp(l)XSp(?)))/,uzA (X). By Lemma 5.4.7, we have

Cspyxsp@n/ua (X) = (Z(Sp(1)) X Csp(s)(SO(3))) /15" = Capis) (SO(3))

A 3 x 3 matrix in Sp(3) commutes with all elements in SO(3) if and only if it is a scalar matrix,
thus it must be of the form A - I3 for some norm 1 element h € H. Hence CF,(X) ~ Sp(1) is an
Aj-subgroup in the class [33,26,15] and labeled by A; +A;.
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5.4.5.12 [42,33,24 1]

We choose a morphism:
Spin(3) < Spin(3) x Spin(3) x Spin(3) — Spin(9) = Cr,(0) < Fy,

where the first arrow is the diagonal embedding. This is also an embedding and we denote its
image in Fy by X.
Again we have Cg,(X) = Cgpin(9)(X), and by Lemma 5.4.7, the centralizer of X in Spin(9)

is the inverse image in Spin(9) of the subgroup

a11lz  a12lz  ai3ls a1 a2  ai3
ao1lz agelsz asls as1 azx ass | € SO(3)
azilz agzels asszls az1 asz as3

of SO(9). Hence Cp,(X) ~ Spin(3) is also an Aj-subgroup in the class [42,33 2% 1].

5.4.5.13 [33,20,19]

We denote by X the image of Sp(1) < Sp(3) given by h — hls, and by X the image
of Xo under the embedding of Sp(3) into the group (Sp(1) x Sp(3)) /us = Cr,(7) given in
Section 5.3.2.

The element v = (1, —I3) (modulo %) is contained in X, so the centralizer Cr,(X) equals
C(Sp(l)XSp(S))/MQA (X) By Lelnma 547, we haVe

Csp)xsp@))/ud (X) = Cspayxsp(@) (1 X Xo)/pg' = (Sp(l) X Csp(3)(Xo)) /s

A 3 x 3 matrix A € Sp(3) commutes with hls for all norm 1 quaternions h, if and only if all
entries of A are real. Hence Cgp(3)(Xo) = GL(3,R) N'Sp(3) = O(3), and as a result Cg,(X) ~
Sp(1) x SO(3) is the product of two Aj-subgroups in the classes [2°,14] and [5, 37] respectively.
These two Aj-subgroups are labeled by A; and Ay respectively.

5.4.5.14 [3,28,17]

We choose a morphism:
Spin(3) < Spin(3) x Spin(6) — Spin(9) = Cp,(0) — F4,

which is injective, and denote by X its image in Fjy.
The element o is contained in X, thus Cp,(X) = Cgpin(9)(X). Again by Lemma 5.4.7, this

centralizer is the group Spin(6) in the morphism we choose.
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5.4.5.15 [26,1%4]

We choose X to be the factor Sp(1) in the (Sp(1) x Sp(3)) /u5* given in Section 5.3.2. Using
Lemma 5.4.7, we obtain that the centralizer C,(X) is the other factor Sp(3).

5.5 Connected simple subgroups

In this section, we will classify connected simple subgroups of F4, whose ranks are larger than
1, and then determine their centralizers in Fy.

Let H be a proper connected simple subgroup of Fy whose rank is larger than 1. It is (up to
conjugacy) contained in one of the following four maximal proper connected subgroups classified

in Section 5.3:
Spin(9), (Sp(1) x Sp(3)) /5", (SU(3) x SU(3)) /2, G x SO(3).

Moreover, by [Dynkin, 1952, Theorem 14.2] the group F4 has no simple S-subgroup except the
principal PSU(2), so we have:

Lemma 5.5.1. Let H be a proper connected simple subgroup of ¥4 with rank H > 2, then up to

conjugacy H is contained in one of the following fized subgroups of Fy:
Spin(9), Sp(3), (SU(3) x SU(3)) /5.
The possible Lie types for H are:
Ay, Az, Ay, Ba, B3, By, Cs,Cy, Dy, Go.

Proposition 5.5.2. There are no connected subgroups of ¥y whose Lie type is Ay or Cy.

Proof. Suppose that F4 admits a connected subgroup H with type A4 or C4. Since rank(H) = 4,
by Lemma 5.5.1 there exists an embedding of H into Spin(9).

The case that H is of type Cy is impossible, because dim H = 36 = dim Spin(9) but H and
Spin(9) have different Lie types. Hence H has type A4. The morphism H < Spin(9) — SO(9)
gives H a self-dual 9-dimensional representation of H, which leads to contradiction since the

A -type group H does not admit such a representation. ]

5.5.1 Cases except A,

In the remaining possible Lie types for connected simple subgroups of Fy4, the type As is

more complicated. So we first look at the other types:

Proposition 5.5.3. (1) For each type among

A37 B27 B37 B47 C3a D47 GQ?
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there exists a simply-connected subgroup of ¥4 with this type.
(2) Let H be a connected compact Lie group such that it admits an embedding into F4q and its
Lie type is among

A3, Bg, B3, By, C3, Dy, Go.

Then H is simply-connected and the embedding H — ¥4 is unique up to conjugacy.

Before proving this proposition case by case, we explain our strategy. Fixing a Lie type, we
first construct an embedding ¢g from the simply-connected compact Lie group Hy of the given
type into F4. We claim that to prove Proposition 5.5.3(2) for this Lie type, it suffices to show that
for any connected simple compact Lie group H of the same type with Hy, i.e. H is isomorphic to
the quotient of Hy by a finite central subgroup, and any embedding ¢ : H — F4, the restriction
of the 26-dimensional irreducible representation Jgy along ¢ is unique, up to equivalence of Hy-
representations. Here we view the restriction of Jg along ¢ : H — F4 as a representation of Hy

by the composition with a central isogeny Hy — H.

Proof of the claim. For a connected compact Lie group H of the same Lie type as Hy and
an embedding ¢ : H — Fy, we can lift ¢ to a morphism ¢ oi : Hy — F4 via a central
isogeny ¢ : Hy — H. This morphism ¢ o i is conjugate to ¢p by the uniqueness of Jo|g, and
Proposition 5.2.1, thus ¢ is injective, which implies that H is also simply-connected. For any
two embeddings ¢, ¢’ : H < Fy4, applying Proposition 5.2.1 to ¢ o4 and ¢’ o i, we have ¢ o4 and

¢’ o i are conjugate in Fy, thus ¢ and ¢’ are conjugate. O

5.5.1.1 By

In this case Hyp ~ Spin(9) and we take ¢ to be Hy ~ Spin(9) < Fy4, where Spin(9) — Fy is
constructed in Section 5.3.1.

For any embedding ¢ from a B4-type connected compact Lie group H into F4, by Lemma 5.5.1
the image Im(¢) (up to conjugate) is a subgroup of the Spin(9) in Fy4, thus ¢ factors through
an embedding H — Spin(9). This embedding must be an isomorphism, so the restrictions of Jg

along ¢¢ and ¢ are equivalent as Hy-representations.

5.5.1.2 Dy

In this case Hy ~ Spin(8) and we take ¢y to be the composition of the natural embedding
Sping < Spin(9) with Spin(9) < F4.
For any embedding ¢ from a Dy-type connected compact Lie group H into F4, ¢ (up to

conjugacy) factors through an embedding H — Spin(9) by Lemma 5.5.1. The restriction of the
+

Spin
1+ Vg, where Vg is the standard 8-dimensional representation of Spin(8), and Vétpin are two

9-dimensional irreducible representation Vg to H is isomorphic to either 1 +Vgor 1 +V or
8-dimensional spinor representations of Spin(8). For those three possibilities, we obtain the same
equivalence class of Jg|g, which is equivalent to 192 4+ Vg + Vgpin + Vs_pi][1 as Hy-representations.
This representation is stable under the outer automorphisms of Hy, so the restriction of Jy along

¢ is unique, up to equivalence of Hy-representations.
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5.5.1.3 Aj

In this case Hy ~ SU(4), and we take ¢y to be the composition of the natural embedding
SU(4) ~ Spin(6) — Spin(9) with Spin(9) — Fa.

For any embedding ¢ from a As-type connected compact Lie group H into Fy, ¢ (up to
conjugacy) factors through an embedding from H to Sp(3) or Spin(9) by Lemma 5.5.1.

If ¢ factors through Sp(3), then the image of ¢ gives a As-type subgroup of Sp(3). This
subgroup of Sp(3) must be regular, but this contradicts with the Borel-de Siebenthal theory.

If ¢ factors through Spin(9), the standard representation Vg of Spin(9) gives a self-dual 9-
dimensional representation of H. Up to equivalence, there are two possibilities for the restriction
of Vg to H:

193 £ A2V or 1+ V4 + V],

where Vy is the standard 4-dimensional representation of SU(4) and V) is its dual. For both

cases, the restriction of the irreducible representation Jy of Fy along ¢ is isomorphic to
1@4—1—\7?24— (VH)®2 + A2V,

This representation is stable under the outer automorphism of Hy, so the restriction of Jg along

¢ is unique, up to equivalence of Hy-representations.

5.5.1.4 B3

In this case Hy ~ Spin(7), and we take ¢g to be the composition of the natural embedding
Spin(7) < Spin(9) with Spin(9) — F4.

For any embedding ¢ from a Bs-type connected compact Lie group H into Fy, by Lemma 5.5.1
and the Borel-de Siebenthal theory, ¢ (up to conjugacy) factors through an embedding from H
to Spin(9). The restriction of the standard representation Vg of Spin(9) to H must be isomorphic
to either 1924+V; or 1+ Vspin, where V7 is the standard 7-dimensional representation of Spin(7),
and Vgpin is the 8-dimensional spinor representation of Spin(7). For both cases, the restriction
of the irreducible representation Jy of F4 along ¢ is isomorphic to

199+ V7 + VEL

Hence the restriction of Jy along ¢ is unique, up to equivalence of Hy-representations.

5.5.1.5 C3

In this case Ho ~ Sp(3), and we take ¢ to be Sp(3) < (Sp(1) x Sp(3)) /us < F4, where
the subgroup (Sp(1) x Sp(3)) /u4* is given in Section 5.3.2.

For any embedding ¢ from a Cs-type connected compact Lie group H into Fy, ¢ (up to con-
jugacy) factors through a central-kernel morphism from Hy to Sp(3) or Spin(9) by Lemma 5.5.1.

If ¢ factors through Spin(9), then the standard representation Vg of Spin(9) induces an or-

thogonal 9-dimensional representation of Sp(3). However, each non-trivial irreducible orthogonal
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representation of Sp(3) has dimension larger than 9, which leads to a contradiction.

If ¢ factors through Sp(3), then the embedding H — Sp(3) must be an isomorphism. This
implies that the restriction of the irreducible representation Jo of F4 along ¢ is isomorphic
to V?z + Vi4, where Vg and Vi, stand for the same representations in Eq. (5.3). Hence the

restriction of Jg along ¢ is unique, up to equivalence of Hy-representations.

5.5.1.6 Bs

In this case Hy ~ Sp(2) ~ Spin(5), and we take ¢y to be the composition of the natural
embedding Sp(2) < Sp(3) < (Sp(1) x Sp(3)) /us* with the embedding (Sp(1) x Sp(3)) /us* —
F4 given in Section 5.3.2.

For any embedding ¢ from a Bs-type connected compact Lie group H into Fy4, by Lemma 5.5.1
and the Borel-de Siebenthal theory, ¢ (up to conjugacy) factors through an embedding from H
to Sp(3) or Spin(9).

If ¢ factors through Sp(3), then the restriction of the standard representation Vg of Sp(3)
to H must be isomorphic to 192 4+ V4, where V4 is the standard 4-dimensional symplectic
representation of Sp(2). The restriction of the irreducible representation Jy along ¢ is isomorphic
to 197 —|—V§?4 + V5, where Vi is the standard 5-dimensional orthogonal representation of Spin(5).

If ¢ factors through Spin(9), then the restriction of the standard representation Vg to H
must be isomorphic to 194 4+ V5 or 1 + Vj‘fg. For these two possibilities, the restriction of Jg
along ¢ is isomorphic to 19° + Vie4 + V5. Hence the restriction of Jg along ¢ is unique, up to

equivalence of Hy-representations.

5.5.1.7 Gy

In this case Hy ~ G, and we take ¢g to be the embedding Ga — Gg xSO(3) — Fy, as given
in Section 5.3.4.

Combining Lemma 5.5.1 and the fact that all non-trivial representations of Go have dimension
larger than 6, any embedding ¢ from a Ge-type connected compact Lie group H into F4 (up to
conjugacy) factors through an embedding from H to Spin(9). The restriction of the standard
representation Vg of Spin(9) to H must be isomorphic to 192 + V7, where V7 is the same as
in Eq. (5.10). So the restriction of the representation Jy of Fy along ¢ must be isomorphic to

1@5+V§3. Hence the restriction of Jg along ¢ is unique, up to equivalence of Hy-representations.

5.5.2 The case A,

For the Lie type Ag, our idea is the same with the proof of Proposition 5.5.3, but this time

we have several conjugacy classes of embeddings from a As-type group to Fy.

Proposition 5.5.4. (1) There are 3 conjugacy classes of embeddings from SU(3) to Fy,
(2) There is a unique conjugacy class of embeddings from PSU(3) = SU(3)/Z(SU(3)) to Fy.

Proof. By Lemma 5.5.1, any embedding ¢ from a connected As-type compact Lie group H to
F, (up to conjugacy) factors through Spin(9) or Sp(3) or (SU(3) x SU(3)) /u5.
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We start from the case that ¢ factors through (SU(3) x SU(3)) /u§'. Fix an embedding
v : (SU(3) x SU(3)) /us* < F4 such that the restriction of the irreducible representation Jgo of
F, along this embedding is isomorphic to Eq. (5.6). We denote the outer automorphism of SU(3)
by 6. Tt is easy to classify the conjugacy classes of embeddings ¢ : H < (SU(3) x SU(3)) /14",
where H is a connected As-type compact Lie group, i.e. H ~ SU(3) or PSU(3). We list the

conjugacy classes as follows:

Index H P The restriction of Jy along ¢ = 101
1 SU(3) — (g,1) (Vs + V5)®3 + i3
2 SU(3) = (1,9) 198 4 (V3 + V4)®3
3 | PSU(3) — (g, 9) 192 4 515°
4 SU3) | g+ (g,0(g)) | Vs + V4 + Sym? V3 + Sym? V} + sl

Table 5.3: Embeddings from A-type connected compact Lie groups to (SU(3) x SU(3))/us

The representations of SU(3) appearing in this table have been explained in Section 5.3.3. If
we choose the embedding ¢ to be the one corresponding to Eq. (5.5), then by Proposition 5.2.1
we get the same conjugacy classes of embeddings.

If ¢ factors through Sp(3), the standard representation Vg of Sp(3) gives a self-dual 6-
dimensional representation of H, thus the restriction of Vg to H must be isomorphic to V3 + V5.
So the restriction of Jo to H is isomorphic to (Vs + V5)®3 + sl3.

If ¢ factors through Spin(9), the standard representation Vg of Spin(9) gives a self-dual 9-
dimensional representation of H, thus the restriction of Vg to H must be isomorphic to 193 +
V3+ V5 or 1+sl3. For the first case, the restriction of Jy to H is isomorphic to 198 4 (V3+Vg)®3,
and for the second case, the restriction of Jy to H is isomorphic to 192 + 5[?3.

In conclusion, combining Proposition 5.2.1 with our analysis on the restriction of Jy, we get
that every embedding from a connected As-type compact Lie group to Fy is conjugate to one of
the embeddings ¢ = ¢ o4 in Table 5.3. O

5.5.3 Centralizers

Similarly with the arguments in Section 5.4.5, using Lemma 5.4.7 and Lemma 5.4.8, for
each conjugacy class of embeddings from a connected simple compact Lie group to F4, we can

determine its centralizer in Fy:

e Type By: the centralizer is a cyclic group of order 2.

o Type Dy: the centralizer is isomorphic to Z/27 x 7./27.

o Type As: the centralizer is an Aj-subgroup in the class [3, 28, 17], which is labeled by A
e Type Bgs: the centralizer is the product of a rank 1 torus with a cyclic group of order 2.
« Type Cs: the centralizer is an Aj-subgroup in the class [26,1'4], which is labeled by Aj.
o Type Ba: the centralizer is the direct product of two Aj-subgroups in the class [25, 114].
« Type Go: the centralizer is an Ai-subgroup in the class [5,37], which is labeled by Avg
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e Type Ag: Let ¢ : H — F4 be a representative of a conjugacy class of embeddings listed in
Table 5.3, which is indexed by a number from 1 to 4.

(1) If ¢ is indexed by 1, then its centralizer is conjugate to the SU(3) indexed by 2.
(2) If ¢ is indexed by 2, then its centralizer is conjugate to the SU(3) indexed by 1.
(3) If ¢ is indexed by 3, then its centralizer is finite and contains an order 3 element.
(4)

4) If ¢ is indexed by 4, then its centralizer is a cyclic group of order 3.

5.6 Connected subgroups satisfying certain conditions

After a long journey of classifying conjugacy classes of connected simple subgroups of F4 and
computing their centralizers in F4, we are finally able to enumerate all the connected subgroups
H of Fy satisfying our three conditions listed in the beginning of Chapter 5.

We first classify all the connected subgroups H of F4 such that Cp,(H) is an elementary

finite abelian 2-group, via our classifications in Section 5.4 and Section 5.5.

Notation 5.6.1. From now on, for an Aj-subgroup of Fy, if its conjugacy class corresponds
to the partition p of 26, we will simply denote this Aj-subgroup by AF. For example, we will
denote the principal PSU(2) of Fy by A[117,9]‘ For an As-type subgroup of Fy, if its conjugacy

class is indexed by n € {1,2,3,4} in Table 5.3, then we denote it simply by Agn).

Now let H be a connected subgroup of F4 whose centralizer in F4 is an elementary finite
abelian 2-group. Let ® be the root system of H, and we can write it as a disjoint union of
irreducible root systems:

O=0q, - - UD,.

We denote by m the number of i € {1,2,...,s} such that &; ~ A;.

Lemma 5.6.2. Ifs =1, i.e. H is simple, then H is conjugate to one of the following subgroups
Of F4.’
2
F4, Spin(9), Spin(8), ALY, A9 AB757

Proof. By our computations in Section 5.4.5 and Section 5.5.3, we have if the centralizer of H

in F4 is finite, then it must be conjugate to one of the following subgroups of Fy:

F4,Spin(9),Spin(8),A§3),A§4),A[117’9],A[ln’g’g”l],A[19’7’52],A[153’33’12].

=

According to Section 5.4.5.5 and Section 5.5.3, if H is in the conjugacy class of AéB),AgL) or

3 23 12
A[15 A5 }, then the centralizer of H in F, contains an element of order 3. O

Lemma 5.6.3. If s > 1 and m = 0, then there is no such H satisfying Cp,(H) is an elementary
finite abelian 2-group.

Proof. Since s > 1 and m = 0, the irreducible root systems ®; and ®5 both have rank 2 and
s = 2. Hence H must be isomorphic to the quotient of SU(3) xSU(3) by a finite central subgroup.
By our classification in Section 5.5.2, H is conjugate to the subgroup (SU(3) x SU(3)) /us'

66



5.6. Connected subgroups satisfying certain conditions

constructed in Section 5.3.3. However, the centralizer of this subgroup contains its center,
which is a cyclic group of order 3, so in this case there is no H whose centralizer in Fy is an

elementary finite abelian 2-group. O

Lemma 5.6.4. If s =2 and m > 1, then H is conjugate to one of the following subgroups of
F4.’

(A csp(®) /s (AP spin(s) ) /g, AP x o,
AT AP (AP AR g, (AP AT
(A[15’44’15] y A[13728’17]) Il (A[15,42,33,22] % A[133,26715]> e (A[142’33’24’ } X A[142’33’24’1]) /15

Proof. Since s = 2 and m > 1, up to conjugacy H is of the form (X x Hp)/I', where X is
an Aj-subgroup of F4, Hy is a connected simple subgroup of Fy, and I' is either trivial or the
subgroup ,uQA of X x Hy. Since the centralizer of H in F4 is an elementary finite abelian 2-groups,
the centralizer of Hp in Cp,(X) and the centralizer of X in Cg,(X) are both elementary finite
abelian 2-groups.

If rank(Hy) > 1, by Section 5.5.3 we have the following possibilities for the conjugacy class
of H:

(AP xsp(3)) /ug, (AP xspin(5)) /g, AP x G

If Hy is also an Aj-subgroup of Fy, by Section 5.4.5 we have the following possibilities for the

conjugacy class of H:

73,15 5,37 9,62,5 26 114 52,42 3221 26 ,114]
A[ ]XA[1 ](A[ }XA[ ])/2A7<A[ I« )/2’
5,44,15 3 281 [5,42,33,22 33,2615 4233241 4233241
(AP AP pug, (AP AT g (AR ARSI g O
Lemma 5.6.5. If s > 2, then H is conjugate to one of the following subgroups of Fy:
267114 267114
(AP AP sp(2) /g
A[15,37] % (A[133’26715] % A[126,114]) /M2A7
7447 5 67 14 6’ 14
(AB 27 A AR,
3,28.17 3,28,17 3,28.17
(Ag ] XA[l ] XA[I }) /((1>_17_1)7(_17_171)>7
4
26’114 26’114 26’114 267114 26’114
[1AF" 7 /u = (AT < AP AP e A .
i=1
Proof. This follows from a similar argument as in the proof of Lemma 5.6.4 and the results in
Section 5.4.5 and Section 5.5.3. O

In Lemma 5.6.2, Lemma 5.6.3, Lemma 5.6.4 and Lemma 5.6.5, we have enumerated all the
conjugacy classes of connected subgroups H of F4 such that the centralizer of H in F4 is an

elementary finite abelian 2-group. There are 20 such conjugacy classes, but some of them do
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not satisfy the third condition given in the beginning of Chapter 5:
Lemma 5.6.6. If a subgroup H of F4 is conjugate to one of the following subgroups:

11,9,5,1 9,7,52 32817 . 52,42 3221 26 114
AR AP (ABZT S Spin(5) ) /g, (Af D AP Jug

(AP ABFAY 10 B ABEA s ABEA 1 ), (-1,-1,1),

then the zero weight appears 4 times in the restriction of the 26-dimensional irreducible repre-
sentation Jo of Fy to H.

Proof. The restrictions of the representation Jy of F4 to the two Aj-subgroups in the list above
can be read from their corresponding partitions. In both cases, the multiplicity of the zero
weight in Jo|g is 4.

If H is conjugate to (A[13’28’17] X Spin(5)) /u5', then the restriction Jo|g is isomorphic to

(1692 + Sym? St) ®1+St2QV,+18 Vs,

in which the zero weight appears 4 times.
. . [52,42,3,22 1] [26,114) A . .. .
If H is conjugate to <A1 x Aj ) /15, then the restriction Jo| g is isomorphic to

((Sym4 St)®2 4 Sym? St + 1) 21+ (Sym3 St + St) ® St,

in which the zero weight appears 4 times.
. . [5,44,1°] (3,28,17] A s .. .
If H is conjugate to (Al x A ) /15, then the restriction Jo|p is isomorphic to

1® (1692 + Sym? St) + (Sym3 St ® St) 2 L Symist®1,

in which the zero weight appears 4 times.

If H is conjugate to A[13728717} X A[13’28’17] X A[13’28’17]/<(1, -1,-1),(-1,-1,1)), then the re-

striction Jo|g is isomorphic to
1+ (St®St®St)*? +Sym?St®1®1+1®Sym?St®1+1®1® Sym?St,

in which the zero weight appears 4 times. ]
In conclusion, we have proved the following theorem:

Theorem 5.6.7. There are 13 conjugacy classes of proper connected subgroups H of Fy satis-

fying the following conditions:

(1) The centralizer of H in F4 is an elementary finite abelian 2-group.
(2) The zero weight appears twice in the restriction of the 26-dimensional irreducible repre-
sentation Jg of Fy to H.
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These 13 subgroups are:

. 315 7 6 114
Al Spin(9), Spin(8), AP x Ga, AT AP (AP 8p(3)) /8,
(AP AP sesp(@)) fug, (A0 AT fpa, (AP AP ) g,

4233 241 4233241 5,37 33,2615 26 114
(AP ALY i AP (AP AR g,
4
5744715 267114 267114 267114
(AP AR AT i TL AR
i=1

For the 13 conjugacy classes of subgroups H in Theorem 5.6.7, in the rest of this section we

are going to list some information will be used in Chapter 7:

o the centralizer Cp,(H) of H in Fu,
 the restriction of the 26-dimensional irreducible representation Jy to H,

e and the restriction of the adjoint representation 4 of Fy to H.

5.6.1 AT

This is the principal PSU(2) of F4, whose centralizer in Fy is trivial. The restriction of Jj
to H corresponds to the partition [17,9] of 26, and the restriction of f4 to H corresponds to the
partition [23, 15,11, 3] of 52.

5.6.2 Spin(9)

The centralizer of H in Fy is the center of H, which is isomorphic to Z/2Z.

The restriction of Jg to H is isomorphic to
1+ Vg + Vspin,

and the restriction of f4 to H is isomorphic to
N*Vg + Vspin,

where Vg is the standard representation of Spin(9) and Vgpi, is the 16-dimensional spinor rep-

resentation.

5.6.3 (AP 5 Sp(3)) /us

The centralizer of H in Fy is the center of H, which is isomorphic to Z/2Z.

The restriction of Jg to H is isomorphic to
St ® Ve +1® Vg,
and the restriction of f4 to H is isomorphic to

Sym?St ® 1 4 St ® V), + 1 ® Sym? Vs,
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where Vg is the standard 6-dimensional representation of Sp(3), Vi4 is the 14-dimensional ir-
reducible representation of Sp(3) that is a sub-representation of A?Vg, and V), is another 14-
dimensional irreducible representation of Sp(3) that is not equivalent to Vi4. From now on, we

will denote V14 by A*V§, and similarly for the 5-dimensional irreducible representation of Sp(2).

5.6.4 AP« q,

The centralizer of H in Fy is trivial.

The restriction of Jy to H is isomorphic to
Sym?St ® V7 + Sym*St ® 1,
and the restriction of f4 to this subgroup is isomorphic to
1® gy + Sym?St ® 1 + Sym?* St ® V,

where V7 is the 7-dimensional irreducible representation of Gs, and go is the adjoint represen-
tation of Gs.

5.6.5 Spin(8)

The centralizer of H in Fy is the center of H, which is isomorphic to Z(Spin(8)) ~ Za X Zs.

The restriction of Jy to H is isomorphic to
192 4+ Vg + VI i + Vo

and the restriction of f4 to H is isomorphic to
ANVg+ Vs + VI + Vi,

where Vg is the 8-dimensional vector representation of Spin(8), i.e. the composition of Spin(8) —
SO(8) with the standard 8-dimensional representation of SO(8), and Vécpin are two 8-dimensional

spinor representations.

5.6.6 (AT x AP < 8p(2)) /s

The centralizer of H in Fy is the center of H, which is isomorphic to Z/27Z x Z/27.

The restriction of Jy to H is isomorphic to
1+St@St®14+St®1Vsi+10St@Vi+101® A" Vy,
and the restriction of f4 to H is isomorphic to

(Sym2St®1—|—1®Sym2St)®1+(St®1+1®St)®V4
+St @St A*V,+1®1® Sym?Vy,
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where Vy is the standard representation of Sp(2) and A*Vy is the 5-dimensional irreducible

representation of Sp(2).

5.6.7 AT AP

The centralizer of H in Fy is trivial.

The restriction of Jg to H is isomorphic to
Sym® St ® Sym? St + 1 ® Sym* St,
and the restriction of f4 to H is isomorphic to
(Sym10 St + Sym? St) ®1+1® Sym?St + Sym® St ® Sym? St.

5.6.8 AP (AP ARV g

The centralizer of H in F4 is the center of H, which is a cyclic group of order 2.

The restriction of Jy to H is isomorphic to
Sym*St ®1®1 4+ Sym? St ® (St®8t+sym28t®1),
and the restriction of f4 to H is isomorphic to

Sym4St®(St®8t+sym28t®1)+Sym28t®1®1

+1® (Sym2 St ®1+1® Sym? St + Sym? St®St) .

5.6.9 (AP AP ARV

The centralizer of H in Fy is the center of H, which is isomorphic to Z/27Z x Z/2Z.

The restriction of Jy to H is isomorphic to
1+410St®@St+Sym®St® (St®1+1®St)+Sym?St®1®1,
and the restriction of f4 to H is isomorphic to

1®(Sym28t®1+1®8ym28t)+Sym28t®1®1+Sym38t®(8t®1+1®8t)
+Sym? St ® St ® St + Sym® St ® 1 ® 1.

5.6.10 (AP ARV

The centralizer of H in F4 is the center of H, which is a cyclic group of order 2.

The restriction of Jg to H is isomorphic to

Sym” St ® St + (Sym8 St + Sym* St) ®1,
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and the restriction of f4 to H is isomorphic to

1 ® Sym? St + (Sym9 St + Sym? St) ® St + (Sym10 St + Sym® St + Sym? St) ® 1.

5.6.11 (AP AP

The centralizer of H in F4 is the center of H, which is a cyclic group of order 2.

The restriction of Jy to H is isomorphic to
SymiSt @1 + (Sym3 St + St) ® St + Sym?2 St ® Sym? St,
and the restriction of f4 to H is isomorphic to

St © Sym? St + (Sym? St + 1) @ Sym? St + (Sym® St + Sym® $t) © St + (Sym? St)692 ® 1.

5.6.12  (ALFZ o AR o

The centralizer of H in Fy is the center of H, which is a cyclic group of order 2.

The restriction of Jg to H is isomorphic to
1 4 Sym? St ® St + Sym? St @ Sym? St + St ® Sym? St,
and the restriction of f4 to H is isomorphic to

(Sym4 St -+ 1) ® Sym? St + Sym? St ® (Sym4 St -+ 1) + Sym® St ® St + St ® Sym® St.

5.6.13 1%, AP
The centralizer of H in Fy is the center of H, which is isomorphic to Z/27Z x Z/27 x 7./27.

The restriction of Jy to H is isomorphic to

19243 Stoste1el,

Sym

where the second term stands for the direct sum of tensor products of standard representations

6 114
at every two copies of A[f 10 H. The restriction of fa to H is isomorphic to

D Sym’St®191l+ ) St®St®1®1+St®St® St® St
Sym Sym
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Chapter

Arthur’s conjectures on automorphic

representations

In this chapter, we are going to review the theory of automorphic representations and
Arthur’s conjectures on discrete automorphic representations. For our purposes, it is enough to
restrict to the special case of level 1 algebraic automorphic forms of a reductive group G over
Q admitting a reductive Z-model, as in [ChenevierRenard, 2015; ChenevierLannes, 2019]. We

mainly follow these two references.

6.1 A brief review of automorphic representations

In this section we give a quick review on automorphic representations, following [Chenevier-
Lannes, 2019, §4.3]. Let G be a connected reductive group over Q with a reductive Z-model
(¢4,id), and Ag be the maximal Q-split torus of the center Z(G) of G. Denote by G(A)! the
quotient of G(A) by the neutral component of Ag(R), and consider the adelic quotient

[G] := G(Q\G(A)' = G(Q)Ac(R)°\G(A).

We have a left G(Q)-invariant right Haar measure p on G(A) by [Weil, 1940, §I1.9], and the
volume of [G] is finite with respect to this measure. The topological group G(A) acts on the
space L(G) := L?([G]) of square-integrable functions on [G] by right translations. Equipped

with the Petersson inner product defined as
(.1 = [ Trdn

the space L£(G) becomes a unitary representation of G(A). We denote the closure of the sum
of all closed and topologically irreducible subrepresentations of £(G) by Lgisc(G).
Denote by II(G) the set of equivalence classes of irreducible unitary complex representations

7 of G(A) such that m = 7o ® 7y, where m, is an irreducible unitary representation of G(R),

and s is a smooth irreducible representation of G(Ay) satisfying W?(Z) # 0. We have the
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Chapter 6. Arthur’s conjectures on automorphic representations

following decomposition:

-~ J—

Laise(G)7®) = @ m(r) 77 @) = @ m(m) 7roo®7rf(z), (6.1)
mell(G) Tell(G)

where the integers m(7) > 0 are finite due to a fundamental result of Harish-Chandra [Harish-
Chandra, 1968, §I.2, Theorem 1]. We call the integer m(m) the multiplicity of ™ in Laisc(G).
Now we give the definition of level one discrete automorphic representations, and refer to

[BorelJacquet, 1979, §4] for the general definition of automorphic representations.

Definition 6.1.1. A level one discrete automorphic representation is a representation m of G(A)
in II(G) such that its multiplicity m(7) in Eq. (6.1) is nonzero. We denote the subset of II(G)

consisting of level one discrete automorphic representations by Ilgis.(G).

Notation 6.1.2. Since in this paper we only deal with level one automorphic representations,

so we will always omit “level one” from now on.

Definition 6.1.3. A square-integrable Borel function f : [G] — C is a cusp form if for the

unipotent radical U of each proper parabolic subgroup of G, we have

/ f(ug)du = 0
U@Q\U(A)

for almost all g € G(A). We denote the subspace of L(G) consisting of the classes of cusp forms
by Leusp(G). A discrete automorphic representation is cuspidal if it is a subrepresentation of

Lecusp(G), and we denote by Ilcusp(G) the subset of II(G) consisting of cuspidal representations.

Remark 6.1.4. It is well-known that [GelfandGraevPyatetskii-Shapiro, 1969]:
Ecusp(G) C EdiSC(G) and chsp(G) C Hdisc(G)-

When G(R) is compact, every automorphic representation of G is discrete by the Peter-Weyl

theorem.
Denote by H(G) = ®, Hy(G) the spherical Hecke algebra of the pair (G(Af),g(Z)). For

any representation m = 1., ® 7y € II(G), the space W?(Z)
spherical Hecke algebra H(G). Since H(G) is commutative [Gross, 1998, Proposition 2.10], the

is an irreducible representation of the

dimension of w?(z) is 1. Hence the ¢ (Z)—invariant space of the m-isotypic subspace Lgisc(G)r
of Lgisc(G), as a G(R)-representation, is the direct sum of m(m) copies of 7. This implies the

following result:

Lemma 6.1.5. Let V' be an irreducible unitary representation of the Lie group G(R), and
Ay (G) the space of G(R)-equivariant linear maps from V to Laisc(G)?®) . Then we have the
following equality:

dim Ay (G) = > m(7). (6.2)

Tell(G), Too~V

74



6.2. Local parametrization of II(G)

Remark 6.1.6. The space Ay (G) = Homgg)(V, EdiSC(G)g(i)) can be viewed as the multiplicity
space of V' in Eq. (6.1).

6.1.1 Automorphic representations for F,

When the reductive group G has compact real points, due to [Gross, 1999a] we can describe
the multiplicity space Ay (G) of V in EdiSC(G)g(Z) in a more computable manner, which is
explained in [ChenevierLannes, 2019, §4.4.1]. Applying [ChenevierLannes, 2019, Lemma 4.4.2]

to Fy4 and using the fact that every irreducible representation of Fy is self-dual, we get:

Proposition 6.1.7. Let (p, V') be an irreducible representation of Fy = F4(R). The vector space

Ay (Fy) is canonically isomorphic to the following space:

My (Fa) := {f : Fa(Ag)/Far(Z) = V| f(19) = p(1)f(g) for all 7 € F4(Q),g € Fa(hy)}.

We choose a set of representatives {1,gg} of F4(Q)\F4(Af)/]:4,1(2) corresponding to the
two reductive Z-models (Fy1,id) and (Fy g, ) of Fy in Proposition 3.3.6. By [ChenevierLannes,
2019, Equation (4.4.1)] the evaluation map f — (f(1), f(¢gr)) induces a bijection:

My (Fy) ~ VFa12) gy yyFae@)

Combining the results in this section with Theorem 4.6.1, we have the following computa-

tional result:

Corollary 6.1.8. For any dominant weight A of F4, we have an explicit formula for the dimen-
sion of Ay, (F4), where V is the irreducible representation of Fq = F4(R) with highest weight
. For X = (A1, A2, Az, Ag) with 2X1 43X + 23 + Ay < 13, the dimension dim Ay, (F4) equals
the d(X\) in Table A.3.

6.2 Local parametrization of II(G)

Let G be a connected reductive group over Q with a fixed reductive Z-model (¢,id). Let
G be its complex Langlands dual group, ¢.e. the root datum of G is the dual root datum of G.

A representation m € II(G) can be decomposed as ™ = Moo ® (®p 7Tp), where m, is a spherical

(

irreducible smooth representation of G(Q,) for each p, i.e. Wf Zv) # 0, and 74 is an irreducible
unitary representation of the Lie group G(R).

In this section, we will recall the parametrizations for spherical irreducible smooth represen-
tations of G(Q,) and for irreducible unitary representations of G(R). Our main reference is

[ChenevierLannes, 2019, §6.2, §6.3].

6.2.1 Satake parameter

For each prime number p, a spherical irreducible smooth representation 7 of G(Q,) is deter-
mined by the action of the spherical Hecke algebra Hy,(G) for the pair (G(Q)),¥(Z,)) on the
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G (Zp) G (Zp)

subspace of invariants 7 Since dim = 1, the equivalence class of 7 is determined
uniquely by the ring homomorphism H,(G) — C given by the H,(G)-action on 79 (L),

By [ChenevierLannes, 2019, Scholium 6.2.2], the Satake isomorphism gives a canonical bi-
jection between the set of ring homomorphisms H,(G) — C and the set G(C)SS of semisimple
conjugacy classes in é(@) This induces a bijection m +— c,(m) between the set of equiva-
lence classes of spherical irreducible smooth representations of G(Q,) and the set G(C)ss. The

conjugacy class cp(m) is called the Satake parameter of m,.

6.2.2 Infinitesimal character

Let g be the Lie algebra of G(C), and g the Lie algebra of G(C) We fix a Cartan subalgebra
t of g and a Borel subalgebra b C g containing t, and denote the Weyl group of g with respect
to t by W.

As explained in [ChenevierLannes, 2019, §6.3.4], we can associate a character Z(U(g)) — C
to an irreducible unitary representation (m, V) of G(R), where Z(U(g)) is the center of the
universal enveloping algebra of g. By [ChenevierLannes, 2019, Scholium 6.3.2 and Equation

(6.3.1)], the Harish-Chandra isomorphism induces the following canonical bijections:
HomC—alg(Z(U(g))’ C) ~gss = (X*(H) ®2 C) /W, (6.3)

where ggs is the set of semisimple conjugacy classes in g. Hence we associate to (7, V') a semisim-
ple conjugacy class co(7) € gss, called the infinitesimal character of 7.

As proved by Harish-Chandra [Knapp, 1986, Corollary 10.37], up to isomorphism there are
only a finite number of irreducible unitary representations of G(R) with a given infinitesimal

character. When G(R) is compact, the situation is much simpler due to the following result:

Proposition 6.2.1. [Dizmier, 1977, §7.4.6] Let G(R) be a compact group, and p € X*(t) @ C
the half-sum of positive roots with respect to (g,b,t). For a dominant weight \ of G(R), the
infinitesimal character of the highest weight representation Vy of G(R) is A\ + p, viewed as an
element in gss via Eq. (6.3). In particular, the infinitesimal character A\ + p determines V)

uniquely.

6.2.3 Langlands parametrization

Now we recall Langlands parametrization of II(G), following [ChenevierLannes, 2019, §6.4.2].

Definition 6.2.2. Let H be a connected reductive C-group with complex Lie algebra h. We
denote by H(C)gs (resp. hss) the set of H(C)-conjugacy classes of semisimple elements of H(C)
(resp.h). Denote by X' (H) the set of families (¢, C2,¢3, 5, . ..), where co € hgs and ¢, € H(C)ss

for all primes p.

By results in Section 6.2.1 and Section 6.2.2, we associate to a representation m = Ty ®

(®p 7rp) € II(G) a conjugacy class c,(m) := ¢,(mp) in G(C)gs for each p, and a conjugacy class
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Coo () 1= Coo(Too) In @ss. Hence we have a canonical map II(G) — X (é) defined as

T =T ® <®7rp> — ¢() = (Coo(T), Co(m), c3(m), - - ) € X(G).
P
The family of conjugacy classes c¢(m) determines 7y and the infinitesimal character of m, and
the map c has finite fibers. When G(R) is compact, the fiber of ¢ is either empty or a singleton.
Definition 6.2.3. Let G be a semisimple Q-group admitting a reductive Z-model, and r : G —
SL,, an algebraic representation of its dual group, which induces a map X (@) — X(SL,,). For

any m € I1(¥), we define the following family of conjugacy classes:
Y(m,r) :=r(c(mr)) € X(SLy),

and refer to it as the Langlands parameter of the pair (mw,r).

6.3 Global parametrization and the Langlands group

For the global parametrization of level one discrete automorphic representations, now we need
to use a conjectural group Lz, the so-called Langlands group of Z, to formulate the global Arthur-
Langlands conjecture. In Arthur’s work [Arthur, 1989], he uses another group Lg. However,
since we only consider level one discrete automorphic representations in this paper, it is more
convenient to use the group Lz that we are going to recall, following [ChenevierRenard, 2015,
Appendix B; ChenevierLannes, 2019, Preface].

We assume that Ly is a compact Hausdorff topological group equipped with

« A conjugacy class Frob, in Lz, for each prime p,

e A conjugacy class of continuous homomorphisms h : Wg — Lz, called the Hodge mor-
phism. Here Wr is the Weil group of R, which is a non-split extension of Gal(C/R) = {1, j}
by W¢ = C*, for the natural action of Gal(C/R) on C*. It is generated by its open sub-

1

group C* together with an element j, with relations j2 = —1 and jzj~' = Z for every

z € C*.

This group Lz satisfies three axioms that we will introduce one by one.
Axiom 1. (Cebotarev property) The union of conjugacy classes Frob,, is dense in Lz,

Remark 6.3.1. In [ChenevierRenard, 2015, Appendix B], the axiom they use is the general
Sato-Tate conjecture: the conjugacy classes Frob,, are equidistributed in the compact group Lz
equipped with its Haar measure of mass 1. This is a universal form of the Sato-Tate conjecture
for automorphic representations and it implies the Cebotarev property, but Axiom 1 is enough

for us in this article.

This axiom tells us for two homomorphisms 1,9’ from Lz to some topological group H,
if ¢)(Frob,) and ¢'(Frob,) are conjugate in H for each prime p, then ¢ and ¢’ are element-

conjugate. An important type of homomorphisms involving Ly, is:
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Definition 6.3.2. Let G be a reductive Q-group admitting a reductive Z-model. A discrete
global Arthur parameter (of level one) of G is a (A}((C)—conjugacy class of continuous group
homomorphisms

¥ : L7 % SLy(C) — G(C)

such that 9[gy,(c) is algebraic and the centralizer C, of Im(z) in é((C) is finite modulo the
center of G(C) We call Cy, the (global) component group of v, and denote the set of discrete
global Arthur parameters of G by Wgisc(G).

Remark 6.3.3. The condition on Cy in Definition 6.3.2 implies that a discrete global Arthur

parameter for G = GL,, is an equivalence class of n-dimensional irreducible representations of
£Z X SLQ(C)

In parallel with Langlands parametrization in Section 6.2.3, we can also associate to any

1 € Vgise(G) a collection of conjugacy classes ¢(¢) = (coo(?),c2(¥),c3(¥),---) € X(G). For
each prime p, the conjugacy class c,(¢)) is defined by:

p—1/2 0
cp(v) :=1(Froby, ep), €, = < 0 p1/2> € SLy(C).

The infinitesimal character coo()) of ¥ is defined to be the infinitesimal character of the
archimedean Arthur parameter ) o (h x id) : Wg x SLy(C) — G(C), which is explained in
[ChenevierRenard, 2015, §A.2].

The following axiom connects the collection of conjugacy classes attached to a discrete au-

tomorphic representation and that attached to a discrete global Arthur parameter.
Axiom 2. (Arthur-Langlands conjecture for GL, ) For every integer n > 1, there is a unique
bijection

Hdisc(GLn) :> \deisc(GLn)a = 1%

such that ¢(m) = c(¢r) for all discrete automorphic representations m of GL,. Moreover, the

discrete global Arthur parameter 5 is trivial on SLo(C) if and only if we have m € Heysp(GLy,).

Remark 6.3.4. This axiom and the compactness of Lz imply the so-called generalized Ramanujan
conjecture: for any m € Iloysp(GLy,) and any prime p, the eigenvalues of ¢, () all have absolute

value 1.

For general reductive groups, we have the following third axiom:

Axiom 3. Let G be a reductive group admitting a reductive Z-model (¢,id), then there exists

a decomposition

~ 1
ﬁdisc(G)g(Z) = @Iﬁe‘l’disc(G)Aw(G), (6.4)

stable under the actions of G(R) and H(G), and satisfying the following property: for = € II(G),
if ™ %) appears in Ay(G), then we have c(r) = c(1)).
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This axiom tells us for any level one discrete automorphic representation 7w € Ilgis.(G), there
exists a discrete global Arthur parameter ¢ of G such that c(¢)) = ¢(7). In general, this discrete
global Arthur parameter is not unique since two element-conjugate embeddings into G(C) may
not be conjugate. Conversely, given a discrete global Arthur parameter ¢ of G, there are finitely
many (possibly zero) adelic representations 7 € II(G) satisfying c(7) = ¢(¢)), and we denote the
subset of II(G) consisting of such representations by II,(G).

In other words, discrete global Arthur parameters are the objects parametrizing discrete
automorphic representations, but a natural problem that we need to deal with is that which
representations in I, (G) for a given ¢ appear in the discrete spectrum £(G)gisc. We will see
the (conjectural) answer in Section 6.6.

Another property about L7 that we will use is that it is connected:

Proposition 6.3.5. [ChenevierLannes, 2019, Proposition 9.3.4] Suppose that Lz is a compact

topological group satisfying the axioms above, then it is connected.

6.3.1 Sato-Tate group

For a discrete global Arthur parameter ¢ € Wq;5.(G), we pick a representative Lz x SLo(C) —

G((C) and consider its restriction to a maximal compact subgroup:
Ve : Lz, x SU(2) = G(C).

The image of this morphism is contained in some maximal compact subgroup of @(C) Fix a
maximal connected compact subgroup K of G(C), and without loss of generality we assume
that 1. is a morphism from £z x SU(2) — K.

Definition 6.3.6. For any ¢ € Ug;.(G), we define H(¢)) to be the K-conjugacy class of the
image of its associated morphism Lz x SU(2) — K. For any 7 € Ilgis.(G), if there exists a
unique global Arthur parameter ¢, € Wgisc(G) such that c(m) = c(¢r), we define H(m) to be

H(¢r).

Remark 6.3.7. Since maximal connected compact subgroups of SLy(C) are unique up to con-
jugacy, the G(C)-conjugacy class of the image of L7 x SU(2) — K is well-defined. Combining
with [FangHanSun, 2016, Lemma 2.4], the K-conjugacy class H(v)) is well-defined.

Remark 6.3.8. The conjugacy class H(¢)), or H(7), of subgroups of K is called the “Sato-Tate
group” in the introduction Chapter 1, although it coincides with the usual Sato-Tate group
(see [ChenevierRenard, 2015, Proposition-Definition B.1]) if and only if the restriction of ¢ to
SLy(C) is trivial.

A cuspidal representation m of PGL,, can be viewed as an element of Il.,sp(GLy,) with trivial
central character, and the global Arthur parameter 1, associated to 7w via Axiom 2 takes value
in SL,,(C) = P/Gin((C) In this case, the global Arthur parameter v, is trivial on SLg(C), and

the conjugacy class H(m) of subgroups of SU(n) coincides with the usual Sato-Tate group of 7.
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Chapter 6. Arthur’s conjectures on automorphic representations

6.4 Cuspidal representations of GL,

Arthur’s classification of automorphic representations involves self-dual cuspidal representa-
tions of GL,,n > 1. Moreover, these representations of GL,, are trivial on the center of GL,
when they have level one, thus we can replace GL,, by PGL,,. In this section we will say more

about this class of automorphic representations.

Definition 6.4.1. A representation m € Il¢,sp(PGLy,) is self-dual if it is isomorphic to its dual
representation 7V, and we denote the subset of ILewsp (PGLy,) consisting of self-dual representa-
tions by 115, (PGL,).

cusp

Remark 6.4.2. By the multiplicity one theorem of Jacquet-Shalika, this self-dual condition is

equivalent to that c,(m) = c,(m) ™! for each prime p and coo(m) = —Coo (7).

For a representation 7 € Ilysp (PGLy,), its infinitesimal character c(7) is a conjugacy class

in sl,,. Denote by Weights(7) the multiset of eigenvalues of coo (7).

Definition 6.4.3. A cuspidal automorphic representation = of PGL,, is

o algebraic' if Weights(m) C 1Z and for any w,w’ € Weights(r) we have w — v’ € Z;
o regular if [Weights(m)| = n.

We denote by Haﬁg(PGLn) the subset of ITX . (PGL,) consisting of algebraic representations,

cusp

and by H$g7reg(PGLn) the subset consisting of algebraic regular representations.

For an algebraic self-dual cuspidal representation m of PGL,,, let k1 > ko > --- > k,, be
the weights of 7 (counted with multiplicity). Since 7 is self-dual, we have k; = —k;,11_; for

i=1,2,...,n. Following [ChenevierRenard, 2015, §1.5], we call the integers
w; = Qki, 1= 1,2,...,[7&/2]
the Hodge weights of m and call the maximal Hodge weight w(m) := w1 the motivic weight of .

6.4.1 Arthur’s orthogonal-symplectic alternative

We can divide the set of self-dual cuspidal representations of PGL,, into two parts, by
Arthur’s symplectic-orthogonal alternative. Our reference is [ChenevierLannes, 2019, §8.3.1].

The classical groups over Z that are Chevalley groups are therefore Spy, for g > 1, SO, for
r > 2, and SO,41, for » > 1. For one of these groups G, we denote the standard representation
of G(C) by St : é((C) — SLy(g)(C). For instance, n(Spy,) = 29 + 1, n(SO,,) = 2r and

n(SO;41,,) = 2r. This map St also induces a natural map from X(G) to X(SLy(g)). We have
the following theorem by Arthur:

Theorem 6.4.4. [Arthur, 2013, Theorem 1.4.1] For any n > 1 and a self-dual cuspidal repre-
sentation m of PGL,, there exists a classical Chevalley group G™, unique up to isomorphism,

with the following properties:

!The term algebraic is in the sense of Borel [Borel, 1979, §18.2].
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6.4. Cuspidal representations of GL,

(i) We have n(G™) = n.
(i) There exists a representation ' € aisc(G™) such that (7', St) = c(n).

Definition 6.4.5. A representation m € IIL_ (PGLy,) is called orthogonal if GT(C) ~ SO,,(C)

cusp

and symplectic otherwise. We denote the subset of Hélsp

(PGL,,) consisting of orthogonal

o
cusp

representations by II2 . (PGL,), and the subset consisting of symplectic representations by

H(S:ubp(PGLn)

For * = alg or alg, reg, we define II?(PGL,,) = ngsp(PGLn)ﬂHj-(PGLn) and II (PGL,,) =
I3 sp (PGLy) N [T} (PGL,). We define the subset HSIZQ” (PGLgy) C 1L, oo (PGL2y,) as:

{7 € 1y 10g(PGLay) [ Tm (1) ~ Sp(n)}

and similarly define

50" (PGLy) = {7 € 15,105 (PGLy) | Im (1) = SO(n) } .

Ezample 6.4.6. A representation 7 € Il.usp(PGLo) is necessarily self-dual and symplectic, thus
Heusp(PGL2) = H(Jilsp<PGL2) = II8,sp(PGL2). Moreover, for each positive integer w we have a
bijection between the set of level one normalized Hecke eigenforms of weight w—+ 1 and the set of
mE Hi]g(PGLQ) with Hodge weight w. In particular, level one algebraic cuspidal representations
with Hodge weight w exist only when w > 11.

6.4.2 Global e-factor

An important factor related to a cuspidal representation 7 is its global e-factor e(mw). We
briefly give its definition as follows: for two level one cuspidal representations 7 € Hcusp (PGLy,)
and 7' € Ieusp(PGL,y), Jacquet, Shalika and Piatetski-Shapiro define a factor e(m x 7')
when studying the meromorphic continuation and functional equation of the Rankin-Selberg
L-function L(s, 7 x 7") [Cogdell, 2004, §9].

Definition 6.4.7. The global e-factor of m € Ilyysp(PGLy,) is defined as e(m) := e(m x 1).
For orthogonal algebraic representations, we have the following result by Arthur:

Theorem 6.4.8. [Arthur, 2015, Theorem 1.5.53] If w € 113}, (PGLy,), then e(m) = 1.

In [ChenevierLannes, 2019, §8.2.21], a method to compute &(7) for m € II3), (PGLy,) is ex-
plained. To recall that method, we review first the archimedean Local Langlands correspondence
[Langlands, 1989]. We can associate with each irreducible unitary representation U of GL,(R)
a unique (up to conjugacy) semisimple representation L(U) : Wr — GL,(C). By Clozel’s
purity lemma [Clozel, 1990, Lemma 4.9], for a representation = € Hjlg(PGLn), the associated

representation L(7y) is a direct sum of the following types of irreducible representations:

e the trivial representation 1,

o the sign character ec/r = n/|nl,
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Chapter 6. Arthur’s conjectures on automorphic representations

e and the 2-dimensional induced representation I, := Indwﬁ (z s 2w/ 27w/ 2) for some

w/2z—w/2

positive integer w, where z +— z stands for the character z — (z/]z])" by an

abuse of notation.

There is a unique way to associate a fourth root of unity £(p) with each p : Wg — GL,(C) of
the above forms such that e(p @ p') = e(p)e(p’) and

e(1) =1, e(ecyr) =4, e(lw) = ¥t for any integer w > 0.

There is a connection between this factor € (L(7)) and the global e-factor of 7:

Proposition 6.4.9. [ChenevierLannes, 2019, Proposition 8.2.22] For m € Hjlg(PGLn), we

have
e(m) = e(L(7e0))-

As a consequence, we can calculate the global e-factor of 7 provided we know the represen-

tation L(ms) of Wg corresponding to 7. Actually, one has the following result:

Proposition 6.4.10. [ChenevierLannes, 2019, Proposition 8.2.15] Let m € 115, (PGLy) and
wy > wy > -+ > wy o its Hodge weights, then

L(oo) > Ly @ Ly @ - @ Ly, -

6.5 Arthur-Langlands conjecture

Assuming the existence of the Langlands group Lz described in Section 6.3. Axiom 3 says
that for any reductive group G admitting a reductive Z-model and any discrete automorphic
representation 7 of G, there exists a discrete global Arthur parameter 1 : £z x SLy(C) — G(C)
such that c(m) = c(¢).

Remark 6.5.1. When the group @((C) satisfies the “element-conjugacy implies conjugacy” prop-
erty as in Proposition 5.1.5, the discrete global Arthur parameter 1 satisfying c(¢) = ¢(7), as a
conjugacy class of homomorphisms L7 x SLa(C) — é((C), is unique.

Let G be semisimple, and fix an irreducible algebraic representation r : G — SL,, c. Follow-
ing [ChenevierLannes, 2019, §6.4.4], we are going to see what the Langlands parameter (7, r)
defined in Definition 6.2.3 looks like for a discrete automorphic representation 7 of G.

Composing r with a discrete global Arthur parameter ¢ : £L7xSLo(C) — (A}((C) corresponding
to 7, we get an n-dimensional representation r o ¢ of £z x SLg(C). This representation can be
decomposed as .

@ r; ® Sym% 1 St

i=1
for some irreducible representations r; : L7 — SL,,, and certain integers d; > 1, where St denotes
the standard 2-dimensional representation of SLo(C).

By Arthur-Langlands conjecture for general linear groups, i.e. Axiom 2 in Section 6.3, every

irreducible representation r; : L7 — GLy, (C) corresponds to a unique cuspidal representation
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6.5. Arthur-Langlands conjecture

m; of PGL,,,. For v = p or oo, we have an identity between conjugacy classes:

k
r(cy(m)) = EBCU(WZ') & Symdi_l(ev).

To formulate a global identity, we introduce the following notations:

+ Define e € X(SLy) to be (e, €2, €3, ) and denote Sym?~(e) € X(SLy) by [d].

o Denote by (¢,c') — ¢@® ¢’ the map X(SL,) x X(SLy) — X(SLy4p) induced by the direct
sum, and by (¢, ) — ¢® ¢’ the map X(SL,) x X(SL;) — X (SLgy) induced by the tensor
product. We write ¢ ® [d] as ¢[d] for short.

e For m € Il¢usp(PGL,,), the element c(m) € X (SL,,) will simply be denoted by .

With these notations, we can combine the identities for 7(c, (7)) together into one:

k

Y(m,r) =r(c(n)) = @m[di], i € Heusp(PGLy,, ).
i=1

Now we state Arthur-Langlands conjecture for semisimple groups:

Conjecture 6.5.2. (Arthur-Langlands conjecture) Let G be a semisimple Q-group admitting
a reductive Z-model. For any 7 € Ilgisc(G) and every algebraic representation r : G - SL, c,
there exists a collection of triples (n;, m;, d;)i=1,..  with d;,n; > 1 integers satisfying n = Y_; nid;
and m; € Heusp(PGLy,;) such that

¢(W,T> = 7Tl[dl] ®--- @’/Tk[dk]

This conjecture was proved by Arthur in [Arthur, 2013] when G is a split classical group and
r is the standard representation of G. Moreover, the collection of triples (n;, m;, d;) in the conjec-
ture is necessarily unique up to permutation by a result of Jacquet and Shalika [JacquetShalika,
1981]:

Proposition 6.5.3. [ChenevierLannes, 2019, Proposition 6.4.5] Let k,l > 1 be integers. For
1 <i<k (resp.1 < j <), consider integers n;,d; > 1 (resp.n’;,d’; > 1) and a representation

3%
e (resp.w}) in Ieusp(PGLy,) (resp.chsp(PGLn})). Suppose that we have n := Y, n;d; =
> nyd; and

mldi] @ - @ mp[dy] = m[d}] @ - - - © m[dy].

Then k = | and there exists a permutation o € Si such that for every 1 < i < k we have
(n;7 ng d;) = (na(i) y Mo () ) d(r(z))

We call the triple (k, (n;,d;)1<i<k), up to permutations of the (n;, d;), the endoscopic type of
¥(m,r). The parameter is called stable if k = 1 and endoscopic otherwise. It is called tempered
if d; = 1 for all 7 and non-tempered otherwise.

In Conjecture 6.5.2, cuspidal representations of PGL,,, n > 1 are building blocks of Langlands
parameters ¥ (m,r). Furthermore, the following result shows that under some conditions, for

example when G(R) is compact, we only need algebraic cuspidal representations:
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Chapter 6. Arthur’s conjectures on automorphic representations

Proposition 6.5.4. [ChenevierLannes, 2019, Proposition 8.2.8] Let G be a semisimple Q-group
admitting a reductive Z-model, m € gisc(G) and r : G — SL, c an n-dimensional algebraic
representation of G. Suppose that

(i) coo(T) € Gss s the infinitesimal character of a finite-dimensional irreducible complex rep-
resentation of Gc,

(i) and (m,r) = & m[d;] with 7; € Mewsp(PGLy,,),i = 1,... k.

Then 7; is algebraic fori=1,..., k. Moreover, the class of w(m;)+d; — 1 in Z /27 depends only

on r and not on the integer i or even on 7.

6.6 Arthur’s multiplicity formula

Arthur gives a conjectural formula for the multiplicity of an adelic representation 7 € II(G)
in the discrete spectrum Lgisc.(G). In this section, we will state this for a simply-connected
anisotropic Q-group G admitting a reductive Z-model, following [Arthur, 1989, §8].

For a representation m € II(G), there are finitely many discrete global Arthur parameters 1)
of G such that c¢(7) = c(¢). According to [Arthur, 1989], the multiplicity m(7) of 7w in Laisc(G)
should be the sum of m,, over the set of all such v, where m,; is some integer that we are going
to introduce. We note that these v all belong to the following subset of Ugis.(G):

Definition 6.6.1. We define U5 3(G) to be the subset of W4is(G) consisting of ¢ € Ugisc(G)
satisfying that coo (1)) is the infinitesimal character of a finite dimensional irreducible represen-

tation of Gg.

Remark 6.6.2. The subscript AJ stands for Adams-Johnson. This means the archimedean Arthur
parameter Wg X SLy(C) — G(C) for ¢ € Waiee(G) is an Adams-Johnson parameter in the sense
of [ChenevierLannes, 2019, §8.4.14] if and only if ¢ € Wa5(G). The condition that cs (7))
is the infinitesimal character of a finite-dimensional irreducible representation is the condition
(AJ1) in [ChenevierLannes, 2019, §8.4.14], and the second condition (AJ2) for Adams-Johnson
parameters is automatically satisfied in our case by [Taibi, 2017, §4.2.2; NairPrasad, 2021,

Proposition 6].

Now we let ¢ € Ua3(G). In Definition 6.3.2, the global component group Cy, of 4 is defined
to be the centralizer of Im(¢)) in G(C) When G is semisimple, this group is finite since the center
of G is finite. Moreover, as explained in [ChenevierLannes, 2019, §8.4.14], Cy, is an elementary
finite abelian 2-group, i.e.a product of finitely many copies of Z/27Z. For any ¢ € Wa;(G),

Arthur’s formula for m,, involves two quadratic characters of Cy.

6.6.1 The character p

The first character of Cy, is defined as follows.
By Proposition 6.2.1, the conjugacy class coo(90) for ¢ € Wa;(G) is regular, viewed as a
cocharacter of a maximal torus T of G chosen as in [ChenevierLannes, 2019, §8.4.14]. Hence

there is a unique Borel subgroup B O T of G with respect to whom the infinitesimal character
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6.6. Arthur’s multiplicity formula

Coo (1) is strictly dominant. Let ,01\2 be the half-sum of positive roots with respect to (é, B, 'i‘)
Since G is simply-connected, pZ) € %X *(’f‘) is a character of T. Its restriction to the component

group Cy, is the first character we need, and we denote p¥|c » by p¥ for short.

6.6.2 Arthur’s character ¢,

A discrete global Arthur parameter ¢ € U 3(G) induces a morphism
Cy X Lz x SLy(C) — G(C).

Restricting the adjoint representation g of G(C) along this morphism, it can be decomposed

into a direct sum

l
/g\|C¢Xﬁz><SL2(C) = @X’L ® ﬂ-’L[dl]a (65)
=1

where x; is a quadratic character of Cy, and m; is an n;-dimensional irreducible representation
of L, which is identified as an element in II%, . (PGLy,). Moreover, since ¥ belongs to ¥5;(G),

cusp

according to Proposition 6.5.4 these cuspidal representations m; are algebraic.

Definition 6.6.3. [Arthur, 1989, Equation 8.4] Let ¢y € Wa;(G), and I be the subset of
{1,...,1} consisting of i satisfying that in Eq. (6.5) the cuspidal representation ; is self-dual
and e(m;) = —1. Arthur’s character ey : Cy — o is defined by

ey(s) == Hxi(s), for every s € Cy.
iel

The following result shows that it is sufficient to calculate the global epsilon factors (m;) for
i in a subset of {1,...,[}:

Proposition 6.6.4. Let ¢ € Vaj5(G). For any s € Cy, let I, be the subset of {1,...,l}
consisting of i satisfying that in Eq. (6.5) the representation m; is self-dual, d; is even, and
Xi(s) = —1. Then we have:

ep(s) = [] e(m).

1€
Proof. When d; is odd, the d;-dimensional irreducible representation of SLy(C) is orthogonal.
Since the adjoint representation is an orthogonal representation, the self-dual representation ;
of L7 must be also orthogonal, which implies £(7;) = 1 by Theorem 6.4.8. Hence the subset I

in Definition 6.6.3 is a subset of {i|d; is even}, and for any s € Cy, we have

ey(s) = H Xi(s) = H e(m) = H e(m;). O

2|d;, mi=m) ,e(m;)=—1 2|d;, mi=m), xi(s)=—1 i€l

6.6.3 The multiplicity formula

With two characters pq\z and €y in hand, we can state Arthur’s following conjecture:
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Chapter 6. Arthur’s conjectures on automorphic representations

Conjecture 6.6.5. (Arthur’s multiplicity formula) Let G be a simply-connected anisotropic
Q-group with a reductive Z-model, and 7 a level one adelic representation in II(G). We have

the following formula for the multiplicity m(w) of 7 in the discrete spectrum Lagisc(G):

1, if pY =
m(m) = Z My, where my, = { > ey '€¢, (6.6)
Y41 (G, ) =e(r) 0 otherwise.
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Chapter

Classification of global Arthur parameters for
Fy

In this chapter, we are going to apply Arthur’s conjectures recalled in Section 6.5 and Sec-
tion 6.6 to the simply-connected anisotropic Q-group F,4 defined in Definition 3.1.6. The dual
group FA‘4 is isomorphic to the extension Fy ¢ of F4 to C. In other words, the complex Lie group

ﬁ(@) is isomorphic to the complexification Fy ¢ of the real compact Lie group Fj.

7.1 Arthur parameters of F,

The real points F4 = F4(R) is compact, so an adelic representation 7 € II(Fy) is determined
uniquely by c¢(7). On the other hand, by Proposition 5.1.5 and Axiom 1, a discrete global
Arthur parameter 1 of Fy is also determined uniquely by c(¢) € X' (F4). Moreover, we have the

following criterion, which is a direct corollary of Proposition 5.2.1:

Proposition 7.1.1. Let ¥ and o be two discrete global Arthur parameters of Fy, and rg :
ﬁ — SLgg ¢ the 26-dimensional irreducible representation of F4(C). Then ¢y = 1o if and only

if ro(c(¥1)) = ro(c(t2))-

By this result, we will identify a discrete global Arthur parameter ¢ € Wgis.(F4) with the
corresponding family of conjugacy classes ro(c(v)) € X(SLog).

For a level one discrete automorphic representation 7 € Ilgis.(F4), the discrete global Arthur
parameter 1) € Wy j(Fy) such that c(¢)) = ¢(7) predicted by Axiom 1 is unique. We denote this
parameter by ., which is identified with ¢ (m,19) € X (SLgg). Conversely, for 1) € Ua;(F4), we
denote the unique representation 7 € II(m) such that c(m) = c(3)) by my.

The following lemma gives us some constraint on the infinitesimal character c(¢)) of 1) €
Uaj(Fy):

Lemma 7.1.2. Let coo € (f4)ss be the infinitesimal character of an irreducible representation

of the compact group F4, then there exists four mon-negative integers a,b,c,d such that the
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eigenvalues (counted with multiplicity) of ro(coo) € (8lag)ss are:

0,0,£(a+1),=(b+1),(a+b+2),£(b+c+2),(a+b+c+3),£(b+c+d+3),
ta+b+c+d+4),£(a+2b+c+4),£(a+2b+c+d+5),£(a+2b+2c+d+6),
+(a+3b+2c+d+7),+(2a+ 3b+ 2c+d +8).

Proof. If we write the highest weight A\ of this irreducible representation of F4 as aw; + bwos +
cws + dwy, then by Proposition 6.2.1 the infinitesimal character co is A4+ p = (a + 1)w1 + (b+
1)@y + (¢ + 1)wws + (d + 1)wy. The eigenvalues of ro(cs) are of the form (A + p,a"), where o
runs over the 26 weights of ]5/‘\4(((:) appearing in the representation rp. By an easy calculation,

we get the eigenvalues in the lemma. O

As recalled in Section 6.3.1, we associate to 1 € Wpj(F4) a morphism 1. : Lz x SU(2) — F4

between compact Lie groups. This homomorphism inherits the following properties from 1:

o the image Im(t).) is connected due to Proposition 6.3.5,

« the centralizer of Im(z).) in F4 coincides with the global component group Cy, of ¢, which
is an elementary finite abelian 2-group by [ChenevierLannes, 2019, §8.4.14],

e and the zero weight appears exactly twice in the restriction of the 26-dimensional irre-

ducible representation Jg of Fy along 1. by Lemma 7.1.2.

Hence Im() is a subgroup of Fy satisfying the three conditions in the beginning of Chapter 5,
thus the class H(¢)) defined in Definition 6.3.6 is the conjugacy class of one of the subgroups of
F4 listed in Theorem 5.6.7.

According to Conjecture 6.5.2, the discrete global Arthur parameter v, = ¥ (m,rg) corre-

sponding to a discrete automorphic representation m € Ilgsc(F4) should be of the form:
71'1[(11] b---D Wk[dk],

where 7; € Ileyusp(PGLy,) and Z,’f:l n;d; = 26. By Proposition 6.5.4, every m; is algebraic, and

it is also self-dual by the following lemma:

Lemma* 7.1.3. Let w € gisc(Fy) and ¥r = m[d1] ® - -+ @ mi[dg] be its corresponding discrete
global Arthur parameter, then for each i = 1,...,k, the representation m; € Ileusp(PGLy,) is
self-dual.

Proof. By our classification result in Section 5.6, identifying m; € Heusp(PGLy,) as an irreducible
representation of £z, it must be of the form L£; — H - SL,,(C), where H is a connected
compact subgroup of Fy and r is a self-dual irreducible representation of H, thus m; itself is
self-dual. O

So a discrete global Arthur parameter ¢ € Wpj(Fy) corresponding to some 7 € Ilgise(F4)
must be of the form
k

) =mi[di] ® - - ® mi[dy], where m; € Ij,(PGLy,), Y nid; = 26. (7.1)
=1
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The endoscopic types (k, (ni, d;)1<i<k) can be classified by our results in Section 5.6.

Ezample 7.1.4. If the class H(v)) associated to ¢ € W 5(Fy) is the conjugacy class of
9,6%,5 26,114
= (AP AP it

by Section 5.6.10 the restriction of the 26-dimensional irreducible representation (rg,Jg) along
1 is isomorphic to
Sym® St ® St + Sym® St ® 1 + Sym* St @ 1.

Depending on how £z and SU(2) are mapped to this subgroup H C Fy4, we have the following
three possible endoscopic types for :

° (37 (276)7 (L 5)7 (179))7 Y= 7T[6] ©® [5} @ [9]77 € Hi_lg(PGIQ);

e (3,(9,1),(5,1),(6,2)), » = Sym® 7 @ Sym? 7 © Sym® 7[2], 7 € Hj_lg(PGLQ);
° (3? (95 ]-)7 (5’ 1)7 (125 1))7 ¢ = Sym8 w1 D Sym4 T2 B (Sym5 T & 7T2)77Tla772 € H;ﬁg(PGLQ)

7.2 The multiplicity formula for F,

For a discrete global Arthur parameter 1 € W ;(Fy4), Arthur’s multiplicity formula Conjec-
ture 6.6.5 predicts that the multiplicity m(my) of my in Lgisc(Fa) equals to my,, the formula for
which is given in Eq. (6.6). To calculate my, it suffices to know two characters of Cy: Arthur’s
character ¢, and pq\z. We have given the formula of €, in Proposition 6.6.4, and in this section
we will give a recipe for the character P@vb for our Q-group F4.

We fix a maximal torus T of F4 and a Borel subgroup B O T as in Section 6.6.1 such that
the infinitesimal character co (1)), as a cocharacter of T is strictly dominant with respect to
(ﬁ, B, ’i‘) We denote the four simple roots of the root system with respect to (F/‘Z, B, ’i‘) by
a),i=1,2,3,4%

By Lemma 7.1.2, we can order the eigenvalues (counted with multiplicity) of c () as
W1 > e > s > g > ps > -+ > lsg. The partial order relation of the positive weights of rg in
Table 5.1 implies that

m = (coo(¥), 201 + 3ag + 205 + af), jua = {coo(¥)), 0f + 205 + o +ay).
Notice that
(20 + 30y + 20y + a)) + () + 203 + a¥ + o)) = af + oy + oy = pymod 2X*(T),

thus the character py, of Cy C T[2] is the product of (2a) + 30 + 20 + ay)lc, and (of +
205 + o + @ )|c,,. Hence it suffices to determine these two characters.
If o = mi[d1] ® - - - D 7[di] as in Eq. (7.1), the eigenvalues of ro(coo (1)) € (slag)ss are of the

form w + £, where w is a weight of 7; and j € {d; = 1,d; — 3,...,—d; + 3,—d; + 1}. For each

27

'Here we still follow Bourbaki’s notation, but since we are considering the root system of the dual group @,
the simple root o, 1 < i < 4 corresponds to as_; in Bourbaki.
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1=1,...,k, we define a multiset
W = {w + % ’w S Weights(m) and ] = dz - 1,dl’ - 3, .. .,—(di - 3),—(dl - 1)} .

Proposition 7.2.1. There exists a unique index i (resp.j) in {1,...,k} such that p; € W
(resp.pa € Wj). If we denote respectively by €; and €; the characters of Cy induced by the
Cy-actions on m;[d;] and m;[d;], then py = €; - €;.

Proof. The uniqueness of ¢ and j follows from the fact that p; and p4 are different from other
eigenvalues of ro(coo(?))).

For any s € Cy, we have
py(s) = (20 +3ay + 205 + o )(s) - (o) + 205 + oy + ay)(s).

Since p; € W, the value (2 + 3oy + 2ay + «)(s) is the scalar given by the action of s on
the irreducible summand m;[d;], which equals ¢;(s) by definition. Similarly, we have (o +2ay +

ay +af)(s) = €;(s) and the identity p; = €; - €;. O

7.3 Classification of Arthur parameters

Now we can do (conjectural) classification of global Arthur parameters for Fy:

Theorem™ 7.3.1. Admitting the existence of the Langlands group Ly defined in Section 6.3 and
Arthur’s multiplicity formula Conjecture 6.6.5, a (level one) discrete global Arthur parameter
Y € Was(Fy) satisfies m(my) = 1 if and only if it belongs to the parameters described in the
following propositions (from Proposition 7.5.4 to Proposition 7.5.18).

In this section, we will prove Theorem 7.3.1 case by case, depending on the conjugacy class
H(¢)) associated to the discrete global Arthur parameter 1. For each subgroup H of F4 = F4(R)
listed in Section 5.6, we classify all the endoscopic types of ¥ € Waj(F4) such that H(v)
is the conjugacy class of H like what we have done in Example 7.1.4, then apply Arthur’s
multiplicity formula Conjecture 6.6.5, Proposition 6.6.4 and Proposition 7.2.1 to v and get
those with m(my) = 1.

Notation 7.3.2. From now on, when H(v) is the F4-conjugacy class of H, we say H(y)) = H

by an abuse of notation.

Remark 7.3.3. Since the proof of Theorem 7.3.1 is long, readers can read first the proof of

Proposition 7.4.3 in Section 7.4 to see how Arthur’s conjectures are used.

7.3.1 H=A[l"

The restriction of the 26-dimensional irreducible representation Jy to H is isomorphic to
Sym!® St + Sym® St.
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For ¢ € Wa;(Fy) satisfying H(y)) = H and m(my) = 1, there are two possible endoscopic
types:
(i) (2,(1,17),(1,9)), which corresponds to the parameter [17] ©[9] of the trivial representation
of F4 (A)
(i) (2,(17,1),(9,1)). The discrete global Arthur parameters ¢ with this type are constructed

as follows: for a representation 7 € II% (PGLy) and a positive integer k, we denote by

alg

SymF 7 the representation in IL; PGLj ) corresponding to the irreducible represen-

alg, reg(
tation given by

L7 Y% SLy(C) — SL(Sym* St) ~ SLy.1(C).

A global Arthur parameter of this type is of the form:
Sym! 7 @ Sym® 7, w € Halg(PGLg).

Proposition* 7.3.4. For a discrete global Arthur parameter ) € W 5(Fy) satisfying H(yp) = H,
the multiplicity m(my) = 1 if and only if ¥ is one of the following parameters:

o [17] ® [9], which corresponds to the trivial representation of F4(A).
e Sym' 7@ Symdr, 7€ Halg(PGLg).

Proof. This is because Cy, is trivial. O

7.3.2 H= (A[19’62,5} [26 114] ) / y

By Section 5.6.10 the restriction of the 26-dimensional irreducible representation Jy of Fy to
H is isomorphic to
Sym® St ® St + (Sym® St + Sym? St) ® 1

and the centralizer of H in Fy is Z(H) ~ Z/2Z.
For ¢ € Way(Fy) satisfying H(v)) = H and m(my) = 1, there are three possible endoscopic
types:

(i) (3,(2,6),(1,5),(1,9)). A global Arthur parameter of this type is of the form:
7[6] @ [B] @ [9], w € Halg(PGLQ).
(ii) (3,(9,1),(5,1),(6,2)). A global Arthur parameter of this type is of the form:
Sym® 7 @ Sym* 7 @ Sym® x[2], 7 € Halg(PGLg).

(iii) (3,(12,1),(9,1),(5,1)). For two representations my,ma € Halg(PGLg), we can construct

the following 12-dimensional irreducible representation of Ly:

(thmy Wmg) Sym® ®id
R ) ———

,CZ SLQ(C) X SLQ((C SL12((C),

which induces a cuspidal representation of PGLjs, denoted by Sym5 m ® ma. A global
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Arthur parameter of this type is of the form:
Sym®m @ Sym*m @ (Sym5 TR 772) , T, T € Haﬁg(PGLg).
Remark 7.3.5. In fact, for a (3,(12,1),(9,1), (5,1))-type parameter
Y =Sym®m & Sym4 T P (Sym5 T & 7T2) , M1, T € Haﬁg(PGLg),

there are some conditions on the motivic weights w(71), w(72) to make ¢ a parameter in W 5(Fy).
We will add these conditions for global Arthur parameters ¢ with m, = 1 when necessary. For
example, when w(ma) > 9w(m) the condition for ¢ € U(Fy) is that w(mz) > 9w(m1) + 2, which

is satisfied automatically since w(ms) and 9w(7;) are two distinct odd numbers.

For this subgroup H of Fy, the restriction of the adjoint representation f4 of Fy to H is

isomorphic to
1@ Sym? St + (Sym® St + Sym® $t) ® St + (Sym'® St + Sym® St + Sym? St) © 1.

Proposition* 7.3.6. For a discrete global Arthur parameter 1 € W a5(Fy) satisfying H(y) = H,
the multiplicity m(my) = 1 if and only if 1 is one of the following parameters:

o 7[6] & [5] & [9], where 7 € 11, (PGLy).
o Sym®7 @ Sym* 7 @ Sym® 71[2], where 7 € Hjlg(PGLz) satisfies w(m) = 3mod 4.

e Sym®m @ Sym*m @ (Sym5 & 7r2), where m, Ty € Hi‘lg(PGLg) have motivic weights

w1, wy respectively such that we > 9wy or dwi < we < Tws.

Proof. We denote the generator of Cy, = Z(H) by ~.
Case (i): ¢ = 7[6] @ [5] @ [9], where 7 € II;j,(PGLy) has motivic weight w. In this case

the restriction of f4 along 1 is isomorphic to
Sym? 7 @ w[10] ® #[4] ® [11] @ [7] @ [3].

By Proposition 6.6.4, we have:

On the other side, since w > 11 we have u; = “%5 and pyq = “’T_l Both of them come from

the irreducible summand 7[6] in v, so p% must be the trivial character by Proposition 7.2.1. By
Arthur’s multiplicity formula, m(my) = 1 for any 7 € Haﬁg(PGLQ).

Case (ii): ¥ = Sym® 7 @ Sym* 7 @ Sym® 7[2], where 7 € Haﬁg(PGLg) has motivic weight w.

In this case the restriction of f4 along % is isomorphic to

Sym!’ 7 @ Sym® 7[2] ® Sym® 7 @ Sym? #[2] ® Sym? = @ [3].
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By Proposition 6.6.4, we have:

ep(v) = €(Syrn3 ) - fs(Sym9 )

e(Isw + Ly) - €(Tgw + Irw + Isw + Isw + L)

— (=)@ D/2 B D)2 () D) /24 Bt 1) /24 (G 1) /2 (Tt 1)/ 2+ (9w1) /2
(—

1)(w+3

On the other side, y1 = 4w comes from Sym®7 and ps = %! comes from Sym®«[2]. So
pi\fj(’y) = —1 by Proposition 7.2.1. By Arthur’s multiplicity formula, m(my) = 1 if and only if
w = 3mod 4.

Case (iii): ¢ = Sym®m @ Sym? m; & (Sym5 ) 772) where 7, m € Halg(PGLg) have
motivic weight w1, ws respectively. Since this parameter is tempered, the character €y, is always
trivial. We only need to find what condition wy, we should satisfy to make p:; (v) = 1. In this
case, 7 acts on Sym® 7, and Sym® 71 by 1 and on Sym® 71 ® o by —1. We can see that p; = 4w,

Swi+wo
2

or , depending on the values of w1, ws.

(1) If g = 4wy, which is equivalent to wy < 3wi. Now py(y) = 1 if and only if ug = 3w
since the other positive weights w1, 2w; in Sym?* 7 @ Sym® 7 both have multiplicity 2.
However, 3w; is larger than all the Hodge weights of 1 except 4w; and 5“’1%, which

shows that it can only be s or ps. So in this case p%(’y) =-1.

(2) If g = 5“’1%, which is equivalent to wy > 3w;. Now pl\;}(’y) =1 if and only if ug = w
or —Witwz
(a) pg = W is equivalent to 4wy > % > 3wy, thus bwy < we < Twy.
(b) pg = =YLE2 js equivalent to =42 > 4wy, thus wy > Jw.
By Arthur’s multiplicity formula m(my) = 1 if and only if ws > 9w or bw; < wy < Tw;. O

7.3.3 H = (APTTT o AP

By Section 5.6.11 the restriction of the 26-dimensional irreducible representation Jg of Fy to

H is isomorphic to
Sym* St ® 1+ (Sym? St + St) @ St + Sym? St ® Sym? St,

and the centralizer of H in Fy is Z(H) ~ Z/27.
For ¢ € W5(Fy) satisfying H(y)) = H and m(my) = 1, there are three possible endoscopic

types:
(i) (4,(3,3),(2,4),(2,2),(1,5)). A global Arthur parameter of this type is of the form:

Sym? n[3] ® 4] ® 7[2] @ [5], 7 € Hig(PGLg).
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(ii) (4,(5,1),(4,2),(3,3),(2,2)). A global Arthur parameter of this type is of the form:
Sym* 7 @ Sym? 7[2] © Sym? 7[3] @ 7[2], 7 € H;‘lg(PGLg).
(iii) (4,(9,1),(8,1),(5,1),(4,1)). A global Arthur parameter of this type is of the form:
Sym* m @ (Sym® 1 ® m2) @ (Sym? 7w @ Sym? mp) @ (71 @ o), 71, T € Hi_lg(PGLQ),

where the representations Sym* m; @ Sym! my are defined similarly as the representation

Sym® 7 ®my appearing in [(12,1), (9, 1), (5, 1)]-type parameters introduced in Section 7.3.2.

For this subgroup H of F4, the restriction of the adjoint representation f4 of Fy to H is

isomorphic to
3 4 2 5 3 2 ) &2
St ® Sym3 St + (Sym St + 1) © Sym? St + (Sym St + Sym St) ® St + (Sym St) ® 1.

Proposition* 7.3.7. For a discrete global Arthur parameter ¢ € Va3(Fy) satisfying H(y) = H,
the multiplicity m(my) = 1 if and only if ¢ is one of the following parameters:

o Sym?7[3] @ w[4] ® 7[2] @ [5], where T € Héﬁg(PGLQ).

o Sym? 7 @ Sym?® 7[2] ® Sym? 7[3] @ 7[2], where 7 € Haﬁg(PGLg).
e Symim @ (Sym3 T @ ma) D (Sym2 7 @ Sym? m9) @ (m ® 72), where w1, Ty € Hi‘lg(PGLg)

have motivic weights w1, we Tespectively such that
wi > 3ws or wy < wo < 3wy or 3wy < wy < dbwy.

Proof. We denote the generator of Cy, = Z(H) by ~.
Case (i): ¥ = Sym?7[3] @ 7[4] ® 7[2] @ [5], where 7 € Hjlg(PGLg) has motivic weight w.

In this case the restriction of f4 along 1 is isomorphic to
Sym? 7[2] ® Sym? 7[5] ® Sym? 7 @ 7[6] ® 7[4] & [3] @ [3].
By Proposition 6.6.4, we have:

61#'(’7) = 5(Sym3 7T) ’ 5(71-) ’ 5(77) = 5(1310 + Iw) ) 5(Iw)2 = (_1)2w+1 = —1.

On the other side, g1 = w+1 comes from Sym?® 73] and pg = “3 comes from 7[4]. Since v acts
on Sym?7[3] by 1 and on 7[4] by —1, we have py(v) = —1 by Proposition 7.2.1. By Arthur’s
multiplicity formula, m(7y) = 1 for any 7 € Haﬁg(PGLg).

Case (ii): 1 = Sym* 7 @ Sym? 7[2] ® Sym? 7[3] ® 7[2], where 7 € Hilg(PGLg) has motivic

weight w. In this case the restriction of f4 along % is isomorphic to

Sym® 7[2] ® Sym? 7[3] ® Sym?® 7[2] @ (Sym? 7)? @ =[4] @ [3].
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By Proposition 6.6.4, we have:
co(y) = () - e(Sym® 7) - (Sym® ) = e(L)e (T + L )e(Tay + Ty + L) = (—1)™+ = 1.

On the other side, p; = 2w comes from Sym* 7w and gy = w + 1 comes from Sym? 7[3]. Since
7 acts on Sym* 7 and Sym? 7[3] both by 1, we have p%(’y) = 1 by Proposition 7.2.1. Arthur’s
multiplicity formula shows that m(my) = 1 for any 7 € I15, (PGL2).

alg
Case (iii): ¢ = Sym?*m @ (Sym3 7 ® ) ® (Sym? 7 ® Sym? o) @ (m & ma), where
T, Ty € H,jlg(PGLg) have motivic weights w1, ws respectively. The motivic weights satisfy

we # w1y, ws # 3w, otherwise the zero weight appears more than twice and 1 fails to be in
Uaj(Fy4). In this case ey is trivial. The element v acts on Sym? 7, and Sym? m; ® Sym? my by
1, and on Sym3 w1 ® mo, 1 ® mo by —1. The largest weight pp is 2w; or wi + wo.

(1) If wy; > wo, then p; = 2w;. Now py equals to MT_“)Q or wi + wse. The character p% is
trivial if and only if u4 = w1 + we, which is equivalent to wy > 3ws.

(2) If wy < we, then up = wy + wo.

(a) If wy > 3w, then

3w + wsy . 3wy + wa
wy + wy > wy > max(—w; + wa, T) > min(—w; + wa, T)
and they are larger than other weights, thus uy = —w; +ws or 3“’1% So pQ\Z(’y) =1
if and only if pg = —w1 + w2, thus if and only if 3“’1% > we — w1, which is equivalent
to that 3w, < wo < bwy.
(b) If Wo < 3’11)1, then
3wy + wo .
wy + wg > — > max (2w, we) > min(2wq, ws)

and they are larger than other weights. So we always have pi(’y) =1.

By Arthur’s multiplicity formula, m(my;) = 1 if and only if wy > 3ws or w1 < wy < 5wy and
wa # 3wi. ]

7.3.4  H = (AP AR s

By Section 5.6.12, the restriction of the 26-dimensional irreducible representation Jg of Fy

to H is isomorphic to
1+ Sym® St ® St + Sym? St ® Sym? St + St ® Sym? St,

and the centralizer of H in Fy is Z(H) ~ Z/2Z.
For ¢ € Wa;(Fy) satisfying H(y)) = H and m(my) = 1, there are two possible endoscopic
types:
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(i) (4,(4,2),(3,3),(2,4),(1,1)). A global Arthur parameter of this type is of the form:
Sym? (2] ® Sym® n[3] @ w[4] @ [1], 7 € II;3,(PGLy).
(i) (4,(9,1),(8,1),(8,1),(1,1)). A global Arthur parameter of this type is of the form:
(Sym?® 7, ® m3) @ (Sym? m; @ Sym? mo) @ (71 ® Sym?® m9) @ [1], 71,73 € Hi_lg(PGLQ).

For this subgroup H of F4, the restriction of the adjoint representation f4 of Fy to H is

isomorphic to
(Sym4 St -+ 1) ® Sym? St + Sym? St ® (Sym4 St -+ 1) + Sym® St ® St + St ® Sym? St.

Proposition* 7.3.8. A discrete global Arthur parameter 1 € Uay(Fy) satisfying H(v) = H and

m(7my) = 1 must be of one of the following parameters:

« Sym® (2] & Sym® (3] & 7[4] & [1], where w € T, (PGLy) satisfies w(r) = 3mod 4.
o (Sym® 71 ® m2) @ (Sym? m; ® Sym? m2) @ (71 ® Sym? mo) @ [1], where 71,72 have motivic

weights w1, we respectively such that wo < wi < 3ws.

Proof. We denote the generator of Cy, = Z(H) by o.
Case (i): ¢ = Sym? 7[2] ® Sym? 7[3] @ n[4] @ [1], where 7 € Hjlg(PGLg) has motivic weight

w. In this case the restriction of f4 along v is isomorphic to
Sym* 7[3] ® Sym? 7[2] ® Sym? 7[5] ® Sym? = @ 7[4] @ [3].
By Proposition 6.6.4, we have:

ep(0) = e(Sym® 1) - () = e(Tzp + L) - £(Ly) = (—1)Bw+D/2,

On the other side, y; = 25t comes from Sym? 7[2] and p4 = w comes from Sym?® 7r[3]. Since o

acts on Sym?® 7[2] by —1 and on Sym? 7[3] by 1, we have pI\Z(J) = —1 by Proposition 7.2.1. By
Arthur’s multiplicity formula, m(7y) = 1 if and only if w = 3 mod 4.
Case (ii): ¢ = (Sym® 11 @ m2) @ (Sym? 71 ® Sym? m3) @ (71 ® Sym? 79) @ [1], where 71, 79 €

HJ_

alg(PGL2) have motivic weights w1 > wy respectively. In this case, ey is trivial. On the other

Switwo
2

w1 2311.)2 or

3w —wa
2

side, u; = and pg4 = wjp or

w1 +3wsg 3w —wa
3 or 3 .

. By Proposition 7.2.1, pl\z is trivial if and

only if pug =

(1) py = %3“’2 if and only if 3“’12_“’2 > “’123“’2 > wy, which is equivalent to 2wy < wy < 3ws.

(2) pg = 3“’1%“’2 if and only if “’1+23“’2 > 3w1;w2, which is equivalent to w; < 2ws.

By Arthur’s multiplicity formula, m(my) = 1 if and only if wy < w; < 3wy and wy # 2ws.
Notice that wi # 2w, holds automatically since w; is odd. O
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7.3.5 H =AY« AP

By Section 5.6.7, the restriction of the 26-dimensional irreducible representation Jy of Fy4 to
H is isomorphic to
Sym® St ® Sym? St + 1 ® Sym* St,

and the centralizer of H in F4 is trivial.
For ¢ € Way(Fy) satisfying H(y)) = H and m(my) = 1, there are three possible endoscopic
types:
(i) (2,(7,3),(1,5)). A global Arthur parameter of this type is of the form:

Sym® 7[3] @ [5], 7 € I, (PGLy).
(ii) (2,(5,1),(3,7)). A global Arthur parameter of this type is of the form:
Sym* 7 @ Sym? #[7], 7 € H,jlg(PGLg).
(iii) (2,(21,1),(5,1)). A global Arthur parameter of this type is of the form:
(Sym6 7 ® Sym? 7r2) @& Sym* 1o, 7, mo € Hjlg(PGLg).

Proposition* 7.3.9. A discrete global Arthur parameter ) € Va;(Fy4) satisfying H(y)) = H and
m(7my) = 1 must be of one of the following parameters:
o Sym®7[3] @ [5], where w € Haﬁg(PGLg).

o Sym? 7 @ Sym? 7[7], where 7 € Hjlg(PGLg).

€L

3ng(PG:LQ) have motivic weights w1, wo

. (Sym6 T ® Sym2 7r2> @ Sym4 9, where w1, my € 11
respectively such that we # w1 and wo # 3w;.

Proof. This follows from the fact that Cy is trivial. The conditions wo # w; and wo # 3wy in
the third case are equivalent to that 1) = (Sym6 71 ® Sym? 7r2) @ Sym* 1y € Uy (Fy). O
7.3.6  H = APT o (AP ARR) g

By Section 5.6.8, the restriction of the 26-dimensional irreducible representation Jy of F4 to

H is isomorphic to
Sym?St®1®1 + Sym? St ® (St®8t+8ym28t®1),

and the centralizer of H in Fy is Z(H) ~ Z/27Z.
For ¢ € W5(Fy) satisfying H(¢) = H and m(my) = 1, there are four possible endoscopic

types:
(i) (3,(6,2),(5,1),(3,3)). A global Arthur parameter of this type is of the form:

Sym? 1 @ (Sym? 1 ® m2[2]) ® Sym? my[3], mp, 7o € Hzﬁg(PGLg).
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(i) (3,(9,1),(6,2),(5,1)). A global Arthur parameter of this type is of the form:

Sym* m @ (Sym? 7 @ m2[2]) @ (Sym? m ® Sym? ma), 71, Mo € Hi‘lg(PGLg).

(iii) (3,(4,3),(3,3),(1,5)). A global Arthur parameter of this type is of the form:

Sym2 7['1[3] D (7['1 & 7T2[3]) D [5], T, Ty € Hi‘lg(PGLQ).

(iv) (3,(12,1),(9,1),(5,1)). A global Arthur parameter of this type is of the form:

Sym* m1 & (Sym2 T ® T @ T3) D (Sym2 71 ® Sym? T3), M1, T, T3 € Haﬁg(PGLg).

For this subgroup H of F4, the restriction of the adjoint representation f4 of Fy to H is

isomorphic to

Sym48t®(St®8t+sym28t®1)+Sym2St®1®1
+1® (Sym28t®1+1®Sym2St+Sym3St®St).

Proposition* 7.3.10. For a discrete global Arthur parameter ¢ € Wa3(Fy) satisfying H(y) =
H, the multiplicity m(my) = 1 if and only if ¢ is one of the following parameters:

o Sym? 7 @ (Sym? 7 ®m9[2]) & Sym? 71 [3], where 71, T € Hilg(PGLg) have motivic weights
wy, wy respectively such that wy < 2wy — 1 or we > 4w + 1.
o Sym*m @ (Sym?m ® m2[2]) & (Sym? m; ® Sym? 7y, where mp, 7 € Hi‘lg(PGLQ) have

motivic weights wy,wy respectively and satisfy one of the following conditions:
— 2w + 1 <wy < 4wy —1, wy = 1mod4,
— wy < 2wy — 1 or wg > 4wy + 1, and wy = 3mod 4, wy # ws.

o Sym?m[3] @ (71 @ ma[3]) @ [5], where w1, 7y € Haﬁg(PGLg) have motivic weights wy,ws

respectively such that we > 3w;.
o Sym*m @ (Sym? 7 @ my @73) @ (Sym? my @ Sym? 73), where w1, w2, 3 € Hjlg(PGLg) have

motivic weights wy,wa, ws respectively such that one of the following conditions holds:
— wo > max(3ws, 4wy + ws);
— 2w1 + wz < wy < 4wy — ws;
— 3wy < wo < 2wy — ws;
— 2w + w3 < wg < min(4w; + w3, 3ws);
— [dw; — ws3| < we < w3 — 2wy;
— 2w — w3| < wy < min(4w; — w3, 3ws) and ws # wy, wg # wa.

Proof. We denote the generator of Cy, by v = (1,-1,1) € Z(H).

Case (i): ¢ = Sym*m; @ Sym? 1 @ my 2] ® Sym? m [3], where 71, Ty € H;‘lg(PGLg) have

motivic weights wi, wy respectively. In this case the restriction of f4 along v is isomorphic to
(Sym4 T ® o [2]) @ Sym? 71[3] ® Sym? 71 @ Sym? mo @ mo[4] @ [3].
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By Proposition 6.6.4 we have e4(y) = £(Sym?* 71 ® m2) - £(ma). Notice that
E(Iw ® Iw’) _ E(Iw+w’ + I|w7w’|) _ iw+w/+|w7w/|+2 — (_1)max(’w,w’)+1’
thus

€y (7) =& ((I4w1 + I3w1 + 12w1 + le) @ Iw2) = (_1)rnax(4’w1,w2)+max(2w1,’w2)‘

Hence () = 1 if and only if wy < 2wy or wy > 4w;. On the other side, 1 = 2wy or wq —|—U’QT+1.
The generator «y of Cy, acts on Sym* 7, and Sym? m;[3] by 1 and on Sym? 7; @ m[2] by —1. We

also notice that ¢ € W5 5(F4) implies that we ¢ {2w; £ 1,4w; £ 1}.

(1) If we < 2wy — 1, then gy = 2w;. Now we have 2w >w1+WT+1 >w1—i-ngf1 > wyp + 1
and they are larger than other Hodge weights, thus usy = w1 + 1. Hence p%(w) =1.
(2) If wy > 2wy + 1, then pg = wy + “’2T+1 Now

w 1 wy — 1 w 1 wy — 1
wy + 2+ wy + 2 > max (2w, i) > min (2w, 2 ) >w; +1
and they are larger than other weights. So p4 = 2wy or wZTH, sz—l However, if py = 2wy,
then we must have WTA < 2wy < “’2T+l, which is absurd because there is no integer
between “2-1 and %2l Hence pgq = w22i1 and p(y) = 1.

In conclusion, p¥ (v) = 1 for any 71, 7. By Arthur’s multiplicity formula, m(7y) = 1 if and only
if wg < 2w1 —1 or wg > 4wy + 1.

Case (ii): 1 = Sym?* m;@®(Sym? 771®7T2[2])69(Sym2 71 ®Sym? 73), where 7y, Ty € Hjlg(PGLQ)
have motivic weights wy, wa respectively. In this case the restriction of f4 along v is isomorphic

to
(Sym4 7 ® Sym? 7T2) 25 (Sym4 T ® o [2]) @ Sym® 7y 2] & Sym? w1 & Sym? 7o P [3].

By Proposition 6.6.4 we have:

51[)(7) _ E(Sym4 m® 71'2) . E(Symg 7T2) _ (_1)max(4w1,wz)+max(2w1,w2)+(w2—1)/2‘
On the other side, v acts on Sym* 7y, Sym? 7; ® Sym? 73 by 1 and on Sym? m; @ m5[2] by —1.

wa—1

(1) If w1 > wa,then p1 = 2wy. Now pg4 must be wy + “4— and we have plvp(7) = —1.
(2) If wy < we, then pu; = wy + we. Now pq\Z(y) = 1 if and only if pu4 comes from Sym®* 1 or
Sym? 7 ® Sym? my. We can easily verify that none of the weights of these two irreducible

summands is possible to be p4.

In conclusion, 91\21(7) = —1. By Arthur’s multiplicity formula, for ¢ € W 3(F4) the multiplicity

m(7my) = 1 if and only if one of the following conditions holds:

e 2wy +1<wy <4w; —1, wy =1mod4;
e wy < 2wy — 1 orwe > 4w + 1, and wo = 3mod 4, wy # we.
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Case (iii): ¥ = Sym?7[3] ® (m ® m[3]) @ [5], where 71, m € Halg(PGLg) have motivic
weights w1, wy respectively. In this case, the representations of SLy(C) in the restriction of f4
along 1 are all odd dimensional, thus e, (y) = 1 by Proposition 6.6.4. On the other side, v acts
on Sym? 71[3] by 1 and on m ® m2[3] by —1. We have y; = w; +1 or % + 1.

(1) If wy > wo, then p; = wy + 1. The condition that ¢ € W 5(Fy) implies that w; > wy + 4,
thus w1 +1 > wy > w1 —1 > % + 1, which are larger than other weights. So
pra = P52 4 1 and py(y) = —1.

(2) If wy < we, then py = w + 1. Similarly, we have w; < wg —4. Now uy4 must be wy + 1
or “25%L 41, s0 px)(’y) = 1 if and only if py = *25* + 1. This is equivalent to wg > 3w;.

By Arthur’s multiplicity formula, m(7y) = 1 if and only if wy > 3w;.
Case (iv): ¥ = Sym*m @ (Sym? m, ® m @ 73) @ (Sym? 71 ® Sym? 73), where 7y, T, 73 €
alg(PGLQ) have motivic weights wq,ws,ws respectively. In this case, e,(7) = 1 since the
parameter is tempered. On the other side, v acts on Sym* 7 and Sym? 7; ® Sym? 73 by 1 and
on Sym2 T ® ma ® m3 by —1. We denote the ratios w;/ws,wa/ws by 71,72 respectively, and
denote the multiset of elements p /w3, p running over the eigenvalues of coo (1)), by W. We still
order the elements of W by p1 > pa > --- > pgg. The largest one iy must be r; + 1 or 2ry or
r1+ ”TH

(1) If ry < 1,79 < 1, then g3 =71 + 1. Now pg = 271 or 1 or rl—i—%.

(a) Ifry > 1/2 and ro < 2r; —1, then po = 2ry. Now ri+1 > 2r > 7“1—1—% > 7“1—1—1*%,
which are larger than other 22 elements, thus jy = r1 + 15 —52 and pq\j)(y) =—1.
(b) If 1 <1/2 and ro < 1 — 2ry, then uy = 1. Now pd)(fy) =1if and only if pugy =1 — 7y,
which is equivalent to [4r; — 1| < ra.
(c) If ro > |27 — 1|, then pp = r1 + 2. Now py(v) = 1 if and only if yuy = 2r; or 1,
which is equivalent to ro < 4rq — 1.
(2) If ry > 1,79 < 2rp — 1, then gy = 2r;. Now 01\2(7) = 1 if and only if gy = 7, + 1, which is
equivalent to ro > 3.
(3) If ro > 1,79 > 2ry — 1, then pu; = r + ’"2;1. Now pgo belongs to the (multi)set {r; +
1,2r1,r + %, %}

(a) If r1 < 1and re < 2r; + 1, then pg = r; + 1. Now pl\[}(fy) =1 if and only if uy = @,

which is equivalent to ro < 4ry — 1.

(b) If 1y > 1 and 7o < 2r; + 1, then po = 2r;. Now pg = min(ry + 1,71 + TZZ_I), thus
py(v) = 1 if and only if r2 < 3.

(¢) If r1 > 1 and ro > 2r; + 1, then po = r1 + T2_1. Now p:[)(v) = 1 if and only if

g = "Zﬂ , which is equivalent to ro < 4ry — 1 or ro > 4r 4+ 1.

(d) Ifry < landrg > 2r;+1, then pug = % Now pw( ) = lifand only if py = 71+ "= 1

T‘2+1

or — 11, which is equivalent to that ro < min(3,4r1 + 1) or ro > max(3,4r; + 1).

In conclusion, by Arthur’s multiplicity formula, m(my) = 1 if and only if w1, we, w3 satisfy one

of the conditions listed in the proposition. O
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7.3.7 H= (A[15’44’15] X A[126’114] X A[126’114]) /s

By Section 5.6.9, the restriction of the 26-dimensional irreducible representation Jy of Fy4 to

H is isomorphic to
1+1®St®St+Sym*St® (St®1+1®St) +Sym?St®1e1,

and the centralizer of H in ¥y is Z(H) ~Z/27 x 7/ 2.
For ¢ € Wa5(Fy) satisfying H(y)) = H and m(my) = 1, there are three possible endoscopic

types:
(i) (5,(8,1),(5,1),(4,2),(2,2),(1,1)). A global Arthur parameter of this type is of the form:

Sym* 71 @ (Sym® 11 ® m2) & Sym® m1[2] @ m2[2] @ [1], 71, 72 € I, (PGLy).
(i) (5,(4,1),(2,4),(2,4),(1,5),(1,1)). A global Arthur parameter of this type is of the form:
(m1 @ m2) @ m1[4] ® ma[4] ® [5] @ [1], 71,72 € Hzﬁg(PGLQ).
(iii) (5,(8,1),(8,1),(5,1),(4,1),(1,1)). A global Arthur parameter of this type is of the form:
Sym?* m @ (Sym® 1 ® m2) @ (Sym3 7y @ 73) @ (w0 ® m3) ® [1], 71, W0, 73 € Hjlg(PGL2).

For this subgroup H of Fy4, the restriction of the adjoint representation f4 of F4 to H is

isomorphic to

1®(Sym28t®1+1®sym28t)+Sym28t®1®1+sym38t®(8t®1+1®8t)
+Sym?St®St® St +Sym®Ste1®1

Proposition* 7.3.11. For a discrete global Arthur parameter » € Wa3(Fy4) satisfying H(y) =
H, the multiplicity m(my) = 1 if and only if ¢ is one of the following parameters:

o Sym?m @ (Sym3m ® m) ® Sym®71[2] @ m[2] @ [1], where m,m € Hjlg(PGLg) have

motivic weights wy, ws respectively and satisfy one of the following conditions
— wo < wy or wy > 4wy + 1, and wo = 3mod 4;
— 3wy < wy < 4wy — 1 and we = 1 mod 4.

o (Mm@me)®m[4]Emd]@[5|®]1], where wi, o € Hjlg(PGLg) have motivic weights wy > we

respectively and wy; = 3mod 4, wy = 1 mod4, wy < w; — 4.
e Symim @ (Sym3 1 R T9) B (Sym3 T Qm3) D (me ®@m3) ®[1], where 71, ma, T3 € Hi‘lg(PGLg)

have motivic weights w1 and wq > w3 respectively satisfying one of the following conditions:
— wy > w3 and 2wy — w3 < wo < 2wy + ws;
— w3 < 3wy < we < 2wy + ws;

— wy < wg < 3wy, wy > 4wy + ws.
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Proof. We take a set of generators {o¢ = (—1,1,1),01 = (1,1,-1)} of Cy, = Z(H) ~ Z/27 x
Z/27Z. Let x1,x2 be two generators of the character group of Cy such that xi(c) = x2(01) =
—1,xa(01) = xz2(0) = 1.

Case (i): ¢ = Sym* m & (Sym® m @m2) &Sym® m [2] & 7a[2]®[1], where 71, 73 € I1, (PGLg)
have motivic weights w;, wa respectively. In this case, the restriction of f4 along 1 is isomorphic

to:
Sym® m @ (Sym4 T ® o [2]) ® (Sym3 T ® 7r2) @ Sym?® 71[2] ® Sym? 1 ® Sym? 7wy @ [3].
By Proposition 6.6.4 we have:

ep(0) = e(Sym®m) = e(Igu, +Lyy) = (1) VD2 = 1,

51/1(0'1) — E(Sym4 e 7_[_2) . E(Sym3 771) — (_1)max(4w1,w2)+max(2w1,w2)+(w271)/2.

3wi+wo
5 <

So g4 = x1 or x1Xx2. On the other side, the largest weight w7 is 2wy or

(1) If wy > we, then uy = 2w;. Now 2w > 3w1+“’2 > 3w1+1 > 3“’5_1 and they are larger than

L and py, = x1X2-
. Now po = 2w; or

3w1

other weights, thus uy =

3wy +w2 w1 +wa
—_—a= I

(2) If wy < wy, then py =

(a) If we < 3wy, then pg = 2w;. Now puy = wl;wQ or 3w§i1, thus pt\z =1 or xa.

(b) If wg > 3wy, then pe = M Now piq4 = 2wy or w2i1, thus p¥ = x1 or x1x2. Notice
w2+1

that pg4 = 2w; if and only 1f 2w lies between
So pw = y1X2 for any wo > 3w; and wy # 4w, j: 1.

Hence by Arthur’s multiplicity formula, m(7y) = 1 if and only if one of the following conditions
holds:

e wo < wi Or wo > 4wy + 1, and wy = 3mod 4;
e 3wy < wo < 4wy — 1, and wy = 1 mod 4.

Case (ii): ¢ = (m @ m2) ® m1[4] ® m2[4] ® [5] @ [1], where 71,72 € Halg(PGLg) have motivic

weights w; > wsg respectively. In this case, the restriction of §f4 along 1 is isomorphic to
Sym? 1 @ Sym?® 3 & (m1 ® m2[5]) @ m1[4] & ma[4] & [7] & [3)].
By Proposition 6.6.4 we have:

ep(0) = e(m1) - e(m2) = e(Luy) - €(Luy) = (_1)(w1+w2)/2+1
ep(o1) = e(mp) = e(L,) = (—1)W2FD/2,
On the other side, the condition ¢ € Wa;(F4) implies that we < w; — 4. Since

w1 + W wi + 3 wy + 1 wy — 1
2 2 2 2

w1 twsa

and they are larger than other weights, we have py = “5*2 and py = ““2*1. The global
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component group Cy, acts on 71 ®mo and 71 [4] by x2 and x1 respectively, thus by Proposition 7.2.1
the character pzj = x1x2.- By Arthur’s multiplicity formula, m(m,) = 1 if and only if w; =
3mod4,ws; = 1mod4 and we < wy — 4.

Case (iii): ¢ = Sym* 71 ® (Sym? 7 Q) ® (Sym3 T1®73) D (me®@73) D [1], where 1, w2, T3 €

II5 (PGLs2) have motivic weights w1, ws, w3 respectively and we assume that wo > w3. In this

al
casi gy is trivial since 1 is tempered. On the other side, C; acts on the four summands
Sym? 7, Sym?3 71 @ 7o, Sym® m; ® w3 and 7 ® w3 by 1,11, x1x2 and o respectively. Denote
the ratios wi/ws,ws/ws by ri, o respectively and the corresponding multiset by W as in the
proof of Proposition 7.3.10. We still order the elements of w by p1 > po > -+ > uog, then by
Proposition 7.2.1 the character p% =1 if and only if y; and p4 come from the same irreducible

summand of 1. The largest element pq is 2r1 or 3”% or %

(1) If ro < 71, then py = 2r;. Now 2r; > 3”;‘” > 37"12“ > 3”2_” > 71, thus pq\z is not trivial.
(2) If 9 > 7y and r; > 1/3, then uy = 3”%

(a) If 1y > 1, then pt\z =1 if and only if 4 = %, which is equivalent to 2r; — 1 < 719 <
2r1 + 1.

(b) If r1 < 1, then py = 1 if and only if g = %
(I) mz%ifandonlyif%l <%<3”2—+1<:>3r1<7’2<2r1+1.

(IT) pa = 25" if and only if 2257 > 3L 5 py > 4py + 1.

(3) If ry < 1/3, then p; = % Now ”2;1, 7"2j2“"1, 3’"12”2 are larger than T22_1, SO % can not
be 4 and thus pf # 1.

In conclusion, by Arthur’s multiplicity formula, m(my) = 1 if and only if wy, wo, w3 satisfy one

of the three conditions in Proposition 7.3.11. O

7.3.8 H =T, AP/l

By Section 5.6.13, the restriction of the 26-dimensional irreducible representation Jy of Fy
to H is isomorphic to
124+ " Stestelel,

Sym
and the centralizer of H in Fy is Z(H) ~ Z /27 x 7./27 x 7] 27Z.
For ¢ € Wa;(Fy) satisfying H(y)) = H and m(my) = 1, there are two possible endoscopic
types:
(i) (8,(4,1),(4,1),(4,1),(2,2),(2,2),(2,2),(1,1),(1,1)). A global Arthur parameter of this
type is of the form:

( b m ®7rj) ® ( &y m[z}) @ [1] @ [1], 71,72, w3 € I3, (PGLy).

1<i<j<3 1<5<3

(i) (8,(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(1,1),(1,1)). A global Arthur parameter of this
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type is of the form:

P men| el m,mr,mrs,m € I
1<i<j<4

alg(PGL2).

For this subgroup H of Fy, the restriction of the adjoint representation f4 of Fy to H is
isomorphic to

D Sym*St@1®11+ ) SteSt®1®1+SteSte St® St.
Sym Sym

Proposition* 7.3.12. For a discrete global Arthur parameter » € Wa3(Fy4) satisfying H(y) =
H, the multiplicity m(my) = 1 if and only if ¢ has the form:

Y= ( ) 7Ti®77j) o ( ) 7['1'[2]) e 1] e [1],
1<i<j<3

1<i<3
h L
where w1, w9, w3 € 11

alg(PGL2) have motivic weights wy
the following conditions holds:

> wy > ws respectively such that one of
e wi > wy+ w3+ 1, and wi = w3z = 3mod4, wy =

= 1 mod 4;
e wy < wy+ wg—1, and wi = w3z = 1mod4, ws = 3mod4.

Proof. We take a set of generators {y = (=1,1,1,1),v = (1,-1,1,1),72 = (1,1,
Cy = Z(H) ~ Z)2Z x 7./2Z x 7./2Z.

—1,1)} of
Case (i): ¥ = (D1<icj<3 i @) © (D1<i<3 mi[2]) @ [1] © [1], where 71, 72, 73 € 11

1L
have motivic weights w; > wg > ws respectively. In this case, the restriction of f4 along v is
isomorphic to

alg(PGLz)
(m ® T @ W3[2]) B ( @ 7Ti®7Tj) S ( @ Sym27ri) S3) (
1<i<j<3

1<i<3 1<i<3
By Proposition 6.6.4 we have:

EB Wi[Q]) @ [3].

ep(7) = e(m) - (my ® T2 ® m3) = (—1)max(wiwetws)tuwi=1)/2
51/}('71) _ 6(7T2) . 6(7T1 ® Ty ® 7T3) _ (_1)max(w17w2+w3)+(w2—1)/2’
ey(y2) = e(ms

) : 8(71'1 X T X 7r3) = (_1)max(w1,w2+w3)+(w3,1)/2
On the other side, the largest element p1 must be

wi+wsg
2

and py is the middle one of

{w1+1 wyp — 1 wg—l—wg}
2 '

2 2
Since there is no integer between ““TH and w12_1

, we have g # %2542 So p% is the product of
two characters of Cy coming from 7 ® 7o and m[2] respectively, thus p%(’y) = pyy(12) = 1 and
py(n) = —1.
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By Arthur’s multiplicity formula, m(my) = 1 if and only if one of the following conditions
holds:

e wy > we+ w3+ 1, and wy = w3z = 3mod4, ws = 1mod4;

o w1 < ws+wsg— 1, and w; = w3z = 1 mod4, wy; = 3mod 4.

Case (ii): ¥ = (D1<icj<a Ti@7;) B[ D[], where 71, 7o, 73, 74 € Hang(PGLQ) have motivic
weights w1 > we > w3 > wy respectively. In this case, ey is trivial. On the other side, ©1 must
be w Notice that Cy acts on 6 components m; ® 7; via 6 different characters, so p’l\l/) is trivial
if and only if ug = *15%2. However,

wp— w2  Wp— w3 W] — W4 W+ wq W+ w3 o wp+ w2
2 2 2 2 2 2

thus py, # 1 and m(my) = 0. O

7.3.9 H =AM xq,

In this case, we need to consider cuspidal representations m € Hglgreg(PGLﬂ such that the
image of the corresponding irreducible representation £7 — SL7(C) is a compact Lie group of
type Go. This kind of representations correspond to discrete automorphic representations of
the unique semisimple anisotropic Z-group of type Go with stable tempered type, which have
been studied in [ChenevierRenard, 2015, §8], conditional to the existence of L7 and Arthur’s
multiplicity formula. We denote by Hﬁgz (PGL7) C II3), oo (PGLy7) the subset of these represen-
tations. The Hodge weights of a representation 7w € HS’;(PGL7) have the form w4+ v > w > v,
where w, v are even integers.

By Section 5.6.4, the restriction of the 26-dimensional irreducible representation Jy of Fy to
H is isomorphic to

Sym? St ® V7 + Sym*St ® 1,

where V7 is the 7-dimensional irreducible representation of Go, and the centralizer of H in Fy
is trivial.
For ¢ € Wa;(Fy) satisfying H(y)) = H and m(my) = 1, there are two possible endoscopic
types:
(i) (2,(7,3),(1,5)). A global Arthur parameter of this type is of the form:

7[3] & [5], 7 € HS2 (PGLy).

alg

(i) (2,(21,1),(5,1)). A global Arthur parameter of this type is of the form:

(r @ Sym®7) ® Sym* 7, w € 152 (PGL7), 7 € I, (PGLy).

Proposition* 7.3.13. For a discrete global Arthur parameter ¢ € Wa3(Fy) satisfying H(y) =
H, the multiplicity m(my) = 1 if and only if ¢ is one of the following parameters:

o m[3] & [5], where 7 € Haci'gz (PGL7) has Hodge weights w4+ v > w > v such that v > 4;
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o (m®Sym?7) @ Sym' T, where m € Hﬁé PGL7) has Hodge weights w + v > w > v and
TE Hang(PGLQ) satisfies w(r) ¢ {“42, %, 51

Proof. This follows from the condition ¢ € Wa;(F4) and the fact that Cy, is trivial. O

7310 H — (A[IQGJM} y A[126’114} y Sp(2)> /,LI/QA

By Section 5.6.6, the restriction of the 26-dimensional irreducible representation Jy of F4 to

H is isomorphic to
1+St®StR1+St®10V+10S5t@Vi+1®1® A"Vy,

where Vy is the standard representation of Sp(2) and A*Vy is the 5-dimensional irreducible
representation of Sp(2). The centralizer of H in Fy is Z(H) ~ Z/2Z x Z]2Z.

For any 7 € HSIZ4(PGL4), we denote by A*m the representation in I3, .. (PGLs) corre-

sponding to the following irreducible representation of Lz:
Ur N*
L7, — Sp(2) — SL;5(C).

For ¢ € Wp;(Fy4) satisfying H(y) = H and m(my) = 1, there are two possible endoscopic
types:
(i) (5,(8,1),(5,1),(4,2),(2,2),(1,1)). A global Arthur parameter of this type is of the form:

N @ (r @) @2 ®7[2] @ [1], 7 € IR (PGLy), 7 € 11, (PGLy).

(i) (5,(8,1),(8,1),(5,1),(4,1),(1,1)). A global Arthur parameter of this type is of the form:

NTerRmn)eren)d(nen)®[l], 7c Hfﬁg"* (PGLy), 71,7 € 11, (PGLy).

For this subgroup H of F4, the restriction of the adjoint representation f4 of Fy to H is

isomorphic to

(Sym?St®1+1®Sym?St) @1+ (St@1+1@St) @ Vs
+St @St ® A"V, +1®1® Sym? Vy.

Proposition* 7.3.14. For a discrete global Arthur parameter » € Va3(Fy4) satisfying H(y) =
H, the multiplicity m(my) = 1 if and only if ¢ is one of the following parameters:

e N'm@® (r®T)d w2 ®7[2] &[], where w € Hil;“ (PGLy) has Hodge weights wy > wy > 1

and T € Hilg(PGLg) has motivic weight v satisfying one of the following conditions:
—w) <v<w+w—1,w; +wy =0mod4,v =1mod4;
—w;—was+1<v<wy,w; +wy =0mod4,v=1mod4;
—wo <v<w; —we— 1w +we =2mod4,v =1mod4,

—v>w t+wy+ 1, w; +wy =0mod4,v =3mod4;
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— v < min(w; — we — 1, we), w; + wy = 0mod 4, v = 3mod 4;
— max(w; —wa + 1,we) < v < wy,w; + we =2mod4,v = 3mod4.

s NT®(TRT) D (TRR)® (M) & 1], where 7 € TP
wi > Wy andTl,TQEH

alg (PGL4) has Hodge weights

alg(PGL2) have motivic weights v1 > v respectively satisfying one

of the following conditions:

— vy < wy < v and wy —wy — vy < V1 < Wi — W + Vs

— wy < v < wip and vy > w1 + wa + va;

— vy < w <V < W — Wy + V.
Proof. We take a set of generators {c = (1,1,—1),01 = (=1,1,1)} of Cy, = Z(H) ~ Z/27Z x
ZJ27. Let x1, x2 be two generators of the character group of Cy, such that xi(o) = x2(o1) = —1
and x1(01) = x2(0) = 1.

Case (i): vy =N'1d (r@71)®7[2] & 7[2] @ [1], where 7 € H:f;“ (PGL4) has Hodge weights

wy >wy >1and 7€ Halg(PGLQ) has motivic weight v. Here we assume that Arthur’s SLy(C)

is sent to the first A;-factor of Hc. In this case, the restriction of f4 along 1 is isomorphic to
Sym? 7 @ (A*r @ 7[2]) @ (7 @ 7) ® 7[2] ® Sym? T @ [3].
By Proposition 6.6.4 we have:

ep(0) = e(m) = e(Lyy, + L) = (—1)(w1Fw2)/241
81/;(0'1) = 5(/\*7-( X 7-) = (_1)max(w1+w27v)+max(wl_w2’v)+(v+1)/2.

On the other side, the group Cy, acts on A*m, 7 ®@7,7[2],7[2] by 1, x1X2, X1, X2 respectively. The

wi1tw wi1+v
largest element p; must be =52 or L.

(1) If wy > v, then p; = w Now pg = L and pdl = X1.
(2) If wy < v, then p; = “’174'” Now pe is “’1;””2 or w2+”.

(a) If wy > v, then pp = “422. Now puy = wlil and pqr,} = X2.

(b) If wy < v, then py = “2. Now puy = ”il and pw = X1

By Arthur’s multiplicity formula, m(my) = 1 if and only if 7 and 7 satisfy one of the conditions
listed in the proposition.
Case (ii): Y = A*"7D (7@71) B (TR 712) ® (71 ® T2) D [1], where w € 1_[8ng (PGL,) has Hodge

weights w; > wo and 71,70 € It (PGL32) have motivic weights v1 > v respectively. In this

alg
case €, is a trivial character. On the other side, since Cy acts on four non-trivial irreducible

summands of ¢ by four different characters, pZ} = 1if and only if 1 and uy4 come from the same

irreducible summand. Now p1 must be “’1;“’2 or wl;“ or ”1;”2.

(1) If wy > vy, then p; = w and pi4 can not be #15%2, thus pq\z is not trivial.

. Now py, is trivial if and only if uq = w2k or

(2) If v1 > wy and wy > vy, then p; =

v —w2

w1+v1
2
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Chapter 7. Classification of global Arthur parameters for Fy

(a) pg = P5*2 is equivalent to that v; —wp > max(vy —v2, w1 + w2, w1 +v2). This holds
if and only if vo > w9 and vy > wy + wo + vo.

(b) g = “’QTJ“” is equivalent to that wo + v1 > max(w; — wy, w1 — v2) and wy + vy is
smaller than exactly two of {w; + wa,v1 + vo, w1 + va}. This holds in two cases:

w, < v <wip — w2+ v Or
w9 > V2, W1 > V1, W1 — W — V2 <V < W1 — Wy + V.

(3) If vy > wq, pu1 = % We have

V1 — U2 V1 — W1 V1 — W2 U1 + w2 V1 + Wy V1 + V2
2 2 2 2 2 2

thus g4 can not be “5*2 and pZ} is not trivial.

In conclusion, by Arthur’s multiplicity formula m(my) = 1 if and only if one of the following

conditions holds:

e Vg < wy <wy and wy; — we — vy < v < Wi — Wy + V9;
o wo < vy < wi and vy > wi + wo + vo;

o Uy <wy <V <wp— Wy + V. L]

7311 H= (AP 5 8p(3)) /us

By Section 5.6.3, the restriction of the 26-dimensional irreducible representation Jg of Fy to
H is isomorphic to
St ® Vg +1& Vig,

where Vi is the standard 6-dimensional representation of Sp(3), and V4 = A*Vg is the 14-
dimensional irreducible representation of Sp(3) that is a sub-representation of A?Vg. The cen-
tralizer of H in ¥y is Z(H) ~ Z/27Z.

For any 7 € Hirg’ﬁ (PGLg), we denote by A*m the representation in Hglg,reg(PGL14) corre-
sponding to the following irreducible representation of Lyz:

L7 27 Sp(3) 25 SL1(C).

For ¢ € Wp;(Fy4) satisfying H(y) = H and m(my) = 1, there are two possible endoscopic
types:
(i) (2,(14,1),(6,2)). A global Arthur parameter of this type is of the form:
N @ (2], m € ILE° (PGLg).

(i) (2,(14,1),(12,1)). A global Arthur parameter of this type is of the form:

N7 @ (1@ 1), € Tn (PGLg), 7 € I, (PGLy).
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For this subgroup H of Fy4, the restriction of the adjoint representation f4 of Fy to H is
isomorphic to
Sym? St ® 1 + St ® Vi, + 1 ® Sym? Vg,

where V7, is another 14-dimensional irreducible representation of Sp(3) that is not equivalent
to V14 = A"V

Proposition* 7.3.15. For a discrete global Arthur parameter ¢ € Wa3(Fy) satisfying H(v) =
H, the multiplicity m(my) = 1 if and only if ¢ is one of the following parameters:

o N'm @ 7|2|, where w € T5Ps PGLg) has Hodge weights wy > wo > w3 > 1 and one of the
alg

following conditions holds:
— wy > wy +w3+ 1 and wi + ws + w3z = 3mod 4;
— w <wy+ w3z —1 and w1 +we + w3 = 1mod4.

o N'm & (m® 1), where m € HSpﬁ(PGLg) has Hodge weights w1 > wa > w3 and T €

alg
Hfflg(PGLg) has motivic weight v satisfying one of the following conditions:

— |Jwy —wy —ws| < v < ws;
—wp —wy t+w3z <v<wy;
— w3 < v < min(wg, w; — wy — w3);

— max(wy, w1 —wy —w3) < v < W] — Wy + Ws;

w; < v <wp+ wy — ws;

v > wy + w2 + ws.

Proof. We denote the generator (—1,1) € Z(H) = Cy, by 7.
Case (i): ¢ = A*1 @ 7[2], where 7 € H:lgﬁ (PGLg) has Hodge weights w; > we > wg > 1.

In this case, the restriction of f4 along v is isomorphic to
Sym’ 7 @ 7'[2] @ [3],

where 7’ € Hi—lg(PGLM) corresponds to

V/
Lz %5 Sp(3) 4 SLi(C).

Notice that A3V ~ Vi, & Vg, thus the Hodge weights of ' are

t+w, £ws, tws, Fwy £ wo + ws.

By Proposition 6.6.4 we have:

€y (7) = (le + Iw2 + st + Iw1+w2+w3 + Iw1+w2—w3 + le—w2+w3 + I\wl—w2—w3|)
_ (_1)(w1+w2+w3+1)/2+max(w1,w2+w3)‘
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Chapter 7. Classification of global Arthur parameters for Fy

w1+w2

On the other side, v acts on A*7 by 1 and on 7[2] by —1. The largest element ;1 must be

Now pg = wlil , thus py(v) = —1. By Arthur’s multiplicity formula, m(my) = 1 if and only if

one of the followmg conditions holds:

e wy > wy + wg+ 1 and wy + we + w3 = 3mod 4;

e wi < wy+ wg — 1 and wy + wy + w3z = 1 mod4.

Case (ii): ¢ = N*1 @ (7 ® 7), where 7 € Halg (PGLg) has Hodge weights w; > we > w3
and T € Halg(PGLg) has motivic weight v. In this case ¢y is trivial. On the other side, the

wi+w wi+v
largest p1 must be =572 or #.

(1) If v < wo, then gy = 1342,

a) If v < ws, then juy is the middle one in {¥2tWs witv wi—vl Hence p¥ = 1 if and
2 2 2 P

only if puy = 2233 which is equivalent to v > |w; — wy — ws].

b) If v > ws, then g4 is the middle one in {¥2k witws wi—wsl Hence p¥ = 1 if and
2 2 2 P

only if pg4 = m, which is equivalent to v > w1 — wg + w3 or v < Wy — Wy — W3.

(2) If v > wo, then py = ¥

(a) If v < wy, then py is the middle one in {¥ZtY, ¥itws wi-w3l  Hence py, = 1if and

only if pg = w2+” , which is equivalent to w1 — wo — w3 < v < w1 — wo + ws3.

(b) If v > wy, then gy is the middle one in {¥17%2 vtws v=ws}  Hence py, = 1if and

”iw3 , which is equivalent to v > w1 + w2 + w3 or v < wy + wo — w3.

only if pg =

In conclusion, m(m,) = 1 if and only if one of the conditions on m, 7 listed in the proposition is
satisfied. ]

7.3.12 H = Spin(8)

By Section 5.6.5, the restriction of the 26-dimensional irreducible representation Jy of Fy4 to
H is isomorphic to
®2 + -
192 + Vg + VI + Vapims

where Vg is the 8-dimensional vector representation of Spin(8), i.e. the composition of the pro-
jection Spin(8) — SO(8) with the standard 8-dimensional representation of SO(8), and Vgcpin are
two 8-dimensional spinor representations. The centralizer of H in Fy is Z(H) ~ Z/27Z x Z/27Z.

For ¢ € Wp;(Fy) satisfying H(¢) = H and m(my) = 1, there is only one possible endoscopic
type: (5,(8,1),(8,1),(8,1),(1,1),(1,1)). A global Arthur parameter of this type is of the form:

¢ =7 @ Spin* 7 & Spin~ w @ [1] @ [1], m € M52 (PGLy),

where we lift ¢, : £z — SO(8) = SOg(C) to ¢y : Lz — Sping(C), and Spin* 7, % = =+ is the
representation corresponding to

%
L7 75 Sping(C) —2% SLg(C).

110



7.3. Classification of Arthur parameters

Proposition* 7.3.16. For any discrete global Arthur parameter ¢ € Va3(Fy) satisfying H(y) =
H, we have m(my) = 0.

Proof. Let 1 = 7 @ Spin™ 7 @ Spin™ w @ [1] @ [1], where 7 € HSISS(PGLS) has Hodge weights
2wy > 2wy > 2wz > 2wy. The global component group Cy ~ Z/27 x Z/27 and it acts on
7, Spin™ 7, Spin~ 7 by three different characters.

Since ey is trivial, by Arthur’s trace formula m(m,) = 1 if and only if '01\2 = 1, which is
equivalent to that p1 and p4 come from the same irreducible summand of ¢ by Proposition 7.2.1.

In this case, the largest element p1 must be wq or %.

(1) If wy > we + ws + wy, then py = wy. Now we have

w1 +wy — w3z +w w1 + W3 + w3 — W w1 + w9 + w3 + w
w2<1 223 4<1 323 4<1 223 4<m’

thus py4 does not come from 7. Hence pl\z is not trivial.
(2) If wy < wo + ws + wy, then p; = w Now we have

W — W2+ w3 —wg W+ W2 — W3 — Wy
2 2

. w1 + wy £ (w3 —w
< min (wg, L 2 2( 3 4)></L1

and
]wl — Wy — W3 +w4|

2

is also smaller than at least 4 weights, hence

( —w1+w2+w3+w4>
< max | wy,

2

¢{w1—w2+w3—w4 w1 + wy — w3 — wy ]wl—wg—w3+w4|}
Ha 9 ) 2 3 92 .

So p4 does not come from Spin™* 7 and p,y) is not trivial.

In conclusion, by Arthur’s multiplicity formula the multiplicity m(my) is always 0. O

7.3.13 H = Spin(9)

By Section 5.6.2, the restriction of the 26-dimensional irreducible representation Jy of Fy4 to
H is isomorphic to
1+ V9 + VSpina

where Vy is the standard representation of Spin(9), Vgpin is the 16-dimensional spinor represen-
tations. The centralizer of H in Fy is Z(H) ~ Z/2Z.

For 1 € Wp;(Fy) satisfying H(¢) = H and m(my) = 1, there is only one possible endoscopic
type: (3,(16,1),(9,1),(1,1)). A global Arthur parameter of this type is of the form:

Y =7m@®Spint P [1], 7 € Hglgg(PGLg),

where we lift ¢ : Lz — SO(9) = SOg(C) to ¢y : Lz — Sping(C), and Spinr is the represen-

tation corresponding to

VSpin

L7 %5 Sping(C) —2% SL;4(C).
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Chapter 7. Classification of global Arthur parameters for Fy

Proposition* 7.3.17. A discrete global Arthur parameter ¢ € Wa3(Fy) satisfies H(v)) = H and
m(my) = 1 if and only if v = © @ Spinw @ [1], where © € HSISQ(PGLg) has Hodge weights

wi > wy > w3 > wyq satisfying wo + w3y — wy < wi < wg + w3 + wy.

Proof. Let ¢ = m@®Spinn@[1], where 7 € Hglgg (PGLy) has Hodge weights w1 > wa > w3 > wa.
The global component group Cy is a cyclic 2-group, and it acts on 7 trivially and on Spin7 by
its non-trivial character.

Since the parameter is tempered, €y is trivial. By Arthur’s multiplicity formula, m(my) = 1
if and only if p\d/) = 1, which is equivalent to that pu; and pg4 come from the same irreducible

summand of 1 by Proposition 7.2.1. In this case, the largest element p; = “5- or %.

1) If wy > wo + w3 + wy, then pu; = %L, By our discussion in the proof of Proposition 7.3.16,
H 2
14 does not come from 7, thus pqyj is not trivial.
(2) If wy < wa+ w3+ wy, then py = W. Now 4 = max (%, %). Hence

pq\z is trivial if and only if wy + w4 > wy + ws.

In conclusion, m(my) = 1 if and only if wy + w3 — ws < wy < wo + w3 + wy. O

7.3.14 H=F,

For stable tempered parameters, the component group is trivial and as a direct consequence

we have:

Proposition* 7.3.18. For any discrete global Arthur parameter ¢ € Va3(Fy) satisfying H(v) =
F4, we have m(my) = 1.

7.4 Classification of representations contributing to Ay, (F,)

Recall that in Section 6.1, for each irreducible representation V, with highest weight A of
F, = F4(R), we have defined its multiplicity space in Lqisc(F4):

-~

Av, (F4) = Homp, g)(V, Laise(Fa)741%)),

which parametrizes level one discrete automorphic representation 7 of F4 such that my ~ V.
We have a dimension formula Corollary 6.1.8 for this space. Now with results in Section 7.3, we
can study the discrete global Arthur parameters 1) € W ;(F4) whose corresponding representa-
tion my € II(F4) has multiplicity 1 in Laisc(F4) and contributes to Ay, (Fy).

According to Lemma 6.1.5, we have:

dim Ay, (Fy4) = Z m(7).

TEI(F4), Too™>V

Using discrete global Arthur parameters, we rewrite this formula as

dim Ay, (F4) = > m(my) = > m(my),

PEWAT(Fa), Coo(P)=Coo (V) PEWA(Fa), Coo (P)=A+p
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7.4. Classification of representations contributing to Ay, (Fy)

where p is the half sum of positive roots of Fy.

If the endoscopic type of ¥ € Wpj(Fy) is not stable, i.e. H(¢) is the conjugacy class of a
proper subgroup of Fy = F4(R), then it must have one of the types listed in Section 7.3. For
each subgroup H of Fy listed in Theorem 5.6.7, we can determine the discrete global Arthur
parameters 1) € Wa;(Fy) satisfying H(y)) = H and m(my) = 1. The difference

dimAv/\ (F4) —# {¢ € Uas(Fy) ‘ H(T/}) #Fy,coo(tp) = p+ )\,m(ﬂ'w) = 1} (72)

is the number of discrete automorphic representations 7w of F4 with archimedean component

Too =~ V) whose global Arthur parameter is tempered and stable. In other words:

Proposition™ 7.4.1. Let A be a dominant weight of ¥y, we define the number
F4()\) = # {71' € chsp(PGLQG) ’COO(ﬂ') = I"o()\ -+ p) S 5[26,SS7H(7T) ~ F4} ,

where 1o : f4 — slag s the 26-dimensional irreducible representation of f4, and define w(\) to be
twice the mazimal eigenvalue of X+ p. Then we have a formula for the number F4(\), and we
list nonzero F4(X) for all the dominant weights \ such that w(X\) < 44 in Table A.S.

Proof. The formula for F4(\) follows from Eq. (7.2) and our classifications in Section 7.3. This

formula involves the numbers of elements in one of the following sets with certain Hodge weights:

115, (PGL2), TI52* (PGLy), ILE (PGL), 11S2 (PGL7), I150° (PGLy).

For H;‘lg(PGLg), this number is related to the dimension of cusp forms for SLy(7Z), as explained

in Example 6.4.6. For other four sets, we can find some tables in [Algebraic cusp forms| and
[Discrete series multiplicities]. A [PARI/GP] program to compute F4(\) for dominant weights
A satisfying w(A) < 60 is provided in [Codes and tables]. O

Remark 7.4.2. The formula for F4(\) has too many terms, thus it is not reasonable to write it
down here. However, under some hypothesis on A, many terms vanish and this formula becomes

much simpler. For example, if

e Ny >0forev=1,2,3,4,
e A > Ao+ A3+ Mg+ 3,
e and A3, A4 are both odd,

then we have the following formula:
F4()‘) = dimAVA(FZL) - O*( ,17 /27 {37 /\21)7

where O* (w1, we, w3, wy) is the number of equivalence classes of level one cuspidal orthogonal

representations of PGLg with Hodge weights wi > wo > w3 > w4 > 0, and

)\,1 = 2A1 + 6o + 43 + 2)4 + 14, /\/222)\1+2/\2+2)\3+2A4+8,
g:2A1+2/\2+2)\3+6, )\2122)\14-2/\24-4.
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Chapter 7. Classification of global Arthur parameters for Fy

In Table A.8, we find that the smallest w(\) for A such that Fq(\) # 0 is 36 and the
corresponding dominant weight is A = w; + 2ws + 2w4. We are now going to prove this fact
without using Theorem 7.3.1, in order to give readers who skip the proof of Theorem 7.3.1 an

example of how we apply Arthur’s conjectures.

Proposition*7.4.3. There is a level one cuspidal automorphic representation m of PGLog with
motivic weight 36, such that the Sato-Tate group H(m) of m is isomorphic to the compact Lie
group Fy.

Proof. We fix A = wy + 2wy + 2wy. In Table A.3, we find that dim Ay, (F4) = 1. We denote
the unique automorphic representation contributing to Ay, (F4) by 7y and its corresponding

discrete global Arthur parameter by t¢y. The eigenvalues of co(m9) = A + p are:
18, —16, —13, —12, -9, 9. —7, —6, —5, —4, —3. —2.0,0,2,3,4,5,6,7,9,9, 12, 13, 16, 18.

Now it suffices to show that H(vg) =

We can exclude some possibilities of H(tp) and endoscopic types by an argument of motivic
weights. For example, if H(ig) = A[17 I and o = Sym'® 7 @ Sym® 7 for some 7 € Halg(PGLg),
then w(m) = 16w(m) > 16 x 11 = 176, which contradicts with w(m) = 36. We also notice that

1 is not an eigenvalue of ¢ (), thus 1y does not have irreducible summands of the form

7[d], where 7 € II;,(PGL,),n = 1mod?2 and d > 3.

alg

Now we list all possible types for 1g:

1) 1o is a stable and tempered parameter;
2) Yo = (Bi1<icj<s ™ @ 7)) © (Dr<i<zmil2]) © [1] © [1], 71, 72,73 € Halg(PGIQ)%
3) Yo = (Br<icjca ™ @ 75) ® 1] @ [1], 71, 72, 73, 74 € L, (PGLo);

(
(2)
(3)
@) Yo=N71®(rer) @2 er2 e 1], e I (PGLy), T € I}, (PGLy);
(5) Yo =ANT® (T T)D (7r ® 1) ® (11 @ 1) @ [1], 7 € I (PGLy), 71,72 € 11}, (PGLo);
(6) wo = A1 @ 7[2], 7 € T2 (PGLg);
(7) 9o = A*"m @ (1@ 7),7 € I (PGLg), 7 € 11, (PGLy);
(8) o =m®Spint 7@ Spin~ 7@ [1] B [1],7 Hfl(g)g (PGLg);
)

(9) o =7 ® Spinw @ [1], 7 € T50° (PGLy).

The definitions of some notations like A*, Spin® can be found in Section 7.3. Now we are going
to show that 1y can not be of the types listed above except (1).
Type (2): The Hodge weights of the irreducible summand ;[2],7 = 1,2, 3 are w(m;) £ 1, thus

Lg)ﬂ in the eigenvalues of coo(mg). The possible w(m;)’s

there are two consecutive integers
are 5,7,9,11,13,25. However, Halg(PGLg) contains no representations with motivic weights
5,7,9,13, thus we are unable to find three different w(m;). If m; ~ 7; for some 4, j, then m; ® 7;
has two zero weights, which is a contradiction!

Type (3): By the same argument for type (2), ¥o can not be of this type.

Type (4): Denote the Hodge weights of m € H§124(PGL4) by wy > wo. By a similar argu-
ment for type (2), we can see that wy,wq € {5,7,9,11,13,25}. Via the help of [ChenevierRenard,
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7.4. Classification of representations contributing to Ay, (Fy)

2015, Table 5], we have wq = 25 and we € {5,7,9}, thus w(7) must be 11. Since (w; + w2)/2
has to be an eigenvalue of coo (7o), the smaller Hodge weight wy can only be 7.

Now we use Arthur’s multiplicity formula. In this case
26’114 267114
H(yo) = (AP x AP x 8p(2)) /g,

and by Section 5.6.6 the global component group Cy, ~ Z/2Z x Z/2Z. We take a set of
generators {o = (1,1,—1),01 = (—1,1,1)} of Cy,. The restriction of the adjoint representation
f4 of F4 along g is isomorphic to

Sym? 7 @ (A*r @ 7[2)) @ (7 @ 7) ® 7[2] ® Sym? T @ [3].
By Proposition 6.6.4 we have:
eyo(0) =e(m) =e(I7) - e(Ia5) = —1.

On the other side p; = 36 comes from m ® 7 and pug4 = 24 comes from 7[2]. The element o acts
on 7 ® 7 and 7[2] both by —1, thus pl\zo(a) = 1 by Proposition 7.2.1. By Arthur’s multiplicity
formula, the corresponding representation has multiplicity 0 in Lgisc(F4)-

Type (5): Denote the Hodge weights of 7 € HZ{;“ (PGLy4) by w; > we, and assume that
w(7) > w(72). Since 36 > wy + w(11) > wi + 15, we have wy; < 21, thus (wy,w2) = (19,7)
or (21,5),(21,9),(21,13) by [ChenevierRenard, 2015, Table 5]. We also need (w; &+ wsz)/2 to
be eigenvalues of coo(mp), so (wi,wa) = (19,7). However, the equalities 36 = w; + w(7) and
32 = wy + w(7z) imply that w(m) = 17, w(72) = 13, which contradicts with the non-existence of
representations in I (PGLg) with Hodge weight 13.

alg

Type (6): Denote the Hodge weights of 7 € HSIZG(PGLg) by w1 > we > ws. We have

three pairs of consecutive integers wlTﬂ in the eigenvalues of ¢y (7g), thus for i = 1,2, 3 we have
w; € {5,7,9,11,13,25}. By [ChenevierRenard, 2015, Table 6], (w1, w2, ws) must be (25,13,7).
However, A*m has 38 as its weight, which is a contradiction.

Type (7): Denote the Hodge weights of 7 € Hglgﬁ (PGLg) by w1 > we > ws. Since 36 >
wy + w(T) > wy + 11, we have 23 < w; < 25. Combining 36 > w; + wy with [ChenevierRenard,
2015, Table 6], we get (w1, wa, w3) = (23,13,5). However, w(r) = 32 —w; =9 < 11, which is a
contradiction.

Type (8): Denote the Hodge weights of © € II

multiset

SOs

alg (PGLg) by wy > wo > w3z > wy. The

+wi £ we £+ w3+ wy
4

coincides with the multiset of eigenvalues of ¢ (7). The solutions to this system of equations

{xw1/2, twe/2, tws/2, twy/2, ,0,0}

are
(w1, we, w3, wy) = (26,24, 18,4), (32,18,12,10), (36, 14, 8, 6).

By the method of Chenevier-Taibi in [ChenevierTaibi, 2020], there are no representations in

HSlgS (PGLg) with these Hodge weights.
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Type (9): By the same argument for type (9), we get the Hodge weights of € Hslgg (PGLy):
(w1, wa, w3, wy) = (26,24, 18,4), (32,18, 12, 10), (36, 14, 8, 6).

Again by the method in [ChenevierTaibi, 2020], there are no representations in HSISQ (PGLy)
with these Hodge weights.

In conclusion, the discrete global Arthur parameter 1)y is a stable and tempered param-
eter, i.e. H(tpg) = F4. Composing this )9 with the 26-dimensional irreducible representation
To : ﬁ((C) — SLgs(C), we get an irreducible 26-dimensional representation of Lz, and its

corresponding cuspidal representation of P(GLyg is the desired one. O

For each dominant weight A\ of F4, we define ¥, (F,) to be the set

{w S \I/AJ(F4) |7T1/, S Hdisc(F4) and (Ww)oo ~ V)\} .

In Table A.6 and Table A.7, we list the elements of ¥ (Fy) for weights A\ such that w(\) < 36
and Wy (Fy4) # 0, where we use the following notations:

Notation 7.4.4. For a representation 7 in Hig?” (PGL2,),n = 1,2,3 with Hodge weights
wy > wy > -+ > wy, we denote it by Ay, 4w, If there are £ > 1 equivalence classes of cuspidal
representations with these Hodge weights, we give them a superscript AS],?,A,,,M, meaning that
in this case we have k different choices of cuspidal representations. Similarly, for k£ different

representations 7 in Hslgg (PGLy) or HS;(PGL7) with Hodge weights wy > --+ > w,, where
(k)

W yeeey

n = 3 or 4, we denote them by A w0 and omit the superscript when k = 1, i.e. the cuspidal

representation with these Hodge weights is unique up to equivalence.

7.5 Some related problems

In this section we explain some representation-theoretic problems motivated by our conjec-

tural classification of discrete global Arthur parameters for Fy.

7.5.1 Theta correspondence between PGL, and F,

Inside an exceptional group E73 of Lie type E7 and Q-rank 3, which is split over every
finite prime p, there is a reductive dual pair PGLy x Fy4, so we have an exceptional theta
correspondence between representations of PGLy and Fy.

For a level one cuspidal automorphic representation = € Haﬁg(PGLg), by Savin’s work on this
exceptional theta correspondence [Savin, 1994], if the theta lift ©(m) of 7 to F4 is nonzero, then
its corresponding discrete global Arthur parameter is ¢» = 7[6] ® [9] & [5]. By Proposition 7.3.6,
we see that m(my) is always 1, admitting Arthur’s conjectures. This predicts that the global

theta lift ©(m) is nonzero for any 7 € Hi‘lg(PGLg), and we will prove this result in Chapter 8.

Remark 7.5.1. For m € Hi‘lg(PGLg), the archimedean theta lift of 7, is isomorphic to the

irreducible representation V,, of F4 for some n. For readers interested in this exceptional

theta correspondence, we list in Table A.4 the dimensions of Vféi(z) and VZL:;E(Z) for n < 40.
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7.5.2 Theta correspondence between G} and F,

Inside an exceptional group Eg 4 of Lie type Eg and Q-rank 4, there is a reductive dual pair
G35 x Fy4, where G$ is the generic fiber of the split Chevalley group of Lie type Ga.

In [Dalal, 2024], Dalal classifies level one quaternionic discrete automorphic representations
of G3. The exceptional theta correspondence from G¥ to F, is functorial, so for a level one
quaternionic discrete automorphic representation of G3, if its global theta lift to F4 is nonzero,
then we can describe the corresponding discrete global Arthur parameters in Waj(F4). The

discrete global Arthur parameters of F4 involving in this correspondence are:

o Sym?7[3| @4l @2 @ [5], 7€ Hi‘lg(PGLg),
o Sym?7m[3] @ (71 ® m2[3]) @ [5], where 71, mo € I, (PGLg) satisfy w(ma) = 3w(m) + 2,

alg
o and 7[3] @ [5], where 7 € II5;2(PGLy).

According to Proposition 7.3.7, Proposition 7.3.10 and Proposition 7.3.13, for every 3 among
these discrete global Arthur parameters, we have m(m,) = 1. This predicts that the global theta
lift of any level one quaternionic discrete automorphic representation of G to F4 is nonzero,
which is proved by Pollack in [Pollack, 2023, §8].

Remark 7.5.2. For any quaternionic discrete series m of G5(R), the archimedean theta lift of 7

is isomorphic to the irreducible representation V, o, of F4 for some n. For readers interested

in this exceptional theta correspondence, we list in Table A.5 the dimensions of Vféé(z) and

qu‘;g(z) for n < 30.
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Chapter

Exceptional theta correspondence
F, x PGLo for level one automorphic

representations

This chapter corresponds to the preprint [Shan, 2025].

Abstract
Let F4 be the unique (up to isomorphism) connected semisimple algebraic group over
Q of type Fy4, with compact real points and split over @, for all primes p. A conjec-
tural computation [Shan, 2024, Proposition 6.3.6] predicts the existence of a family
of level one automorphic representations of F4, which are expected to be functorial
lifts of cuspidal representations of PGLs associated with Hecke eigenforms. In this
paper, we study the exceptional theta correspondence for F4 x PGLo, and establish
the existence of such a family of automorphic representations for F4. Motivated by
[Pollack, 2023], our main tool is a notion of “exceptional theta series” on PGLy,
arising from certain automorphic representations of F4. These theta series are holo-
morphic modular forms on SLy(Z), with explicit Fourier expansions, and span the
entire space of level one cusp forms.
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Chapter 8. Global exceptional theta correspondence F4 x PGLo

8.1 Introduction

Since the last century, automorphic representations of general linear groups and classical
groups have been widely studied. For those of exceptional groups, i.e. algebraic groups with Lie
type Go, Fy, Eg, E7 or Eg, most of the known results are about the smallest exceptional group Go,
either split or anisotropic. In this paper, we will study a family of automorphic representations
for Fy, the unique (up to isomorphism) connected semisimple algebraic group over Q of type

F4, with compact real points and split over Q, for every prime p.

8.1.1 Motivation from [Shan, 2024]

In [Shan, 2024], we compute the number of level one automorphic representations for Fy,
i.e. unramified at every finite place, with any given arbitrary archimedean component. Further-
more, the discrete global Arthur parameters of these automorphic representations are classified
conjecturally, admitting the existence of the (level one) Langlands group and Arthur’s multi-
plicity formula [Arthur, 1989]. In particular, we conjecture the existence of a specific family of
automorphic representations for Fy, which are related to classical modular forms for SLo(Z).

Before recalling this statement, we introduce some notations:

o Let wy be the highest weight of the 26-dimensional irreducible representation of Fy(R).

« There is a morphism Sps(C) x SLy(C) — F4(C) = F4(C) whose kernel is a cyclic group
of order 2, the image of this morphism is a maximal proper regular closed subgroup of
F4(C) (see [Shan, 2024, §4.3.2]). Denote by ¢ the morphism:

(principal embedding, id)

SLy(C) x SLy(C) « Sps(C) x SLy(C) — F4(C).

. 1/2 .
« Denote by e, the conjugacy class of (p p71/2) in SLy(C).

Conjecture 8.1.1. [Shan, 202/, Proposition 6.3.6] Let w be the level one algebraic automorphic
representation of PGLg associated to a cuspidal Hecke eigenform of weight 2n+ 12 for SLo(Z),
and cp the Satake parameter of m,, viewed as a semisimple conjugacy class in @(C) =

SLy(C). There exists a level one automorphic representation I1 of Fy such that:

o Il ~ Vyw,, the irreducible representation of F4(R) with highest weight ntwy;

o for every prime p, the Satake parameter of Il,, is the conjugacy class of t(ep, cp).
Motivated by the Langlands functoriality principle, the automorphic representation II in Con-
jecture 8.1.1 is expected to be a functorial lift of 7 with respect to the embedding

_— 1,id —~
1: PGL2 = SL2 ‘u) Sp6 X SL2 — F4. (81)

One useful tool for constructing functorial lifts is the theta correspondence, which studies the
restriction of a minimal representation to reductive dual pairs. There exists a reductive dual pair
PGL; x F4 inside certain algebraic group E7 of Lie type E7 (see Section 8.2 for more details).
For the theta correspondence associated with this dual pair over a characteristic 0 local field,

one already has the following results (see also Section 8.3):
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8.1. Introduction

o Over R, Gross and Savin describe the restriction of the minimal representation of E7(R)
to PGL2(R) x Fy4(R) [GrossSavin, 1998, Proposition 3.2], which shows that the theta lift
O (7o) Of Too is isomorphic to Vi,o,;

e Over a p-adic field, this theta correspondence is studied by Karasiewicz and Savin in
[Savin, 1994; KarasiewiczSavin, 2023]. In particular, they demonstrate that the theta lift
©(m,) of the unramified tempered principal series representation 7, is irreducible and has

the desired Satake parameter ¢(ep, cp).

Based on these local results, it is natural to expect that the functorial lift IT is exactly the global

theta lift ©(m) of 7 to Fy. The main result in this paper confirms this expectation:

Theorem 8.1.2. (Theorem 8.6.12) The global theta lift ©(m) is a non-zero irreducible auto-
morphic representation of ¥4, and satisfies the local-global compatibility of theta correspondence
O(m) ~ ®! O(m,). In particular, Conjecture 8.1.1 holds.

8.1.2 Exceptional theta series

Our main tool is to develop a notion of “exceptional theta series”, motivated by Pollack’s
construction of Siegel modular forms for Spg(Z). This is a variant of the classical weighted theta
series developed by Jacobi and Hecke, and gives an explicit theta lift from certain automorphic
forms of F4 to PGLs.

8.1.2.1 Classical theta series

We first recall the classical construction of theta series. Let L be an even unimodular lattice
in the Euclidean space R”, i.e. a self-dual lattice for any element v of which the scalar product

v.v is even. A well-known result states that the series

Ip(z) = Zq%, where ¢ = ¢*™*, z € H = {x +iy|y > 0},
veL

is a modular form of level SLy(Z) and weight n/2. One can weight this theta series by a

homogeneous harmonic polynomial P of degree d over R™ [Hecke, 1940]:

Irp(z) =Y P(v)g?, (8.2)

veL

and the resulting weighted theta series is a modular form for SLy(Z) of weight 5 +d. It is a
cusp form when d > 0, and Waldspurger shows in [Waldspurger, 1979] that for a fixed pair of
integers (n,d), the space S%+d(SL2(Z)) of weight § + d cusp forms is spanned by:

{9r,p| L CR"™ is an even unimodular lattice, and P € J3(R")},

where #3(R") is the space of homogeneous harmonic polynomials of degree d over R™.
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Chapter 8. Global exceptional theta correspondence F4 x PGLo

8.1.2.2 Corresponding structures in the exceptional case

We want to produce a family of modular forms analogous to (8.2), starting from automorphic
representations for F4 with archimedean component V,,. The table below highlights the

corresponding structures in the classical and exceptional settings:

classical case exceptional case
underlying space FEuclidean space R" Euclidean Albert R-algebra Jg
group of automorphisms 0,(R) F,(R)
integral structure even unimodular lattice Albert lattice
homogeneous polynomials | harmonic polynomials a polynomial model of V,,,

Table 8.1: Comparison between classical and exceptional cases

We briefly explain the objects appearing in Table 8.1, and the details will be provided in
Section 8.2.2 and Section 8.2.3:

o The 27-dimensional Fuclidean Albert R-algbera (or exceptional Jordan R-algebra) Jgp =
Her3(OR) is the space of “Hermitian” 3-by-3 matrices over the real octonion division algebra
Og, equipped with the distinguished element I = diag(1,1,1), the adjoint map # : Jg —
Jr, and the determinant det : Jg — R. Precisely, together with these structures, Jr is
a cubic Jordan R-algebra and furthermore it is an Albert R-algebra. We call it Euclidean
because its underlying vector space admits a symmetric inner product (A, B) = % Tr(AB+
BA) that is positive definite.

o The group of Albert R-algebra automorphisms of Jg is the real points F4(R) of Fy,
i.e. F4(R) = {g € GL(Jr) | g1 =1, det(gA) = det(A), for any A € Jr}.

o By an Albert lattice, we mean a lattice J C Jr satisfying that I € J, J is stable under #,
det(J) C Z, and (J,1,#, det) is an Albert Z-algebra.

o In Section 8.4.1.2, we describe a polynomial model V,,(J¢) of V,,,: the space spanned by

degree n homogeneous polynomials over Jr of the form:
X = (X, A)", where 0 # A € Jg @ C, A% =0, Tr(A) = 0.

8.1.2.3 Weighting the theta series constructed by Elkies-Gross

The starting point of the exceptional theta series associated with Jgr is the work of Elkies
and Gross [ElkiesGross, 1996].

Let J be the set of Albert lattices, and equip it with the natural Fy(R)-action. This set is the
disjoint union of two F4(R)-orbits [Gross, 1996, Proposition 5.3]. We take a set of representatives
{J1, J2} for these two orbits, where J; = Jz (see Example 8.2.13) is taken as the base point of
J. For J = Jy or Jo, Elkies and Gross construct the following theta series:

Yy(z) =1+ 240 Z o3(cy(T)g™ D), g = ™%, 2 € A,
J>T>0,
rank(7)=1
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8.1. Introduction

where ¢;(T) is the largest integer ¢ such that 7'/c € J, and o3(n) = >4, d®. This theta series

is a modular form of weight 12 for SL9(Z). Moreover,

65520 432000
Oy =FEio— ——A, 05, = Eig+

A
691

691

where F1o is the normalized Eisenstein series of weight 12, and A is the discriminant modular

form.

Remark 8.1.3. The coefficient 24003(c(T)) appearing in the Fourier expansion of ¢; comes
from Kim’s modular form F g, an Eisenstein series on the exceptional tube domain Hj (see
Section 8.4.2.1), which is constructed in [Kim, 1993] and serves as our source for producing theta

series.

We extend the construction of Elkies-Gross to weighted exceptional theta series as follows:

Theorem 8.1.4. (Theorem 8.5.2,Corollary 8.5.5) For any Albert lattice J € J and a polynomial
P e V,(Jc), the theta series

Gyp(z) = > o3(cy(T)P(T)g™" (8.3)
J3T>0,
rank(7T)=1

is a modular form of weight 2n + 12 for SLy(Z). When n = deg(P) > 0, 9 p is a cusp form.

Our proof of Theorem 8.1.4 follows Pollack’s method for the proof of [Pollack, 2023, Theorem
1.1.1]. For the automorphic form (or precisely, algebraic modular form) of Fy associated with J
and P, we construct its global theta lift to PGLo, taking certain (iterated) differential of Kim’s
modular form Fg;,, as the kernel function. Then we show that this global theta lift arises from

a holomorphic modular form, whose Fourier expansion is exactly (8.3).

Remark 8.1.5. Here we explain briefly how we describe the global theta lift from F4 to PGLso
in terms of exceptional theta series, and more details can be found in Section 8.4.1.1. The
space Ay, (Fa) of level one “vector-valued” automorphic form of Fy with weight Vyz, can
be identified with the space of functions f : J — V,,(Jc) satisfying f(gJ) = g.f(J) for any
g € F4(R) and J € J. The global theta lift of f to PGLq is the modular form

1
Wﬂh,ful T ’19J2 F(J2) € M2p112(SLa(Z)),

where I'; is the automorphism group of the Albert Z-algebra J;, i = 1, 2.

8.1.3 Strategy towards Theorem 8.1.2

Now we illustrate our strategy for the proof of Theorem 8.1.2.

Let ¢ ~ ®p, € T ~ & 7, be the automorphic form of PGLs associated to a Hecke eigenform
[ € Sont12(SLa(Z)). We want to show that its global theta lift ©4(y), with respect to some
vector ¢ in the minimal representation of E7(A), is non-zero. For this goal, we compute the

Sping-period integral of ©4(p), where Sping is a maximal proper regular closed subgroup of
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Chapter 8. Global exceptional theta correspondence F4 x PGLo

F4. The Sping-period of an automorphic form f on [F4] = F4(Q)\F4(A) is defined as follows,
where dg is taken to be the Tamagawa measure:

PSping (f) = f(g)dg

/Sping(Q)\Sping(A)
Remark 8.1.6. One motivation for considering this Sping-period is the global conjecture of
Sakellaridis-Venkatesh [SakellaridisVenkatesh, 2017]. The homogeneous space X = Sping\Fy is
a spherical variety whose dual group is Gy = SLo, equipped with the embedding i : Gy — P/‘\4 as
described in (8.1). Roughly speaking, the conjecture of Sakellaridis-Venkatesh predicts that the
cuspidal automorphic representations of F4 with non-zero Sping-periods arise from functorial
lifts with respect to the embedding 7 : ﬁ}\Lz — P/‘\4. Therefore, we expect the global theta lift

©4(p) to have a non-zero Sping-period (for some suitable choice of ¢).

Using a see-saw duality argument, an exceptional Siegel- Weil formula that we prove in Sec-
tion 8.6.1 and a standard calculation of Rankin-Selberg integral (Section 8.6.2), we rewrite the
Sping-period of ©4(¢) as an Eulerian integral over PGLy(A). Moreover, we prove the following
result, which verifies the prediction of Sakellaridis-Venkatesh [SakellaridisVenkatesh, 2017, §17;
Sakellaridis, 2021, Table 1] for the global period associated with spherical variety Sping\Fy:

Theorem 8.1.7. (Corollary 8.6.9) For any smooth, holomorphic and spherical vector ¢ =~ @y,
in the minimal representation Iy, ~ &, Hyiny of E7(A), the Sping-period integral of ©4(p) is

equal to: . 4
L(m, 5)L(m, 5)
OO oo (oos Poo),

where L(m, s) = L(f, 2”7'2"11 +35) is the standard automorphic L-function of m (as an Euler product

Pspiny (04(¥)) =

over all the finite places), and I (oo, Poo) s an integral over PGLa(R).

The L-factor in Theorem 8.1.7 is non-zero, thus the non-vanishing of Pspin, (04()) is equiv-
alent to that of Ioo(¢oo, Poo)-

For any Hecke eigenform f in So,,1+12(SL2(Z)), the associated automorphic form ¢ ~ ®,¢, in
T~ @, satisfies that p is the unique (up to some scalar) lowest weight holomorphic vector
of the discrete series D(2n + 12) ~ 7. Therefore, fixing a vector ¢ € I, as in Theorem 8.1.7,
Psping (O(¢)) # 0 for any such ¢, if and only if it holds for one such . Hence to prove
Theorem 8.1.2 it suffices to find a vector ¢ € Il satisfying the conditions in Theorem 8.1.7
and that Pgspin, (Os(¢)) # 0, where ¢ is the automorphic form associated to certain Hecke
eigenform f € S, 112(SLa(Z)).

Our proof of the existence of ¢ € Il i, relies on an automorphic form of F4 that is invariant
under Sping(R) and has a non-zero global theta lift to PGLy. As mentioned in Section 8.1.2, in
this paper the global theta lifting from Fy to PGLs is realized via exceptional theta series. If we
take J = J; = Jz and P, the unique non-zero Sping(R)-invariant polynomial in V,,(Jc), n > 2,
then Theorem 8.1.4 gives us a weight 2n 4 12 cusp form, which can be verified to be non-zero by
analyzing the Fourier coefficient of ¢ (Theorem 8.5.6). This implies that the automorphic form

for F4 associated to Jyz and P, is the desired one!
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8.2. Preliminaries on exceptional groups

As a corollary of Theorem 8.1.2, we have the following analogue of Waldspurger’s result for

classical theta series:

Theorem 8.1.8. (Corollary 8.6.13) For any n > 0, the space Sap112(SLa(Z)) is spanned by the
set of weighted exceptional theta series {9;p|J = J1 or Jo, P € V,,(Jc)}.

We end the introduction with a short summary of the contents of this paper. We recall
the necessary preliminaries on exceptional groups in Section 8.2, and the results on local theta
correspondences in Section 8.3. We establish the global theta correspondence in Section 8.4, then
study the Fourier expansions of exceptional theta series and prove Theorem 8.1.4 in Section 8.5.
The last section Section 8.6 is for the proof of Theorem 8.1.2, Theorem 8.1.7 and Theorem 8.1.8.
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8.2 Preliminaries on exceptional groups

In this section we recall the definitions of two reductive algebraic groups F4 and E~ over Q

and construct the following two reductive dual pairs' inside E7:
F4 X PGL2 and Sping X 802’2.

8.2.1 Octonions

We first recall the notion of octonions, which are crucial for defining exceptional groups.

Definition 8.2.1. An octonion algebra over a commutative ring k is a locally free k-module
C of rank 8, equipped with a non-degenerate quadratic form N : C — k and a (possibly
non-associative) k-algebra structure admitting a 2-sided identity element e, such that N(zy) =
N(z)N(y), z,y € C. The quadratic form N is referred as the norm on C.

Now we recall some basic properties of octonion algebras, for which we refer to [SpringerVeld-
kamp, 2000]. There is a unique anti-involution of algebra x + T called the conjugation on C, with
the property that N(x) = 2T = Tx. The trace is defined as the linear map Tr : C' — k, = — z+7.
The symmetric bilinear form associated with N is (z,y) := N(z +y) — N(z) — N(y) = Tr(zy).

Although the multiplication law of C is not associative, it is still trace-associative in the sense
that Tr((zy)z) = Tr(z(yz)) for all z,y,z € C, and we can define a trilinear form: Tr(zyz) :=
Tr((ay)2) = Tr(a(y2)).

When considering octonion algebras over R, we have the following classification result:

! Actually we do not prove in this paper that Sping X SOz is indeed a reductive dual pair, instead we only
give a homomorphism Sping x SOz 2 — E7, whose kernel is a central cyclic group of order 2.
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Proposition 8.2.2. [Adams, 1996, Theorem 15.1] Up to R-algebra isomorphism, there is a
unique octonion algebra Qg over R whose norm N is positive definite, which is named as the

real octonion division algebra.

We choose a basis {eg,e1,...,er} as in [Gross, 1996, §4], where e is the 2-sided identity
element. Identify the real numbers R with the subalgebra Reg of Og, and denote the identity

element ey by 1. On Og, the conjugation is defined by 1 = 1 and & = —e; for each i. For any
7
element x = Y x;¢; € Og, one has N(z) = S°/_, 2? and Tr(z) = 2.
i=0

Definition 8.2.3. Cayley’s definite octonion algebra Qg is the sub-Q-algebra of Og, generated
by {e1,...,er}, which is an octonion Q-algebra with the norm N]g,.

The following definition gives an integral structure of Cayley’s definite octonion algebra:

Definition 8.2.4. Cozeter’s integral order Oz in Qg is the lattice spanned by Z @ Ze1 ®- - - © Zey

and

hi =(1+4+e+ex2+eq)/2, ho=(1+e;+e3+e7)/2,
hs = (1+el +e5+e6)/2, hy = (61 +e2+eg+e5)/2,

which is an octonion Z-algebra with the norm N]|g, .

8.2.2 Albert algebras

In this section, we will not generally define either an Albert algebra or a (cubic) Jordan
algebra, where precise definitions and details can be found in [GaribaldiPeterssonRacine, 2023].

Instead, we recall some examples and properties of Albert algebras that are important for us.

8.2.2.1 Hermitian 3-by-3 matrices over octonion algebras

Given an octonion algebra C' over a commutative ring k, we consider the space Hers(C)

consisting of “Hermitian matrices” in M3(C'), i.e. matrices of the form

a 2z Yy
[a7b7c;x7yaz] = zZ b x ,a,b,cek, ZC,y,ZGC,
Yy T c

equipped with the following structures, where the maps are all polynomial laws in the sense of
[Roby, 1963]:

o the identity matrix I = diag(1,1, 1),

o the adjoint map # : Herz(C') — Herz(C'), which is a quadratic map over k:

a z Y bc — N(x) Ty—cz zx — by
Z b x|—=| zy—cZz ca—N(y) yz—azr |, (8.4)
y T c zT — by yz—ax ab— N(z)
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o and the determinant, which is a cubic form over k:
det([a, b, c;x,y, 2]) := abc + Tr(xyz) — aN(x) — bN(y) — ¢N(z). (8.5)

One can construct more polynomial laws from these structures:

o There exists a symmetric bilinear form on Her3(C):
(A,B) := (Vadet) (I) - (Vpdet) (I) — (VaVpdet) (I).
If A=[a,b,c;x,y,z] and B = [d,V/, ;2 y/, 2], then
(A,B) =ad + bV +cd + (z,2') + (y,y) + (2, 7).

o The trace Tr : Hers(M) — k is defined as Tr(A) = (A,1).
« The linearization of # gives a symmetric cross product A x B := (A + B)# — A% — B¥,

With these structures, we can define the rank of a matrix in Her3(C):

Definition 8.2.5. The rank of A € Herg(C') is defined as follows:

o If A=0, then rank(A) = 0;

o If A# 0and A% =0, then rank(A) = 1;

o If A#0,A% #0 and det(A) = 0, then rank(A4) = 2;
o Otherwise, rank(A) = 3.

8.2.2.2 Euclidean exceptional Jordan R-algebra and its Q-structure

One of the most important Albert algebras appearing in this article is the following;:

Definition 8.2.6. The Euclidean exceptional Jordan R-algebra (or Euclidean Albert R-algebra)
is defined to be Jg := Her3(Og), where Qg is the real octonion division algebra.

The space Jr is a commutative but not associative R-algebra with respect to the R-bilinear
multiplication law Ao B := 3(AB + BA), where AB and BA denote the matrix multiplication,
and I is its 2-sided identity element. One can easily check that the symmetric bilinear form (, )
satisfies (A, B) = Tr(A o B) for any A, B € Jg, and it is positive definite.

Definition 8.2.7. A matrix A = [a,b,c;z,y, 2] € Jr is positive semi-definite if its seven minor
determinants

a,b,c,bc — N(x),ca — N(y),ab — N(z), det(A)

are all non-negative, and we write A > 0. When these minor determinants are all positive, we
call A positive definite and write A > 0.

Similarly to Definition 8.2.3, this algebra Jr admits a rational structure:

Definition 8.2.8. The Euclidean exceptional Jordan Q-algebra Jg is the sub-Q-algebra of Jg
consisting of [a,b,c;x,y, 2],a,b,c € Q,x,y, z € Og equipped with the multiplication o.
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Notation 8.2.9. Here we fix some elements in Jg that will be used frequently in this paper:
E; :=11,0,0;0,0,0], E2 :=[0,1,0;0,0,0], E3 :=[0,0,1;0,0,0].

8.2.2.3 Albert algebras over Z

Let k be a commutative ring. Albert k-algebras are defined in [GaribaldiPeterssonRacine,
2023, Definition 7.1] Roughly speaking, an Albert k-algebra is a projective k-module J together
with a distinguished point 1;, a quadratic map # : J — J and a cubic form d : J — k (as
polynomial laws in the sense of [Roby, 1963]) satisfying certain equations, such that for some
faithfully flat k-algebra K, J ®; K is isomorphic to Hers(Ck) as Jordan K-algebras, where Ck
is an octonion K-algebra. For any ring homomorphism k — &', the scalar extension J ®j, k" of
an Albert k-algebra J is an Albert k’-algebra.

Definition 8.2.10. [GaribaldiPeterssonRacine, 2023, Lemma 10.3] An isomorphism of Albert
k-algebras ¢ : J — J' is a k-module isomorphism such that ¢(1;) = 1 and dj o ¢ = d;? as

polynomial laws.
Ezample 8.2.11. The space of 3-by-3 Hermitian matrices Hers(C) defined in Section 8.2.2.1 is
an Albert k-algebra. In particular, Jg and Jg defined in and Section 8.2.2.2 are Albert algebras

over R and Q respectively.
Here are several classification results in [SpringerVeldkamp, 2000, §5.8; GaribaldiPetersson-

Racine, 2023, §11, §14] about Albert algebras that will be useful for us:

(1) There is a unique isomorphism class of Albert R-algebras that are Fuclidean, i.e.the
associated symmetric bilinear form is positive definite, and this class is represented by
(Jr, I, #, det) defined in Section 8.2.2.2.

(2) Euclidean Albert Q-algebras are also unique up to isomorphism.

(3) Albert Z,-algebras are unique up to isomorphism.

(4) There are exactly two isomorphism classes of Euclidean Albert Z-algebras.
In this article, we concentrate on the following family of Euclidean Albert Z-algebras:
Definition 8.2.12. An Albert lattice of Jg is a lattice J C Jr satisfying:

o The identity matrix I = diag(1,1,1) € Jg is contained in J;

o It is stable under the adjoint map # defined in (8.4);

o The cubic form det defined in (8.5) takes integral values on J;
o Together with I, # and det, J is an Albert Z-algebra.

Denote the set of Albert lattices inside Jg by J.

Ezample 8.2.13. Let Jz := Her3(Qgz), i.e. the rank 27 lattice
{la,b,c;x,y,2] € Jg|a,b,c € Z,x,y,z € Oz}

inside Jg. It satisfies the conditions in Definition 8.2.12, thus it is an Albert lattice.

2Here o means the composition, not the multiplication defined in Section 8.2.2.2.

128



8.2. Preliminaries on exceptional groups

Ezample 8.2.14. An Albert Z-algebra not isomorphic to (Jz, I, #, det) defined in Example 8.2.13
is constructed as follows, following [Gross, 1996, §4; GaribaldiPeterssonRacine, 2023, Definition
14.1]. Take

(=1+e1+ex+---+e7) €Oz

DN |

E:[2?2?2;57137/3]76:

This element E € Jz is positive definite and has determinant 1. Under the adjoint map # on
Jr defined as (8.4), we have E# = [2,2,2:3, B, B] € Jz. Using this element, we define another
quadratic map # on Jz by X#" = (E#, X#)E#* —Ex X7#. Set J(ZE) = (Jz, E#, #F det), where
det is still the restriction of det : Jg — R to Jz. This “isotopy” J(ZE) is an Albert Z-algebra
[GaribaldiPeterssonRacine, 2023, Corollary 13.11], and it is not isomorphic to (Jz, I, #, det) as
Albert Z-algebras [ElkiesGross, 1996, Proposition 5.5].

The associated symmetric bilinear form (, ) on J;AE) is positive definite [ElkiesGross, 1996,
Proposition 2.10], thus J(ZE) is Euclidean. By the classification result about Euclidean Albert
R-algebras listed above, we have an isomorphism ¢ : J (ZE) ®z R — Jr of Albert R-algebras. Its

image @(J(ZE)) is an Albert lattice of Jg in the sense of Definition 8.2.12.

Question. Can we find a simpler description of Albert lattices of Jg? For example, is it true
that a unimodular lattice J C Jr such that J contains I as a characteristic vector and J is stable
under # (or equivalently, under A A2) is an Albert lattice in Jg ?

8.2.3 F,

We start to define exceptional algebraic groups.

Definition 8.2.15. Define Fy to be the closed subgroup of the algebraic Q-group GLj,, that

(as a functor) sends a commutative Q-algebra R to the group
F4(R) := {9 € GL(Jg®q R) | g(Ao B) = g(A) o g(B), for any A, B € Jg ®q R}.

By [SpringerVeldkamp, 2000, Theorem 7.2.1], Fy is a semisimple and simply-connected Q-
group of Lie type F4. The real points Fy := F4(R) of Fy is contained in the isometry group
O(Jg,q) of the positive definite quadratic form q, thus it is compact. For every prime p, Fy
is split over Q,. By [SpringerVeldkamp, 2000, Proposition 5.9.4], the Q-group F4 coincides
with the algebraic group consisting of the Albert algebra automorphisms of Jg, i.e. sending any

commutative Q-algebra R to
{9 € GL(Jg ®q R) | g(I) = g,det(gA) = det(A), for any A € Jg ®q R}.

With this coincidence, we construct reductive Z-models of Fy in the sense of [Gross, 1996] as

group of Albert algebra automorphisms of elements J € 7.

Definition 8.2.16. Given an Albert lattice J € J, define Aut /7 to be the Z-group scheme
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sending a commutative Z-algebra R to the group
Aut /7 (R) := {g € GL(J ®z R) | g(I) = I,det(gA) = det(A), for any A € J ®z R}.

If we take J to be Jz defined in Example 8.2.13, we denote the group scheme Autj, ;7 by Fy.
The following result shows that Aut ;7 is a reductive Z-model of Fy:

Proposition 8.2.17. [GaribaldiPeterssonRacine, 2023, Lemma 9.1] For any choice of Albert
lattice J € J, the group scheme Aut ;7 is smooth and its fiber Aut ;7 ®z Z/pZ is semisimple
for every prime p. Moreover, the generic fiber of Aut ;7 is Fy.

In [Gross, 1996, Proposition 5.3], Gross proves that there are exactly two F4(Q)-orbits on
the equivalence classes of reductive Z-models of F4 in the genus of F,1. From now on we fix a

reductive Z-model F41 of Fy4, and we have the following formulation of the double cosets space

F4(Q)\F4(A)/Fu1(2).

Proposition 8.2.18. There is a bijection J —» F4(Q)\F4(A)/]:4,I(2) sending the base point
Jz to the double coset of the identity of F4(A).

Proof. For any J € J, the Albert Q-algebras J ®z Q and Jz ®z Q are isomorphic, so there
exists an element go, € F4(R) inducing J ®z Q = J, 07 Q. Set J = Joo(J), which is an
Albert Z-algebra inside Jz ®z Q = Jg. Since J' ®z Z, and Jz @y Z, are isomorphic as Albert
Z,-algebras, we can choose an element g, € F4(Q,) that induces Jz ®z Z, = J Qg Zy. For
almost all prime numbers p, we have J' ®yz Z, = Jz ®z Z,, so the element g, lies in Fy 1(Z,) for
almost all p.

In this way, we associate with J € J an element (goo,g2,93,...) € F4(A), and it can be
easily verified that its image in F4(@)\F4(A)/}"471(Z) does not depend on the choice of g, and
gp- So we have a well-defined map J — F4(Q)\F4(A)/Fy11(Z), and its inverse is:

(90) = g;ol (ﬂ (9p (Jz ®z Zp) N JQ)) eJ. O

Notation 8.2.19. We choose a set of representatives {1,7g} of F4(Q)\F4(Af)/]:4’1(z), and
denote by Jg C Jg the Albert lattice corresponding to vg. Equipped with the natural Fy(R)-
action, J is the disjoint union of the F4(R)-orbits of J7 and Jg.

8.2.3.1 An algebraic group of type FEg

If we remove the condition of fixing the identity element I in the definition of Fy41, we get

the following group of type Eg:

Definition 8.2.20. Define Mj to be the Z-group scheme sending any commutative ring R to
{(Mg),9) € R* x GL(Jz ®z R) | det(gA) = A(g) det(A), for any A € J; ®z R},

and M}] to be ker \.
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By [Conrad, 2015, Proposition 6.5], M} is a simply-connected semisimple group scheme of
type Eg, and its generic fiber has Q-rank 2.

Remark 8.2.21. Notice that the bilinear form (, ) on Jz ®z R is not Mj(R)-invariant. For
any m € Mj(R), we denote by m* the unique element in Mj(R) such that (m(X),m*(Y)) =
(m*(X),m(Y)) = (X,Y) forany X,Y € J; ® R.

Observe that we have already seen two Albert Z-algebras J(ZE) and Jg that are both not
isomorphic to Jz and their extensions to Q are isomorphic to Jg, by the classification result
listed in Section 8.2.2.3 they are isomorphic, although they have different distinguished points.

This fact gives us an element that will be used in the proof of Theorem 8.5.2:

Lemma 8.2.22. There exists an element 6 € MY(Q) that induces an isomorphism of Albert
(E)

Z-algebras J,, = Jg. Moreover, if we denote the image of & under the diagonal embedding
M} (Q) < M}(A) = M}(R) x M}(Af) by (0o, 05, then 6oo(Jz) = Jp, Goo(B) =1 and 67 ' €
ML(Z).

Proof. Since the Albert Z-algebras J (ZE), JE contained in Jg are isomorphic, there is a Q-linear
isomorphism § of Jg such that 5(J(ZE)) = Jg, 0(E) = I and det(0A) = §(A) for any A € Jg.
In other words, § is our desired element in M}(Q). The properties of do, follows immediately.
Forgetting the Albert algebra structures, 5;17E Iy @57 — J(ZE) ®7 7 is a linear automorphism
of Jz ®z Z preserving the determinant, thus 5;17E € M}(i) O

8.2.4 E,

Now we recall the definition of E7, a larger algebraic group over Q containing F4, and our
main references are [Pollack, 2020, §2.2; KimYamauchi, 2016, §3]°.
Consider the 56-dimensional vector space W; = Jo®Q®J @@Q4, equipped with the following

structures:

o A symplectic form: for w; = (X;,&, X[, &) € Wy, i =1,2,
(w1, wa)y = &1€5 — &&1 + (X1, X3) — (X2, X1);
o A quartic form: for w = (X, £, X', &) € Wy,
Qw) = (£¢' — (X, X"))? + 4€ det(X) + 4¢' det(X) — 4(X# X'#).

Definition 8.2.23. Define Hj to be the algebraic subgroup of GLyy; consisting of elements
that preserve the forms (, ); and Q up to some similitude v : Hy — Gy, i.e.

H; = {(1(9), 9) € G x GLw,

(v, gw)s = v(9) (v, )5, Qgv) = (9/Qw), Yo, w € Wy}

$Notice that there are some slight mistakes in [KimYamauchi, 2016, §3] and the correction is in [KimYamauchi,
2023, §2].

“In [Pollack, 2020], Pollack considers the space Q & Jg & J & Q. An element (X, &, X', &) € W corresponds
to (a,b,c,d) = (¢, X, (—, X"), &) under the notations of Pollack.
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Define H} to be the kernel of v, which is simply-connected and has Q-rank 3 and Lie type E7
[Freudenthal, 1954], and E; to be the adjoint group of Hj.

Remark 8.2.24. The center of Hj consists of scalars, and it contains a specific element 2 =

—Idw,, where + € Hj is defined as
L(X7§>X/7§/) = (_Xla_flvxag)' (86)

In [Gross, 1996], we know that E7 has a unique (up to equivalence) reductive Z-models, and we
will also denote this Z-group scheme by E; when there is no confusion. Note that E7(Z) is the
stabilizer in E7(R) of the lattice J; ®Z & Jz & Z C Wj.

8.2.4.1 Siegel parabolic subgroup of E~

Definition 8.2.25. The Siegel parabolic subgroup P ;s of H} is defined as the stabilizer of the
line Q(0,1,0,0) € Wj. A Levi subgroup of Py can be defined as the subgroup that also
stabilizes Q(0,0,0,1). Denote by Py the image of P in E7.

This Levi subgroup is isomorphic to Mj, and the action of (A(m),m) € My on Wy is
m(X, 6, X', &) = (m"X, A(m)¢, mX', \(m)~'¢)).

The unipotent radical Ny of Py is abelian and satisfies Nj(Q) ~ Jg, and any element of
N;(Q) has the following form:

n(A)(X, 6, X&) = (X + A6+ (A X))+ (A%, X) + & det(A), X' + Ax X + 'A% ¢'), A€ Jg.

We have the Levi decomposition Py = MjNj, and the action of My on Nj is given by the

following lemma:

Lemma 8.2.26. For any m € Mj(Q) C Pj. and A € Jg, we have the following identity:
mn(A)ym~1 =n (A(m)m*A).

Proof. This follows from a direct calculation using the property: for any m € Mj(Q) and
X,Y € Jg, we have m(X xY) = A(m)(m*X) x (m*"Y). O

The Levi subgroup of Py C E7; induced by Mj is the quotient of Mj by uo, where us is
generated by the element X — —X in Mj. We identify this Levi subgroup with Mj via the

short exact sequence:

m—A(m)m*

1—>/.1/2—>MJ MJ—>1. (87)

Hence we still have the Levi decomposition Py ~ M;Nj;, but with a different action:

mn(A)m~! = n(mA), for any m € M3(Q), A € Jo.
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Remark 8.2.27. For any A € Jg, we define nV(A4) = m(—A)~!. Set Ny = Ny, then
Py = M;Nj is the parabolic subgroup opposite to P .. The action of Mj on Nj is:

mn"(A)ym~! =n" (/\(m)_lmA) , for any m € M3(Q), A € Jg.

8.2.4.2 The Lie algebra ¢7;

Denote the Lie algebra of H}(C) by e¢7, which admits a decomposition
e7 = nf,(Jc) @ my @ ng,(Je), (8.8)

where

o my = Lie(M;(C));

o forany A € J¢, define np,(A) to be the element in Lie(INj(C)) such that exp(ny,(A4)) = n(A4),
and denote Lie(Nj3(C)) by nr,(Jc);

o for any A € J¢, define np,(A) to be the element in Lie(N;(C)) such that exp(ny(A4)) =
nY(A), and denote Lie(N;(C)) by ny/(Jc).

Besides this decomposition, we also have the Cartan decomposition of e¢;. Let Kg, be the
subgroup of H}(R) that fixes the line in Wy @ C spanned by (il, —i, —I, 1), which is a maximal
compact subgroup of H}(R). Take g, to be the complexified Lie algebra of Kg,, then we have

the following Cartan decomposition of e7:
e7 =p; DL, DPp7, (8.9)

where pJ+ @ pj is the natural decomposition of the —1 eigenspace for the Cartan involution. We

have the following relation between these two decompositions (8.8) and (8.9) of e7:

Proposition 8.2.28. [Pollack, 2023, Proposition 6.1.1] There exists an element Cj, € H}(C),
called the Cayley transform, satisfying:

(1) C;'n(Je)Ch = pJ
(2) C;'ny(Jc)Ch = p7;
(5') C,:lmJCh =¥, .

By Proposition 8.2.28, we make the following identifications:

o Identify the factor pff as J¢, via the map
py > X4 :==iC; ', (A)Cp = (=, 4) € Jg,
and equip it with the following Mj(C)-action:

(ml)(X) =14 (A(m)m_l(X)) , for any m € Mj(C),¢ € J¢, X € Jc.
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o Identify py as J¢, via the map
py 2 X, =iC; 'y (A)Cy — A € g,
and equip it with the following M;(C)-action:
m.X = A(m) " 'm(X) for any m € M;(C), X € Jc.

The natural M;(C)-invariant pairing {—, —} : J¢ x J¢¢ — C can be extended to

ZoGSn H?:l {Xi7 Ea(i) }

(==} IE" < ()" 5 C(X1® - @ Xn, 1@ @) -

, (8.10)

which factors through Sym"” J¢ x Sym™ (J¢).

Ezample 8.2.29. Identifying Sym"” (J¢) with the space P, (J¢) of degree n homogeneous polyno-
mials over J¢, the M;(C)-action on it is (m.P)(X) = P(A(m)m~ (X)) for any m € M3(C), P €
P,(Jc) and T € J¢, and the pairing {T®", P} is equal to P(T).

8.2.5 Dual pairs

Now we explain the two reductive dual pairs F4 x PGL2 and Sping x SO2 2 in Er.

8.2.5.1 F4 X PGL2

We study first the centralizer of F4 in M. For any element g in the centralizer Cyr, (F4), it
stabilizes the subspace J(g4(@), which is a line spanned by I, thus ¢g(I) is a non-zero multiple of

I. So we obtain a morphism Cuyg, (F4) — G by restricting to the line spanned by I.

e This morphism is injective, since the center of Fy is trivial;
o For any scalar A € Q*, the map X — AX is an element of Cp, (F4)(Q), thus morphism

is also surjective.

Hence the centralizer of F4 in the Levi subgroup Mj of H} is a rank 1 torus.
The centralizer of Fy in Py is generated by Cw, (F4) and the subgroup {n(zI), z € G,}
of Nj, and it is isomorphic to the standard Borel subgroup of SL» via:

(X = uX) <“ u_1> ,n(zl) — <1 f)

Similarly, the centralizer of Fy in P g is isomorphic to the opposite Borel subgroup of SLo. As
a consequence, we get a subgroup F4 x SLs inside H}, which is a maximal proper subgroup of
H}] [KarasiewiczSavin, 2023, Lemma 2.4], so it gives a reductive dual pair in H}, and induces a
dual pair Fy x GL3 (resp. F4 x PGLy) inside Hj (resp. E7).
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8.2.5.2 Sping x SO2>

By [Yokota, 2009, Theorem 2.7.4], the stabilizer of E; = [1,0,0;0,0,0] in Fy is isomorphic
to Sping, the spin group of a positive definite 9-dimensional quadratic space. In the sequel we

refer to this group as Sping. The 9-dimensional quadratic space can be found inside Jg:

Lemma 8.2.30. The group Sping preserves respectively the following subspaces of Jg:

Ji = {[0757_’5;:157070”’56@7'%' G@Q}

and

J2 = {[0,0,0;0,y,2] |y, 2 € Og}.

Proof. Since

Ji={XeJg|EioX =0,Tr(X) =0}

and
Jo={X€e€Jg|2E10X =X},

the lemma follows from the definition that Sping is the stabilizer of E; in Fy. O

Notation 8.2.31. In this article, SO22 is defined to be the special orthogonal group of a
split 4-dimensional quadratic space over QQ, and we define Spin, 5, GSpin, 5 similarly. Notice
that GSping, =~ {(g1,92) € GLa x GLg,det(g91) = det(g2)}, Spingy =~ SLa x SLg, and
SO3,5 ~ GSpin, 5/ Gy =~ Spiny 5/p5'

We study first the centralizer of Sping in the Levi subgroup Mj C H}:

Lemma 8.2.32. The centralizer Cy, (Sping) is an extension of Gy, X Gy, by pa.

Proof. For any element g € Cw, (Sping), it stabilizes the subspace Japing((@), which is spanned

by E; and I — E; = Eo 4+ E3. The rank 1 elements in this subspace are non-zero multiples of
E1, and the rank 2 elements are non-zero multiples of Es + Ez. As elements of Mj preserve
the rank, g acts on E; (resp. E2 + E3) by a scalar. So we obtain a morphism from Cyp, (Sping)
to G X G, whose kernel is the center of Sping, a cyclic group generated by the involution
la,b,c;x,y, 2] — [a,b,c;x,—y,—z] [Shan, 2024, §4.3.1]. This morphism of algebraic groups is

also surjective, since for any non-zero scalars A, 1, we have the following element in Cy, (Spiny):
my c[a,bcix,y, 2] = (X pPa, Ab, A Az, py, pz). O

Let C’ be the subgroup of Cw,(Sping) consisting of my ,, then we have the following

commutative diagram:

1 2 C, (Sping) —— G X G —— 1

| |
‘ p—ma, m (A 2 )
1 I [N i G X Gy —— 1
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which shows that Cng, (Sping) = C' is a split torus of rank 2. The centralizer of Sping in P
is generated by Cwm, (Sping) and {n(zE; + y(E2 + E3)),z,y € Q} C Ny, and it is isomorphic to
the standard Borel subgroup of Sping 5 = SLa X SLy via:

() ) () e

Similarly, the centralizer of Sping in Pjg. is isomorphic to the opposite Borel subgroup of
Spiny 5, thus we get a morphism Sping X Spin,, — H} The kernel of this morphism is
{(id,id), (m1,~1,m1,-1)}, and we denote by Sping X, Spin, 5 the quotient of Sping x Spin, ,
by this kernel. The morphism Sping x,, Spin, 3 — H} induces an embedding of Sping X,
GSpin, , (resp. Sping x,,, SOq2) into H; (resp. E7).

The centralizer Cg,(F4) ~ PGLy is embedded into SOy C Cg,(Sping) via the map

induced from the diagonal embedding GLs — GSping 5.

8.3 Local theta correspondence

In this section we recall some results on the minimal representation of E7 and the local theta

correspondences for the exceptional dual pairs constructed in Section 8.2.5.

8.3.1 Minimal representation of E;

The theory of theta correspondences studies the restrictions of minimal representations to
reductive dual pairs, so we first recall the definition of the minimal representation of E7(F) for

F =Q, or R, and also some properties that will be used.

Definition 8.3.1. (i) The minimal representation Iy, of E7(Qp) is the unramified rep-
resentation whose Satake parameter is the ]@;(C)—conjugacy class of ¢ (p v — ) Here
the morphism ¢ : SLy(C) — E7(C) corresponds to the subregular unipotent orbit of
E;(C) = H}(C).

(ii) Let II* be the holomorphic representation of H}(R) with the smallest Gelfand-Kirillov
dimension among non-trivial representations, and I~ be the anti-holomorphic represen-
tation contragradient to II". The minimal representation IImineo of E7(R) is the unique

representation whose restriction to H}(R) is It ¢ I1~.

The first property that we need is the following relation between the minimal representation

and a principal series:

Proposition 8.3.2. [Savin, 1994, Proposition 6.1][Sahi, 1993] For v = p or oo, the minimal
representation Iyin » of B7(Qy) is the unique irreducible submodule of the normalized degenerate

principal series
E7(Qy) c—1/2
Indg (10, A
where dp, is the modulus character of P3(Q,), and A : Mj(Q,) — Q) is the similitude character

of MJ(QU)'
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The sections of IndE7((%: _1/2\)\]2 are smooth functions f : P3(Q,) — C such that
f(pg) = IAp) 3£ (g). for all p € P3(Qp), g € Er(Qp). (8.12)

From now on, we identify Il i, . as the unique irreducible submodule of IndE7EQ”) 5_1/ 2\)\\2

normalize the spherical vector ®,, in IIyin, by the condition that ®,(1) = 1.

The second property is the Kg_-types of the holomorphic part II'" of II,;,. The maximal
compact subgroup Kg, of H}(R) is isomorphic to Eg xU(1), where Eg is the simply-connected
compact Lie group of type Eg.

Definition 8.3.3. (1) Define E(n) to be the irreducible representation of the compact Lie group
Eg¢ with highest weight nA, where X is the highest weight of pj’ as a Fg-representation.
(2) For n, k € N, define E(n, k) to be the irreducible representation of K. such that its restriction

to Eg is isomorphic to E(n) and its restriction to U(1) is the character z — 2*.

The restriction of IIT to Kg, is given in [Wallach, 1979]:

o
Ik, ~ @ E(n,2n + 12). (8.13)
n=0

8.3.2 p-adic correspondence for F, x PGL,

Over Qy, the exceptional theta correspondence for F4 x PGLy has been studied in [Savin,

1994; KarasiewiczSavin, 2023]. Now we recall some results that we need.

Definition 8.3.4. Let 7 be a smooth irreducible representation of PGL2(Q)), then the maximal
m-isotypic quotient of Iyinp admits an action of F4(Q,) and factors as m X O (7). We call ©(r)
the big theta lift of m, and its maximal semisimple quotient 8(7) the small theta lift of .

Let Bg = TgNg be the Borel subgroup of PGL» consisting of upper triangular matrices, and
By be the opposite Borel subgroup. Let x be a character of To(Q,) = {(*,), t € Q) } satisfying
X =|—1°-x0, where s > 0 and o is a unitary character of To(Q,). When s # % or x2 # 1, the

PGL2(Qp)

Bo(Qp)
to F4(Qy) is also a principal series. Before stating the result of Karasiewicz-Savin, we introduce

principal series Indg— (x) is irreducible. It turns out the theta lift of this principal series

a maximal parabolic subgroup of Fy.

Definition 8.3.5. Using Bourbaki’s labeling for simple roots of F4, we define Q to be the

maximal parabolic subgroup of F, obtained by removing a4 from the Dynkin diagram.

The Levi subgroup of Q is isomorphic to GSpin;, whose similitude map GSpin, - GL; is
given by the fundamental weight w,. Notice that Q ~ GSpg ~ Spg X G,

Proposition 8.3.6. [KarasiewiczSavin, 2023, Proposition 6.4] Let x = | —|*- xo be a character
of To(Qp) such that xo is unitary and 0 < s < 1/2, then the big theta lift of Indpc;(L2§Qp)(x) to
F4(Qyp) is irreducible, and

PGL PGL F
@(Indgo(Qngp)(X)) = Q(Indﬁo(Qngp)(X)) ~ IndQ‘l(((é%) (x o @4).
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Remark 8.3.7. If x is unramified, then Proposition 8.3.6 tells that the Satake parameter of

G(Indgngng )(x)) is the ﬁ(@)—conjugacy class of the image of (ep,c,) under the embedding
P

SLy x SLy — Spg x SLy — F,, where cp, = diag(x(p), x(p) ') and e, = diag(p'/2,p~1/2).

8.3.3 Archimedean theta correspondence
For the dual pair F4(R) x PGL2(R) inside E7(R), we have the following result:
Proposition 8.3.8. [GrossSavin, 1998, Proposition 3.2] The restriction of Iyin.co to F4(R) x

PGL2(R) is isomorphic to

P Viw, XD(2n + 12),
n>0

where Vo, is the irreducible representation of F4(R) with highest weight nwy, and D(m) is
the unitary completion of dpei(m) @ danti-hoto(M), dpei(m) being the holomorphic discrete series

representation of SLo(R) with minimal SO2(R) type m and dgnt;i_noio(m) being its contragradient.
Before stating the result for Sping x SO3 2, we define some notations for Sping(R).

Notation 8.3.9. Let A\; be the highest weight of the standard 9-dimensional representation
of Sping(R), and A that of the 16-dimensional spinor representation. Denote by U,,, the
irreducible representation of Sping(R) with highest weight mA; 4+ ns.

Proposition 8.3.10. The restriction of Iliinco to Sping(R) x SOz 2(R) is isomorphic to

P Unn®D(n+4)RD(2m +n +8),

m,n>0

where we view D(n + 4) X D(2m + n + 8) as a representation of SOz 2(R).

Proof. The proof is parallel to the argument in [GrossSavin, 1998, §3] for G2 x PGSpg, using
the branching laws in [Lepowsky, 1970]. O

8.4 Global theta correspondence

In this section, we recall an automorphic realization of the minimal representation of E7(A),
and then use it to define global theta lifts.

8.4.1 Automorphic forms

Let G be a connected reductive group over Q which admits a (reductive) Z-model ¢, in the
sense of [Gross, 1996]. Let Z= [, Zp, Ay = Z@@, and A = R x Ay. We fix a maximal compact
subgroup K of G(R) and let g = C ®@g Lie(G(R)).

For the simplicity we assume that the center of G is anisotropic, and denote the quotient
space G(Q)\G(A) by [G]. This topological space [G] admits a right invariant finite Haar
measure j, with respect to which we can define the space L?([G]) of square-integrable functions
on [G]. The topological group G(A) acts on L2([G]) by right translation, and the Petersson

inner product makes it a unitary G(A)-representation.
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8.4. Global theta correspondence

Definition 8.4.1. (1) An irreducible unitary representation 7 of G(A) is (square-integrable)
discrete automorphic in the sense of [BorelJacquet, 1979, §4.6], if 7 is isomorphic to a G(A)-
invariant closed subspace of L%([G]). We denote by Il4is.(G) the set of equivalence classes of
discrete automorphic representations of G, and by L3,..([G]) the discrete part of L%([G]).

(2) An irreducible unitary representation m of G(A) has level one if m can be decomposed as

T = oo @ Ty, Where 7y, is an irreducible unitary representation of G(R) and 7y is a smooth

irreducible representation of G(Ay) such that TF?(Z) # 0. We denote the subset of Igis.(G)
consisting of those with level one by IIj (G).

(3) The space of (square-integrable) automorphic forms A(G) is defined to be the space of
Koo X 4(Z)-finite and Z(U(g))-finite functions in the discrete spectrum L2 .(IG]).

Definition 8.4.2. (1) A square-integrable Borel function f : [G] — C is cuspidal if for the

unipotent radical U of every proper parabolic subgroup of G, we have
[ rugidu=0
(U]

for almost all g € G(A). We denote the subspace of L?([G]) consisting of the classes of cuspidal

2
cusp

functions by LZ, ., ([G]), and the subspace of A(G) consisting of cuspidal automorphic forms by

Acusp(G).
(2) A discrete automorphic representation of G is cuspidal if it is a subrepresentation of
L2.s»([G]). Denote by Ileusp(G) (resp. I (G)) the subset of Ilgisc(G) (resp. IIIE(G))

cusp cusp disc

consisting of cuspidal representations.

8.4.1.1 Automorphic forms of F,

Now we concentrate on the level one automorphic forms of F4, and describe them in a manner
similar to the case for orthogonal groups [ChenevierLannes, 2019, §4.4]. The adelic quotient [F4]
us compact, so L2([F4]) = L3  ([F4]) = Lgusp([F4]), and every automorphic representation of
F, is discrete and cuspidal.

A level one automorphic representation of Fy is generated by some automorphic form ¢ €
.A(F4)f4,1(i) C L2([F4])” 112)| The latter space can be viewed as the space of square-integrable
functions on F4(Q)\F4(A)/]:47I(z), endowed with the Radon measure that is the image of p by
the canonical map [F4] — F4(Q)\F4(A)/]:4’1(2). By the Peter-Weyl theorem, LQ([F4D]:4J@)

can be decomposed into a direct sum of irreducible representations:

Lemma 8.4.3. Denote by Irr(F4(R)) the set of equivalence classes of irreducible representations
of F4(R), then we have:

L(F) P = @ Vedy(Fy),
Velrr(F4(R))

where Ay (Fy4) is defined as
{1 - Fa(Q\Fa(4)/Fax(Z) = V | F(gh) = h "1 (g), for any g € Fu(h).h € Fa(®)}.  (8.14)
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Under this isomorphism, an automorphic form ¢ € A(F4)741®) is identified with an element

of b V @ Ay (F4). The number of m € I} (F4) such that 7o ~ V, counted with
Velrr(F4(R))

multiplicities, is exactly dim Ay (F4), which is computed explicitly in [Shan, 2024].

Using Proposition 8.2.18, we identify F4(Q)\F4(A)/F41(Z) with the set J of Albert lattices,
and equip J with the corresponding right F4(R)-invariant Radon measure. We can thus identify
L2([F4])741®) with L2(J), equipped with the induced F4(R) action:

(9-N)(]) = f(g~" ), for any g € F4(R),J € J,
and identify Ay (F4) with the space
[f:T = V| fgJ) = g.f(J), for any g € Fy(R),J € T}

We will use either of these two formulations of Ay (Fy), depending on convenience.
A function f € Ay (F4) is determined by its values on the set of representatives {1,vg} for
F4(Q)\F4(Af)/}"4,1(2) chosen in Notation 8.2.19. Furthermore, we have:

Lemma 8.4.4. The evaluation map f — (f(1), f(yr)) (or equivalently f — (f(Jz), f(Jr)))
induces an isomorphism of vector spaces:
My (Fy) ~ VI @ Ve,

where I't = Fy1(Z) is the automorphism group of the Albert algebra Jz, and I'y is that of Jg.

8.4.1.2 A polynomial model of V,,

In this paper, we focus on automorphic representations of F4 with archimedean component
V = V,w,. Now we give a polynomial model of this family of irreducible representations.

When n = 1, a natural model for the 26-dimensional representation V, is the trace 0 part of
Jc ~ p; . We choose the realization dual to this one, i.e. the subspace of Pi(J¢) ~ pj{ consisting
of linear functions ¢ on J¢ such that ¢(I) = 0.

For n > 1, V,,, is a subrepresentation of Sym” V, C Sym" pj = P,,(Jc), where the action
of F4(R) on P, (Jc) is given as:

(9.P)(X) = P(g 'z), for any g € F4(R), P € P,(Jc) and X € Jc.
Definition 8.4.5. Define X to be the following F4(C)-orbit in J¢:
X:={AeJc|Tr(A) =0,rank(A) =1} = {A € Jc|A #0,Tr(A) = 0,rank(A) = 1}.

For any n > 1, we define V,,(J¢) to be the subspace of P, (Jc) spanned by polynomials of the
form X — (Tr(X o A))", Ae X.

Lemma 8.4.6. For anyn > 1, V,,(Jc) is an irreducible representation of F4(R), and its highest

weight 1s nwy.
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Proof. This lemma follows from the fact that X is the set of highest vectors in the irreducible
F4(R)-representation {A € J¢, Tr(A) = 0} ~ V,, and F4(R) acts on it transitively. O

8.4.2 Automorphic realization of minimal representation

Let ITin = @) yine be the (adelic) minimal representation of E7(A). To establish the global
theta correspondence for dual pairs inside E7, we need to choose an automorphic realization of
Monin, i-e.an E7(A)-equivariant embedding 6 : I, < L2([E7]). In this section, we follow
[KimYamauchi, 2016, §6] to give 6 via an explicit modular form constructed by Kim in [Kim,
1993].

8.4.2.1 Exceptional modular forms

Definition 8.4.7. The exceptional tube domain Hjy of complex dimension 27 is the open subset
of Jc = Jr + iJr consisting of Z = X + ¢Y with Y positive definite.

For any element Z € J¢, set r1(Z2) := (Z, det(Z),Z#,l) € W; ® C. By [Pollack, 2020,
Proposition 2.3.1], for any g € H}(R) and Z € Hj, there exist a unique scalar J(g, Z) € C*,
which is called the automorphy factor for H}(R), and a unique Z' € Hj such that

g11(2) = J(g, 2)r1(Z).

Definition 8.4.8. The action of H}(R)-action on H; is defined as follows: for g € H(R) and
Z € Hjy, g.Z is the unique Z' € Hj satisfying g.r1(Z) € C*ry(Z").
Ezample 8.4.9. We list the actions of some elements in H}(R):

o For n(A) € Nj(R), n(A).Z =Z+ A and J(n(4),2) =1,
e For m € Mj(R), m.(X +iY) = A(m)(A(X) +iA(Y)) and J(m, Z) = A\(m)~};
e For ¢ defined by (8.6), 1.Z = —Z~1 and J(1, Z) = det(2).

The center 1 ~ (:2) of H}(R) acts trivially on H;, and the group of holomorphic transfor-
mations of H; is H}(R)/ + 1, the connected component of E7(R).

Definition 8.4.10. A holomorphic function F' : Hy — C is a modular form of level 1 and weight
k if for any Z € H; and v € H}(Z) we have

F(7.2) = J(7, 2)" - F(2).
Kim’s modular form F g, is defined by the following Fourier expansion:

Frim(Z) :=1+240 Y 03(cy,(T)) ¥4 for any Z € Hy, (8.15)

J73T>0,
rank(7)=1

where cj,(T') is the content of T, i.e.the largest integer ¢ such that T'/c € Jz, and o3(n) =
> din d®. The function F g, defined by (8.15) is a modular form of level 1 and weight 4.
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8.4.2.2 Kim’s automorphic form

Kim’s modular form F g, gives rise to a level one automorphic form of E;. Using the strong

approximation property of E7, we have the following natural homemorphisms:

E7(Q)\Er(A)/E7(Z) ~ Er(Z)\Er(R) ~ Hj(Z)\H}(R),

~

thus we write any element g € E7(A) as g = gggoegy, where gg € E7(Q), g5 € E7(Z) and
goo € E7(R) is the image of an element in H}(R) under the projection Hj(R) — E7(R). In
other words, goo is an element of H}(R)/ + 1, the group of holomorphic automorphisms of H,.
Now for g = gggecgs; € E7(A), we define

Okim(9) = J(goos i)™+ F i (goo-i1),

which is a well-defined® automorphic form of E;. Using the explicit action on Hj given in
Example 8.4.9, one gets the following:

~

Lemma 8.4.11. The automorphic form Oim € A(E7) is invariant under F4(R) x E7(Z).
Now we use O, to embed Iy, into L2([E7]):

Definition 8.4.12. Let ®, € Ilin, be the normalized spherical vector, ®, € It C Min, 00
the unique (up to scalar) holomorphic vector with the minimal Kg,-type, and ®¢ := @, @ @y =
®y®Py € Myin. The automorphic realization 6 : Iy, < L2([E7]) is defined to be the unique
E7(A)-equivariant map sending ®g to © k.

8.4.2.3 Constructing automorphic forms with non-minimal Kp_-types

The holomorphic vector @, lies in the minimal Kg,-type of I+ C IIhin,00, and we follow the
method in [Pollack, 2020] to produce (holomorphic) automorphic forms with higher Kg_-types.

For the two summands p7 in the Cartan decomposition (8.9) of ez, choose a basis {X4 }o of

pT and its dual basis {X)}, of pj with respect to pJ x pj ~ J¥ x J¢ = e

Definition 8.4.13. We define a linear differential operator D : A(E7) — A(E7) ® p; by

Dy(g) := Z(Xagp)(g) ® XY, for every ¢ € A(E7),

«

which is independent of the choice of {X,},. For any integer n > 0, set D" to be the n-times

composition of D.

Applying the differential operator D™ defined in Definition 8.4.13 to © k., we obtain
0, :=D"Okim € A(E7) & (P;)(Xm,

whose coordinates belong to the Kg_-type E(n,2n + 12) in (8.13).

"Here we use the fact that J(v, Z) = £1 for any v € H}j(Z) and Z € H;.
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Notation 8.4.14. (1) For any Albert lattice J € J, denote by J* the set of rank 1 and
positive semi-definite elements in J, and set aj(1") := o3(c;(T)) for any T € J, where
cj(T) is the content of T in J.

(2) For any element T' € Jg, denote by hp the function:

H(ll (R) _> Cy goo —> J(goo’ ’1:[)_4 . 627”:(T7.qoo.il)'
With these notations, for any n > 1, we rewrite ©,, as:

On(g) =240 > ay,(T)-D"hr(g) =240 Y ay,(T) - D"hr(geo), (8.16)
Telf Tel}
where g = gggoogs as in Section 8.4.2.2. We end this section by the following property of ©,:

Lemma 8.4.15. For any goo € HY(R) and heo € F4(R), we have O, (goohoo) = hot.On(geo),
where the action of hy is applied on (p7)".

Proof. By the definition of ©,, = D"Og/,,, we have:

QYyenny an
d d
| ar| Oxim(gachece™ e @ XY, @ @ XY,
QY yenny an " tn=0 1 t1=0
d d tnAd(hoo)Xa t1Ad(hoo)Xa v v
= T o OKxim(gooe n...e The) @ Xy, ® - ® Xor
Alyyan =0 =0
d d tnhoo X t1hoo -Xa Vi V]
= H E @K,-m(gooe ' n...e 1)@)(041@...@Xan7
Q1 yeny an " tn=0 1 t1=0

where hoo.Xo = Ad(hoo )Xy and the last equality follows from Lemma 8.4.11. Since F4(R) is a
subgroup of the maximal compact subgroup Kg, of E7(R), {heo.Xa}a also gives a basis of p7,
and its dual basis of p} is {heo.X }a. As the differential operator D is independent of the choice
of {Xu}a, we have:

On(goohoo) = Z (Xay, +* Xa1 Okim) (9oc) ® ho_ol~XX1 Q- ® ho_ol-XXn = hgol‘gn(goo)- [

[CAPRTIe2))

8.4.3 (Global theta lifts

Let G x H be one of the two reductive dual pairs given in Section 8.2.5, i.e. G x H =
F4 X PG’L2 or Sping X SOQ’Q.

Definition 8.4.16. For ¢ € A(H) and ¢ € Iy, the global theta lift of ¢ with respect to ¢ is

the automorphic form of G defined by the following absolutely convergent integral:

O4(p)(9) := - 0(¢)(gh)p(h)dh, for any g € G(A).

For a cuspidal automorphic representation 7 € Icusp (H), its global theta lift ©(n) is the G(A)-
subspace of L%([G]) generated by {O4(p) | € 7, ¢ € i }-
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Remark 8.4.17. In this paper, we are always in the situation that either [H| is compact or
¢ € A(H) is cuspidal. For the second case, the absolute convergence comes from the rapid

decay of .

We also define the global theta lift of a “vector-valued automorphic form” o € Ay, (F4)
defined as (8.14), which is compatible with Definition 8.4.16:

Definition 8.4.18. For a function a : F4(Q)\F4(A)/F11(Z) = Ve, in Ay, (F4), its global
theta lift ©(«) is defined as:

0(a)(g) = /[F4]{@n(gh), o(h)}dh, for any g € PGLy(A), (8.17)

where {—, —} : J&" x (J¥)®" — C is the pairing defined in (8.10), and we view a(h) € V;,m, as

a homogeneous polynomial over J¢.

8.5 Exceptional theta series

In this section, we compute the Fourier expansion of the theta lift ©(«) of a € AV, (Fy),
and prove Theorem 8.1.4 in the introduction. From now on, we will identify a with its values
a1 € Vo(Je)', ag € V,(Jo)'™® at 1,9g as in Lemma 8.4.4.

8.5.1 Fourier expansions of global theta lifts

~

Normalize the Haar measure dh of F4(A) in (8.17) so that F4(R)F41(Z) has measure 1.
Write g € PGL2(A) as g = gggoogs, Where gg € PGL2(Q), g5 € PGL2(Z) and goo is the image
of an element in SLy(R), then using Lemma 8.2.22, Lemma 8.4.15 and the F4(R)-invariance of

{—,—}, we obtain:

1 1
O(a)(9) =7 {On(g9hochy), a(hoohr) tdh + —— {On(ghvEhS), A(hocyEhs)dh}
[Tl & : CR T 2 : :
I Fy(R)Fy1(2) El Jry(R)Fy1(2)
1 _ _ 1 _ _ _
=T {ha On(geo) hao ar}dh + T A{h 0055 goo), hoo 0w}
I F4(R)F4,1(2) Tel F4(R)F4,1(Z)

:ﬁ{emgw),am ﬁ{@nw;gmm}.
(8.18)

If the global theta lift ©(a) € A(PGLg) is non-zero, then the following result shows that it

arises from a weight 2n 4 12 classical holomorphic modular form on SLs(Z):

Proposition 8.5.1. Let H C C be the Poincaré half plane, and j : SLa(R) x H — C* the
automorphy factor given by j ((¢4),z) = cz +d. For any a € Av,,.., (Fa), the function

fo(a)(2) == i(g,1)*"1?0(a)(g), z = gi € H, g € SLa(R),

is well-defined and is a level one holomorphic modular form of weight 2n + 12. Furthermore, it

is a cusp form when n > 0.
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We postpone the proof of Proposition 8.5.1 to Section 8.5.3, and prove the following main

theorem on the Fourier expansion of fg(q)

Theorem 8.5.2. (Theorem 8.1.4 in Section 8.1) Let a € Ay, (Fa), n >0 and fo(a) the cusp
form associated to its global theta lift ©(a). Up to a non-zero constant, fo,) has the following

Fourier expansion:

1 .
fo(a) Y an(T Ja" D + Tal > ag (T)ap(T)g™), g = =,

‘ I|T JF

Remark 8.5.3. The case when n = 0 is studied by Elkies and Gross in [ElkiesGross, 1996]. In
this case o € A;(F4) can be identified as a pair of complex numbers. For « corresponding
to (|T'1],0), fo@) = Fi2 + 436290100A; for a corresponding to (0,[Tg|), foa) = 2 — %A,
where Fia(z) = 1+ ﬁ Y on>1011(n)g" is the normalized weight 12 Eisenstein series, and

A(z) = anZl(l — q”)24 is the discriminant modular form.

Before proving Theorem 8.5.2, we state a result that will be used in the proof, whose proof

is also postponed to Section 8.5.3.

Theorem 8.5.4. Let P € V,(J¢) ~ Vypw, for any n > 0, T an element of Jr, and hp(g) =
J(goo, i) ™% - e2mi(T'g00 1) ¢pe function given in Notation 8.4.14, then we have:

{(D"hr)(9), P} = (=4m)" - j(g,8) 2"~ 2P (T) 29D for any g € SLa(R).

Proof of Theorem 8.5.2. By (8.18), we have

mmm@:jww%ﬂﬁgi{@mmﬂﬁ+“iﬁeaxhxmﬂ)z:wieﬂ. (.19)

Using the Fourier expansion (8.16) of ©,, and Theorem 8.5.4, the first term in (8.19) equals

1 240

01 Ou0) o) = (007 S g, (THD hr(g), o)
TeJ}
240(—4m)"
—EEE Y @
! TeJ}
and the second term in (8.19) equals
1 o _ 40 - n
ﬁ](gvz)z +12{@n(5oolg)>aE} - ’F ’ g7 2 2 Z D h‘T(d g) OJE}
E TeJ}
240 n n
= ’F ’ (97 2 +i2 Z aJZ ){D h§;oT(g)7aE}
Tel}
240(—4m)" I
_ |(F ‘W) Z aJZ(T)OZE((S;OT)B%W(&OOT’Q'ZU.
E

TeJ}
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Since M} (R) preserves the rank and stabilizes the set of positive semi-definite elements [Elkies-
Gross, 1996, Proposition 2.4], we have JE = 500(J2), thus

Z aj, (T)aE(don)(aZm(é;oT,g.iI) _ Z aj, (T)aE(5205501T)62”(5§o‘5301T79'“) ]
Tel} TeJh

The element 6% 05} is the archimedean part of 6*§~! € M}(Q) By Lemma 8.2.22, 5;17]3 €
ML(Z), so 5326;1 € MY Z)vg' = M3 (Z)vg! = Aut(Jg ®z Z, det). As a direct consequence,

5*6~! induces an automorphism of the lattice Ji, thus we have:

soox o—1 .
- e (T)ap(0505 T)e? x0T = 37 ayy (T)ap(T) ™ ™). 0
Telh Telh

A direct corollary of Theorem 8.5.2 is the following:

Corollary 8.5.5. For any Albert lattice J € J and any polynomial P € V,,(Jc), the (weighted)

theta series

ﬁJ,P(Z) = Z aJ(T)P(T)qTr(T)’ zeH,q= 627ri7 (820)
TeJ*

is a modular form on SLo(Z) of weight 2n + 12, and it is cuspidal if P is not constant.

Proof. Since the theta series (8.20) is invariant under the F4(R)-action on the pair (J, P) in the
sense that Vg7 ,p = 9 p, it suffices to prove the modularity for J € {Jz,Jg}. Here we give the
proof for J = Jz, and that for Jg is almost the same.

Let a: J — Vy(Jc) be the element in Ay, (5.)(F4) that is supported on the Fy(IR)-orbit of
Jz and takes the value }_ cp v.P at Jz € J. By Theorem 8.5.2 and Remark 8.5.3, fo(q) is a
modular form on SLy(Z) of weight 2n + 12. On the other hand, J} is stable under the action

of I't, thus one has:

fotw(2) = 15 P (Z P(v‘lT)) /"
TeJ} Y€l

- = (Z ay, (vT)P(T)qTr(”T))

|FI| el Tely
:ﬂJL ( ) 0

If we view a € Ay, (F4) as a function o : J — V,(Jc), the modular form fg(,) can be

written in the following forms:

1 1
fo) = ﬁﬁJzﬂ(Jz) + @ﬂJE,a(JEw
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8.5.2 Theta series attached to Sping(R)-invariant polynomials

As an application of Theorem 8.5.2, we are going to show that for every weight k with
Sk(SLa(Z)) # 0, there exists a polynomial P € Vi_12(Jc) such that the weighted theta series
¥y, p defined as (8.20) is non-zero. This result will ée used later in Section 8.6.4.

The F, | By branching law [Lepowsky, 1970, §2, Theorem 7] says that dim VHEP®) — 1
for any n > 0, where Sping is defined as the stabilizer of E; = [1,0,0;0,0,0] in Fy, thus the

Sping(R)-invariant polynomial in V,,(J¢) is unique up to a non-zero scalar.

Theorem 8.5.6. For n > 2 and any non-zero polynomial P € Vn(JC)Spin%’(R), the weighted

theta series U3, p is non-zero.

Proof. We first construct an explicit polynomial P, € Vn(J@)Spin9(R). In the real definite
octonion algebra O, we pick three purely imaginary elements xg, yo, 20 such that R ® Rzg &

Ry ® Rzq is isomorphic to Hamilton’s quaternion algebra, i.e.
xf = yg = 25 = —1 and zoyo = —yozo = 2o-

Take 21 = z0, y1 = vV—2y0 and 23 = /=220, and choose B = [2, -1, —1;x1,y1, 21] € Jc. It can
be easily verified that B € X, thus the polynomial @, (X) := (Tr(X o B))" = (X, B)" lies in
Va(Jc), and take P (X) := [gpin @) k-Qn(X)dk = [gpin, @) (X, kB)"dk to be the average of Qn
over Sping(R). Now it suffices to show that the associated theta series 95, p, # 0.

Consider the first Fourier coefficient a; of 95, p,. The elements in J} having contributions

to the coefficient of q are E1, Eo and Eg, thus:

3

=1

By Lemma 8.2.30, Sping(R) preserves the subspaces J; = {[0,&, —£;,0,0]| £ € R,z € Or} and
J2 =1{]0,0,0;0,y, 2] |y, z € Or} respectively. So for any k € Sping(R) we set:

k:[0,0,0;a:l,0,0] = [Oaf(k)7_£(k) 7%’(]?),0,0] € Jl:
k[0,0,0;0,y1,21] = [0,0,0;0,y(k), 2(k)] € Jo ® C.

We have the equality 2¢(k)? + (z(k),z(k)) = (z1,71) = 2, as k preserves the inner product

on Jg, which implies that [£(k)| < 1. The three diagonal entries of kB are 2, —1 + £(k) and
3

—1—¢(k), thus Y (E;, kB)" =2" 4+ (=1 +&(k))" + (—1 — £(k))" € R>p. When we take k =1,
i=1

3

> (E;, B)" = 2" 4+ (—=1)™ 4+ (—1)™ is positive for any n > 2. Hence the integral in (8.21) is

i=1
strictly positive, and as a consequence the weighted theta series 9;, p, is non-zero. O

8.5.3 Proof of Theorem 8.5.4

In this section, we will prove Proposition 8.5.1 and Theorem 8.5.4, following a similar strategy
to that of Pollack in [Pollack, 2023, §6].
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We first define a basis {X,}a of pj“ as follows: for any A € Jc¢, write Xy := XX =
iC;, 'y, (A)Cy, as in Section 8.2.4.2, which is an element of pJ by Proposition 8.2.28. Choose a C-
basis {eq, ..., ea7} of J¢, then we have a basis {X¢, }1<i<o7 of pJ+, and we denote its dual basis by
{X¢ }i<i<or. In [Pollack, 2023, §6.2], Pollack calculates the action of X4, --- X4, on hp|n,(w)-
Before recalling his result, we explain some notations that will appear in the statement.

Let T(J¢) = % J%)k be the tensor algebra of J¢. Define a family of F4(R)-equivariant maps

P J%)k — T(Jc) inductively:

e let &y =1 be the constant map;
o for k>0, define®

P14 @ @A @ Ap1) =Pk(A1 @ - @ Ag) @ Ap1 + 4 Tr(Ap1) Pr(41 @ - @ Ag)
+ A1 0 Pp(A1® - @ Ap) + Pp(Apr10 (A1 ® -+ ® Ap)),

where Ao (A1 ®---® A,) := 2;:1A1®---®(AoAj)®---®AT.
For any T' € Jg and m € Mj(R), we define a linear form wr,, on T(Jc) by:

Wrm (A1 ® - ® Ap) = (—4m)" [] (T, m(4;)), for any r > 0.
Jj=1

Proposition 8.5.7. [Pollack, 2023, Proposition 6.2.2] Let the notations be as above, then for
any m € Mj(R) and Ay,..., A, € Jc, we have

XAn s XAlhT(m) - wT7/\(m)m*(‘@n(A1 - ® An))hT(m)

Remark 8.5.8. There is a slight mistake in [Pollack, 2023, Proposition 6.2.2], whose correct

formula should be
Xa,  Xahr(M(6,m)) = wrm(Pn(A1 @ - @ Ap))hp (M (6, m)),

where M (5, m) is the element of Mj(R) such that M (8, m)n(A)M (5, m)~* = n(m(A)).
Observe that Z, (A1 ®---® Ay) is the sum of 41 ®---® A,, with tensors of smaller degrees.

The following lemma enables us to consider only the leading term of &,.

Lemma 8.5.9. Let P be an element in V,(Jc) ~ Vpw,, then:
Z Pnleq, ®"'®€in){XZi1 ®"'®XZM7P}: Z ei @...@61‘”{)(;/“ @...@XZM,P}. (8.22)
i1yeenrin i1yensin

Proof. Since the pairing {—, —} is F4(R)-invariant and &2, is F4(R)-equivariant, for any g €
F4(R), we have:

Y. Palen ® Qe X, ©®@X, L g.P}

U1,0in

SIn [Pollack, 2023, §6.2], the Jordan product Ao B is denoted by %{A, B}, where {A, B} = AB+ BA is defined
in [Pollack, 2020, §3.3.1].
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8.5. Exceptional theta series

= Z Ppley @+ ® ein){X;y/*l.eil Q- Xzi/*l,enﬂp}

ilv---vin

LS Pulgen oo gen) (X, B0 X0 P)

11 yenyin
=Y 9.Pulei ® -~®ein){X;/il ®--- X ,P}
Q1 yeenyin
Comparing this with the right-hand side of (8.22), it suffices to prove (8.22) for one non-zero
vector in Vo, , so we take P to be (Tr(X o A))" € V,,(J¢) for an arbitrary A € X, as explained
in Section 8.4.1.2.
Both sides of (8.22) are independent of the choice of the basis {e; }1<i<27 of J¢, thus we choose
) =ei"

a specific basis {e; }1<;<27 such that e; = A. With this choice, it suffices to prove 2, (") = ",

which follows from the inductive definition of &7, and the fact that Tr(e;) =0, e;0e; =0. O

Proposition 8.5.10. For m € Mj(R) and P € V,,(J¢) ~ Vyw,, we have
{D"hr(m), P} = (—4m)" P (A(m)m='T ) hr(m).
Proof. Combining Proposition 8.5.7 and Lemma 8.5.9 together, we have:

11 yee5tn
= > wrsmm (Palen @ @e, )hr(m) (XY, @@ X, P}
ilv ~~7in

= hy(m) Z W myme (6 @ -+ @ ei,) {XY, @@ X, P}
= (=47)"hr(m Z (H ))) {xy @ ®Xy P}

= (—4m)"hy(m Z (ﬁ (Amym ™', eij)) {xy @ oXxy P}
= (~47)"hr(m) {(Mm)m—lT) "}
= (=4m)"P (A(m)m™'T) hy(m). O
To prove Theorem 8.5.4, we use the Iwasawa decomposition to write g € SLo(R) as:
—sin6 cos 6

g = tnk, Wheret:(“uﬂ)’n:(l:lv)’k:(co§9 sin6>'

By a direct calculation, we have the following:

Lemma 8.5.11. For Ay,..., A, € Jc, we have the following identities:

(1) Xa, ---Xa,hp(mn(A)) = 2 {TAmm X ) ... X 4 hp(m), YA € Jo,m € My(R);
(2) Xa, - Xa,hr(gk) = J(k, i)™ (k.Xa,) - -- (k-Xa,) hr(g), Vk € Kg,,g € H}(R).
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Chapter 8. Global exceptional theta correspondence F4 x PGLo

Proof of Theorem 8.5.4. Let the notations be as above. By Lemma 8.5.11, we have:

D"hr(g) = D"hy(tnk)
=J(kaD)™" Y (kX kX, Yhr(tn) @ X @ @ X[

D1 yeenyin
= J(k, Z.I)—4e27rz‘(T,u2xI) Z (k‘Xeil k. Xe, hr(t) @ X;/il R ® Xevin'

74'17“-’@'11,

_ j(k, i)72n712627ri(T,u2xI) . DnhT(t),

where the last equality follows from k.X 4 = (cos @ +isin6)?X 4 = j(k,i) %X 4. Now we take the
pairing of D"hp(g) with P, and use Proposition 8.5.10 to obtain the desired identity:

I
—~ <o

{DnhT (g)’ P} (k’, i)—2n—1262ﬂ'i(T,u2xI) (_47T)np <U2T) J(t, iI)—4€27ri(T,t.iI)
—47T)nj(]€, i)—Zn—12j (t, i)—12u2nP(T)eQm’(T,t,(iI-i-xI))

—47T)nj (g’ i)72n712p (T) e271'i(T,g.iI) ) ]

Proof of Proposition 8.5.1. To show that fg()(2) := j(g,i)*"20(a)(g) is well-defined, it suf-

fices to verify that for k in the maximal compact subgroup of SLs(R), we have:
O(a)(gk) = j(k,1)7*""1?6(a)(g), for any g € SLy(R).

This follows from Lemma 8.5.11 and the identity £.X4 = j(k,i)~2 - X4. By the definition of
©(«a) and Proposition 8.3.8, Jo(a) s a level one holomorphic modular form with weight 2n + 12,

and when n > 0 it is a cusp form. O

8.6 Global theta lifts from PGL, to F,

We look at the other direction of the global theta correspondence, i.e. from PGLy to Fy. Let
T ~ ®)m, be a level one algebraic cuspidal automorphic representation of PGLqy associated to
a Hecke eigenform of SLy(7Z) with weight 2n + 12, n > 0. We take an automorphic form ¢ € 7

corresponding to ®’¢, under the isomorphism 7 ~ ®'n,, such that:

e (Yoo is the unique lowest weight holomorphic vector in the discrete series representation
D(2n + 12) of PGLy(R);
« for each prime p, ¢, is chosen to be the normalized spherical vector in the principal series

representation 7, of PGL2(Q)).

Our goal is to prove ©(m) # 0. In other words, we need to find a vector ¢ € Ili, such that
©4(p) # 0. The strategy is to calculate the Sping-period of the global theta lift ©4(¢):

Pspin, (05(9)) = | ©4(2)(g)dg

[Sping]

As stated in Remark 8.1.6, one motivation for considering this period integral is the conjecture
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8.6. Global theta lifts from PGLsy to Fy

of Sakellaridis-Venkatesh.
Plugging the definition of the global theta lift ©4(¢) in this period integral and changing the

order of integration, we obtain:

Pspin, (Og( / / dhd
Spi ng ¢ [Sping] PGL2 ( ) J

- [PGLy] (p(h) </[Spin9] 9) k) dg) a

8.6.1 Exceptional Siegel-Weil formula

(8.23)

The integral f[sping} 0(¢)(gh)dg appearing in (8.23), as a function of h € SO22(A), is the
global theta lift of the constant function on [Sping] to SO22. In this section, we will prove
an exceptional Siegel-Weil formula for Sping x SOg 2, which represents this theta lift as an

Eisenstein series on SO2 5.

Definition 8.6.1. Let B = TN be the Borel subgroup of
SO22 = GSpiny /G = {(g1,92) € GL2 x GLa|det g1 = det g2} /G2

consisting of the equivalence classes of (g1, g2), where gjand g are upper triangular matrices.

For s1,s9 € C, we define a character x5, s, on T(A) by:

a a 51 52
Xs1,82 (( ! b1)7( ? bg)) = |a1/b1’ 2 |a2/b2| 2,

and define I(s1, s2) to be the (normalized) degenerate principal series Ind (()2)2( ) Xs1,82-

By Proposition 8.3.2, we identify the (adelic) minimal representation Il of E7(A) as a

subrepresentation of Ind?%‘z) 5_1/ 2 A2,

Lemma 8.6.2. The restriction of sections gives a morphism IndE7EA% 7}/2])\|2 — 1(3,7).

Proof. A section f € IndP E 4)0p _1/ 2]/\|2 satisfies the functional equation (8.12). Combining the

explicit morphisms (8.7) and (8. 11), the image of ((“*4,),(",)) € T(A) in My C E7 has
similitude (a1/b1) - (a2/b2)?, thus the restriction of f to SO22(A) satisfies:
f(tng) = xas(t)f(g), for any t € T(A),n € N(A),g € SO22(A).

This shows that f[go, ) is a section of IndS(()g)Q(A)é_l/zXz; s =1(3,7). O

Lemma 8.6.2 gives us a SO3 2(A)-equivariant map:

E7(A

Res : I1in <—>Ind Py(A)

71/2 2
p, AT = 1(3,7).

Given a smooth vector ¢ € Il;in, we have the following two automorphic forms on SO3 o:
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Chapter 8. Global exceptional theta correspondence F4 x PGLo

e The theta integral:
Oul)l) = [ 0(6)(g)dh, for any g € SO22(4),
ping
« The Eisenstein series associated to ¢ := Res(¢) € 1(3,7):

E(¢)(g) := > $(7g), for any g € SO22(A).
v€B(Q)\SO2,2(Q)

Theorem 8.6.3. Let ®; := ®,P, be the normalized spherical vector in 1y, 5 chosen in Sec-

tion 8.4.2, then for any smooth holomorphic vector ¢oo € lmin,oo, up to some scalar we have:

E(Res(¢oo ® Of)) = Opcny (1)-

Before proving this formula for any smooth vector ¢o € Ilyin o0, we verify it for the specific

vector ®,, chosen in Section 8.4.2.

Proposition 8.6.4. For the vector ®g = P ® @ € Ilyin, up to some scalar we have:
E(Res(®g)) = Og,(1).

Proof. By the choice of @y, Res(®),, is the normalized spherical vector of I(3, 7),, for each prime

p, and Res(®g)oo is the unique holomorphic vector in 1(3, 7)o with minimal Kg, N Spin, o(R)-

type. Asaresult, the Eisenstein series F/(Res(®()) is a non-zero multiple of the automorphic form

associated to E4 X Eg, where Ej, is the normalized holomorphic Eisenstein series in My (SLa(Z)).
On the other side, the global theta lift is a non-zero multiple of

(g1,92) € SO2:2(A) = j(g1,00) 1 (92,00) *F icim (diag(g1,00-1, 92,001, 92,00-1)) ,

where (g1,00,92,00) € Sping»(R) is the archimedean component of (g1,g2) (up to some left
translation by SO22(Q)). It suffices to show that Fr;p, (diag(z1, 22, 22)), as a function on H x H,
is a non-zero multiple of F4(z1)FEg(z2).

Since the space of modular forms My (SLe(Z)), k = 4 or 8, is 1-dimensional and spanned by
Ey, it suffices to show that as a function for the variable z1 (resp. z2), Frim(diag(z1, 22, 22)) is
a modular form of weight 4 (resp.8). The only hard part in the proof of the modularity is to
show that

zf4FKim(diag(—1/zl, Z9, 2’2)) = FKim(diag(zl, 29, 22)) = z;gFKim(diag(zl, —1/22, —1/22)).

We only give the proof for the first equality here, and the second one can be proved similarly.

From the explicit actions on Hj given in Example 8.4.9, we have

diag(—1/z1,22,22) = (n(E1) - ¢-n(Ep) - ¢ - n(Eq)) .diag(z1, 22, 22),
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8.6. Global theta lifts from PGLsy to Fy

then the desired functional equation is implied by the modularity of F gm,:

Frim(diag(—1/21, 29, 22))

=J(¢,diag(z1/(z1 + 1), —1/ 29, —1/22))J(fl,diag(zl + 1, 29, 29))Fim (diag(z1, 22, 22))
- a Y 1)22)" - Freim(di

ternr (= (1 +1)23) - Frim(diag(21, 22, 22))

:zilFKim(diag(zl, 29, 23)). ]

Proof of Theorem 8.6.3. For a smooth vector ¢oy € I C ILyineo Whose restriction Res(doo ®
®¢) to SO22(A) vanishes, we know from Proposition 8.3.10 that it is orthogonal to the space
(IT+)SPing(R) " thus the theta lift O4o0a, (1) = 0.

Now we can assume that the smooth vector ¢o, € (II1)SP(R) Jies in the Spin, 5(R)-orbit
of ®, then the theorem follows from Proposition 8.6.4 and the fact that the maps E(Res(—))
and ©_(1) are both SO3 2(A)-equivariant. O

8.6.2 Unfolding the period integral

Take the smooth vector ¢ € Il to be ¢ ® @y, where @y is the normalized spherical
vector and ¢ is a vector in II'™ C ILyin e such that ¢ := Res(¢) € 1(3,7) is non-zero. Using
the Siegel-Weil formula Theorem 8.6.3 for Sping x SOq 2, we write the period integral (8.23) as
a Rankin-Selberg type integral and unfold it:

Pspin, (O () = o(h)E(Res(¢))(h™)dh
[PGL]
— o(h) 6 (vh2) dh
[PGLo] . )13<<o.>)\§2,2<@>¢(7 ) (8.24)
- / S(vh2)p(R)dh,
7G(Q)\PGL(A)

7€B(Q)\S02,2(Q)/PGL (Q)

where h2 denotes the image of h € PGLy(A) under PGLg(A) — SO52(A), and the reductive
subgroup 7G of PGLs is defined to be PGLS Ny~ 'B.

By an easy calculation of orbits, the double coset in the summation of (8.24) has two orbits,
represented by 1 = (($9),($9)) and 0 = (wo,1) := ((9 '), ($9)) respectively. For the first
orbit, 'G = By = T(Nj is the standard Borel subgroup of PGLs, and its contribution to the
Rankin-Selberg integral (8.24) is zero since ¢ is cuspidal. For the second orbit, G = T is the

maximal torus consisting of diagonal matrices, thus we have:

. = b Mol(a)
Pping ©u(@) = [ 9lng*)eg)dg (3.25)

Before calculating this integral, we make some normalization on the measure dg of PGL2y(A):

Notation 8.6.5. Fix a Haar measure dz on Q, such that dz(Z,) = 1, and let d*t be the Haar

measure (1 —p~1)~1. % on Q) so that d*t(Z,) = 1. We choose the following left-invariant
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Chapter 8. Global exceptional theta correspondence F4 x PGLo

Haar measure db on By(Q)):

dtd t 1
db = d*tdx = ‘T‘x for b = ( 1) ( f) € Bo(Qp).

On the hyperspecial subgroup PGL2(Z,), we choose the invariant Haar measure dk such that
the volume of PGLy(Z,) is 1. Via the Iwasawa decomposition, we give PGL2(Q,) the product
measure dg, = dbdk, which makes PGLy(Z,) have measure 1. Take a non-trivial invariant Haar
measure dgo, on PGLy(R) and set dg = ®/dg,.

The first step to calculate (8.25) is to rewrite it as an Euler product, for which we need the

following:

Definition 8.6.6. Fix a non-trivial continuous unitary character ¢ = 1)oc ® 1 = @y, of Q\A
such that the conductor of 9, is Z,, for each p and 1 (z) = €*™@ for all € R. The - Whittaker
coefficient of ¢ € Acusp(PGL2) is defined to be:

Wosle) i= [ elng)v™ (n)dn.
[No]

The global Whittaker function W, ,;, satisfies W, (ng) = ¥(n)W, 4(g) for any g € PGL2(A)
and n € No(A), and it factors as W 4(9) = [1, W, u, (90) [Cogdell, 2004, Corollary 4.1.3],
where W, is a spherical Whittaker function on PGL2(Q,). We normalize the spherical
vector ¢, € mp so that Wy, 4, [paL,(z,) = 1-

Expanding the automorphic form ¢ along Ny, the right-hand side of (8.25) becomes:

Y a 0 - o

9(709" W, (( >9>d9=/ 6(709°) We,u(9)dg.
/I‘O(@)\PGM(A) ( )aez@;x v \\o 1 PGLy(A) ( MWeu(9)
So far we have proved the following:

Proposition 8.6.7. Let ¢ = ¢oo @ @4 € Ilnin be a smooth vector such that ¢ = Res(¢) # 0,

then we have

PSping (@¢(<P)) = /

PGL(A) $(109™ )W (9)dg = 1;[ Lo(¢w, 0o, ),

where the local zeta integral Iv(%, v, Vy) is defined by:
Iv(ava Pos ¢v) = / Cgv(’VO,vgyA)Wsﬂmwv (gv)dgv-
PGL2(Qv)

8.6.3 Unramified calculations
The goal of this section is to calculate the local zeta integral Ip(gp, ©py Up):

Proposition 8.6.8. Let o, be the normalized spherical vector of the unramified principal series
mp of PGL2(Qp) whose Satake parameter is (ap a;1) € SLy(C)ss, and ¢, = Res(®,) the
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8.6. Global theta lifts from PGLsy to Fy

normalized spherical section of 1(3,7),, then we have:

(1-p (0 -p™ _
(= p3ap)(1=p 2o ) (1= p~ 2 op)(1 =~ 7 0")

Ip(ﬁgp» Pp> 1/’19) =

Proof. With the choice of measures in Notation 8.6.5, we write I, as a double integral:

Ip(‘lzpa Pps ¢p)

B b (b2 KXW, (bk)dbdk
/Bo(Qp) /PGLz(Zp) ¢p(70 ) ‘Ppawp( )

S N G (b o (GRIG

As the normalized spherical section of 1(3,7),, 51, satisfies that:

t \" )1 & It|? €Z
~ x , T € Ly

= 8.27
%(%( 1) ( 1> ) {\tP-x|—4 241, (527
On the other hand, the values of the spherical Whittaker function W, . comes from a standard
result [Cogdell, 2004, Proposition 7.4]:

t 1 0 U EZ
W () () = o sz 1y 529
1 1 P Yp(tz) - +—Lr— , t € p"Z) for some n >0

ap—0oy,

(8.26)

Plugging (8.27) and (8.28) into Eq. (8.26), we have:

~ o 5 O — o,
Ip(bp, p, ¥p) = Z/ p 2t —P T (t)d*¢ (8.29)
p
where

1(t) = [ Glt)da + /@ . |y ta)dr =1+ 3 / p 4 () d.

me1 /Py

We set t = p"lo, o € Z, and change the variable of integration by x = p™"t; Ly, which induces
that dx = p™dy, then we have:

pPm(1—pt) ,m<n
/ﬂnzx p*4m1/;p(ta?)dx - p*3m 7% ¢p(pn_my)dy = _p_3(n+1) ’p_l ,m=n+1
o ! 0 ,m>n+1

Hence the integral I,,(t) is independent of ¢ € p"Z and

n Cam 3 _3(n B 1 _p—4 1 _p—3n—3
In(t):1+2p3 (1—]9 1)_p 3(n+1) 1:( 1)£p_3 )
m=1
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Chapter 8. Global exceptional theta correspondence F4 x PGLo

Putting this value in (8.29), we obtain:

o0

- (1 - 7—n n —n— —on—
Ip(d’pv@p,@/}p) = (17 _ 762_1 Zp 2 p+1 7Oép 1)(17p 3 3)
p P n=0
_ (1 —p) ap oyt pTay o pey!
(1—p3)(ap—op" ) \1-p~3a, 1-pia' 1-p5a, l-p 2oy’

_ L—p (A -p% . 0

(1 _pigap)(l _pigagl)(l —p*%ap)(l —-p 2

ap )

As a direct consequence of Proposition 8.6.8, we have the following result, which corresponds

to Theorem 8.1.7 in the introduction:

Corollary 8.6.9. (Theorem 8.1.7 in Section 8.1) Let ¢ = oo @ Py be a smooth holomorphic
vector in Iy, such that 5 = Res(¢) # 0, and ¢ ~ Yoo @y € T the automorphic form of PGLy
associated to a (normalized) Hecke eigenform for SLo(Z) of weight 2n 4+ 12, n > 0. Then we

have:

—_

L(m, 3)L(r, 5)
C(4)¢(8)

The L-function L(m,s) appearing in (8.30) is the standard automorphic L-function of w, de-

Psping (04(#)) = T (Res(¢oo ), Poos Yoo)- (8.30)

fined as the Euler product T[,(1 — p~*ay)(1 — pfsagl), where the SLa(C)-conjugacy class of

diag(ay, ;1) is the Satake parameter of mp.

P

Remark 8.6.10. The L-factor L(, 2)L(m, 4) appearing in (8.30) agrees with the prediction of the
global conjecture [SakellaridisVenkatesh, 2017, §17; Sakellaridis, 2021, Table 1] of Sakellaridis-
Venkatesh for the spherical variety Sping\Fj.

It is well-known that the standard automorphic L-function L(r, s) has no zero at s = 5 or 1.

As a consequence, the non-vanishing of Pspin, (O¢()) is equivalent to that of the archimedean
zeta integral Io(Res(doo), Poos Yoo )-

8.6.4 Non-vanishing of ©4(y)

By Corollary 8.6.9, for the non-vanishing of ©(r), it suffices to find some smooth vector ¢, €
I C Imin,co such that Iog(Res(doo), Yoo, Yoo) # 0. Notice that for the cuspidal automorphic
form ¢ associated to any Hecke eigenform of weight 2n + 12, its archimedean component ¢, is
the unique (up to some scalar) holomorphic lowest weight vector in dpo(2n +12) C D(2n + 12),

thus we only need to prove the following;:

Proposition 8.6.11. For any n > 1, there exist an automorphic form ¢, € Acusp(PGL2)
associated to some Hecke eigenform in Sa,4+12(SLa(Z)), and a smooth vector ¢, € IIT C Iipin oo,

such that Ioo(Res(én), Pn,00, Voo) # 0, or equivalently, Pspin, (9¢n®¢f (pn)) #0.

Proof. For each n > 1, Theorem 8.5.6 shows that there exists a non-zero Sping(R)-invariant
polynomial P, in V,,(J¢) such that the weighted theta series ¥y, p, defined as (8.20) is non-zero.
Let o, € Av,,,, (F1) to be the vector-valued automorphic form such that a, (1) = > cp, v-Pn €
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8.6. Global theta lifts from PGLsy to Fy

V,.(Jo)' and ay,(yg) = 0, then the global theta lift ©(as,) is a non-zero holomorphic cuspidal
automorphic form of PGLy. Hence there exists an automorphic form ¢, € Acusp(PGL2)

associated to some Hecke eigenform in Sa,,412(SL2(Z)), such that the Petersson inner product

/ ©(an)(9)¢n(9)dg (8.31)
[PGL2]

is non-zero. Putting the definition of O(«,,) into (8.31), we have:
1 ——
07 9), > 7-Pa ¢ enlg)dg = / {0n(9), P} ¢nlg)dg. (8.32)
Ty JipGLy) T [PGL.]

Take the following smooth vector in IIT C Ilpin oot

On 1= {an)ooapn} = Z {XV @ - XV PN} ) (Xom '”Xal'q)oo)a

a1,...,0n

where @, is the specific vector chosen in Section 8.4.2 and D is the operator It — IIT @ p}
sending ¢ to 3, Xa¢® XY, with an arbitrary choice of basis {X,} of p7 and its dual basis {X}}.
By Definition 8.4.12, the automorphic realization 6 : I — L?([E7]) maps ¢, @ ® to

O(pn @ Pf) = {D"0(Poo ® P¢), P} = {D"Okim, Pn} = {On, P}

Use 0(¢n, @ @) as the kernel function to define a global theta lift of ¢, then we calculate the
Sping-period integral of this global theta lift:

Pping Q0 00, (9n)) = /  {Ou(gh), PaYon(g)dgdh.
[PGL2]| x[Sping]

Since we have the strong approximation property Sping(A) = Sping(Q)Sping(R)Sping(Z), the

Sping-period integral is a non-zero multiple of

/ / n(ghoo), Pu}en(g)dgdhos —/ / {hs-On(9), Pu}ten(g9)dgdhos
[PGL2] Splng(]R) [PGL2] /Sping(R)

= [ b [ {u9). Paeul)ds,
Sping (R) [PGL2]

where we use Lemma 8.4.15 and the Sping(R)-invariance of P,,. Combining this with (8.32),
we obtain the non-vanishing of Pspin, (©¢,s®,(¢n)), which is equivalent to the non-vanishing
of Ioo(Res(¢n), Yn,c0, Yoo) by Corollary 8.6.9. O

Our main theorem is a direct consequence of Corollary 8.6.9 and Proposition 8.6.11:

Theorem 8.6.12. (Theorem 8.1.2 in Section 8.1) Let m € IIi0 (PGLa) be the automorphic

cusp

representation associated to a Hecke eigenform in Si(SLa(Z)), then its global theta lift ©(m) to

F, is non-zero. Furthermore, we have the local-global compatibility of theta correspondence, i.e.
O(m) ~ @ 0(m,).
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Chapter 8. Global exceptional theta correspondence F4 x PGLo

Proof. The case when k > 16 is a corollary of Proposition 8.6.11 and Corollary 8.6.9. When k =
12, this is a result in [ElkiesGross, 1996] (see also Remark 8.5.3). The local-global compatibility

of theta correspondence follows from Proposition 8.3.6 and Proposition 8.3.8. ]

Corollary 8.6.13. (Theorem 8.1.8 in Section 8.1) For n > 2, the following map is surjective:

AV, ., (F1) = Sap112(SL2(Z))

1 1
(@:T = Vam,) = fo) = W%Z,auz) + @%E,Q(JE)

Proof. Suppose that the map a — fg(q) is not surjective, then there exists a non-zero Hecke
eigenform f € So,t12(SLa(Z)), such that its associated automorphic form ¢ € A(PGLy) is
orthogonal to ©(a) for all a € Ay, (F4), with respect to the Petersson inner product. In
particular, ¢ is orthogonal to (), where «,, is the algebraic modular form chosen in the

proof of Proposition 8.6.11. Take ¢, € I, to be the one in Proposition 8.6.11, we have:

0o- |  {Ou(gh), P} ()dgdh = Pspin, (5,00, (¢)),
[PGL2]| x[Sping]

which leads to a contradiction. O
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Figure A.1: The gram matrix of (Jz, (, )g) in the basis B given in Eq. (3.6)

159



Appendix A. Figures and tables

-1
-1
-2

-1
-1
-1

-2
-1
-2

-2
-2
-2

-1
0
-1

-1
-1
-1

-1
-1
-2

-1
-1

-1
-1

-1

-1
-1
-1

-1
-1
-1

-1
-1

-1
0
-1

-2
-1
-2

-1
-1
-1

-2
-1
-1

-1
-1
-2

-2
-1
-1

-1
0
0

0
-1

-1

0

-1
-2

-1
-1

-1
-1

-2
-1

-1
-1

-2 -2

-2
-1
-1
-1

-2
-1
-2

0
-1

-1
-1
-1

-2

0

-1
-1

-1
-1

-1
-1

-1
-2

-1
-1

-1
-1

-2 -1 -1
-1 -2
-1

0

-1
-1

-1
-1

-1 0

-1
-1

-1
-1
-1

-1
-1
-1

-1

0
-1

0
-1

-1
-1

0

0 -1

-1

-1

0

-1

-1

-1

-1
-1

-3
-2
-1

-1
-1
-1

-1
—4

-1
-3

-2
-1

-2
-1

-1 -1 0 -1 -2 -1 -1 -3 -3
-1 -1
-1 -1

-1

-1

-2

-2 -3 =3

-1
-1

-2 =2
-1
-1

-1

-1

-1 -1 -1 0 -1
-1

-1

-1 0 -1 -1 -1 0

-1

-1

-1 -2

-1

-2

-1

-1
-2
-2

-1
-1
-1

-1
-1

0 0 -1 -1
-1 -1 -1

0

-1

-1
-1

-1 0 -1 -1 -1 -2 -2 0 0 -2 -1 -1
0o -1 -1 -1 o -1 -1 -1 -1

-1

-1
-2

0

0

0

-1

-1

-1 -1 -1 -1

-1

-1

o1 =

-3
-2
-1

-2
-2
-1

-3
-2
-1

-2
-2

-2
-2
-1

-2
-2

-1
0

-1
-2

-2
-3
-1

-2
-3
-1

-1 -2 -2
0 -3 -2
-1 0

-1
-2

o -1 -1 -2 -2 -1 -1 -1 -1
-1 0 -2 -2 -3 -2 -2 -1 -2

-2
-1

0

0

-1 -1

-1

-1
-2

-1

-1

-1
-1

-1

-1

0 -1 -1

-1

0

-2 1 -1 -1 -3 -1 -1 0

-1

-1
0

-1
-1

-3 -1 1 -3 -2 —4 =2

-2

-1

-1

-2 -2 -1 -2 -2 -3 =2
-1
-2

-1
-1

-1
-1
0

-1

-2

-1

0

-1

-2
-2

-1
-1

-1

-1

-2
-1

-1
-1

-1
-1

-1
-2

0
-1

0

-1
-1
-1

-1 -1 -2
-2 -1 -1
-1 0 -1

-1
-1

0

-1

0

-1

-1

0

-1

-1

0

-1
-2
-1

-1
-1
-1

-1
-1

-2
-2

-1 -1
-1

-1

-1

-1

-1

—2 -2 —
-1 -1

-3
-2

-1

-1

0o -1 -1 -2 -1 -1 -1 -2 -1

0

-2
-1
-3

-1
-1
-3

-1
-3
-3

-1
-1
—4

-1
-2
-1

-2

0
-1
-2

-1
-2
-2

-2
-1
-3

-2
-2
-3

-2
-1
-3

-2

0

0
-1

-1
-1
-2

-2
-1
-1

0
-3

-2
-3

-1
-2

-2 -1 -2 -1 0 -2
-3 -3 —4 -3 -3

-1

0
-1

-3

o9 —

Figure A.2: Generators o1 and o9 of Fy (Z) as 27 x 27 matrices in the basis B of Jz
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s o(cs) i(es) s o(cs) i(es) s o(cs) i(es)

(1,0,0,00) | 1 | (27,351,2925,52) || (2,1,1,0,1) | 9 (3,3,0,1) (44,20,1) | 20 | (4,3:-8,0)
(0,0,0,0,1) | 2 (-5,-1,45,20) || (0,1,0,1,2) | 10 (-2,1,0,6) (7.0,1,1,3) | 20 | (4,9,16,4)
(0,1,0,00) | 2 (3,-9,-35,-4) (0,2,0,1,1) | 10 (0,-1,0,0) (2,1,31,2) | 21 | (0,020
(0,0,1,0,0) | 3 (0,0,9,-2) (4,2,0,0,1) | 10 | (10,49,160,10) || (4,2,1,2,1) | 21 | (2,1,-1,0)
(1,00,0,1) | 3 (0,0,9,7) (0,00,1,4) | 12 | (-4,0,21,15) 0,40,1,6) | 24 | (-2,03,7)
(1,1,000) | 3 (9,36,90,7) (0,1,02,1) | 12 (-1,2,-2,1) (0,60,1,4) | 24 | (0-2-1,1)
(0,0,0,1,0) | 4 (-1,3,-3,0) (0,2,0,1,2) | 12 (-1,0,0,3) (1,2,32,1) | 24 | (0,0,3-1)
(0,1,00,1) | 4 (-1,-1,1,4) (0,4,0,1,0) | 12 | (2-6,-15.-3) (24212) | 24 | (12121
(1,0,1,00) | 4 (3,3,1,0) (1,0,3,0,1) | 12 (0,0,5,-1) (3,1,3,1,3) | 24 | (0,0,1,1)
(2,0,0,0,1) | 4 (7,27,77.8) (L,1,1,1,1) | 12 (0,0,1,0) (351,12) | 24 | (2-2-7-1)
(2,1,000) | 4 | (15111,54520) | (1,3,1,0,1) | 12 | (2,-4-11-2) (4,02,1,5) | 24 | (-1,02,5)
(1,1,00,1) | 5 (2,1,0,2) (1,4,1,00) | 12 | (3,-6,-26,-3) (42,213) | 24 | (1,00,1)
(0,00,1,1) | 6 (-2,2,-3,5) (2,0,0,1,3) | 12 (-2,0,5,8) (42,4,1,0) | 24 | (2,0-1-1)
(0,1,002) | 6 (-3,0,10,11) (2,0,2,1,0) | 12 (1,0,2,-1) (62031) | 24 | (34,21
(0,1,0,1,0) | 6 (0,0,1,-1) (2,1,0,1,2) | 12 (0,0,1,3) (6,2,4,01) | 24 | (4,63,1)
(0,2,001) | 6 (1,-4,-6,-1) (22,01,1) | 12 (2,0,-3,0) (72,1,1,3) | 24 | (4,8,11,3)
(1,0,1,0,1) | 6 (0,0,1,2) (2,4,00,1) | 12 | (4,0,-19-1) (24.2,1,4) | 28 | (0-1,0,1)
(1,1,1,0,0) | 6 (3,0,-8,-1) (3,0,1,1,1) | 12 (2,2,1,1) (34,1,31) | 28 | (1,-1-1-1)
(2,0,0,1,0) | 6 (4,8,9,2) (3,3,1,0,0) | 12 (6,12,5,2) (24,6,0,1) | 30 | (1-2,1-2)
(2,1,00,1) | 6 (6,18,37,5) (402,0,1) | 12 (5,12,18,3) (3,6,1,1,4) | 30 | (1-2-3,0)
(3,0,1,00) | 6 (12,72,289,14) || (4,1,0,0,3) | 12 (3,6,14,5) (6,1,0,5,1) | 30 | (1,1,0,0)
(4000,1) | 6 | (16,128,681,23) || (5,0,1,1,0) | 12 (8,32,85,7) (6,4,221) | 30 | (3,2,-3,0)
(4,1,0,00) | 6 | (21,216,1450,35) || (6,1,0,0,2) | 12 | (11,62,238,13) || (8,0,2,1,6) | 30 | (1,1,4,4)
(1,00,1,1) | 7 (-1,1,-1,3) (2,1,1,1,1) | 13 (1,0,0,0) (12,1,0,3,2) | 30 | (7,25,60,6)
(2,1,1,00) | 7 (6,15,20,3) (2,22,0,1) | 14 (2,-1,-4,-1) (1434,1) | 36 | (0,0,2-1)
(0,00,12) | 8 (-3,1,5,10) (4,1,0,12) | 14 (3,5,7,3) (282,14) | 36 | (1,-3-4-1)
(0,1,0,1,1) | 8 (-1,1,-1,2) (1,02,1,2) | 15 (-1,1,0,2) (4,62,1,7) | 40 | (0-1,0,2)
(0,2,01,0) | 8 (1,-3,-3,-2) (42,1,1,0) | 15 (5,10,9,2) (8,2,6,1,3) | 40 | (2,1,0,0)
(1,1,1,0,1) | 8 (1,-1,-1,0) (1,1,3,1,1) | 18 (0,0,4,-1) (1,6,5,1,5) | 42 | (0-1,1,0)
(1,2,1,00) | 8 (3,-3,-17,-2) (2,2,2,1,1) | 18 (1,-1,0,-1) (10,2,4,1,6) | 42 | (2,2,2,2)
(2,001,1) | 8 (1,1,1,2) (4,1,01,4) | 18 (0,0,4,5) (1,12,7,2,3) | 60 | (1,3-2,-2)
(2,2,00,1) | 8 (5,9,5,2) (6,2,2,0,1) | 18 (7,23,48,5) (6,4,6,1,12) | 60 | (-1,0,1,4)
(3,1,1,00) | 8 (9,39,111,8) (2,4,2,1,0) | 20 (2-3-8-2) || (10,2,10,1,6) | 60 | (1,0,1,0)
(1,1,01,1) | 9 (0,0,0,1) (3,0,1,3,1) | 20 (0,1,0,0) (11,12,1,35) | 60 | (3,1,-6,0)

Table A.1: Kac coordinates, Orders and invariants i (defined in Section 4.5) of the rational
torsion conjugacy classes of Fy 161
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s ni(s) na(s) s ni(s) na(s)
(1,0,0,0,0) 1 1 (1,1,1,1,1) | 435456000 | 105670656
(0,0,0,0,1) 723 819 (1,3,1,0,1) | 101606400 0
(0,1,0,0,0) 459900 68796 (2,0,0,1,3) 1612800 0
(0,0,1,0,0) | 6540800 2283008 (2,0,2,1,0) | 24192000 | 13208832
(1,0,0,0,1) 121920 139776 (2,1,0,1,2) | 43545600 0
(1,1,0,0,0) 268800 34944 (2,2,0,1,1) 14515200 | 17611776
(0,0,0,1,0) | 249480 | 137592 || (2.4,0,0,1) | 4112640 0
(0,1,0,0,1) | 2835000 0 (3,0,1,1,1) 7257600 0
(1,0,1,0,0) | 14968800 | 3302208 (3,3,1,0,0) 4838400 0
(2,0,0,0,1) | 23400 58068 || (4,0,2,0,1) | 14515200 | 4402944
(2,1,0,0,0) | 37800 0 (5,0,1,1,0) | 3628800 0
(1,1,0,0,1) | 1741824 0 (2,1,1,1,1) 0 48771072
(0,0,0,1,1) 497280 0 (2,2,2,0,1) | 223948800 | 11321856
(0,1,0,1,0) | 44150400 | 8805888 (4,2,1,1,0) | 34836480 0
(0,2,0,0,1) | 10483200 | 2201472 || (1,1,3,1,1) | 232243200 0
(1,0,1,0,1) | 74995200 | 17611776 || (2,2,2,1,1) | 154828800 | 105670656
(1,1,1,0,0) | 67737600 | 8805888 (6,2,2,0,1) 19353600 0
(2,0,0,1,0) 1881600 2935296 (2,4,2,1,0) | 87091200 0
(2,1,0,0,1) 604800 0 (4,4,2,0,1) | 52254720 0
(3,0,1,0,0) 806400 0 (2,1,3,1,2) | 199065600 | 30191616
(4,0,0,0,1) | 6720 0 (4,2,1,2,1) 0 60383232
(1,0,0,1,1) 0 4313088 || (0,4,0,1,6) | 7257600 0
(2,1,1,0,0) | 24883200 | 539136 || (0,6,0,1,4) | 21772800 0
(0,0,0,1,2) | 272160 0 (1,2,3,2,1) | 174182400 0
(0,1,0,1,1) | 10886400 0 (2,4,2,1,2) | 174182400 | 52835328
(0,2,0,1,0) | 22680000 | 6604416 (3,1,3,1,3) | 261273600 0
(1,1,1,0,1) | 342921600 0 (3,5,1,1,2) | 87091200 0
(1,2,1,0,0) | 32659200 0 (4,2,2,1,3) | 58060800 | 52835328
(2,0,0,1,1) | 5443200 6604416 (4,2,4,1,0) | 65318400 0
(2,2,0,0,1) | 5715360 0 (6,2,4,0,1) | 50803200 0
(3,1,1,0,0) | 5443200 0 (2,4,2,1,4) | 149299200 | 22643712
(1,1,0,1,1) | 77414400 0 (2,4,6,0,1) | 34836480 0
(2,1,1,0,1) | 19353600 | 35223552 (6,4,2,2,1) | 139345920 0
(0,2,0,1,1) | 38320128 0 (2,8,2,1,4) | 116121600 0
(4,2,0,0,1) | 1741824 0 (4,6,2,1,7) | 104509440 0
(0,2,0,1,2) | 29030400 | 8805888 (8,2,6,1,3) | 104509440 0
(0,4,0,1,0) | 10886400 0 (6,4,6,1,12) | 69672960 0
(1,0,3,0,1) | 47174400 0
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Table A.2: Kac coordinates of the conjugacy classes of Fy whose intersections with Fy 1(Z) and
F1E(Z) are not both empty




A d(\) A d(\) A d(\) A d(\) A d(\)
(0,002) | 1 0019 | 7 | 0117 | 7 |(00013) | 8 |[(204,1)] 13
(0,003) | 1 0,027 | 6 | 0125 | 9 | (0071,11)] 15 || (21,06) | 16
(0,0,0,4) | 1 0,035 | 6 | (0,1,33) | 14 | (0029 | 20 || (2,1,1,4) | 17
(0,02,0) | 1 0,043) | 4 | (01,41) | 4 | 0037 | 27 || (21,22) | 25
(0,005 | 1 0,051 | 1 | (0206) | 11 || (0045) | 34 || (21,30 | 8
(0,0,1,3) | 1 0,1,08) | 2 | (0214) | 9 | (0053) | 30 | (22,03) | 4
0,006) | 3 || (01,16) | 3 | (0222 | 15 | (006,1) | 14 || (22,1,1)] 9
0,022) | 1 0,1,24) | 4 | (0230 | 2 | (0,1,0,10) | 11 | (2,3,0,0) | 6
(0,00,7) | 1 0,132 | 3 | 0303 | 3 | (01,18 | 23 || (3,007 | 1
(0,0,15) | 1 0,1,40) | 1 | 0311 | 3 | 01,26) | 39 | (30,15 | 9
0,023) | 1 02,05 | 1 | (04,00 | 6 | (0,1,34) | 44 | (3,023) | 7
0,008 | 4 | (0213 | 3 | (1,0010) | 3 | (0,1,42) | 37 || 3,031 | 8
(0,0,1,6) | 1 0221 | 1 | 1,018 | 7 | (0150 | 13 || (3,1,04) | 12
0,024) | 1 03,02 | 2 | (1,026) | 10 | (0207 | 11 | (31,1,2) | 7
0,040) | 2 || (1,009 | 1 | (1,034) | 11 | (0215 | 32 | (31,20 | 8
0,009 | 4 | o017 | 3 | (1,042 | 8 | (0223) | 36 | (4,005) | 2
0,017 | 2 || 1,025 | 2 | 1,050 | 4 | (0231 | 26 | (4013)| 3
(0,025) | 1 (1,033) | 3 | (1,1,07) | 2 | (03,04) | 21 | (4021)] 2
0033 | 2 || 1041 | 1 || (1,15 | 9 | (0312) | 21 | (41,02) | 4
0,1,3,0) | 1 (1,1,06) | 3 | 1,123 | 8 | (0320) | 14 || (41,100 ] 1
(0,3,0,0) | 1 (L,1,14) | 2 || 131 | 9 | (0,4,01) (50,1,1) | 1
(1,1,04) | 1 (1,1,22) | 4 | (1204) | 8 | (1,0,0,11) (5,1,0,0) | 3
(3,1,00) | 1 1210 | 2 | 1,212 | 5 | (1,019 | 13
(0,00,10) | 5 || (1,300 | 1 | (1220 | 5 | (1,027 | 20
0,018 | 4 | (2007 | 1 | (1301 | 1 (1,0,35) | 32
0,026) | 6 || (2015 | 2 | (2008 | 5 | (1,043) | 26
0042 | 3 || 2023 | 1 | 201,6) | 4 | (1,051) | 21
(0,0,5,0) | 1 (2031) | 1 | (2024) | 10 | (1,1,08) | 18
(0,1,1,5) | 1 (2,1,04) | 2 | (2032) | 4 | (1,1,16) | 27
0,1,3,1) | 1 21,12 | 1 | 2040 | 5 | (1,1,24) | 46
0,2,04) | 1 2120 | 1 || @113 | 5 | (1,1,32) | 31
0,2,2,0) | 1 3013 | 1 | (2121 | 2 | (1,1,40) | 20
(1,008) | 1 (3,1,02) | 1 | (2202) | 8 | (1.2,05) | 10
(1,016) | 1 | (000712 | 13 || (3,006) | 4 | (1,21,3) | 28
(1,024) | 1 || 001,100] 6 | (3014 | 3 | (1221 | 16
(1,032) | 1 0,028 | 15 | (3022 | 3 | (1,3,02) | 18
(1,2,02) | 1 0,036) | 15 || (3,030 | 2 | (1,310
(2,006) | 2 | (0044 | 15 | (3200) | 2 | (20,009
(2,022) | 1 0,052) | 4 | (4004 | 3 | (2017 | 12
(2,2,00) | 1 (0,0,6,0) | 11 | (4020 | 2 | (2025 | 16
0,0011) | 5 | (01,09 | 2 | (6,000 | 3 | (2,033) | 21

Table A.3: The nonzero d(\) for A = (A1, A2, A3, A\g) such that 2A; + 3X + 2A3 + Ny < 13
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n | di(n) | da(n) || n | di(n) | d2(n) | n | di(n) | d2(n) || n | di(n) | d2(n)
1 0 0 11 4 1 21 83 209 31 4112 24425
2 1 0 12 8 ) 22 | 130 413 32 | 6294 38234
3 1 0 13 6 2 23 | 169 590 33 | 8904 54760
4 1 0 14 12 8 24 | 280 1138 || 34 | 13284 | 82989
) 1 0 15 13 8 25 | 368 1629 || 35 | 18664 | 117447
6 2 1 16 20 18 26 | 601 2915 || 36 | 27332 | 173760
7 1 0 17 22 22 27 | 835 4253 || 37 | 38024 | 242971
8 3 1 18 37 o8 28 | 1323 | 7161 || 38 | 54627 | 351485
9 3 1 19 39 63 29 | 1868 | 10455 || 39 | 75354 | 486013
10 4 1 20 67 150 30 | 2919 | 16962 || 40 | 106332 | 689219
Table A.4: Dimensions dj(n) = dim Vfé}i(z) and da(n) = dim ané}f(z) for n < 40

n | di(n) da(n) n dy(n) da(n)

1 0 0 16 699558 4607562

2 1 0 17 1899450 12528178

3 0 0 18 4951537 32636950

4 1 1 19 12298529 81088431

5) 0 1 20 29444006 194120684

6 4 7 21 67821302 447181025

7 2 14 22 | 151304284 997568542

8 32 136 23 | 326873722 2155210696

9 84 583 24 | 686811782 4528418428

10 497 2936 25 | 1404333622 9259307898

11 1765 11764 26 | 2802604042 18478677233

12 | 7111 46299 27 | 5463354204 | 36021961176

13 | 24173 159701 || 28 | 10425639768 | 68740584631

14 | 80166 | 526081 || 29 | 19491910968 | 128517811865

15 | 241776 | 1594526 || 30 | 35762551274 | 235797459916

Table A.5: Dimensions d;(n) = dim fof—;;ls(z) and dz(n) = dim Vf;f(z) for n < 30
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w(\) A dim Ay, (Fy) WA(Fy)
16 (0,0,0,0) 2 ble 1]
An[6] ® [5] @ [9]
20 | (0,0,0,2) 1 Ag[6] @ [5] @ [9]
22 | (0,0,0,3) 1 Aq7[6] @ [5] @ [9]
ol (0,0,0,4) 1 Aqo[6] @ [5] @ [9]
(0,0,2,0) 1 Sym? A11[3] @ A [4] @ Ay [2] @ [5]
’ (0,0,0,5) 1 A [6] @ [5] @ [9]
(0,0,1,3) 1 As4,16,5,0(3] & [5]
0006) ; A% [6] @ [5] @ 9
28 A26,20,6,0(3] D [5]
(0,0,2,2) 1 Aa6,16,10,0[3] © [5]
(0,0,0,7) 1 Ags[6] @ [5] @ [9]
30 | (0,0,1,5) 1 Asg.20,8,0[3] & [5]
(0,0,2,3) 1 Asg 18,10,0[3] © [5]
0005) \ A3 l6] @ [5] @ 9
Ai(i%),24,6,0 3] & [5]
- (0,0,1,6) 1 A30,22,8,0(3] © [5]
(0,0,2,4) 1 A30,20,10,0[3] @ [5]
0040 ) Sym® A15[3] & A5[4] & A15[2] @ [5]
A30,16,14,0[3] © [5]
0009) \ As 6] & [5] & [9)
Ai(’)22),26,6,0 (3] © [5]
(0,0.1,7) 2 Aas003] @ [5
(0,0,2,5) 1 A32,92,10,0[3] & [5]
34 1(0,0,3,3) 2 A§22),20,12,0[3] @ [5]
(0,1,3,0) 1 A32.16,14,6,0 © Spin Aza 16,14,6,0 D [1]
(0,3,0,0) 1 Sym® Ay1[2] © Sym?® Ay (3] & Ay [4] @ [1]
(1,1,0,4) 1 A30,20,10,8,0 © Spin A3p20,10,8,0 © [1]
(3,1,0,0) 1 N A7 @ (Argr ® Ars) ® A1g7[2] © Ass[2] @ [1]

Table A.6: Elements of nonempty Wy (F4) for the weights A\ such that
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/\ dim .AV>\ (F4) \If/\(F4)
2
AD16] @ [5] @ 9
(0,0,0,10) 5
3
Ai(’>4),28,6,0[3] @ [5]
N A2113 B (A21,13 ® A15) @ (A21,13 @ A1) & (A5 ® Arr) @ [1]
(0,0,1,8) 4
3
A§’>4),26,8,0[3] @ [5]
5
Ag4>,24,10,0 3] @ [5]
(0,0,2,6) 6
A34.24,10,4,0 D Spin Ay 24,10,4,0 © [1]
2
Ag)4),20,14,0[:’>] @ [5]
(0,0,4,2) 3
A34,20,14,4,0 D Spin Asz 20.14,4,0 & [1]
(0,0,5,0) 1 Sym? A17[3] © Ar7[4] @ Ar7[2] @ [5]
(0,1,1,5) 1 A34.92.10,6,0 D Spin Asz4 22 10,6,0 P [1]
(0,1,3,1) 1 A34,18,14,6,0 D Spin Ay 18,14,6,0 © [1]
(0,2,0,4) 1 A34.20,10,8,0 @ Spin A3z 16,14,6,0 P [1]
(0,2,2,0) 1 N Ag113 B (A21,13 ® Ats) @ Aoy 13[2] & A15[2] @ [1]
(1,0,0,8) 1 A32,26,8,6,0 ® Spin Az 268,60 D [1]
(1,0,1,6) 1 A32.24.10,6,0 D Spin Aszz 24 10,6,0 P [1]
(1,0,2,4) 1 A329212,6,0 D Spin Az 221260 © [1]
(1,0,3,2) 1 A39.90,14,6,0 B Spin Aszz 20.14,6,0 P [1]
(1,2,0,2) 1 Yo
(2,0,0,6) 2 A:(a%),m,lo,g,o @ Spin Ago,24,10,8,0 © [1]
(2,0,2,2) 1 A30,20,14,8,0 @ Spin Aszp 20,14,8,0 P [1]
(2,2,0,0) 1 NDo219 @ (A219 @ Ats) B Ag1 9[2] D Ay5[2] @ [1]

Table A.7: Elements of nonempty Wy (F4) for the weights A such that w(\) = 36
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A Fa(A) A Fa(A) A Fy4(A) A Fa(N) A F4(N)
(1,2,02) | 1 (1,2,20) | 5 1,1,32) | 22 || (01,35 | 70 | (2026) | 28
0,1,24) | 2 (2,024) | 2 (1,1,4,0) | 11 || (01,43) | 68 | (2034) | 32
0,1,40) | 1 (2,03.2) | 2 (1,2,05) | 7 0,1,51) | 49 || (2,042) | 35
0,2,1,3) | 2 2,1,1,3) | 3 1,2,1,3) | 22 || (0208 | 31 | (2050 | 12
0,3,02) | 2 2,12,1) | 2 1,221) | 13 || (021,6) | 61 | (21,07 | 10
(1,033) | 1 (2,202) | 4 || 1302 | 12 | 0224 | 92 | (@115 | 42
(1,1,1,4) | 1 (3,0,06) | 1 (1,3,1,0) | 2 0,2,32) | 74 || (21.23)| 46
(1,1,2.2) | 2 (3,022) | 2 (2,0,1,7) | 2 0240 | 35 || (2131 | 4
1210 | 2 | 3200 | 1 || @025 | 3 | 0305 | 26 | (2204)| 39
2104) | 2 | 0037 | 3 || 2033 | 9 | 0313 | 61 | (2212 | 34
21200 | 1 | 0045 | 6 || 2041 | 5 | 0321 | 40 | (2220 | 24
0036) | 1 | 0053 | 8 || 21,06 | 11 | 0402 | 28 || 2301 2
0044) | 1 | 00610 | 4 || @114 | 9 | 0410 | 8 ||3008 | 5
0052) | 1 || (01,010 ] 2 21,22) | 21 || (1,0,0,12) | 1 | 3,016) | 6
(0,0,6,0) | 1 0,1,1,8) | 6 21,300 | 2 || (101,100 4 | (3024 | 21
01,1,7) | 1 0,1.26) | 19 | (2203) | 1 (1,028 | 23 | (3.032) | 13
0125 | 3 | 0134 | 18 || @211 | 8 | 1036 | 36 | (3040 | 14
0133) | 6 | (01,42 | 25 || 2300 | 4 | 1044 | 50 | (31,05 | 2
0,1,4,1) | 2 0,1,50) | 4 (3,0,1,5) | 2 (1,052) | 34 || (3.1,1,3)| 21
0206) | 4 | 0207 | 2 || 3023 | 2 | 1060 | 24 || 3121 13
0214) | 4 | 0215 | 20 || 3031 | 3 | 1109 | 6 | (3202 20
0,222) | 8 0223) | 21 | (31,04) | 4 1,1,,7) | 50 || (321,00 | 2
0230 | 2 | 02310 | 19 | 3112 | 5 | 1125 | 69 | (4006) | 2
0303) | 3 | (0304 | 19 || 31,20 | 3 | 1,133 | 8 || (4014 | 3
0,3,1,1) | 2 0312 | 10 || (41,02 | 3 1,1,41) | 57 || 4022 | 7
04,000 | 1 | (0320 | 13 || 00210 | 4 | 1,206 | 5 | (4030 | 1
(1,02,6) | 2 0,4,0,1) | 2 0038 | 13 || 1214 | 72 || @111 | 6
1,034) | 2 || 1027 | 4 | 0046) | 27 | 1222 | 93 || (4200 | 1
(1,04,2) | 4 (1,0,35) | 11 || (0054) | 26 | (1230 | 17 | (5,004)| 2
11,15 | 4 || 1,043 | 9 | 0062 | 24 | 1,303 | 18 || (5020 | 2
1123) | 4 | o510 | 11 || 0070 | 8 | @3ny) | 34 | (7000 | 1
(1,1,31) | 6 (1,1,0,8) | 7 |/ (01,011) | 1 (1,4,00) | 9
1,204) | 7 || 116 | 15 | 01,19 | 21 | (20010 | 3
1,21,2) | 3 || 124 | 27 | 0127 | 44 | (2018 | 9

Table A.8: The nonzero Fy(A) for the weights A such that w(\) < 44
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RESUME

Dans cette thése, nous étudions les représentations automorphes de niveau un pour la Q-forme F4 du groupe exception-
nel compact de type de Lie F4. Ce travail est divisé en les deux parties suivantes.

Représentations automorphes de niveau un de F, avec un poids donné. D’abord, en suivant la méthode de Ch-
enevier et Renard, nous calculons le nombre de représentations automorphes de niveau un pour F4 avec une com-
posante archimédienne donnée. Plus précisément, nous étudions le groupe d’automorphismes des deux algébres
d’Albert sur 7. étudiées par Gross, ainsi que la dimension des invariants de ces groupes dans toute représentation ir-
réductible de F4(R).

Ensuite, en admettant les conjectures standards d’Arthur et Langlands sur les représentations automorphes, nous affi-
nons ce comptage en étudiant la contribution des représentations dont le paramétre global d’Arthur a n’importe quelle
image possible. Cela inclut une description détaillée de toutes ces images, et des énoncés précis pour la formule de
multiplicité d’Arthur dans chaque cas. Notre résultat fournit en particulier une formule conjecturale mais explicite pour
le nombre de représentations automorphes algébriques, cuspidales, de niveau un de GLgs sur Q ayant un poids «
F4-régulier » donné, et pour groupe de Sato-Tate F4(R) tout entier.

Correspondance théta exceptionnelle pour F, x PGL.. Nous étudions la correspondance théta exceptionnelle glob-

ale pour la paire duale réductive F4 x PGL2. Notre résultat principal affirme que pour toute représentation automorphe
de PGL, associée a une forme parabolique propre de Hecke pour SL2(Z), son ©-lift global est une représentation
automorphe irréductible non nulle de F4. Cela vérifie un calcul conjectural effectué dans la partie précédente. Motivés
par les travaux de Pollack, notre principal outil consiste a construire une famille de séries théta exceptionnelles, qui sont
des formes paraboliques holomorphes de SL»(Z), et nous montrons que cette famille engendre tout I'espace des formes
paraboliques de niveau un.

MOTS CLES

Formes automorphes, Groupes exceptionnels, Programme de Langlands, Correspondance théta

ABSTRACT

In this thesis, we study level one automorphic representations for the Q-form F4 of the exceptional compact group of Lie
type F4, The work is divided into the following two parts.

Level one automorphic representations of F, with a given weight. First, following the method of Chenevier and Re-
nard, we calculate the number of level one automorphic representations for F4 with any given archimedean component.
More explicitly, we study the automorphism group of the two Albert Z-algebras studied by Gross, as well as the dimension
of the invariants of these groups in any irreducible representation of F4(R).

Next, assuming standard conjectures by Arthur and Langlands on automorphic representations, we refine this counting
by studying the contribution of the representations whose global Arthur parameter has any possible image. This includes
a detailed description of all those images, and precise statements for the Arthur's multiplicity formula in each case. Our
result provides in particular a conjectural but explicit formula for the number of algebraic, cuspidal, level one automorphic
representations of GL2g over Q with any given “Fa-regular” weight and of Sato-Tate group Fa(R).

Exceptional theta correspondence for F, x PGL2. We study the global exceptional theta correspondence for the re-

ductive dual pair F4 x PGL2. Our main result states that for any automorphic representation of PGL. associated with a
cuspidal Hecke eigenform for SL2(Z), its global theta lift to F4 is a non-zero irreducible automorphic representation. This
verifies a conjectural calculation made in the previous part. Motivated by Pollack’s work, our main tool is to construct a
family of exceptional theta series, which are holomorphic cusp forms of SL2(Z), and we show that this family spans the
entire space of level one cusp forms.

KEYWORDS

Automorphic forms, Exceptional groups, Langlands program, Theta correspondence
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