Clôture définissable.

Définition. Soit (R, \ldots) une structure, et $A \subseteq R$.
On définit $\text{dcl}(A)$, l'ensemble des éléments de R qui sont définissables sur A, par la propriété suivante:
$\alpha \in \text{dcl}(A)$ s'il existe une formule $\varphi(x, \overline{y})$ sans paramètre et un uplet \overline{y} dans A tels que α est l'unique élément de R satisfaisant $\varphi(x, \overline{y})$.

Donc $\text{dcl}(A)$ n'est pas définissable, mais c'est une union d'ensembles définissables, et il contient A. On montre facilement que $\text{dcl}(A) = \text{dcl}(\text{dcl}(A))$.

Proposition 64. Soit $(R, +, -, 0, 1, \cdot, <, \ldots)$ 0-minimale et $A \subseteq R$.
Alors $\text{dcl}(A) \leq R$.

Démo. Rappel du critère de Tarski.

Soient $M \subseteq N$ des structures d'un langage L.
$M \prec N$ veut dire : si $\varphi(x)$ est une formule de L, et à un uplet de M alors $\varphi(\overline{a})$ est vraie dans M ($M \models \varphi(\overline{a})$) si et seulement si elle est vraie dans N.

Le critère dit : pour avoir $M \prec N$ il suffit de montrer, pour toute formule $\varphi(x, \overline{y})$ (sans paramètres) et uplet \overline{a} dans M
$s'il existe $b \in N$ tel que $N \models \varphi(b, \overline{a})$ alors il existe $b \in M$ tel que $N \models \varphi(b, \overline{a})$.

Dém de la proposition : On utilise les fonctions de choix définissable et le critère de Tarski.
Setting:
\[R = (\mathbb{R}, +, \cdot, 0, 1, <, \ldots) \]

Study of differentiability.

Def: Let \(I \subseteq \mathbb{R} \) be open. A function \(f : I \rightarrow \mathbb{R}^n \) is differentiable at \(x \in I \) with derivative \(a \in \mathbb{R}^n \) iff
\[
\lim_{t \to 0} \frac{f(x+t) - f(x)}{t} = a.
\]

Note: this implies if continuous at \(x \), \(a \) is unique.

Write \(a = f'(x) \).

Properties: The following are easy to show: let \(f, g : I \rightarrow \mathbb{R}^n \) be differentiable at \(x \).

Then \((f+g)'(x) = f'(x) + g'(x) \)
\[
(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)
\]
(\(\cdot \) dot product in \(\mathbb{R}^n \): \((y_1, -y_n) \cdot (x_1, -x_n) = y_1x_1 \))

If \(n = 1 \), \(g(y) \neq 0 \) \(\forall y \in I \),
\[
(f/g)'(x) = (f'(x)g(x) - g'(x)f(x))/g(x)^2\]
constant maps have derivative 0.

The identity map has derivative 1.

If \(I, J \subseteq \mathbb{R} \) open, \(f : I \rightarrow \mathbb{R} \) continuous differentiable at \(x \),
\(g : J \rightarrow \mathbb{R} \) continuous differentiable at \(f(x) \in J \).

Then \(g \circ f \), defined on \(I \cap f'(J) \), is continuous differentiable at \(x \), with
\[
(g \circ f)'(x) = g'(f(x)) \cdot f'(x).
\]
Directional derivative:

Let \(f: U \to \mathbb{R}^n \), \(U \subseteq \mathbb{R}^m \) open, \(x \in U, \nu \in \mathbb{R}^m \)

\(f \) is differentiable at \(x \) in the \(\nu \)-direction with derivative \(a \in \mathbb{R}^n \).

If \(g(t) = f(x + tv) \) is differentiable at \(0 \in \mathbb{R} \) with derivative \(a \).

We write \(d_x f(\nu) = a \).

Usual \(\frac{\partial f}{\partial x_i}(x) \) as \(\nu = (0, \ldots, 1, 0, \ldots) \)

\(i \)-th place.

Differential of a map:

Let \(f = (f_1, \ldots, f_n): U \to \mathbb{R}^n \), \(U \subseteq \mathbb{R}^m \) open.

Let \(T: \mathbb{R}^m \to \mathbb{R}^n \) be a linear map, \(x \in U \).

We say \(f \) is differentiable at \(x \) with differential \(T \) if for each \(\varepsilon > 0 \) we have some \(\delta > 0 \) s.t.

\[|v| < \delta \implies |f(x + v) - f(x) - T(v)| < \varepsilon |v|. \]

Then \(f \) is continuous at \(x \), \(T \) is unique. Write \(T = d_x f \).

\[d_x f(\nu) = T(\nu). \]

\[m = 1 \quad d_x f(1) = f'(x). \]

\(f = (f_1, \ldots, f_n) \) is differentiable at \(x \) if each \(f_i \) is, and then the matrix \(\left(\frac{\partial f_i}{\partial x_j}(x) \right) \) is the matrix of \(T \) relative to the standard basis in \(\mathbb{R}^m \) to \(\mathbb{R}^n \).
Properties: usual ones:
\[f, g : U \to \mathbb{R}^n \text{ differentiable at } x \in U, \ U \text{ open in } \mathbb{R}^m \]
\[d_x (f + g) = d_x f + d_x g \]
\[d_x cf = c \cdot d_x f \quad \text{for } c \in \mathbb{R} \]
\[h : V \to \mathbb{R}^n \text{ differentiable at } f(x) \in V, \ f \text{ continuous} \]
then \(h \circ f \), defined on \(U \cap f^{-1}(V) \), is differentiable at \(x \),
\[d_x (h \circ f) = d_{f(x)} (h) \cdot d_x f \]

Now assume
\((\mathbb{R}, +, \cdot, -, 0, 1, <, \ldots) \) is a minimal.
So real closed.

Lemme (Rolle) Let \(a < b \), and suppose the function
\[f : [a, b] \to \mathbb{R} \] is definable, continuous, \(f(a) = f(b) \) and
\(f \) is differentiable on \((a, b)\). Then there is \(c \in (a, b) \)
such that \(f'(c) = 0 \).

If \(c \in (a, b) \) such that \(f(c) \) is minimum/maximum,
Show \(f''(c) = 0 \).
(Exercise)

Mean Value Theorem \(a < b \), \(f : [a, b] \to \mathbb{R} \) definable,
continuous, differentiable on \((a, b)\). Then for some \(c \in (a, b) \),
\[f(b) - f(a) = (b-a) f'(c) \]

Let \(g(t) : [0, 1] \to \mathbb{R} \) defined by
\[g(t) = f(a + t(b-a)) - t f(b) - f(a) \]
\[g(0) = f(a) = 0 \]
\[g(1) = f(b) - (f(b) - f(a)) = 0 \]
\[g'(t) = f'(a + t(b-a))(b-a) + f(a) - f(b) \]
Lemma \(f : [a,b] \to \mathbb{R} \) continuous, defined on \((a,b)\).

If \(f'(x) = 0 \) for all \(x \in (a,b) \) then \(f(x) \) is constant.

Goal let \(f : I \to \mathbb{R} \) be definable, \(I \subseteq \mathbb{R} \) an interval. Then \(f \) is differentiable at all but finitely many points of \(I \).

Need several lemmas

\[x \in I \quad \text{Define} \quad f(x^+) = \lim_{t \to 0^+} \frac{f(x+t) - f(x)}{t} \quad \epsilon \mathbb{R} \quad f^+ = \alpha^+ \]

\[f(x^-) = \lim_{t \to 0^-} \frac{f(x+t) - f(x)}{t} \]

\(f \) differentiable at \(x \) : \(f(x^+) = f(x^-) \in \mathbb{R} \).

Lemma Assume \(f \) is continuous, \(f'(x^+) > 0 \) for all \(x \in I \).
Then \(f \) is strictly increasing, \(f' : f(I) \to \mathbb{R} \) satisfies \((f^{-1})'(y^+) = 1/f'(x^+) \) for \(x \in I \), \(f(x) = y \). \((1/\epsilon \to 0)\).

If \(f \) were not strictly increasing, then there would be a subinterval \(J \) on which \(f \) is constant \((f' = 0)\), or strictly decreasing, which contradicts \(f'(x^+) > 0 \).

For \(\epsilon > 0 \) sufficiently small, we have

\[\lim_{t \to 0^+} \frac{f(x+t) - f(x)}{t} = \lim_{t \to 0^+} \left(f^{-1}(y+u) - f^{-1}(x) \right)^{-1} \]

\[= \lim_{u \to 0^+} \left(f^{-1}(y+u) - f^{-1}(u) \right)^{-1} \]
Lemma: \(f : I \to \mathbb{R} \) is differentiable, \(x \to f'(x) \), and \(x' \to f'(x^-) \) are \(\mathbb{R} \)-valued continuous on \(I \). Then \(f' \) is continuous on \(I \), and \(f' \) is continuous on \(I \).

If \(f'(a^+) = f'(a^-) \) for all \(a \in I \).

Otherwise, say \(f'(a^+) > f'(a^-) \), let \(c \in \mathbb{R} \) be between \(f'(a^+) \) and \(f'(a^-) \), and let \(J \subseteq I \) be such that \(f'(x^+) > c > f'(x^-) \) on \(J \). Then \(g : J \to \mathbb{R} \), \(g(x) = f(x) - cx \), satisfies \(g'(x^+) > 0 \), \(g'(x^-) < 0 \) for all \(x \in J \). So \(g \) is both strictly increasing and strictly decreasing on \(J \).

(Lemme précédent appliqué à \(-g \))

Lemma: let \(f : I \to \mathbb{R} \) be differentiable. There are only finitely many \(x \in I \) at which \(f(x) = \pm \infty \).

Suppose \(A = \{ x \in I \} : f(x) = \pm \infty \) is infinite.

Then \(A \) contains an interval, and wlog \(A = I \), \(f \) is continuous on \(I \). Then \(f' \) is strictly increasing, and therefore \(f'(x^-) \geq 0 \) for all \(x \in I \).

(We want to reach a contradiction, so we are allowed to shrink \(I \) to non-empty subintervals.) So after shrinking \(I \), we may assume we are in one of the following two cases:

(i) \(f'(x^-) = +\infty \) for all \(x \in I \).
(ii) \(f'(x^-) \in \mathbb{R} \) for all \(x \in I \), and \(x \to f'(x^-) \) is continuous on \(I \).

In subcase (i), we have \((f^{-1})'(y^-) = 0 = (f^{-1})'(y^+)\).

i.e., \(f^{-1} \) is constant. This contradicts \(f'(x^+) > 0 \).

In subcase (ii), let \(x \in I \), and \(c > f'(a^-) \). Then there is a subinterval \(J \subseteq I \) on which \(f'(x^-) < c \).
So looking at \(g(x) = f(x) - cx \) we have:
\[
\begin{align*}
g'(x^+) &= f'(x^+) - c = f'(x^+) = +\infty \\
g'(x^-) &= f'(x^-) - c < 0
\end{align*}
\]

Contradiction, so \(|A| < +\infty \).

Replacing \(f(x) \) by \(f(-x) \), we get that the set of
\(x \in I, \ f(x) = \pm \infty \) is finite.

Proof of the Proposition: if \(f: I \to \mathbb{R} \) is differentiable,
then there are only finitely many points at which
\(f \) is not differentiable.

If: We saw in the previous lemma that the set
of points \(A \) such that one of \(f'(x^+) \), \(f'(x^-) \) is \(\pm \infty \),
is finite. Furthermore, throwing away finitely many
points, we may assume that on each subinterval of
\(I \setminus A \), the maps \(f'(x^+) \) and \(f'(x^-) \) are continuous.
Hence, at all points of \(I \setminus A \), \(f'(x^+) = f'(x^-) \)
and \(f \) is differentiable.

Aim: Inverse function theorem, and implicit function theorem:

If the Jacobian is invertible at a point \(a \in \mathbb{R}^n \),
then \(f \) is locally \(a \) homeo around \(a \).
and IFT.
So looking at \(g(x) = f(x) - cx \) we have:
\[
\begin{align*}
 g'(x^+) &= f'(x^+) - c = f'(x^+) = +\infty \\
 g'(x^-) &= f'(x^-) - c < 0.
\end{align*}
\]

Contradiction. So \(|A| < +\infty\).

Replacing \(f(x) \) by \(f(-x) \), we get that the set of \(x \in I \) where \(f(x) = \pm \infty \) is finite.

Proof of the Proposition: if \(f : I \to \mathbb{R} \) is definable, then there are only finitely many points at which \(f \) is not differentiable.

If: We saw in the previous lemma that the set of points \(A \) such that one of \(f'(x^+) \), \(f'(x^-) \) is \(\pm \infty \), is finite. Furthermore, throwing away finitely many points, we may assume that on each subinterval of \(I \setminus A \), the maps \(f'(x^+) \) and \(f'(x^-) \) are continuous. Hence, at all points of \(I \setminus A \), \(f'(x^+) = f'(x^-) \) and \(f \) is differentiable.

Aim: Inverse function theorem, and implicit function theorem:

If the Jacobian is invertible at a point \(a \in \mathbb{R}^m \), then \(f \) is locally \(a \) homeo around \(a \) and IFT.
For that we need more lemmas.

Setting \((f_1, \ldots, f_n) = f : U \to \mathbb{R}^n, \quad U \subseteq \mathbb{R}^m \) open.

Qf. We call \(f \) a \(C^1 \)-map if the partial derivatives \(\frac{df_i}{dx_j} \) are defined on \(U \) and continuous.

One shows easily that:

If \(f \) is \(C^1 \), then \(f \) is differentiable at each point of \(U \), and the map \(x \to \frac{d_x f}{dx} \in \mathbb{R}^{m \times m} = \text{Lin} \left(\mathbb{R}^m, \mathbb{R}^n \right) \) is continuous. And conversely.

(Usual proof for \(\to \)).

If \(T : \mathbb{R}^m \to \mathbb{R}^n \) is \(R \)-linear (i.e. \(\in \mathbb{R}^{m \times m} \)), define \(|T| = \max \{ |T(x)| \mid 1 |x| \leq 1, x \in \mathbb{R}^m \} \).

Then \(|T(x)| \leq |T| |x| \).

Lemma. Let \(f : U \to \mathbb{R}^n \) be \(C^1 \), \([a, b] = \{ (1-t) a + tb \mid 0 \leq t \leq 1 \} \) be a line segment contained in \(U \).

Then \(|f(b) - f(a)| \leq |b - a| \max_{y \in [a, b]} |dyf| \).

Let \(g(t) : [0, 1] \to U \) with \(g(t) = f((1-t) a + tb) \).

Then \(g'(t) = \text{directional derivative of } f \text{ at } (1-t)a + tb \), in direction \((b-a) \).

\[= dyf(b-a), \quad \text{when } y = (1-t)a + tb. \]

So \(|g'(t)| \leq M, \quad M = |b-a| \max_{y \in [a, b]} |dyf|. \)

By MVT, we have \(|f(b) - f(a)| = |g(1) - g(0)| \leq M. \)

Lemma. Same assumptions, \(x \in U \).

\[|f(b) - f(a) - d_x f(b-a)| \leq |b - a| \max_{y \in [a, b]} |dyf - d_x f|, \]
Consider \(h(y) = f(y) - df(y) \).

Then \(dh = dy \cdot \frac{df}{dx} \).

Lemma Same assumptions, \(m = n \), \(a \in U \), and assume that \(df \) is invertible. Then there are \(\varepsilon > 0 \), \(C > 0 \) in \(\mathbb{R} \) such that

\[
|f(x) - f(y)| > C |x - y| \quad \text{for all } x, y \in U \text{ with } |x - a|, |y - a| < \varepsilon.
\]

In particular, \(f \) is invertible on a neighborhood of \(a \).

Proof Let \(\varepsilon > 0 \) be small enough so that \(B(a, \varepsilon) \subset U \).

By the previous lemma, we have

\[
|f(x) - f(y) - df(x - y)| < (x - y) \max_{g \in [x, y]} |dg_f - df| \\
\]

\[
|df(x - y)| - |f(x) - f(y)| \\
\]

\[
\Rightarrow |f(x) - f(y)| \geq |df(x - y)| - |x - y| \max_{g \in [x, y]} |dg_f - df| \\
\]

As \(df \) is invertible, there is \(c' \), not depending on \(x, y \), such that

\[
|df(x - y)| \geq c' |x - y|.
\]

Indeed, we have \(|g| = |df^{-1} \circ df^{-1} (g)| \leq |df^{-1}||df^{-1} (g)| \)

\[
\Rightarrow |df (g)| \geq |g||df^{-1}|^{-1}.
\]

Decreasing \(\varepsilon \), we may assume that

\[
|g_{df} - df| < c' \frac{1}{2} \quad \text{for all } g \in B(a, \varepsilon)
\]

hence

\[
|f(x) - f(y)| \geq c' |x - y| - c' \frac{1}{2} |x - y| \geq c' \frac{1}{2} |x - y|.
\]
Inverse function theorem

Let \(f : U \to \mathbb{R}^m \) be a definable \(C^1 \) map on a definable open set \(U \subseteq \mathbb{R}^m \), \(\alpha \in U \) s.t. \(\text{def} : \mathbb{R}^m \to \mathbb{R}^m \) is invertible.

Then there are a definable open \(U' \ni \alpha \), \(U' \subseteq U \), and a definable nbhd \(V' \) of \(f(\alpha) \) such that \(f \) maps \(U' \) homeomorphically onto \(V' \) and \(f^{-1} : V' \to U' \) is also \(C^1 \).

Proof Since they define the same topology, one may replace \(\alpha \) on \(\mathbb{R}^m \) by \(\alpha \) on \(\mathbb{R}^m \) by \(\| \alpha \| = \sqrt{x_1^2 + x_2^2 + \cdots + x_m^2} \).

We can find \(c, \varepsilon > 0 \) such that

\[
\| x - \alpha \| < \varepsilon \to x \in U \text{ and } d_x f \text{ is invertible.}
\]

\[
\| x - \alpha \|, \| y - \alpha \| \leq \varepsilon \to \| f(x) - f(y) \| \geq c \| x - y \|.
\]

Claim \(\{ y \mid \| y - f(\alpha) \| < \frac{1}{2} c \varepsilon \} \subseteq \{ f(x) \mid \| x - \alpha \| \leq \varepsilon \} \)

Assume \(\| y - f(\alpha) \| < \frac{1}{2} c \varepsilon \)

Consider \(P(x) = \| f(x) - y \|^2 \) on the ball \(\| x - \alpha \| \leq \varepsilon \).

As the ball is closed and bounded, \(P(x) \) assumes its minimum value on it. However, if \(\| x - \alpha \| = \varepsilon \),

then \(P(x) = \| f(x) - f(\alpha) \| ^2 + \| y - f(\alpha) \| ^2 \geq \frac{1}{2} c \varepsilon \)

So the minimum value is attained at \(b, \| b - \alpha \| < \varepsilon \).

So \(0 = \frac{\partial P}{\partial x j} (b) = \sum_{i=1}^{m} (f_i(b) - y_i) \cdot \frac{\partial f_i}{\partial x j} (b) \)

for \(j \), \(d_b f (f(b) - y) = 0 \).
df invertible implies f(b) = y, which proves the claim.
So the image by f of the open set of \(\|x-a\| < \varepsilon \) contains the open set of \(\|y-f(a)\| < \frac{\varepsilon}{2} \) ce \(\mathbb{R}^n \).

Let \(U' = \{ x \times 1 \mid \|x-a\| < \varepsilon \} \). Then, reasoning in the same way with all points \(a' \in U' \) we get that f is open on U'. It is also injective, hence it is a homeomorphism between U' and \(V' = f(U') \).

It remains to show that \(f^{-1} : V' \rightarrow U' \) is C^1.

By definition

\[
\frac{(f(b) - f(a) - daf(b-a))}{\|b-a\|} \rightarrow 0 \text{ as } b \rightarrow a.
\]

Also \(\|b-a\| < c^{-1} \|f(b) - f(a)\| \). Apply \((daf)^{-1}\)

\[
(daf)^{-1} \frac{(f(b) - f(a)) - (b-a)}{\|f(b) - f(a)\|} \rightarrow 0
\]
as \(f(b) \rightarrow f(a) \).

i.e.: \(f^{-1} \) is differentiable at \(f(a) \), with differential \(d_{f(a)} f^{-1} = (daf)^{-1} \).

This reasoning works at every point \(a' \in U' \), and therefore \(f^{-1} \) is C^1 (\(x \mapsto (dx f)^{-1} \) is continuous).
Corollary (Implicit function theorem)

Let \(U \subseteq \mathbb{R}^{m+n} \) be definable open, \(f_1, \ldots, f_n : U \to \mathbb{R} \) be definable \(C^1 \). Let \((x_0, y_0) \in \mathbb{R}^{m+n} \) be s.t.

\[
f_1(x_0, y_0) = \ldots = f_n(x_0, y_0) = 0,
\]

and the matrix

\[
\begin{pmatrix}
\frac{\partial f_1}{\partial y_1}(x_0, y_0) & \cdots & \frac{\partial f_1}{\partial y_n}(x_0, y_0)
\end{pmatrix}
\]

is invertible. Then there is an open definable nbhd \(V \) of \(x_0 \) in \(\mathbb{R}^m \), and \(W \) of \(y_0 \) in \(\mathbb{R}^n \), and a definable \(C^1 \) map \(\phi : V \to W \) such that \(V \times W \subseteq U \), and for all \((x, y) \in V \times W \) we have

\[
f_1(x, y) = \ldots = f_n(x, y) = 0 \quad \Rightarrow \quad y = \phi(x).
\]

Proof. Apply the inverse function theorem to the map

\[
y : (x, y) \mapsto (x, f_1(x, y), \ldots, f_n(x, y))
\]

\[
U \to \mathbb{R}^{m+n}.
\]

Consider the map \(\pi g(x, 0) \) near \(x_0 \).

What else:

- \(\frac{d}{dx} \) form: \(I \subseteq \mathbb{R} \) interval, \(f : I \to \mathbb{R} \) definable with \(f'(x) \neq 0 \) for all \(x \in I \) in a nbhd of a \(\lim_{x \to a} g(x) = 0 = \lim_{x \to a} f(x) \). Then \(\lim_{x \to a} \frac{g(x)}{f(x)} = \lim_{x \to a} \frac{f(x)}{g(x)} \).
- L'Hôpital's rule: If \(f : I \to \mathbb{R} \) is \((m+1)\)-times differentiable on \(I \), and \(a, b \) are in \(I \). Then

\[
f(b) = f(a) + f'(a)(b - a) + \frac{f''(a)}{2!}(b-a)^2 + \cdots
\]

\[
+ \frac{f^{(m)}(a)}{m!}(b-a)^m + \frac{f^{(m+1)}(\xi)}{(m+1)!}(b-a)^{m+1}
\]

for some \(\xi \in (a, b) \).
Def: Let $A \subseteq \mathbb{R}^m$, $f: A \rightarrow \mathbb{R}^n$ a definable map. Then f is a C^1-map if there are a definable open $U \supseteq A$, and a definable C^1-map $F: U \rightarrow \mathbb{R}^n$, such that $F|_{A} = f$.

A C^1 cell is a cell in which all defining functions are C^1.

Thm (C1 cell decomposition)

(Iim) If $A_{1}, \ldots , A_{k} \subseteq \mathbb{R}^m$ are definable, there is a decomposition of \mathbb{R}^m into C^1-cells partitioning A_{1}, \ldots , A_{k}.

(IIim) If $A \subseteq \mathbb{R}^m$ and $f: A \rightarrow \mathbb{R}$ is definable, then there is a decomposition of \mathbb{R}^m into C^1-cells, partitioning A and such that if $C \subseteq \mathbb{R}, C \subseteq A$ then $f|_{C}$ is C^1.

If f and A are as in IIim, $p \in \text{Int}(A)$, write

$$\nabla f(p) = (\frac{\partial f}{\partial x_1}(p), \ldots , \frac{\partial f}{\partial x_m}(p))$$

provided they exist.

$A' = \{ p \in A \mid p \in \text{int}(A) \text{ and } \nabla f \text{ is defined at } p \}$

Then

(IIIim) $A \setminus A'$ has empty interior.

[On utilize IIIim proof: prove IIIim]