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ABSTRACT. — We present a new proof of the Manin–Mumford conjecture about torsion points on algebraic
subvarieties of abelian varieties. Our principle, which admits other applications, is to view torsion points as
rational points on a complex torus and then compare (i) upper bounds for the number of rational points on a
transcendental analytic variety (Bombieri–Pila–Wilkie) and (ii) lower bounds for the degree of a torsion point
(Masser), after taking conjugates. In order to be able to deal with (i), we discuss (Thm. 2.1) the semialgebraic
curves contained in an analytic variety supposed invariant under translations by a full lattice, which is a topic
with some independent motivation.
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1. INTRODUCTION

The so-called Manin–Mumford conjecture was raised independently by Manin and
Mumford and first proved by Raynaud [R1] in 1983; its original form stated that a curve C
(over C) of genus ≥ 2, embedded in its Jacobian J , can contain only finitely many torsion
points (relative of course to the Jacobian group structure). Raynaud actually considered the
more general case when C is embedded in any abelian variety. Soon afterwards, Raynaud
[R2] produced a further significant generalization, replacing C and J respectively by a
subvarietyX in an abelian variety A; in this situation he proved that ifX contains a Zariski
dense set of torsion points, then X is a translate of an abelian subvariety of A by a torsion
point. Other proofs (sometimes only for the case of curves) appeared later, due to Serre,
Coleman, Hindry, Buium, Hrushovski (see [Py1]), Pink & Roessler [PR], and M. Baker &
Ribet [BR]. We also remark that a less deep precedent of this problem was an analogous
question for multiplicative algebraic groups, raised by Lang already in the ’60s. (See [L];
Lang started the matter by asking to describe the plane curves f (x, y) = 0 with infinitely
many points (ζ, η) with ζ, η roots of unity.)

In the meantime, the statement was put into a broader perspective, by viewing it as a
special case of the general Mordell–Lang conjecture and also, from another viewpoint, of
the Bogomolov conjecture on points of small canonical height on (semi)abelian varieties
(we recall that torsion points are those of zero height). These conjectures have later been
proved and unified (by Faltings, Vojta, Ullmo, Szpiro, Zhang, Poonen, David, Philippon,...)
by means of different approaches providing, as a byproduct, several further proofs of the
Manin–Mumford statement (we refer to the survey papers [Py1] and [T] for a history of
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the topic and for references). Recent work of Klingler, Ullmo and Yafaev proving (under
GRH) the André–Oort conjecture, an analogue of the Manin–Mumford conjecture for
Shimura varieties, has inspired another proof of Manin–Mumford due to Ratazzi & Ullmo
[RU]. All of these approaches are rather sophisticated and depend on tools of various
nature.

It is the purpose of this paper to present a completely different proof compared to
the existing ones. Our approach too relies on certain auxiliary results, having however
another nature (archimedean) with respect to the prerequisites of the previously known
proofs; hence we believe that this treatment may be of some interest for a number of
mathematicians. Also, the underlying principle has certainly other applications, as in work
in progress [MZ]; we shall say a little more on this at the end.

In short, the basic strategy of our proof is as follows: view the torsion points as
rational points on a real torus; estimate from above the number of rational points on a
transcendental subvariety (Pila–Wilkie); estimate from below the number of torsion points
by considering degree and taking conjugates (Masser); obtain a contradiction if the order
of torsion is large. In more detail, we can proceed along the following steps, sticking for
simplicity to the case of an algebraic curve X, of genus ≥ 2, in the abelian variety A, both
over a number field. (The general case of complex numbers can be dealt with in a similar
way or reduced to this by specialization.)

(i) There is a complex analytic group isomorphism β : Cg/Λ → A, where Λ is a
certain lattice of rank 2g, say with a Z-basis λ1, . . . , λ2g; so we can view a torsion point
P ∈ A as the image P = β(x) where x is the class modulo Λ of a vector r1λ1 + · · · +

r2gλ2g ∈ Cg , where the ri are rationals; if P has exact order T , the ri will have exact
common denominator T .

(ii) The algebraic curveX ⊂ A equals β(Y ), where Y = β−1(X) is a complex analytic
curve in Cg/Λ; in turn, if π : Cg → Cg/Λ is the natural projection, we may write Y =
π(Z), where Z = π−1(Y ) ⊂ Cg is an analytic curve which is invariant under translations
in Λ.

(iii) We can use the basis λ1, . . . , λ2g to view Cg as R2g; then Z will become a real
analytic surface in R2g , denoted again Z, invariant under Z2g . Also, as in (i), the torsion
points on A will correspond to rational points in R2g . Then the torsion points on X will
correspond to rational points on Z. Note that, in view of the invariance of Z under integral
translations, it suffices to study the rational points on Z in a bounded region of R2g .

(iv) Due to a method introduced by Bombieri–Pila [BP] for curves, and further
developed by Pila [P] for surfaces, and by Pila–Wilkie [PW] in higher dimensions, one
can get good estimates for the number of rational points with denominator T on a bounded
region of a real analytic variety. As has to be expected, these estimates apply only if one
confines attention to the rational points which do not lie on any of the real semialgebraic
curves on the variety. For the number of these points, the estimates take the shape� T ε ,
for any given ε > 0. This can be applied to the above defined Z; it turns out that, since X
is not a translate of an elliptic curve, Z does not contain any semialgebraic curve.

(v) All of this still does not yield any finiteness result, but merely estimates for the
number of torsion points on X, of a given order T . The crucial issue is that if X contains
an algebraic point P , it automatically contains its conjugates over a field of definition.
Now, Masser has proved in 1984 that the degree, over a field of definition for A, of any
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torsion point of exact order T is � T ρ for a certain ρ > 0 depending only on dimA.
Hence, if X contains a point of order T , it contains at least� T ρ such points.

Then, comparing the estimates coming from (iv) and (v), we deduce that the order of
the torsion points on X is bounded, concluding the argument.

In some previous proofs, one exploited not a lower bound for degrees, but rather the
Galois structure of the field generated by torsion points. However, this may be considered
information of substantially different nature.

To better isolate the new arguments from previous ones, we will prove the Manin–
Mumford conjecture in the following weak form, which includes the case of curves.

THEOREM 1.1. Let A be an abelian variety and X an algebraic subvariety of A, both
defined over a number field. Suppose that X does not contain any translate of an abelian
subvariety of A of dimension > 0. Then X contains only finitely many torsion points of A.

However, rather elementary purely geometrical considerations based on degrees allow
one to get easily the following more precise version, for which we shall give a sketch at
the end; in this statement, by “torsion coset” we mean a translate of an abelian subvariety
by a torsion point:

THEOREM 1.1*. Let A be an abelian variety and X an algebraic subvariety of A, both
defined over a number field. The Zariski closure of the set of torsion points of A contained
in X is a finite union of torsion cosets.

Concerning the proof method, a further point is that, in order for the Pila–Wilkie
estimates to be applicable, we must study the real semialgebraic curves that may lie on
the inverse image Z of X under the analytic uniformization Cg → A. The set Z is analytic
(defined by the vanishing of certain polynomials in the abelian functions giving the map
Cg → A) and periodic modulo the lattice Λ.

In Theorem 2.1, we show that a connected real semialgebraic curve contained in such
a set Z must be contained in a complex linear subspace contained in Z, and one in which
the period lattice has full rank. In other words, we prove that the “algebraic part” of Z
in the sense of Pila–Wilkie (see Definition 2.1 below) corresponds precisely to the union
of translates of abelian subvarieties of A of dimension > 0 and contained in X. This fact
seems to be not entirely free of independent interest.

With this result in hand, the proof of Theorem 1.1 is concluded in §3 by combining the
ingredients mentioned above.

2. STRUCTURE OF THE ALGEBRAIC PART OF A PERIODIC ANALYTIC SET

As announced, this section will be devoted to a complete description of algebraic subsets
of an analytic subvariety of a complex torus, which corresponds to an analytic subvariety
of Cg periodic for a full lattice Λ, that is, invariant under translations in Λ. We express
explicitly all of this in a few definitions and then state the main Theorem 2.1.

We take a (full rank) lattice Λ ⊂ Cg which will be fixed throughout. We further fix a
Z-basis λ1, . . . , λ2g of Λ and use it to identify Cg with R2g .
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We shall use throughout the notation

Z +Λ :=
⋃
λ∈Λ

(Z + λ) := {z+ λ : z ∈ Z, λ ∈ Λ}

for the union of the translates of Z by the vectors in Λ. A set Z ⊂ Cg will be called (Λ-)
periodic if Z +Λ = Z.

As usual, an analytic set Z ⊂ Cg will mean a set such that every point z ∈ Cg has
an open neighbourhood U in which Z is defined as the set of common zeros of a finite
collection of functions (depending on z) that are (complex) analytic (i.e. regular) in U .
Such a set is readily seen to be real analytic as a subset of R2g . A semialgebraic set in Rn
is a finite union of sets of the form {x ∈ Rn : f1(x) = · · · = fk(x) = 0, g1(x) > 0,
. . . , gl(x) > 0} where fi, gj ∈ R[x], x = (x1, . . . , xn) (see e.g. [vdD2, p. 1] or [BM,
Def. 1.1]).

DEFINITION 2.1. Let Z ⊂ Cg . We define the complex algebraic part Zca of Z to be the
union of all connected closed algebraic subsets of Cg of positive dimension contained inZ.
Viewing Z as a subset of R2g we define the real algebraic part Zra of Z to be the union of
all connected real algebraic sets of positive dimension contained in Z. Finally, we define
the algebraic part Zalg of Z to be the union of all connected real semialgebraic sets of
positive dimension (see [Sh, pp. 51, 100] for definitions) contained in Z. One readily sees
that Zca

⊂ Zra
⊂ Zalg.

We reserve the term subspace for a (respectively complex or real) vector subspace of
Cg or R2g . By a (respectively complex or real) linear subvariety we mean a subset of Cg
or R2g defined by the vanishing of some (complex or real) linear equations, not necessarily
homogeneous. A subspace H in which H ∩Λ has full rank in H will be called a (Λ-) full
subspace. A set of the form z+H where z ∈ Cg and H is a complex linear subspace will
be called a coset.

Thus a subspace H that is both complex and full corresponds precisely to a subtorus
of Cg/Λ, and a coset of such an H will be called a torus coset.

DEFINITION 2.2. For a set Z ⊂ Cg we let Ztorus coset be the union of all torus cosets of
positive dimension contained in Z.

A torus coset is evidently a complex linear subvariety, whence

Ztorus coset
⊂ Zca

⊂ Zra
⊂ Zalg.

For a periodic analytic set Z we show that all these sets coincide.

THEOREM 2.1. Let Z ⊂ Cg be a periodic analytic set. Then Zalg
= Ztorus coset.

Our proof of this result involves several preliminaries; for the reader’s convenience we
explicitly subdivide the proof into three steps.

STEP 1: Reduction semialgebraic → complex algebraic. In this step we reduce the
argument to complex curves contained in Z, by proving that Zalg

= Zca. We first prove a
lemma:
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LEMMA 2.1. Let Z ⊂ Cg be analytic. Suppose that x ∈ Cg has a neighbourhood U
such that x is a smooth point of Y ∩U , where Y is a real algebraic curve with Y ∩U ⊂ Z
as subsets of R2g . Then there is a neighbourhood U ′ of x contained in U and a complex
algebraic curve Γ such that Y ∩ U ′ ⊂ Γ ⊂ Z.

PROOF. We took coordinates in R2g using the lattice basis, but clearly Y will
remain semialgebraic under any real linear change of coordinates. Let us here write
(x1, y1, . . . , xn, yn) for the coordinates of R2g , where zj = xj + iyj are the coordinates
of Cg . Also, for our purposes we can assume that Y is irreducible, by moving if necessary
to a smaller neighbourhood, since the smooth point x will belong to just one component.
We may assume by translation that x = 0. If x1 (say) is a non-constant function on
the real curve Y near 0 then, for t = x1 in some real neighbourhood of 0, all the
functions x1, y1, . . . , xn, yn are real analytic functions of some m-th root u := t1/m,
and (as functions of u) algebraic over R(x1) ⊂ C(x1, y1). We claim that each of the
functions x2, y2, . . . , xn, yn is algebraic over the field C(z1) = C(x1+iy1). This is because
the function x1 + iy1 is non-constant on Y since x1 is non-constant, and C(x1, y1) is
algebraic over C(x1), so of transcendence degree 1. Therefore, for each j , the function
zj = xj + iyj is also algebraic over C(z1). The functions zj (u) are analytic for real u
in some neighbourhood of 0, hence for complex u in a complex neighbourhood of 0; the
image of u 7→ z(u) is thus a complex open subset of a complex algebraic irreducible
curve Γ , which in a neighbourhood of 0 contains Y and must necessarily be contained
in Z. Certainly Γ contains a smooth point in this neighbourhood, and we get Γ ⊂ Z by
analytic continuation, as the smooth points of an irreducible complex curve are connected,
and the remaining points belong to Z by continuity. 2

We can now prove the announced reduction:

PROPOSITION 2.1. Let Z ⊂ Cg be a periodic analytic set. Then Zalg
= Zca.

PROOF. Suppose W is a connected real semialgebraic set of positive dimension with
W ⊂ Z. Then, omitting at most finitely many points, W is a union of real connected
semialgebraic curves. If Y is such a curve, then Y is real algebraic in the neighbourhood of
any smooth point and we may apply Lemma 2.1 to find Y contained in a complex algebraic
curve Γ ⊂ Z. This proves the statement. 2

STEP 2: Complex curves in periodic analytic varieties and linear spaces. In this step
we prove that if a complex curve C is contained in the periodic analytic set Z, then there
are “several” complex lines l with C + l contained in Z. In turn, this will involve a few
preliminaries.

Suppose C ⊂ Cg is an irreducible complex algebraic curve. Of the coordinates
z1, . . . , zg of Cg , if zi is not constant on C then any zi, zj are related by some irreducible
polynomial equation G(zi, zj ) = 0. For |zi | sufficiently large, say |zi | > R, the solutions
zj are given by convergent Puiseux series φj (zi). By a branch of C we mean a choice of
index i and a g-tuple φ = (φ1(zi), . . . , φg(zi)) of algebraic Puiseux series, convergent for
|zi | > R, and such that φ(zi) = (φ1(zi), . . . , φn(zi)) ∈ C for all |zi | > R. By a suitable
choice of i, we can always obtain a branch of C such that, for all j ,

φj (zi) = αjzi + lower order terms, αj ∈ C.
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We call such a branch linear, and α = (α1, . . . , αg) the direction of the branch. Observe
that αi = 1, so α 6= 0.

Suppose φ(w) = (φ1(w), . . . , φg(w)) is an n-tuple of algebraic Puiseux series,
convergent for |w| > R. Then, fixing w0, w1 ∈ C and µ = (µ1, . . . , µg) ∈ Cg , we
consider (for κ ∈ C such that |w0 + κw1| > R),

κ 7→ ψ(κ) = (ψ1(κ), . . . , ψg(κ)), ψi(κ) = φi(w0 + κw1)− κµi .

From the algebraic relation Gi(t, φi(t)) = 0, we find that

Gi(w0 + κw1, ψi(κ)+ κµi) = 0.

Thus the ψi(κ) are also algebraic functions of κ , and the locus above is Zariski dense in an
irreducible algebraic curve in Cg , which we denote Γ (φ,µ,w0, w1). It is important to note
that its degree is bounded in terms of the degree of the curve containing φ (independently
of the choice of w0, w1, µ). We now have a lemma, perhaps known but for which we have
found no reference:

LEMMA 2.2. Let Z ⊂ Cg be an analytic set, B ⊂ Cg a bounded set, and δ a positive
integer. There exists a positive integer K = K(Z,B, δ) with the following property.
Suppose Γ ⊂ Cg is an irreducible complex algebraic curve of degree ≤ δ, and with
#(Z ∩ B ∩ Γ ) ≥ K . Then Γ ⊂ Z.

PROOF. About each point of Cg there is an open disk in which Z is defined by the
vanishing of a finite number of regular functions. Taking a smaller disk, we may assume
these functions to be regular in a neighbourhood of the closure of the disk. Then by
compactness of the closure of B, we can find a finite number of open disks U covering B,
and on each disk a finite number of functions, regular in a neighbourhood of the closure of
the disk, whose zero locus defines Z in the disk. Thus, in each of the finitely many disks,
Z is expressed as an intersection of finitely many hypersurfaces. As shown in a moment,
this remark reduces the proof to the case of hypersurfaces, namely to the following

CLAIM. Suppose that U ⊂ Cn is a bounded open disk and that f is a complex-valued
function that is regular in a neighbourhood of the closure of U . Let

Y = {z ∈ U : f (z) = 0},

and δ a positive integer. There is a positive integer K = K(U, f, δ) with the following
property. Suppose Γ ⊂ Cn is an irreducible curve of degree ≤ δ and #Y ∩ C ≥ K . Then
f vanishes identically on Γ in U .

Given the claim, we may establish the lemma as follows. For each disk U in the finite
covering takeKU to be the maximum of theK(U, f, δ) over all the finitely many functions
f defining Z on U , and take K =

∑
U KU + 1. For each U put ZU = Z ∩ U . Let now Γ

be an irreducible complex algebraic curve of degree ≤ δ with #Z ∩ B ∩ Γ ≥ K . By the
pigeonhole principle, one of the disks U has #(ZU ∩ Γ ) ≥ KU . By the Claim, each of the
functions f defining Z on U vanishes identically on Γ , so that, restricted to U , Γ ⊂ Z.
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However Γ is connected, so by analytic continuation we conclude that Γ ⊂ Z. It then
remains to prove the Claim, as we shall now do.

Since Γ has degree ≤ δ, each pair of coordinates zi, zj satisfy on Γ an algebraic
relation Pij (zi, zj ) = 0 for some non-zero polynomial Pij ∈ C[x1, x2] of degree ≤ δ.
These polynomials, considered up to non-zero constant factors, define an algebraic set
of dimension 1, containing Γ as a component. This set is possibly reducible but, given
the Pij , by projecting to a general plane, we see that there certainly exists a hypersurface
H of degree ≤ gδ that contains Γ but not any other component of dimension 1; this H
corresponds to a further polynomial PH of degree ≤ gδ. Now, the polynomials in two
variables of degree ≤ δ, up to constants, are parametrized by a projective space PD , D =
(δ + 1)(δ + 2)/2, whereas H is parametrized by PD′ for a D′ depending only on g, δ.
Hence the set {H,Pij } is parametrized by the product

∆ = P(C)D
′
∏
ij

P(C)D,

a compact space, which we can assume contained in Rm for some suitable m. For w ∈ ∆
let Iw be the ideal generated by the corresponding Pij , PH . Consider the set

V := {(z, w) ∈ Cg ×∆ : z = (z1, . . . , zg) ∈ U, w ∈ ∆, f (z) = 0,
Q(z) = 0 for all Q ∈ Iw}.

We have V ⊂ Cg ×∆ with projections π1, π2 onto the factors Cg and ∆ respectively.
The very construction shows that every algebraic curve Γ ⊂ Cg of degree ≤ δ is

defined, up to finitely many points, by Iw for (at least one) suitable w = wΓ ∈ ∆; hence,
for some point wΓ ∈ ∆, π1(π

−1
2 (wΓ )) equals the intersection Y ∩ Γ plus a finite set.

Now we consider V as a subset of RM for suitable M . Since f is regular on a
neighbourhood of the closure of U , the set V is subanalytic (even semianalytic) in RM (for
the definition see [G] or [BM, Definition 2.1]). Further, V is bounded, since U is bounded
and∆ is compact. We appeal to Gabrielov’s theorem ([G], or see e.g. [BM, Theorem 3.14])
to conclude:

As w varies over the bounded set π2(V ), the number of connected components of
π−1

2 (w) is bounded by some finite number N = N(U, f,D); the number of connected
components of π1(π

−1
2 (w)) is then also bounded by N .

Put K = N + 1. If now #Y ∩Γ ≥ K , then Y ∩Γ cannot consist of isolated points and
must, as a semianalytic set, have dimension ≥ 1. This set must then contain some smooth
real analytic arc. If we take a point on such an arc that is a non-singular point of Γ , then
restricting f to a neighbourhood in which we can complex analytically parameterize Γ ,
we find that f restricted to this local parameterization is an analytic function with non-
isolated zeros. It therefore vanishes identically on Γ in this neighbourhood. But now since
Γ is irreducible, the set of its non-singular points is connected, and we find that f vanishes
identically on Γ in U by analytic continuation. This establishes the Claim, and concludes
the proof of Lemma 2.2. 2
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(Readers familiar with o-minimal structures (see [vdD2]) will recognize that the key
point underlying the Claim is the o-minimality of the structure Ran generated by restricted
real analytic functions [vdD1].)

The following result now follows easily:

COROLLARY. Let Z ⊂ Cg be a periodic analytic set and r > 0. Let φ(w) be an n-tuple
of algebraic Puiseux series convergent for |w| > R. There is an integer K = K(Z, r, φ)
with the following property. Let B ⊂ Cg be a ball of radius r , and w0, w1 ∈ C, τ, µ ∈ Cg .
If

#(Γ (φ, µ,w0, w1)+ τ ∩ Z ∩ B) ≥ K

then Γ (φ,µ,w0, w1)+ τ ⊂ Z.

PROOF. For a fixed B the conclusion follows directly from Lemma 2.2, because
Γ (φ,µ,w0, w1)+τ is an algebraic curve of degree bounded only in terms of φ. Since Z is
periodic, the ball B may be assumed to be centred in a fundamental domain, so dependence
on the centre of the ball may be eliminated. 2

We now come to the fundamental point of this Step 2. In the following, ‖ · ‖ denotes
the Euclidean norm in Cg .

PROPOSITION 2.2. Let Z ⊂ Cg be a periodic analytic set and C be an irreducible
complex algebraic curve with C + τ ⊂ Z for a τ ∈ Cg . Let φ(w) be a linear branch of
C (convergent for |w| > R) with direction Cα and put K = K(Z, 1, φ), as in the last
Corollary. Finally, let λ ∈ Λ be such that ‖β − λ‖ < (2K)−1 for some β ∈ Cα. Then
C + τ + Cλ ⊂ Z.

PROOF. Fix w1 ∈ C such that ‖w1α − λ‖ < (2K)−1. Now choose R1 ≥ R such that, for
any w ∈ C with |w| > R1 +K|w1| and any w′ ∈ C with |w′| ≤ K|w1| we have

‖φ(w + w′)− φ(w)− w′α‖ < 1/2.

This is possible by the condition on φ that all terms apart perhaps from the leading term
are sublinear. If now |w0| > R1 +K|w1| and k = 0, 1, . . . , K we have

‖φ(w0 + kw1)− φ(w0)− kλ‖ ≤ ‖φ(w0 + kw1)− φ(w0)− kw1α‖ + k‖w1α − λ‖ < 1.

Now, φ(w0 + kw1)+ τ − kλ ∈ Z because Z is periodic and C + τ ⊂ Z; also,

φ(w0 + kw1)+ τ − kλ ∈ Γ := Γ (φ, λ,w0, w1)+ τ

provided |w0+kw1| > R, and by the above all these points lie in the ball of radius 1 about
φ(w0)+ τ for k = 0, 1, . . . , K .

By the Corollary to Lemma 2.2, we deduce that Γ ⊂ Z.
We thus find Γ (φ, λ,w0, w1)+ τ ⊂ Z for all w0 suitably large, but we must still show

that in fact all C + τ + Cλ ⊂ Z. If we set y = w0 + κw1, κ ∈ C, we find that

φ(y)+ τ − ((y − w0)/w1)λ ∈ Z
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provided |y| > R. But, fixing y, κ,w1, the above represents a line as w0 varies. Since a
segment of this line lies in Z, the whole line does, by analytic continuation. So for x ∈ C,

φ(y)+ τ − xλ ∈ Z

provided only |y| > R. If we now fix x, the curve in y is just a branch of C+ τ − xλ. This
curve is irreducible, being a translate of C, and so C + τ − xλ ⊂ Z for all x. 2

STEP 3: Linear subvarieties of a periodic analytic variety. We study general linear
subvarieties of a periodic analytic variety Z, their intersections with the lattice Λ, and
use all of this to exploit the important conclusion of the last proposition, which produces
certain translates C + l of C by a line, contained in Z.

We first recall some useful simple facts from the known theory of closed subgroups of
real vector spaces, and start by noting that: if H is a real subspace of Cg then the closure
of H +Λ has the form K +Λ where K is a full real subspace containing H .

This statement follows from the description of closed subgroups of real vector spaces
given in [S, Lecture VI, §2], which implies that the closure in Cg of H + Λ has the form
K +Λ0 for K a real subspace and Λ0 a lattice in a space W complementary to K . Clearly
H ⊂ K . Now, the projection of Λ to W (along K) is Λ0, which must then have full rank
in W , because R2g

= RΛ ⊂ R(K +Λ0) = K +RΛ0. Now, lifting a basis of Λ0 to Λ we
see that Λ1 := Λ ∩K has maximal rank, i.e. equal to dimK , as desired.

We further note that for any open ball I around 0 in K , the set H + I contains a
set of generators for Λ1 := Λ ∩ K . To prove this, let Λ′ denote the lattice generated by
Λ∩ (H +I ) and observe thatH +Λ′ is dense inK: in fact, by definition ofΛ′, the closure
of H +Λ′ contains the intersection of I/2 with the closure of H +Λ, so it contains I/2,
whence it must contain the whole K . Now, let λ ∈ Λ1; it belongs to the closure K of
H +Λ′; hence λ− I intersects H +Λ′, so λ+Λ′ intersects Λ ∩ (H + I ) ⊂ Λ′, proving
that λ ∈ Λ′ and so Λ1 ⊂ Λ

′, as desired.
Now we may give the following definitions:

DEFINITION 2.3. Let H be a real subspace of Cg .

1. We denote by c(H) := CH the complex space generated by H and call it the complex
closure of H ; we call H complex if H = c(H).

2. We denote by f(H) the full closure of H , namely the full real subspace K such that
H +Λ is dense in K +Λ, as in the above remark. So H is full just if f(H) = H .

3. We denote by fc(H) the full-complex closure of H , namely the union of the iterates of
H under the map H 7→ f(c(H)).

One could alternately iterate the two operations H 7→ c(H), H 7→ f(H). In general,
if g > 1 we need not have f(c(H)) = c(f(H)). (In C2 take for instance H = R(1, 0),
Λ = Z(1, 0) + Z(i, 1) + Z(1, i) + Z(1,

√
2). Then f(H) = H , c(H) = C(1, 0). Since

c(H) is not full, we see that fc(H) contains properly cf(H) = c(H).) Anyway, fc(H)may
also be characterized as the smallest subspace containing H that is both full and complex.

LEMMA 2.3. Let Z ⊂ Cg be a periodic analytic set. Suppose z ∈ Cg and H is a real
subspace of Cg with z+H ⊂ Z. Then there is a torus coset z+M with z+H ⊂ z+M ⊂ Z,
and one can take M = fc(H).
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PROOF. Note that by Definition 2.3(2) (which amounts to the opening remarks of Step 3),
if H is a real subspace and z ∈ Cg , then (z+H)+Λ is dense in some (z+K)+Λ where
K is a full real subspace containing H . Now, if H is a real subspace with z + H ⊂ Z

then, by periodicity, the fact just stated and continuity, we have z + f(H) ⊂ Z, and, by
analytic continuation, we have z + c(H) ⊂ Z. The conclusion follows by applying these
observations to H and its iterates under full and complex closure. 2

We can now rapidly conclude the proof of Theorem 2.1; we prove a last lemma:

LEMMA 2.4. Let Z ⊂ Cg be a periodic analytic set, C an irreducible complex algebraic
curve, and M a complex subspace such that C +M ⊂ Z. Suppose that C +M is not a
coset of M . Then there is a complex subspace M ′ with M ⊂ M ′, dimM < dimM ′, and
C +M ′ ⊂ Z.

PROOF. Let N be a complex linear subspace complementary to M in Cg . So every
translate z +M , where z ∈ Cg , intersects N in just one point. Now, C +M , as the image
of the sum-map C×M → C+M , contains an open dense set in its Zariski closure in Cg ,
which is an irreducible algebraic subvariety of Cg; also, (C+M)∩N is irreducible (because
it is the projection of C +M to N along M). By hypothesis (C +M) ∩ N is not equal
to a point, hence it cannot be a finite set of points and therefore it contains an open dense
subset of a closed irreducible algebraic curve C′ ⊂ N ; note that C +M ⊂ C′ +M ⊂ Z
and dim(C +M) = dimM + 1.

Take now a linear branch φ of C′ with direction Cα, so Cα lies in N . Then there is a
small open ball B around 0 in Cg so that (Cα + B) ∩M does not contain any non-zero
lattice point. By a remark above, Λ ∩ (Cα + B) contains generators for the full closure of
Cα, so in particular it contains a lattice point λ 6∈ M .

Put M ′ = M + Cλ.
Then C′ +M ′ ⊂ Z. For if τ ∈ M we have C′ + τ ⊂ Z, but this curve is a translate of

C′, and by Proposition 2.2 (applied to C′ in place of C) we find that for B small enough,
(C′ + τ) + Cλ ⊂ Z. This being true for all τ ∈ M , we have C′ + M ′ ⊂ Z. Thus
C +M ′ ⊂ C′ +M ′ ⊂ Z. This completes the proof. 2

PROOF OF THEOREM 2.1. Let C be an irreducible complex algebraic curve contained
in Z and take a maximal complex subspace M such that C +M ⊂ Z. By maximality and
Lemma 2.4 we deduce that C +M is a single coset of M , which must be a torus coset by
maximality and Lemma 2.3.

It follows that every closed complex algebraic set of positive dimension contained in
Z is contained in the union of full cosets of positive dimension contained in Z, i.e. that
Zca
⊂ Ztorus coset. Proposition 2.1 now finally proves what we need. 2

REMARKS. 1. Note that the final argument easily leads to the following assertion: If an
irreducible complex algebraic set V is contained in Z then there is a torus coset z +M
with V ⊂ z + M ⊂ Z. To prove this, take a maximal torus M such that for a point z
we have z +M ⊂ Z. Applying the last conclusion of the proof of Theorem 2.1 to all the
irreducible curves C on V passing through z we see by maximality that z +M contains a
neighbourhood of z in V . Hence it contains V .
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2. One can check that our proof of Theorem 2.1 works in fact for arbitrary complex tori
Cg/Λ, even if they are not algebraic (i.e. complex-analytically isomorphic to an abelian
variety). However, a simple complex torus that is not algebraic has no infinite proper
analytic subsets [Ba, Py2].

3. MANIN–MUMFORD

Let now A be a (projective) abelian variety, and X a subvariety of A. We have a complex
analytic uniformization Cg → A, periodic with period lattice Λ. The preimage Z ⊂ Cg
of X is a periodic analytic set, and we have shown that all real semialgebraic subsets,
connected of positive dimension, of the real reduct of Z are contained in the union of torus
cosets contained in Z.

Now a subtorus of Cg/Λ corresponds to an abelian subvariety ofA (see e.g. [R, remark
on p. 86], or it may be argued directly using Chow’s theorem that such a subtorus is
algebraic).

PROOF OF THEOREM 1.1. Our interest is in the torsion points P of A that lie on X. Let
tor(A) denote the torsion subgroup of A, consisting of all points of A of finite order. The
order T = T (P ) of P is the minimal positive integer with T P = 0. A torsion point P ofA
corresponds to a rational point z = zP = (q1, . . . , q2g) ∈ Q2g of Z considered as a subset
of R2g . The order of P is equal to the denominator of z, i.e. the minimal integer d > 0
for which dz ∈ Z2g . By the present assumptions, X does not contain any translate of an
abelian subvariety of dimension > 0; hence, by Theorem 2.1 the set Zalg

= Ztorus coset is
empty.

As a subset of R2g , the set Z is Z2g-periodic. In considering torsion points it therefore
suffices to replace Z by Z = Z ∩ [0, 1)2g , and clearly Zalg

= Zalg
∩ [0, 1)2g is empty as

well.
For a set W ⊂ [0, 1)2g and a real number T ≥ 1 we denote by N(W, T ) the number

of rational points of W of denominator dividing T . By Pila–Wilkie [PW], for every ε > 0,

N(Z, T ) = N(Z − Zalg, T ) ≤ c1(Z, ε)T ε . (3.1)

On the other hand, there are lower bounds for the degree of torsion points. Suppose A is
defined over a number field K . For P ∈ tor(A) set d(P ) = [K(P ) : Q]. Then Masser [M]
proves that

d(P ) ≥ c2(A)T
ρ

for some c2(A) > 0 and some ρ > 0 which depends only on the dimension g of A. Note
that all the conjugates of P over a number field of definition for both A,X are still torsion
points on X, of the same order as P . By the lower bound of Masser just displayed, the
number of such conjugates is at least c3(A)T

ρ . Hence we get at least

c3(A)T
ρ

distinct points z ∈ Z of height ≤ T , corresponding to P and its conjugates. Choosing
in (3.1) ε = ρ/2 and comparing the estimates so obtained we conclude that T is
bounded. 2
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As anticipated in the Introduction, we note that the same arguments may be used to
prove the stronger version given by Theorem 1.1*, at the cost of adding some simple
geometrical facts on subvarieties of abelian varieties and cosets contained in them. Let
us briefly recall this here. The point is to describe the cosets contained in X. Call such a
coset b + B (b a point, B an abelian subvariety of A) maximal if it is not included in any
other larger torus coset still contained in X. Then one may prove that the set of abelian
subvarieties B is finite, for b + B running through maximal cosets. A simple proof of this
is in [BZ, Lemma 2]. (It uses only rather standard considerations involving degrees.) With
this in mind, we proceed to illustrate the proof of Theorem 1.1* by induction on dimA, the
case of dimension 0 (or 1) being indeed trivial. Using exactly the same method of proof of
the weaker version, it suffices, through Theorem 2.1, to deal with the torsion points which
lie in some coset b + B contained in X and having dimension > 0. We may then assume
that this coset is maximal, and thus that B lies in a certain finite set. Thus for our purposes
we may assume that B is fixed. The quotientA/B has the structure of an abelian varietyA′

and we have dimA′ < dimA. Let π : A→ A′ be the natural projection. The set of b ∈ A
such that b + B is contained in X is easily seen to be an algebraic variety, which projects
to a variety X′ under π . The coset b + B contains a torsion point if and only if π(b) is
torsion on A′. Now, the induction assumption applied to A′, X′ easily concludes the proof.

FINAL REMARKS

1. The Manin–Mumford conjecture for A and X defined over C follows from the
above by specialization arguments, as in the original papers of Raynaud. Moreover, it is
known that a version that is uniform (regarding the number of cosets required to contain
all the torsion points) as X varies over a family of subvarieties of fixed dimension and
degree of a given abelian variety follows from the above version, as described in [BZ], or
see Hrushovski [H] or Scanlon [Sc] (so-called “automatic uniformity”).

2. It seems that an argument along the present lines can also be given for the easier
multiplicative version of Manin–Mumford mentioned in §1. Here the role of our Theorem
2.1 would be played by the theorem of Ax [Ax] establishing Schanuel’s conjecture for
power series.

3. Quantitative versions of the Manin–Mumford conjecture (and indeed of the
Mordell–Lang conjecture) giving upper estimates for the number of torus cosets are
given by Rémond [Re1]. Good dependencies e.g. on the degree of X when A is fixed
also follow from Hrushovski’s proof [H]. Our method does not for the present yield any
new quantitative information. The result of Pila–Wilkie holds in an arbitrary o-minimal
structure. In this generality it seems one could not hope for good dependence e.g. on the
degree of X in the Pila–Wilkie result. For the specific case of sets defined by algebraic
relations among theta-functions one might hope for good bounds, but we have not pursued
this. For the multiplicative version, bounds with good dependencies on the degrees of
the varieties were obtained by Rémond [Re2]; see also Beukers–Smyth (for curves) and
Aliev–Smyth (in general) [BS, AS].

4. It seems clear that the constant c1 can be taken uniformly as X varies over all
subvarieties of A of fixed dimension and degree, by standard uniformity properties in
o-minimal structures.
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5. In a work in progress by Masser and Zannier, the present method has been applied
to prove the following: For l 6= 0, 1, let El be the elliptic curve

y2
= x(x − 1)(x − l)

and let Pl,Ql be two points on El with x-coordinate resp. 2,3. Then there are only finitely
many complex values of l such that both Pl,Ql are torsion on El . This kind of result is
related to Silverman’s specialization theorem, a special case of which implies that the
l ∈ C such that Pl or Ql is torsion form a set of algebraic numbers of bounded height.
The finiteness statement however seems not to follow directly from any known result.
(The Manin–Mumford statement, applied to a suitable subvariety of E × E, would work
if Pl,Ql were taken as variable Z-independent points on a fixed elliptic curve E.)

ACKNOWLEDGMENTS. It is a pleasure to thank David Masser for very helpful discussions and for generously
providing us with the exact parts of his work most relevant here. We also thank Matt Baker and Richard Pink
for their kind interest, comments, and indication of references. Finally, we thank an anonymous referee for
suggestions and for clarifying a point in the proof of Lemma 2.2. The first author is grateful to the Scuola
Normale Superiore di Pisa for support and hospitality during the preparation of the present paper, and the second
author is similarly grateful to the University of Bristol.

REFERENCES

[AS] I. ALIEV - C. SMYTH, Solving equations in roots of unity. arXiv:0704.1747v3 [math.NT].
[Ax] J. AX, On Schanuel’s conjectures. Ann. of Math. (2) 93 (1971), 252–268.
[BR] M. BAKER - K. RIBET, Galois theory and torsion points on curves. J. Théor. Nombres
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[Re1] G. RÉMOND, Decompte dans un conjecture de Lang. Invent. Math. 142 (2000), 513–545.
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