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Abstract

We compare several definitions of the Galois group of a linear difference equation
that have arisen in algebra, analysis and model theory and show, that these groups
are isomorphic over suitable fields. In addition, we study properties of Picard-Vessiot
extensions over fields with not necessarily algebraically closed subfields of constants.

1 Introduction

In the modern Galois theory of polynomials of degree n with coefficients in a field k1, one
associates to a polynomial p(x) a splitting field K, that is a field K that is generated over k
by the roots of p(x). All such fields are k-isomorphic and this allows one to define the Galois
group of p(x) to be the group of k-automorphisms of such a K. If k is a differential field
and Y ′ = AY,A an n × n matrix with entries in k, one may be tempted to naively define
a “splitting field” for this equation to be a differential field K containing k and generated
(as a differential field) by the entries of a fundamental solution matrix Z of the differential
equation2. Regrettably, such a field is not unique in general. For example, for the equation
y′ = 1

2x
y over k = C(x), x′ = 1, the fields k(x1/2) and k(z), z transcendental over k and

z′ = 1
2x
z are not k-isomorphic. If one insists that the constants Ck = {c ∈ k | c′ = 0} are

algebraically closed and that K has no new constants, then Kolchin [16] showed that such
a K exists (and is called the Picard-Vessiot associated with the equation) and is unique
up to k-differential isomorphism. Kolchin [15] defined the Galois group of such a field to

∗The author thanks the Isaac Newton Institute for Mathematical Sciences for its hospitality and financial
support during spring 2005.

†The preparation of this paper was supported by NSF Grant CCR- 0096842 and by funds from the
Isaac Newton Institute for Mathematical Sciences during a visit in May 2005.

1All fields in this paper are assumed to be of characteristic zero
2that is, an invertible n× n matrix Z such that Z ′ = AZ. Note that the columns of Z form a basis of

the solution space
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be the group of k-differential automorphisms of K and developed an appropriate Galois
theory3.

When one turns to difference fields k with automorphism σ and difference equations σY =
AY, A ∈ GLn(k), the situation becomes more complicated. One can consider difference
fields K such that K is generated as a difference field by the entries of a fundamental
solution matrix. If the field of constants Ck = {c ∈ k | σ(c) = c} is algebraically closed and
K has no new constants, then such a K is indeed unique and is again called a Picard-Vessiot
extension ([23], Proposition 1.23 and Proposition 1.9). Unlike the differential case, there are
equations for which such a field does not exist. In fact there are difference equations that
do not have any nonzero solution in a difference field with algebraically closed constants.
For example, let K be a difference field containing an element z 6= 0 such that σ(z) = −z.
One then has that z2 is a constant. If, in addition, the constants CK of K are algebraically
closed, then z ∈ CK so σ(z) = z, a contradiction. This example means that either one must
consider “splitting fields” with subfields of constants that are not necessarily algebraically
closed or consider “splitting rings” that are not necessarily domains. Both paths have been
explored and the aim of this paper is to show that they lead, in essence, to the same Galois
groups.

The field theoretic approach was developed by Franke4 in [10] and succeeding papers.
He showed that for Picard-Vessiot extension fields the Galois group is a linear algebraic
group defined over the constants and that there is the usual correspondence between closed
subgroups and intermediate difference fields. Franke notes that Picard-Vessiot extension
fields do not always exist but does discuss situations when they do exist and results that
can be used when adjoining solutions of a linear difference equation forces one to have new
constants.

Another field theoretic approach is contained in the work of Chatzidakis and Hrushovski
[4]. Starting from a difference field k, they form a certain large difference extension U
having the properties (among others) that for any element in U but not in k, there is an
automorphism of U that moves this element and that any set of difference equations (not
necessarily linear) that have a solution in some extension of U already have a solution
in U . The subfield of constants CU is not an algebraically closed field. Given a linear
difference equation with coefficients in k, there exists a fundamental solution matrix with
entries in U . Adjoining the entries of these to k(CU) yields a difference field K. A natural
candidate for a Galois group is the group of difference automorphisms of K over k(CU)
and these do indeed correspond to points in a linear algebraic group. Equality of this
automorphism group with the Galois group coming from Picard-Vessiot rings is shown in
4.15 under certain conditions (which are always verified when Ck is algebraically closed).
Proofs are very algebraic in nature, and along the way produce some new algebraic results

3It is interesting to note that the Galois theory was developed before it was known if such K always
exist. See the footnote on p.29 of [15]

4Bialynicki-Birula [2] developed a general Galois theory for fields with operators but with restrictions
that forced his Galois groups to be connected.
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on Picard-Vessiot rings: we find numerical invariants of Picard-Vessiot rings of the equation
σ(X) = AX, and show how to compute them (see 4.9 and 4.11). Furthermore, we show
how to compute the number of primitive idempotents of a Picard-Vessiot ring when the
field Ck is algebraically closed (4.13). This situation will be further discussed in Section 4.

The field theoretic approach also seems most natural in the analytic situation. For example,
let M(C) be the field of functions f(x) meromorphic on the complex plain endowed with
the automorphism defined by the shift σ(x) = x + 1. Note that the constants CM(C) are
the periodic meromorphic functions. A theorem of Praagman [21] states that a difference
equation with coefficients in M(C) will have a fundamental solution matrix with entries in
M(C). If k is the smallest difference field containing the coefficients of the equation and
CM(C) and K is the smallest difference field containing k and the entries of fundamental
solution matrix, then, in this context, the natural Galois group is the set of difference
automorphisms of K over k. For example, the difference equation σ(y) = −y has the
solution y = eπix. This function is algebraic of degree 2 over the periodic functions k =
CM(C). Therefore, in this context the Galois group of K = k(eπix) over k is Z/2Z.

One can also consider the field M(C∗) of meromorphic functions on the punctured plane
C∗ = C\{0} with q−automorphism σq(x) = qx, |q| 6= 1. Difference equations in this
context are q-difference equations and Praagman proved a global existence theorem in this
context as well. The constants CM(C∗) naturally correspond to meromorphic functions on
the elliptic curve C∗/qZ and one can proceed as in the case of the shift. One can also
define local versions (at infinity in the case of the shift and at zero or infinity in the case
of q-difference equations). In the local case and for certain restricted equations one does
not necessarily need constants beyond those in C (see [9], [22], [23] as well as connections
between the local and global cases. Another approach to q-difference equations is given
by Sauloy in [26] and Ramis and Sauloy in [25] where a Galois group is produced using a
combination of analytic and tannakian tools. The Galois groups discussed in these papers
do not appear to act on rings or fields and, at present, it is not apparent how the techniques
presented here can be used to compare these groups to other putative Galois groups.)

An approach to the Galois theory of difference equations with coefficients in difference fields
based on rings that are not necessarily integral was presented in [23] (and generalized by
André in [1] to include differential and difference equations with coefficients in fairly general
rings as well). One defines a Picard-Vessiot ring associated with a difference equation
σY = AY with coefficients in a difference field k to be a simple difference ring (i.e., no
σ-invariant ideals) R of the form R = k[zi,j, 1/ det(Z)] where Z = (zi,j) is a fundamental
solution matrix of σY = AY . Assuming that Ck is algebraically closed, it is shown in [23]
that such a ring always exists and is unique up to k-difference isomorphism. A similar
definition for differential equations yields a ring that is an integral domain and leads (by
taking the field of quotients) to the usual theory of Picard-Vessiot extensions (see [24]). In
the difference case, Picard-Vessiot rings need not be domains. For example, for the field
k = C with the trivial automorphism, the Picard-Vessiot ring corresponding to σy = −y
is C[Y ]/(Y 2 − 1), σ(Y ) = −Y . Nonetheless, one defines the difference Galois group of
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σY = AY to be the k-difference automorphisms of R and one can shows that this is a
linear algebraic group defined over Ck. In the example above, the Galois group is easily
seen to be Z/2Z. Furthermore, in general there is a Galois correspondence between certain
subrings of the total quotient ring and closed subgroups of the Galois group.

The natural question arises: How do these various groups relate to each other? The example
of σ(y) = −y suggests that the groups may be the same. Our main result, Theorem 2.9,
states that all these groups are isomorphic as algebraic groups over a suitable extension of
the constants. This result has interesting ramifications for the analytic theory of difference
equations. In [11], the second author gave criteria to insure that solutions, meromorphic in
C∗, of a first order q-difference equation over C(x) satisfy no algebraic differential relation
over CM(C∗)(x), where CM(C∗) is the field of meromorphic functions on the elliptic curve
C∗/qZ. The proof of this result presented in [11] depended on knowing the dimension of
Galois groups in the analytic (i.e., field-theoretic) setting. These groups could be calculated
in the ring theoretic setting of [23] and the results of the present paper allow one to transfer
this information to the analytic setting. Although we will not go into more detail concerning
the results of [11], we will give an example of how one can deduce transcendence results in
the analytic setting from their counterparts in the formal setting.

The rest of the paper is organized as follows. In Section 2, we show how results of [23] and
[24] can be modified to prove the correspondence of various Galois groups. In Section 3 we
prove this result again in the special case of q-difference equations over C(x) using tannakian
tools in the spirit of Proposition 1.3.2 of [14]. In Section 4, we discuss the model-theoretic
approach in more detail and, from this point of view, show the correspondence of the Galois
groups. In addition, we consider some additional properties of Picard-Vessiot rings over
fields with constant subfields that are not necessarily algebraically closed. The different
approaches and proofs have points of contacts (in particular, Proposition 2.4) and we hope
comparisons of these techniques are enlightening.

The authors would like to thank Daniel Bertrand for suggesting the approach of Section 3
and his many other useful comments concerning this paper.

2 A Ring-Theoretic Point of View

In this section we shall consider groups of difference automorphisms of rings and fields
generated by solutions of linear difference equations and show that these groups are iso-
morphic, over the algebraic closure of the constants to the Galois groups defined in [24].
We begin by defining the rings and fields we will study.

Definition 2.1 Let K be a difference field with automorphism σ and let A ∈ GLn(K).

a. We say that a difference ring extension R of K is a weak Picard-Vessiot ring for the
equation σX = AX if
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(i) R = K[Z, 1
det(Z)

] where Z ∈ GLn(R) and σZ = AZ and

(ii) CR = CK

b. We say that a difference field extension L of K is a weak Picard-Vessiot field for σX =
AX if CL = CK and L is the quotient field of a weak Picard-Vessiot ring of σX = AX.

In [23], the authors define a Picard-Vessiot ring for the equation σY = AY to be a dif-
ference ring R such that (i) holds and in addition R is simple as a difference ring, that
is, there are no σ-invariant ideals except (0) and R. When CK is algebraically closed,
Picard-Vessiot rings exist, are unique up to K-difference isomorphisms and have the same
constants as K ([23], Section 1.1). Therefore in this case, the Picard-Vessiot ring will be a
weak Picard-Vessiot ring.

In general, even when the field of constants is algebraically closed, Example 1.25 of [23]
shows that there will be weak Picard-Vessiot rings that are not Picard-Vessiot rings. Fur-
thermore this example shows that the quotient field of a weak Picard-Vessiot integral do-
main R need not necessarily have the same constants as R so the requirement that CL = CK

is not superfluous.

The Galois theory of Picard-Vessiot rings is developed in [23] for Picard-Vessiot rings R
over difference fields K with algebraically closed constants CK . In particular, it is shown
([23], Theorem 1.13) that the groups of difference K-automorphisms of R over K corre-
sponds to the set of CK-points of a linear algebraic group defined over CK . A similar result
for differential equations is proven in ([24], Theorem 1.27). It has been observed by many
authors beginning with Kolchin ([17], Ch. VI.3 and VI.6; others include [1], [7], [6], [14],
[18] in a certain characteristic p setting for difference equations) that one does not need
Ck to be algebraically closed to achieve this latter result. Recently, Dyckerhoff [8] showed
how the proof of Theorem 1.27 of [24] can be adapted in the differential case to fields with
constants that are not necessarily algebraically closed. We shall give a similar adaption in
the difference case.

Proposition 2.2 Let K be a difference field of characteristic zero and let σY = AY,A ∈
GLn(K) be a difference equation over K. Let R be a weak Picard-Vessiot ring for this
equation over K. The group of difference K-automorphisms of R can be identified with the
CK-points of a linear algebraic group GR defined over CK.

Proof. We will define the group GR by producing a representable functor from the cate-
gory of commutative CK-algebras to the category of groups (c.f., [27]).

First, we may write R = K[Yi,j,
1

det(Y )
]/q as the quotient of a difference ring K[Yi,j,

1
det(Y )

],

where Y = {Yi,j} is an n× n matrix of indeterminates with σY = AY , by a σ-ideal q. Let
C = CK . For any C-algebra B, one defines the difference rings K ⊗C B and R⊗C B with
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automorphism σ(f ⊗ b) = σ(f)⊗ b for f ∈ K or R. In both cases, the ring of constants is
B. We define the functor GR as follows: the group GR(B) is the group of K ⊗C B-linear
automorphisms of R ⊗C B that commute with σ. One can show that GR(B) can be iden-
tified with the group of matrices M ∈ GLn(B) such that the difference automorphism φM

of R ⊗C B, given by (φMYi,j) = (Yi,j)M , has the property that φM(q) ⊂ (q) where (q) is
the ideal of K[Yi,j,

1
det(Yi,j)

]⊗C B generated by q.

We will now show that GR is representable. Let Xs,t be new indeterminates and let
B = C[Xs,t,

1
det(Xs,t)

] and let M0 = (Xs,t). Let q = (q1, . . . , qr) and write σM0(qi) mod (q) ∈
R⊗C C[Xs,t,

1
det(Xs,t)

] as a finite sum

∑
i

C(M0, i, j)ei with all C(M0, i, j) ∈ C[Xs,t,
1

det(Xs,t)
] ,

where {ei}i∈I is a C-basis of R. Let I be the the ideal in C[Xs,t,
1

det(Xs,t)
] generated by all

the C(M0, i, j). We will show that U := C[Xs,t,
1

det(Xs,t)
]/I represents GR.

Let B be a C-algebra and φ ∈ GR(B) identified with φM for some M ∈ GLn(B). One
defines the C-algebra homomorphism Φ : C[Xs,t,

1
det(Xs,t)

] → B by (ΦXs,t) = M . The

condition on M implies that the kernel of Φ contains I. This then gives a unique C-algebra
homomorphism Ψ : U → B with Ψ(M0 mod I) = M . The Yoneda Lemma can now be
used to show that GR = Spec(U) is a linear algebraic group (see Appendix B, p. 382 of [24]
to see how this is accomplished or Section 1.4 of [27]).

We will refer to GR as the Galois group of R. When R is a Picard-Vessiot extension of
K, we have the usual situation. We are going to compare the groups associated with a
Picard-Vessiot extension and weak Picard-Vessiot field extensions for the same equation
over different base fields. We will first show that extending a Picard-Vessiot ring by con-
stants yields a Picard-Vessiot ring whose associated group is isomorphic to the original
group over the new constants. In the differential case and when the new constants are
algebraic over the original constants this appears in Dyckerhoff’s work ([8], Proposition
1.18 and Theorem 1.26). Our proof is in the same spirit but without appealing to descent
techniques. We will use Lemma 1.11 of [23], which we state here for the convenience of the
reader:

Lemma 2.3 Let R be a Picard-Vessiot ring over a field k with CR = Ck
5 and A be a

commutative algebra over Ck. The action of σ on A is supposed to be the identity. Let N
be an ideal of R⊗Ck

A that is invariant under σ. Then N is generated by the ideal N ∩A
of A.

5The hypothesis CR = Ck is not explicitly stated in the statement of this result in [23] but is assumed
in the proof.
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Proposition 2.4 Let k ⊂ K be difference fields of characteristic zero and K = k(CK). Let
R be a Picard-Vessiot ring over k with CR = Ck for the equation σX = AX,A ∈ GLn(k).
If R = k[Y, 1

det(Y )
]/q where Y is an n × n matrix of indeterminates, σY = AY and q is a

maximal σ-ideal, then S = K[Y, 1
det(Y )

]/qK is a Picard-Vessiot extension of K for the same
equation. Furthermore, CS = CK.

Proof. First note that the ideal qK 6= K[Y, 1
det(Y )

]. Secondly, Lemma 2.3 states that for R

as above and A a commutative Ck algebra with identity, any σ-ideal N of R⊗Ck
A (where

the action of σ on A is trivial) is generated by N ∩A. This implies that the difference ring
R ⊗Ck

CK is simple. Therefore the map ψ : R ⊗Ck
CK → S = K[Y, 1

det(Y )
]/(q)K where

ψ(a ⊗ b) = ab is injective. Let R′ be the image of ψ. One sees that any element of S is
of the form a

b
for some a ∈ R′, b ∈ k[Ck] ⊂ R′. Therefore any ideal I in S is generated by

I ∩R′ and so S is simple.

For any constant c ∈ S, the set J = {a ∈ R′ | ac ∈ R′} ⊂ R′ is a nonzero σ-ideal so c ∈ R′.
Since the constants of R′ are CK , this completes the proof.

Corollary 2.5 Let R and S be as in Proposition 2.4. If GR and GS are the Galois groups
associated with these rings as in Proposition 2.2, then GR and GS are isomorphic over CK.

Proof. We are considering GR as the functor from Ck algebras A to groups defined by
GR(A) := Aut(R ⊗Ck

A) where Aut(..) is the group of difference k ⊗ A-automorphisms.
Let TR be the finitely generated Ck-algebra representing GR (i.e., the coordinate ring of
the group). Similarly, let TS be the CK-algebra representing GS. We define a new functor
F from CK-algebras to groups as F (B) := Aut((R ⊗Ck

CK) ⊗CK
B). One checks that F

is also a representable functor represented by TR ⊗Ck
CK . Using the embedding ψ of the

previous proof, one sees that F (B) = Aut(S ⊗CK
B) = GR(B) for any CK-algebra B. The

Yoneda Lemma implies that TR ⊗Ck
CK ' TS.

In Proposition 2.7 we will compare Picard-Vessiot rings with weak Picard-Vessiot fields for
the same difference equation. To do this we need the following lemma. A version of this in
the differential case appears as Lemma 1.23 in [24].

Lemma 2.6 Let L be a difference field. Let Y = (Yi,j) be and n × n matrix of inde-
terminates and extend σ to L[Yi.j,

1
det(Y )

] by setting σ(Yi,j) = Yi,j. The map I 7→ (I) =

I · L[Yi.j,
1

det(Y )
] from the set of ideals in CL[Yi.j,

1
det(Y )

] to the set of ideals of L[Yi.j,
1

det(Y )
]

is a bijection.

Proof. One easily checks that (I) ∩ CL[Yi.j,
1

det(Y )
] = I. Now, let J be an ideal of

L[Yi.j,
1

det(Y )
] and let I = J ∩ CL[Yi.j,

1
det(Y )

]. Let {ei} be a basis of CL[Yi.j,
1

det(Y )
] over

CL. Given f ∈ L[Yi.j,
1

det(Y )
], we may write f uniquely as f =

∑
fiei, fi ∈ L. Let `(f) be
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the number of i such that fi 6= 0. We will show, by induction on `(f), that for any f ∈ J ,
we have f ∈ (I). If `(f) = 0, 1 this is trivial. Assume `(f) > 1. Since L is a field, we can
assume that there exists an i1 such that fi1 = 1. Furthermore, we may assume that there is
an i2 6= i1 such that fi2 ∈ L\CL. We have `(f − σ(f)) < `(f) so σ(f)− f ∈ (I). Similarly,
σ(f−1

i2
f)−f−1

i2
f ∈ (I). Therefore, (σ(f−1

i2
)−f−1

i2
)f = σ(f−1

i2
)(f−σ(f))+(σ(f−1

i2
f)−f−1

i2
f) ∈

(I). This implies that f ∈ (I).

The following is a version of Proposition 1.22 of [24] modified for difference fields taking
into account the possibility that the constants are not algebraically closed.

Proposition 2.7 Let K be a difference field with constants C and let A ∈ GLn(K). Let
S = K[U, 1

det(U)
], U ∈ GLn(S), σ(U) = AU be a Picard-Vessiot extension of K with

CS = Ck and let L = K(V ), V ∈ GLn(L), σ(V ) = AV be a weak Picard-Vessiot field
extension of K. Then there exists a K-difference embedding ρ : S → L ⊗C C where C is
the algebraic closure of C and σ acts on L⊗C C as σ(v ⊗ c) = σ(v)⊗ c.

Proof. Let X = (Xi,j) be an n × n matrix of indeterminates over L and let S0 :=
K[Xi,j,

1
det(X)

] ⊂ L[Xi,j,
1

det(X)
]. We define a difference ring structure on L[Xi,j,

1
det(X)

] by

setting σ(X) = AX and this gives a difference ring structure on S0. Abusing notation
slightly, we may write S = S0/p where p is a maximal σ-ideal of S0. Define elements Yi,j ∈
L[Xi,j,

1
det(X)

] via the formula (Yi,j) = V −1(Xi,j). Note that σYi,j = Yi,.j for all i, j and that

L[Xi,j,
1

det(X)
] = L[Yi,j,

1
det(Y )

]. Define S1 := C[Yi,j,
1

det(Y )
]. The ideal p ⊂ S0 ⊂ L[Yi,j,

1
det(Y )

]

generates an ideal (p) in L[Yi,j,
1

det(Y )
]. We define p̃ = (p) ∩ S1. Let m be a maximal ideal

in S1 such that p̃ ⊂ m. We then have a homomorphism S1 → S1/m→ C. We can extend
this to a homomorphism ψ : L[Yi,j,

1
det(Y )

] = L ⊗C S1 → L ⊗C C. Restricting ψ to S0,

we have a difference homomorphism ψ : S0 → L ⊗C C whose kernel contains p. Since
p is a maximal σ-ideal we have that this kernel is p. Therefore ψ yields an embedding
ρ : S = S0/p→ L⊗C C.

Corollary 2.8 Let K,C,C, S, L and ρ be as above and let T = K[V, 1
det(V )

]. Then ρ maps

S ⊗C C isomorphically onto T ⊗C C. Therefore the Galois group GS is isomorphic to GT

over C.

Proof. In Proposition 2.7, we have that ρ(U) = V (ci,j) for some (ci,j) ∈ GLn(C). There-
fore ρ is an isomorphism. The isomorphism of GS and GT over C now follows in the same
manner as the conclusion of Corollary 2.5.

We can now prove the following result.

Theorem 2.9 Let
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1. k be a difference field with algebraically closed field of constants C,

2. σY = AY be a difference equation with A ∈ GLn(k) and let R be the Picard-Vessiot
ring for this equation over k,

3. K a difference field extension of k such that K = k(CK)

4. L a weak Picard-Vessiot field for the equation σ(Y ) = AY over K.

Then

a. If we write L = K(V ) where V ∈ GLn(L) and σV = AV then R⊗CCK ' K[V, 1
det(V )

]⊗CK

CK where CK is the algebraic closure of CK. Therefore K[V, 1
det(V )

] is also a Picard-
Vessiot extension of K.

b. The Galois groups of R and K[V, 1
det(V )

] are isomorphic over CK.

Proof. Let Y = (Yi,j) be an n×nmatrix of indeterminates and writeR = k[Yi,j,
1

det(Y )
]/(p),

where (p) is a maximal σ-ideal. Assumptions 1. and 2. imply that CR = Ck ([23],Lemma
1.8) so Propostion 2.4 implies that S = K[Yi,j,

1
det(Y )

]/(p)K is a Picard-Vessiot ring with
constants CK . Corollary 2.5 implies that its Galois group GR is isomorphic over C to GS.
Corolary 2.8 finishes the proof.

3 A Tannakian Point of View

In this section we shall give another proof of Theorem 2.9 for q-difference equations in the
analytic situation. Let M(C∗) be the field of functions f(x) meromorphic on C∗ = C\{0}
with the automorphism σ(f(x)) = f(qx) where q ∈ C∗ is a fixed complex number with
|q| 6= 1. As noted before, the constants CM(C∗) in this situation correspond to meromorphic
functions M(E) on the elliptic curve E = C∗/qZ. We shall show how the theory of tan-
nakian categories also yields a proof of Theorem 2.9 when k = C(x) and K = k(CM(C∗)).

We shall assume that the reader is familiar with some basic facts concerning difference
modules ([23], Ch. 1.4) and tannakian categories ([7],[6]; see [24], Appendix B or [3] for an
overview). We will denote by Dk = k[σ, σ−1] (resp. DK = K[σ, σ−1]) the rings of differ-
ence operators over k (resp. K). Following ([23], Ch. 1.4), we will denote by Diff(k, σ)
(resp. by Diff(K, σ)) the category of difference-modules over k (resp. K). The ring of
endomorphisms of the unit object is equal to C (resp. CK = CM(C∗) = M(E)) the field of
constants of k (resp. K).

Let M be a Dk-module of finite type over k. We will denote by MK = M ⊗k K the DK-
module constructed by extending the field k to K. We will let {{M}} (resp. {{MK}})
denote the full abelian tensor subcategory of Diff(k, σ) (resp. Diff(K, σ)) generated by
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M (resp. MK) and its dual M∗ (resp. MK
∗).

Theorem 1.32 of [23] gives a fiber functor ωM over C for {{M}}. In [21], Praagman gave an
existence theorem (see Section 1) for q-difference equations which can be used to construct
a fiber functor ωMK

for {{MK}} over CK (described in detail in Proposition 3.9 below). In
particular, {{M}} and {{MK}} are neutral tannakian categories over C and CK respec-
tively. The main task of this section is to compare the Galois groups associated to the fiber
functors ωM and ωMK

. We will prove the following theorem:

Theorem 3.1 Let M ∈ Diff(k, σ) be a Dk-module of finite type over k.

Then
Aut⊗(ωM)⊗C CK ' Aut⊗(ωMK

)⊗CK
CK .

The proof is divided in two parts. In the first part, we will construct a fiber functor ω̃M

from {{MK}} to V ectCK
, which extends ωM and we will compare its Galois group to that

associated to ωM . In the second part, we will compare the Galois group associated to ωMK

and the Galois group associated to ω̃M , and finally relate these groups to the Galois groups
considered in Theorem 2.9.b).

3.1 The action of Aut(CK/C) on {{MK}}

A module MK = M ⊗k K is constructed from the module M essentially by extending
the scalars from C to CK . In order to compare the subcategories {{M}} and {{MK}}
they generate, it seems natural therefore to consider an action of the automorphism group
Aut(CK/C) on MK as well as on {{MK}}. Before we define this action we state some
preliminary facts.

Lemma 3.2 We have :

1. The fixed field C
Aut(CK/C)
K is C.

2. K ' CK(X) where CK(X) denotes the field of rational functions with coefficients in
CK. This isomorphism maps C(X) isomorphically onto k.

Proof. 1. For all c ∈ C∗, the restriction to CK of the map σc which associates to f(x) ∈ CK

the function σc(f)(x) = f(cx) defines an element of Aut(CK/C). Let φ ∈ C
Aut(CK/C)
K , the

fixed field of Aut(CK/C). Because σc(φ) = φ for any c ∈ C∗, φ must be constant.

2. For any f(X) ∈ CK [X], put φ(f) = f(z), viewed as a meromorphic function of the
variable z ∈ C∗. Then, φ is a morphism from CE[X] to KE. We claim that φ is injective.
Indeed, let us consider a dependence relation :∑

ci(z)ki(z) = 0,∀z ∈ C (1)
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where ci ∈ CE and ki ∈ K. Using Lemma II of ([5], p. 271) or the Lemma of ([9], p. 5) the
relation (1) implies that ∑

ci(z)ki(X) = 0,∀z ∈ C. (2)

So φ extends to the function field CK(X), whose image is the full K. Notice that, by
definition of φ, C(X) maps isomorphically on k.

Since Aut(CK/C) acts on CK(X) (via its action on coefficients), we can consider its
action on K.

Lemma 3.3 1. The action of Aut(CK/C) on K extends the natural action of Aut(CK/C)
on CK. Moreover the action of Aut(CK/C) on K is trivial on k.

2. KAut(CK/C) = k.

3. The action of Aut(CK/C) on K commutes with the action of σq.

Proof. 1. This comes from the definition of the action of Aut(CK/C) on K. Because
Aut(CK/C) acts trivially on C(X), its action on k is also trivial.

2. Because of Lemma 3.2, C
Aut(CK/C)
K = C. Thus, by construction KAut(CK/C) = k.

3. Let i be a natural integer and f(X) = cX i where c ∈ CK . Then

τ(σq(f)) = τ(cqiX i) = τ(c)qiX i = σq(τ(f))

with τ ∈ Aut(CK/C). Thus, the action of Aut(CK/C) commutes with σq on CK [X]. It
therefore commutes on CK(X) = K.

Before we finally define the action of Aut(CK/C) on {{MK}}, we need one more definition.

Definition 3.4 Let F be a field of caracteristic zero and V be a F -vector space of finite
dimension over F . We denote by ConstrF (V ) any construction of linear algebra applied to
V inside V ectF , that is to say any vector space over F obtained by tensor products over F ,
direct sums, symetric and antisymetric products on V and its dual V ∗ := HomF−lin(V, F ).

Lemma 3.5 Let V be a vector space of finite dimension over k (resp. over C). Then,
Constrk(V )⊗kK = ConstrK(V ⊗K) (resp. ConstrC(V )⊗CK = ConstrCK

(V ⊗CK)). In
other words, the constructions of linear algebra commute with the scalar extension.

Proof. Consider for instance Constrk(V ) = Homk−lin(V, k). Because V is of finite di-
mension over k, we have Homk−lin(V, k)⊗k K = HomK−lin(V ⊗k K,K).

11



To define the action of Aut(CK/C) on {{MK}} we note that for any object N of {{MK}},
there exists, by definition, a construction M ′ = Constrk(M) such that N ⊂M ′ ⊗k K. Let
now M ′ = Constrk(M) be a construction of linear algebra applied to M . The Galois group
Aut(CK/C) acts on M ′

K = M ′ ⊗k K via the semi-linear action (τ → id ⊗ τ). It therefore
permutes the objects of {{MK}}. It remains to prove that this permutation is well defined
and is independent of the choice of the construction in which these objects lie. If there
exist M1 and M2 two objects of Constrk(M) such that N ⊂M1 ⊗k K and N ⊂M2 ⊗k K.
Then, by a diagonal embedding N ⊂ (M1 ⊕ M2) ⊗k K. The action of Aut(CK/C) on
(M1⊕M2)⊗k K is the direct sum of the action of Aut(CK/C) on M1⊗k K with the action
of Aut(CK/C) on M2 ⊗k K.This shows that the restriction of the action of Aut(CK/C) on
M1 ⊗k K to N is the same as the restriction of the action of Aut(CK/C) on M2 ⊗k K to
N . Thus, the permutation is independent of the choice of the construction in which these
objects lie.

3.2 Another fiber functor ω̃M for {{MK}}

We now extend ωM to a fiber functor ω̃M on the category {{MK}}. For this purpose, we
appeal to Proposition 2.4 to conclude that if R be a Picard-Vessiot ring for M over k and
σX = AX,A ∈ GLn(k) be an equation of M over k. If R = K[Y, 1

det(Y )
]/I where Y is an

n× n matrix of indeterminates, σY = AY and I is a maximal σ-ideal, then RK = R⊗k K
is a weak Picard-Vessiot ring for MK over K.

We then have the following proposition-definition:

Proposition 3.6 For any object N of {{MK}} let

ω̃M(N) = Ker(σ − Id,RK ⊗K N).

Then ω̃M : {{MK}} → V ectCK
is a faithful exact, CK-linear tensor functor. Moreover,

ω̃M(N ⊗K) = ωM(N)⊗ CK for every N ∈ {{M}}.

Proof. Because of the existence of a fundamental matrix with coefficients in RK , ω̃M(MK)
satisfies RK ⊗KK

MK = RK ⊗CK
ω̃M(MK). Let σX = AX,A ∈ GLn(k) be an equation of

M over k and R = k[Y, 1
det(Y )

]/I be its corresponding Picard-Vessiot ring over k. Let M ′

be a construction of linear algebra applied to M over k. Then RK contains a fundamental
matrix of M ′ ⊗ K. This comes from the fact that an equation of M ′ is obtained from
the same construction of linear algebra applied to A. Moreover, if N ∈ {{MK}}, then
R contains also a fundamental matrix for N . Indeed, there exists M ′, a construction
of linear algebra applied to M over k, such that N ⊂ M ′ ⊗ K. Now, RK contains the
entries of a fundamental solution matrix of N and this matrix is invertible because its
determinant divides the determinant of a fundamental matrix of solutions of M ′ ⊗ K.
Thus, RK ⊗K N = RK ⊗CK

ω̃M(N). We deduce from this fact, that ω̃M is a faithful, exact,
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CK-linear tensor functor.

For everyN ∈ {{M}}, we have a natural inclusion of CK-vector spaces of solutions ωM(N)⊗
CK ⊂ ω̃M(N ⊗K). Since their dimensions over CK are both equal to the dimension of N
over k, they must coincide.

3.3 Comparison of the Galois groups

Let M ′ = ConstrK(M) be a construction of linear algebra applied to M . The automor-
phism group Aut(CK/C) acts on ω̃M(M ′

K) = ωM(M ′) ⊗C CK via the semi-linear action
(τ → id ⊗ τ). It therefore permutes the objects of the tannakian category generated by
ωM(M)⊗C CK inside V ectCK

.

Lemma 3.7 Let N be an object of {{MK}} and τ be an element of Aut(CK/C). Then,
for the actions of Aut(CK/C) defined as above and in Section 3.1, we have:

τ(ω̃M(N)) = ω̃M(τN)

(equality inside ωM(M ′)⊗C CK for any M ′ = Constrk(M) such that N ⊂M ′ ⊗K.)

Proof. Let M ′ = ConstrKM be such that N ⊂ M ′ ⊗k K and consider the action of
Aut(CK/C) on R⊗k (M ′ ⊗k K) defined by id⊗ id⊗ τ .

This allows us to consider the action of Aut(CK/C) on RK ⊗K N = R⊗kN . By definition,
we have τ(RK⊗KN) = R⊗k(τ(N)) = RK⊗K τ(N) for all τ ∈ Aut(CK/C). Moreover inside
R⊗k (M ′⊗K), the action of Aut(CK/C) commutes with the action of σq (see Lemma 3.3).
Therefore

τ(Ker(σq − Id,RK ⊗K N)) = Ker(σq − Id,RK ⊗K τ(N)).

The next proposition is Corollary 2.5, but we shall now give a tannakian proof of it,
following the proof of ([14], Lemma 1.3.2).

Proposition 3.8 Aut⊗(ωM)⊗ CK = Aut⊗(ω̃M).

Proof. By definition, Aut⊗(ω̃M) = Stab(ω̃M(W ), W ∈ {{MK}}) is the stabilizer inside
Gl(ω̃M(MK)) = Gl(ωM(M))⊗CK of the fibers of all the sub-equations W of MK . Similarly,
Aut⊗(ωM) = Stab(ωM(W )), W ∈ {{M}}), so that the following inclusion holds:

Aut⊗(ω̃M) ⊂ Aut⊗(ωM)⊗ CK .

The semi-linear action of Aut(CK/C) permutes the sub-DK-modules W of {{MK}} and
the fixed field of CK of ΓE is C (see Lemma 3.2.1)). Therefore Aut⊗(ω̃M) is defined over
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C, i.e., it is of the form G ⊗ CK for a unique subgroup G ⊂ Aut⊗(ωM). By Chevalley’s
theorem, G is defined as the stabilizer of one C-subspace V of ωM(M ′) for some construction
M ′ = Constrk(M).

We must show that V is stable under Aut⊗(ωM), i.e., we must show that V is of the form
ωM(N) for N ∈ {{M}}. Because G ⊗ CK = Aut⊗(ω̃M) leaves V ⊗ CK stable, we know
that there exists N ∈ {{MK}} with ω̃M(N) = V ⊗ CK . For any τ ∈ Aut(CK/C),

ω̃M(N) = V ⊗ CK = τ(V ⊗ CK) = τ(ω̃M(N)) = ω̃M(τN),

in view of Lemma 3.7. We therefore deduce from Proposition 3.6 that τN = N for any
τ ∈ Aut(CK/C). Consequently, N is defined over K (see Lemma 3.3.3)), i.e., it is of the
form N ⊗K, where N ∈ {{M}}.

We need to define one more functor before we finish the proof of Theorem 3.1.

Proposition 3.9 Let
σqY = AY (3)

be an equation of M with A ∈ GLn(K). There exists a fundamental matrix of solutions U
of (3) with coefficients in the field M(C∗) of functions meromorphic on C∗. Moreover, if
V is another fundamental matrix of solutions of (3), there exists P ∈ GLn(CK) such that
U = PV .

Let L be the subfield of M(C∗) generated over K by the entries of U . For any object N of
{{MK}} let

ωMK
(N) = Ker(σ − Id, L⊗N).

Then ωMK
: {{MK}} → V ectCK

is a faithful exact, CK-linear tensor functor.

Proof. For the existence of U see [21] Theorem 3. Since the field of constants of L is
CK , L is a weak Picard Vessiot field for MK , and the proof that ωMK

is a fiber functor on
{{MK}} is the same as that of Proposition 3.6.

We now turn to the

Proof of Theorem 3.1. By Propositions 3.6 on the one hand and 3.9 on the other hand,
there exists two fiber functors ω̃M and ωMK

on {{MK}} which is a neutral tannakian
category over CE. A fundamental theorem of Deligne ([7], Theorem 3.2) asserts that for
any field C of caracteristic zero, two fiber functors of a neutral tannakian category over C
become isomorphic over the algebraic closure of C. Taking C = CK and combining this
with Proposition 3.8, we therefore have

Aut⊗(ωM)⊗ CK ' Aut⊗(ωMK
)⊗ CK .
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To show the connection between Theorem 3.1 and Theorem 2.9 we must show that the
group of difference k (rep. K)-automorphisms of R (resp. F ) can be identified with the C
(resp. CK)-points of Aut⊗(ωM) (resp. Aut⊗(ωMK

). In the first case, this has been shown
in Theorem 1.32.3 of [23]; the second case can be established in a similar manner. This
enables us to deduce, in our special case, Theorem 2.9 from Theorem 3.1.

We conclude with an example to show that these considerations can be used to show the
algebraic independence of certain classical functions.

Example 3.10 Consider the q-difference equation

σq(y) = y + 1. (4)

In ([23], Section 12.1) the authors denote by l the formal solution of 4, i.e. the formal
q-logarithm. It is easily seen that the Galois group, in the sense of [23], of (4) is equal
to (C,+) and therefore that the dimension of the Galois group GR/C is equal to 1. We
deduce from Theorem 2.9 that the dimension of the Galois group GS/CK

is also equal
to 1. In particular, the field generated over K by the meromorphic solutions of (4) has
transcendence degree 1 over K.

The classical Weiestrass ζ function associated to the elliptic curve E = C∗/qZ satisfies
the equation (4). Therefore, if ℘ is the Weierstrass function of E, we obtain that ζ(z) is
transcendental over the field C(z, ℘(z)).

4 A Model-Theoretic Point of View

4.1 Preliminary model-theoretic definitions and results

Definition 4.1 Let K be a difference field with automorphism σ.

1. K is generic iff

(∗) every finite system of difference equations with coefficients in K and
which has a solution in a difference field containing K, already has a solu-
tion in K.

2. A finite σ-stable extension M of K is a finite separably algebraic extension of K such
that σ(M) = M .

3. The core of L over K, denoted by Core(L/K), is the union of all finite σ-stable
extensions of K which are contained in L.

One of the difficulties with difference fields, is that there are usually several non-isomorphic
ways of extending the automorphism to the algebraic closure of the field. An important
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result of Babbitt (see [5]) says that once we know the behaviour of σ on Core(K/K), then
we know how σ behaves on the algebraic closure K of K.

Fix an infinite cardinal κ which is larger than all the cardinals of structures considered
(e.g., in our case, we may take κ = |C|+ = (2ℵ0)+). In what follows we will work in a
generic difference field U , which we will assume sufficiently saturated, i.e., which has the
following properties:

(i) (∗) above holds for every system of difference equations of size < κ (in infinitely
many variables).

(ii) (1.5 in [4]) If f is an isomorphism between two algebraically closed difference subfields
of U which are of cardinality < κ, then f extends to an automorphism of U .

(iii) Let K ⊂ L be difference fields of cardinality < κ, and assume that K ⊂ U . If every
finite σ-stable extension of K which is contained in L K-embeds in U , then there is
a K-embedding of L in U .

Note that the hypotheses of (iii) are always verified if K is an algebraically closed subfield
of U . If K is a difference field containing the algebraic closure Q of Q, then K will embed
into U , if and only if the difference subfield Q of K and the difference subfield Q of U are
isomorphic. This might not always be the case. However, every difference field embeds into
some sufficiently saturated generic difference field.

Let us also recall the following result (1.12 in [4]): Let n be a positive integer, and
consider the field U with the automorphism σn. Then (U , σn) is a generic difference field,
and satisfies the saturation properties required of (U , σ).

Notation. We use the following notation. Let R be a difference ring. Then, as in the
previous sections, CR denotes the field of “constants” of R, i.e., CR = {a ∈ R | σ(a) = a}.
We let DR = {a ∈ R | σm(a) = a for some m 6= 0}. Then DR is a difference subring of R,
and if R is a field, DR is the relative algebraic closure of CR in R. We let D′

R denote the
difference ring with same underlying ring as DR and on which σ acts trivially. Thus CU is
a pseudo-finite field (see 1.2 in [4]), and DU is its algebraic closure (with the action of σ),
D′
U the algebraic closure of CU on which σ acts trivially.

Later we will work with powers of σ, and will write Fix(σn)(R) for {a ∈ R | σn(a) = a}
so that no confusion arises. If R = U , we will simply write Fix(σn). Here are some
additional properties of U that we will use.

Let K ⊂ M be difference subfields of U , with M algebraically closed, and let a be a tuple
of U . By 1.7 in [4]:

(iv) If the orbit of a under Aut(U/K) is finite, then a ∈ K (the algebraic closure of K).

We already know that every element of Aut(M/KCM) extends to an automorphism of U .
More is true: using 1.4, 1.11 and Lemma 1 in the appendix of [4]:
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(v) every element of Aut(M/KCM) lifts to an element of Aut(U/KCU).

Recall that a definable subset S of Un is stably embedded if whenever R ⊂ Unm is definable
with parameters from U , then R∩Sm is definable using parameters from S. An important
result ([4] 1.11)) shows that CU is stably embedded. Let d ≥ 1. Then, adding parameters
from Fix(σd), there is a definable isomorphism between Fix(σd) and Cd

U . Hence,

(vi) for every d > 0, Fix(σd) is stably embedded, and

(vii) if θ defines an automorphism of DU which is the identity on DM , then θ extends
to an automorphism of U which is the identity on M .

We also need the following lemma. The proof is rather model-theoretic and we refer to
the Appendix of [4] for the definitions and results. Recall that if K is a difference subfield
of U , then its definable closure, dcl(K), is the subfield of U fixed by Aut(U/K). It is an
algebraic extension of K, and is the subfield of the algebraic closure K of K which is fixed
by the subgroup {τ ∈ Gal(K/K) | σ−1τσ = τ}.

Lemma 4.2 Let K be a difference field, and M be a finite σ-stable extension of KCU . Then
M ⊂ KDU , i.e., there is some finite σ-stable extension M0 of K such that M ⊂M0DU .

Proof. Fix an integer d ≥ 1. Then, in the difference field (U , σd), Fix(σd) is stably
embedded, dcl(K) = K and dcl(Fix(σd)) = Fix(σd). Denoting types in (U , σd) by tpd,
this implies

tpd(K/K ∩ Fix(σd)) ` tpd(K/Fix(σ
d)). (])

Assume by way of contradiction that KCU has a finite σ-stable extension M which is
not contained in KDU . We may assume that M is Galois over KCU (see Thm 7.16.V in
[5]), with Galois group G. Choose d large enough so that σd commutes with all elements
of G, and M = M0DU , where M0 is Galois over KFix(σd). Then there are several non-
isomorphic ways of extending σd to M . As tpd(K/Fix(σ

d)) describes in particular the
KFix(σd)-isomorphism type of the σd-difference field M , this contradicts (]) (see Lemmas
2.6 and 2.9 in [4]).

4.2 The Galois group

From now on, we assume that all fields are of characteristic 0. Most of the statements below
can be easily adapted to the positive characteristic case. Let K be a difference subfield of
U , A ∈ GLn(K), and consider the set S = S(U) of solutions of the equation

σ(X) = AX, det(X) 6= 0.

Consider H = Aut(K(S)/KCU). We will call H the Galois group of σ(X) = AX over
KCU

6.

6 Warning: This is not the usual Galois group defined by model theorists, please see the discussion in
subsection 4.4.
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Then H is the set of CU -points of some algebraic group H defined over KCU . To see
this, we consider the ring R = K[Y, det(Y )−1] (where Y = (Yi,j) is an n × n matrix of
indeterminates), extend σ to R by setting σ(Y ) = AY , and let L be the field of fractions
of R. Then L is a regular extension of K, and there is a K-embedding ϕ of L in U , which
sends CL to a subfield of CU , and DL to a subfield of DU . We let T = ϕ(Y ). Then every
element g ∈ H is completely determined by the matrix Mg = T−1g(T ) ∈ GLn(CU), since if
B ∈ S, then B−1T ∈ GLn(CU). Moreover, since KCϕ(L)(T ) and KCU are linearly disjoint
over KCϕ(L), the algebraic locus W of T over KCU (an algebraic subset of GLn) is defined
over KCϕ(L), and H is the set of elements of GLn(CU) which leave W invariant. It is
therefore the set of CU -points of an algebraic group H, defined over KCϕ(L). We let H′

denote the Zariski closure of H(CU). Then H′ is defined over CU , and it is also clearly
defined over Kϕ(CL), so that it is defined over CU ∩Kϕ(CL) = CU ∩ ϕ(CL).

Proposition 4.3 Let H0 denote the connected component of H, and let M0 be the relative
algebraic closure of Kϕ(CL) in ϕ(L), M its Galois closure over Kϕ(CL).

1. dim(H) = tr.deg(L/KCL).

2. M0 is a finite σ-stable extension of Kϕ(CL) and [H : H0] divides [M : Kϕ(CL)]

3. [H′ : H0] = [H(CU) : H0(CU)] equals the number of left cosets of Gal(M/M0) in
Gal(M/Kϕ(CL)) which are invariant under the action of σ by conjugation.

4. If the algebraic closure of CK is contained in CU , then the element σ ∈ Aut(DL/CL) =
Gal(DL/CL) extends to an element of Aut(KCU(T )/KCU).

Proof. 1. Choose another K-embedding ϕ′ of L into U which extends ϕ on the relative
algebraic closure of KCL in L, and is such that ϕ′(L) and ϕ(L) are linearly disjoint over
M0. Then B = ϕ′(Y )−1T ∈ H(CU), and tr.deg(ϕ(KCL)(B))/ϕ(KCL)) = tr.deg(L/KCL).
Thus dim(H) = tr.deg(L/KCL).

2. As M0 ⊂ Kϕ(L), we obtain that [M0 : Kϕ(CL)] is finite and σ(M0) = M0. Furthermore,
σ(M) = M (see Thm 7.16.V in [5]). The algebraic group H is defined as the set of matrices
of GLn which leaves the algebraic set W (the algebraic locus of T over Kϕ(CL)) invariant.

Hence H0 is the subgroup of H which leaves all absolutely irreducible components of W
invariant. Its index in H therefore divides [M : Kϕ(CL)].

3. The first equality follows from the fact that H0(CU) and H′(CU) are Zariski dense in H0

and H′ respectively. Some of the (absolutely irreducible) components of W intersect S in
the empty set. Indeed, let W0 be the component of W containing T , let W1 be another
component of W and τ ∈ Gal(M/Kϕ(CL)) such that W1 = W τ

0 . Then W1 is defined
over τ(M0). If τ defines a (difference-field) isomorphism between M0 and τ(M0), then τ
extends to an isomorphism between Kϕ(L) and a regular extension of Kϕ(CL)τ(M0), and
therefore W1 ∩ S 6= ∅. Conversely, if B ∈ W1 ∩ S, then B−1T ∈ H(CU), so that B is a
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generic of W1. The difference fields Kϕ(CL)(B) and Kϕ(L) are therefore isomorphic (over
Kϕ(CL)), and τ(M0) ⊂ Kϕ(CL)(B). Hence the difference subfields M0 and τ(M0) of M
are Kϕ(CL)-isomorphic. One verifies that M0 and τ(M0) are isomorphic over Kϕ(CL) if
and only if σ−1τ−1στ ∈ Gal(M/M0), if and only if the coset τGal(M/M0) is invariant under
the action of σ by conjugation.

4. We know that the algebraic closure K of K and DU are linearly disjoint over CK = CK .
Let a ∈ ϕ(DL) generates ϕ(DL) over ϕ(CL). By 4.1(vi), tp(a/KCU) = tp(σ(a)/KCU), and
therefore there is θ ∈ Aut(U/KCU) such that θ(a) = σ(a). Thus T−1θ(T ) ∈ H.

Remarks 4.4 1. Even when the algebraic closure of CK is contained in CU , we still
cannot in general conclude that H′ = H.

2. The isomorphism type of the algebraic group H only depends on the isomorphism type
of the difference field K (and on the matrix A). The isomorphism type of the algebraic
group H′ does however depend on the embedding of K in U , that is, on the isomor-
phism type of the difference field Core(K/K). Indeed, while we know the isomorphism
type of the difference field M0 over Kϕ(CL), we do not know the isomorphism type
of the difference field M over Kϕ(CL), and in view of 4.3.3, if Gal(M/Kϕ(CL)) is
not abelian, it may happen that non-isomorphic extensions of σ to M yield different
Galois groups.

3. If the action of σ on Gal(Core(K/K)/K) is trivial and Gal(Core(K/K)/K) is abelian,
then

H = H′ and [H : H0] = [M0 : Kϕ(CL)].

Indeed, by Lemma 4.2, M0 is Galois over Kϕ(CL) with abelian Galois group G and
σ acts trivially on G. The result follows by 4.3.3. Thus we obtain equality of H and
H′ in two important classical cases:

a. K = C(t), CK = C and σ(t) = t+ 1.

b. K = C(t), CK = C and σ(t) = qt for some 0 6= q ∈ C, q not a root of unity.

4. If B ∈ S, then the above construction can be repeated, using B instead of T . We then
obtain an algebraic group H1, with H1(CU) ' Aut(KCU(S)/KCU). Since KCU(B) =
KCU(T ), the algebraic groups H1 and H are isomorphic (via B−1T ).

5. In the next subsection, we will show that the algebraic group H and the algebraic group
GR′ introduced in section 2 are isomorphic when CR′ = CK = DK.

4.3 More on Picard-Vessiot rings

Throughout the rest of this section, we fix a difference ring K, some A ∈ GLn(K), R =
K[Y, det(Y )−1] as above, with σ(Y ) = AY , and R′ = R/q a Picard-Vessiot ring for σ(X) =
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AX over K. We denote the image of Y in R′ by y. We keep the notation introduced in
the previous subsections.

If q is not a prime ideal, then there exists ` and a prime σ`-ideal p of R which is a maximal
σ`-ideal of R, such that q =

⋂`−1
i=0 σ

i(p), and R′ ' ⊕`−1
i=0Ri, where Ri = R/σi(p) (see

Corollary 1.16 of [23]. One verifies that the second proof does not use the fact that CK

is algebraically closed). Thus the σ`-difference ring R0 is a Picard-Vessiot ring for the
difference equation σ`(X) = σ`−1(A) · · ·σ(A)AX over K. We denote σ`−1(A) · · ·σ(A)A by
A`.

We will identify R′ with ⊕`−1
i=0Ri, and denote by ei the primitive idempotent of R′ such

that eiR
′ = Ri. Then ei = σi(e0). We will denote by R∗ the ring of quotients of R′, i.e.,

R∗ = ⊕`−1
i=0R

∗
i , where R∗i is the field of fractions of Ri. The difference ring R∗ is also called

the total Picard-Vessiot ring of σ(X) = AX over K. There are two numerical invariants
associated to R′: the number ` = `(R′), and the number m(R′) which is the product of
`(R′) with [DR∗

0
: DKCR∗

0
]. We call m(R′) the m-invariant of R′. We will be considering

other Picard-Vessiot rings for σ(X) = AX, and will use this notation for them as well.

Recall that the Krull dimension of a ring S is the maximal integer n (if it exists) such
that there is a (strict) chain of prime ideals of S of length n. We denote it by Kr.dim(S).
If S is a domain, and is finitely generated over some subfield k, then Kr.dim(S) equals
the transcendence degree over k of its field of fractions. Observe that if S is a domain of
finite Krull dimension, and 0 6= I is an ideal of S, then Kr.dim(S) > Kr.dim(S/I). Also, if
S = ⊕iSi, then Kr.dim(S) = sup{Kr.dim(Si)}.

Lemma 4.5 1. CR′ is a finite algebraic extension of CK, and is linearly disjoint from
K over CK (inside R′).

2. If CR′ ⊗CK
DK is a domain, then R′ is a Picard-Vessiot ring for σ(X) = AX over

KCR′.

Proof. 1. We know by Lemma 1.7 of [23] that CR′ is a field. Assume by way of contradic-
tion that CR′ and K are not linearly disjoint over CK , and choose n minimal such that there
are a1, . . . , an ∈ CR′ which are CK-linearly independent, but not K-linearly independent.
Let 0 6= c1, . . . , cn ∈ K be such that

∑n
i=1 aici = 0. Multiplying by c−1

1 , we may assume
c1 = 1. Then σ(

∑n
i=1 aici) =

∑n
i=1 aiσ(ci) = 0, and therefore

∑n
i=2 ai(σ(ci) − ci) = 0. By

minimality of n, all (σ(ci)− ci) are 0, i.e., all ci ∈ CK , which gives us a contradiction.

Observe that e0CR′ ⊂ Fix(σ`)(R0), and we may therefore replace R′ by the domain R0.
Since R0 is a finitely generated K-algebra, we know that its Krull dimension equals the
transcendence degree over K of its field of fractions. Thus R0 cannot contain a subfield
which is transcendental over K, i.e., the elements of Fix(σ`)(R0) are algebraic over K. his
furthermore implies that Fix(σ`)(R0) is an algebraic extension of Fix(σ`)(K). Since the
latter field is an algebraic extension of CK , we have the conclusion.
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2. Our hypothesis implies that K[CR′ ] is a field. Hence R′ is a simple difference ring
containing KCR′ , and is therefore a Picard-Vessiot ring for σ(X) = AX over KCR′ .

Lemma 4.6 1. CR′ = CR∗.

2. Fix(σ`)(e0R
∗) = e0CR′.

3. DR∗ = ⊕`−1
i=0DeiR∗.

Proof. 1. If c ∈ CR∗ , then c can be represented by some `-tuple (a0

b0
, . . . , a`−1

b`−1
), where

ai, bi ∈ Ri, and bi 6= 0. Thus the ideal I = {d ∈ R′ | dc ∈ R′} is a σ-ideal of R′ and contains
the element b = (b0, . . . , b`−1) 6= 0. Since R′ is simple, 1 ∈ I, i.e., c ∈ R′.
2. Assume that a ∈ e0R∗ satisfies σ`(a) = a. Then a = e0a,

∑`−1
i=0 σ

i(e0a) is fixed by σ, and
therefore belongs to CR′ . Hence a ∈ e0CR′ .

3. If a ∈ R∗ satisfies σm(a) = a for some m, then σm`(eia) = eia.

Remark 4.7 Observe that ` and the isomorphism type of the K-σ`-difference algebra R0

completely determine the isomorphism type of the difference algebra R′. Indeed, for each
i = 1, . . . , ` − 1, one chooses a copy Ri of the domain R0, together with an isomorphism
fi : R0 → Ri which extends σi on K. This fi then induces an automorphism σ` of Ri. One
then defines σ on ⊕`−1

i=0Ri by setting σ(a0, . . . , a`−1) = (f1(a0), f2f
−1
1 (a1), . . . , σ

`f−1
`−1(a`−1)).

Proposition 4.8 Let K ⊂ K1 be difference fields of characteristic 0 where K1 = K(CK1),
and assume that CK = DK. Then R′ ⊗K K1 = ⊕d

i=1R
′
i, where each R′i is a Picard-Vessiot

ring for σ(X) = AX over K1, and d ≤ [CR′ : CK ]. Moreover, each R′i has the same
Krull-dimension and m-invariant as R′.

Proof. Our assumption implies that K ⊗CK
CK1 is a domain. Let C be the relative

algebraic closure of CK in CK1 . Then K(C) = K[C], and R′ ⊗K K(C) ' R′ ⊗CK
C.

Let a ∈ CR′ be such that CR′ = CK(a) and let f(X) ∈ CK [X] be its minimal polynomial
over CK . Let g1(X), . . . , gd(X) be the irreducible factors of f(X) over C. Then f(X) =∏d

i=1 gi(X), and C ′
R⊗CK

C ' ⊕d
i=1Ci, where Ci is generated over C by a root of gi(X) = 0.

Indeed, identifying C with 1 ⊗ C, every prime ideal of CR′ ⊗CK
C must contain some

gi(a⊗ 1); on the other hand, each gi(a⊗ 1) generates a maximal ideal of CR′ ⊗CK
C. Thus

R′ ⊗CK
C ' R′ ⊗CR′

(CR′ ⊗CK
C) ' ⊕d

i=1R
′ ⊗CR′

Ci.

By Lemmas 2.3 and 4.5, each R′ ⊗CR′
Ci = R′i is a simple difference ring, with field of

constants Ci. Hence R′i is a Picard-Vessiot ring for σ(X) = AX over KC (and also over
KCi). Note that d ≤ deg(f) = [CR′ : CK ], and that Kr.dim(R′i) = Kr.dim(R′) (because
KC is algebraic over K, and R′i is finitely generated over K).
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By Proposition 2.4, R′i ⊗KCi
K1Ci is a Picard-Vessiot ring. Because Ci and K1 are

linearly disjoint over C, and Ci is algebraic over C, KCi ⊗KC K1 ' K1Ci, and therefore

R′i ⊗KC K1 ' R′i ⊗KCi
K1Ci.

This shows that R′ ⊗K K1 is the direct sum of Picard-Vessiot rings over K1.

Identifying CR′ with ejCR′ = CRj
, we obtain

R′i = (⊕`−1
j=0Rj)⊗CR′

Ci ' ⊕`−1
j=0Rj ⊗CR′

Ci.

Each Rj being a Picard-Vessiot ring for σ`(X) = A`X, we know by Proposition 2.4 that
Rj ⊗CR′

Ci is also a Picard-Vessiot ring for σ`(X) = A`X. Thus R0 ⊗CR′
Ci =

∑s−1
j=0 Sj,

where each Sj is a simple σ`s-difference ring, and a domain. Because all rings Rj are
isomorphic over CR′ , and all Sj are isomorphic over CR′ , m(R′i) is the product of `s with
m(S0) = [DS∗0

: CS∗0
], where S∗0 is the field of fractions of S0. To show that m(R′i) = m(R′),

it therefore suffices to show that sm(S0) = m(R0). By Lemma 4.5.2, Fix(σ`s)(S∗0) =
Fix(σ`)(R∗0 ⊗CR′

Ci) = Fix(σ)(R′ ⊗CR′
Ci) = Ci.

We know that DR∗
0

is a (cyclic) Galois extension of CR′ = Fix(σ`)(R∗0), and is therefore
linearly disjoint from Ci over DR∗

0
∩ Ci = C ′

i. Write C ′
i = CR′(α), and let a, b ∈ R0, b 6= 0,

be such that (inside R∗0), CR′(a/b) = C ′
i. The minimal prime ideals of R0 ⊗CR′

Ci are the
ideals Q0, . . . , Qr−1, where r = [C ′

i : CR′ ] and Qk is generated by σk`(a) ⊗ 1 − σk`(b) ⊗ α.
This shows that r = s, since s is also the number of minimal prime ideals of R0 ⊗CR′

Ci.

Let e be a primitive idempotent of R0 ⊗CR′
Ci such that S0 = e(R0 ⊗CR′

Ci). Then
eCiDR∗

0
is a subfield of S∗0 , contained in DS∗0

, and its degree over eCi = Fix(σ`s)(S∗0) is the
quotient of [DR∗

0
: CR′ ] by [C ′

i : CR′ ], i.e., equals m(R0)/s. To finish the proof, it therefore
suffices to show that DS∗0

= eCiD
∗
R0

.

Assume that c ∈ R∗0 ⊗CR′
Ci satisfies σm(c) = c for some m 6= 0. Write c =

∑
k ak ⊗ ck,

where the ak are in R∗0, and the ck are in Ci and are linearly independent over CR′ . Then
σm(c) = c =

∑
k σ

m(ak)ck, which implies σm(ak) = ak for all k, and all ak’s are in DR∗
0
.

As every element of DS∗0
is of the form ec for such a c (Lemma 4.6.3), this shows that

DS∗0
= eCiD

∗
R0

. This finishes the proof that m(R′i) = m(R′).

Consider now R′⊗KC K1. It is the direct sum of `s σ`s-difference rings, each one being
isomorphic to S0⊗KCK1. Because K1 is a regular extension of KC, S0⊗KCK1 is a domain,
of Krull dimension equal to Kr.dim(S0) = Kr.dim(R′). Inside its field of fractions (a σ`s-
difference field) K1 and S∗0 are linearly disjoint over KC, which implies that CK1Ci is the
field of constants of S0 ⊗KC K1, CK1DS∗0

is the field of elements fixed by some power of σ,
and [CK1DS∗0

: CK1Ci] = [D∗
S0

: Ci] = m(S0). This shows that m(R′i ⊗KC K1) = m(R′) and
finishes the proof.

Proposition 4.9 Assume that CK = DK. Then all Picard-Vessiot rings for σ(X) = AX
over K have the same Krull dimension and the same m-invariant.
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Proof. Let C be the algebraic closure of CK , and let R′′ be a Picard-Vessiot ring for
σ(X) = AX over K. By Proposition 4.8, R′ ⊗K KC is the direct sum of finitely many
Picard-Vessiot rings for σ(X) = AX over KC, and each of these rings has the same Krull
dimension and m-invariant as R′. The same statement holds for R′′. On the other hand,
by Proposition 1.9 of [23], all Picard-Vessiot rings over KC are isomorphic.

Corollary 4.10 Assume DK = CK. Let R′′ = K[V, det(V )−1], where σ(V ) = AV , and
assume that Kr.dim(R′′) = Kr.dim(R′) and that R′′ has no nilpotent elements. Then R′′ is
a finite direct sum of Picard-Vessiot rings for σ(X) = AX.

Proof. Because R′′ has no nilpotent elements and is Noetherian, (0) is the intersection
of the finitely many prime minimal ideals of R′′. Let P be the set of minimal prime ideals
of R′′. Then the intersection of any proper subset of P is not (0), i.e., no element of P
contains the intersection of the other elements of P . Also, if P ∈ P , then σ(P ) ∈ P ,
and there exists m > 0 such that σm(P ) = P . Then IP =

⋂m−1
i=0 σi(P ) is a σ-ideal,

which is proper if the orbit of P under σ is not all of P . Observe that for each P ∈ P ,
Kr.dim(R′′/P ) ≤ Kr.dim(R′′/IP ) ≤ Kr.dim(R′′) = Kr.dim(R′), and that for some P we
have equality.

If I is a maximal σ-ideal of R′′, then Kr.dim(R′′/I) = Kr.dim(R′) = Kr.dim(R′′) by
Proposition 4.8, and this implies that I is contained in some P ∈ P. Hence I = IP and
R′′/IP is a Picard-Vessiot ring. If I = (0), then we are finished. Otherwise, P contains some
element P1 not in the orbit of P under σ. Observe that IP1 is contained in some maximal
σ-ideal of R′′, and is therefore maximal, by the same reasoning. Since the intersection of
any proper subset of P is non-trivial, IP + IP1 is a σ-ideal of R′′ which contains properly
IP , and therefore equals 1. If P1, . . . , Pr are representatives from the σ-orbits in P , the
Chinese Remainder Theorem then yields R′′ ' ⊕r

i=1R
′′/IPi

.

Proposition 4.11 Assume CK = DK. Then KCL[R] is a Picard-Vessiot ring for σ(X) =
AX over KCL,

Kr.dim(R′) = tr.deg(L/KCL), and [DL : CL] = m(R′).

Proof. Let us first assume that R′ is a domain. There is some generic difference field U
containing R′ and its field of fractions R∗, and which is sufficiently saturated. Because L
is a regular extension of K, there is some K-embedding ϕ of L into U , and we will denote
by T the image of Y in U , and by y the image of Y in R′. Then ϕ(CL) ⊂ CU , and there is
some B ∈ GLn(CU) such that T = yB. Hence

KCU [T, det(T )−1] = KCU [y, det(y)−1].

By Proposition 4.8, R′ ⊗K KCU is a direct sum of Picard-Vessiot rings of σ(X) = AX
over KCU , and clearly one of those is the domain KCU [y, det(y)−1]. Thus Kr.dim(R′) =
tr.deg(R∗/K) = tr.deg(L/KCL), DR∗CU = ϕ(DL)CU , and m(R′) = [DL : CL].
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This implies also that Kϕ(CL)[T, det(T )−1] is a simple difference ring, and therefore
a Picard-Vessiot ring for σ(X) = AX over Kϕ(CL). Hence KCL[R] is a Picard-Vessiot
extension for σ(X) = AX over KCL.

In the general case, we replace R′ by R0, σ by σ`, find some generic sufficiently saturated
σ`-difference field U containing R0, and aK-embedding ϕ of the σ`-difference domain L into
U , and conclude as above that KFix(σ`)[R0] = KFix(σ`)[ϕ(R)], that the Krull dimension
of R′ equals tr.deg(L/KCL), and that m(R0) = [Fix(σ`)(ϕ(DL)) : Fix(σ`)].

Because K and DL are linearly disjoint over CK , [KDL : KCL] = [DL : CL], whence
DKCL

= KCL, and by Corollary 4.10, the difference domain KCL[R] is a simple difference
ring, i.e., a Picard-Vessiot ring for σ(X) = AX over KCL. By Proposition 4.8 m(R′) =
[DL : CL].

We have m(R′) = `m(R0), and m(R0) is the quotient of [DL : CL] by the greatest
common divisor of [DL : CL] and `.

Corollary 4.12 Assume that CK = DK. Let R′′ = K[V, det(V )−1] be a difference domain,
where σ(V ) = AV , with field of fractions L1, and assume that CL1 is a finite algebraic
extension of CK. Then R′′ is a Picard-Vessiot ring for σ(X) = AX over K.

Proof. Let U be a sufficiently saturated generic difference field containing R′′, and let
ϕ be a K-embedding of L into U . Then KCU [ϕ(R)] = KCU [R′′]. Hence Kr.dim(R′′) =
Kr.dim(R′) and R′′ is a Picard-Vessiot ring by Corollary 4.10.

Corollary 4.13 Assume that CK is algebraically closed. Then `(R′) = [DL : CL].

Proof. Immediate from Proposition 4.11 and the fact that DR∗ = CR′ = CK .

Corollary 4.14 The difference ring KCL[R] is a Picard-Vessiot ring for σ(X) = AX over
KCL. All Picard-Vessiot rings for σ(X) = AX over K have the same Krull dimension,
which equals tr.deg(L/KCL).

Proof. Let m = [DK : CK ]. Note that replacing σ by some power of σ does not change
the fields DK or DL, and that Fix(σm)(K) = DK . Therefore we can apply the previous
results to the equation σm(X) = AmX over K. By Corollary 4.12 and because KCL[R] is
a domain, KCL[R] is a Picard-Vessiot ring for σm(X) = AmX over KCL, and therefore a
simple σm-difference ring, whence a simple σ-difference ring, and finally a Picard-Vessiot
ring for σ(X) = AX over K.

Let R′ = R/q be a Picard-Vessiot ring for σ(X) = AX over K. Assume first that R′

is a domain, and let U be a generic difference field containing it. Because L is a regular
extension of K, there is a K-embedding ϕ of L into U , and from KCU [ϕ(R)] = KCU [R′]
and Lemma 4.5.1, we obtain the result. If R′ is not a domain, then we reason in the same
fashion, replacing R′ by R0 and σ by σ`, to obtain the result.
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Proposition 4.15 Assume that CR′ = CK = DK and K ⊂ U . Then GR′ and H are
isomorphic.

Proof. By Proposition 2.4, we may replace R′ by R′ ⊗K KD′
U , and consider the ring

Kϕ(CL)[T, det(T )−1]⊗Kϕ(CL)KD
′
U , which is a Picard-Vessiot ring by Proposition 4.11 and

Corollary 4.10. We identify 1 ⊗ KD′
U with KD′

U . These two rings are isomorphic over
KD′

U by Proposition 1.9 of [23], and it therefore suffices to show that

Aut(ϕ(L)⊗Kϕ(CL) KD
′
U/KD

′
U) = H(D′

U).

Inside ϕ(L)⊗Kϕ(CL)KD
′
U , ϕ(L)⊗1 and KD′

U are linearly disjoint over Kϕ(CL). Hence, the
algebraic loci of (T, det(T )−1) over Kϕ(CL) and over KD′

U coincide. As H was described
as the subgroup of GLn which leaves this algebraic set invariant, we get the result.

4.4 Concluding remarks

Remark 4.16 Model-theoretic Galois groups: definition and a bit of history.
Model-theoretic Galois groups first appeared in a paper by Zilber [28] in the context of
ℵ1-categorical theories, and under the name of binding groups. Grosso modo, the general
situation is as follows: in a saturated model M we have definable sets D and C such that,
for some finite tuple b in M , D ⊂ dcl(C, b) (one then says that D is C-internal). The group
Aut(M/C) induces a group of (elementary) permutations of D, and it is this group which
one calls the Galois group of D over C. In Zilber’s context, this group and its action on
D are definable in M . One issue is therefore to find the correct assumptions so that these
Galois groups and their action are definable, or at least, an intersection of definable groups.
Hrushovski shows in his PhD thesis ([12]) that this is the case when the ambient theory is
stable.

Poizat, in [20], recognized the importance of elimination of imaginaries in establishing
the Galois correspondence for these Galois groups. He also noticed that if M is a differen-
tially closed field of characteristic 0 and D is the set of solutions of some linear differential
equation over some differential subfield K of M , and C is the field of constants of M , then
the model-theoretic Galois group coincides with the differential Galois group introduced by
Kolchin [15]. This connection was further explored by Pillay in a series of papers, see [19].
Note that because the theory of differentially closed fields of characteristic 0 eliminates
quantifiers, this Galois group does coincide with the group of KC-automorphisms of the
differential field KC(D).

Since then, many authors studied or used Galois groups, under various assumptions
on the ambient theory, and in various contexts, either purely model-theoretic (e.g., simple
theories) or more algebraic (e.g. fields with Hasse derivations). In the context of generic
difference fields, (model-theoretic) Galois groups were investigated in (5.11) of [4] (a slight

25



modification in the proof then gives the Galois group described in section 4.1 of this paper).
In positive characteristic p, the results generalize easily to twisted difference equations of
the form σ(X) = AXpm

, the field Fix(σ) being then replaced by Fix(τ), where τ : x 7→
σ(x)p−m

.

Recent work of Kamensky ([13]) isolates the common ingredients underlying all the
definability results on Galois groups, and in particular very much weakens the assumptions
on the ambient theory (it is not even assumed to be complete). With the correct definition of
C-internality of the definable set D, he is able to show that a certain group of permutations
ofD is definable inM . These are just permutations, do not a priori preserve any relations of
the language other than equality. From this group, he is then able to show that subgroups
which preserve a (fixed) finite set of relations are also definable, and that the complexity of
the defining formula does not increase, or not too much. For details, see section 3 of [13].

This approach of course applies to the set D of solutions of a linear system of dif-
ference equations (over a difference field K), and Kamensky also obtains the result that
Aut(KFix(σ)(D)/KFix(σ)) is definable (see section 5 in [13]).

Remark 4.17 A question arises in view of the proof of the general case of Proposition
4.11. When R′ is not a domain, we found an embedding of the σ`-difference ring R0 into a
generic σ`-difference field U . It may however happen that K is not relatively algebraically
closed in R∗0, even when DR0 = CK . Thus one can wonder: can one always find a generic
difference field U containing K, and such that there is a K-embedding of the σ`-difference
ring R0 into (U , σ`)? Or are there Picard-Vessiot rings for which this is impossible?

Remark 4.18 Issues of definability. It is fairly clear that the algebraic group H is
defined over ϕ(KCL). On the other hand, using the saturation of U and the fact that L is
a regular extension of K, we may choose another K-embedding ϕ1 of L in U , and will obtain
an algebraic group H1, which will be isomorphic to H (via some matrix C ∈ GLn(CU)). It
follows that H is K-isomorphic to an algebraic group H0 defined over the intersections of
all possible ϕ(KCL), i.e., over K.

Observe that the isomorphism between H and H1 yields an isomorphism between H(CU)
and H1(CU), so that we will also have an isomorphism between H0(CU) and H(CU), i.e.,
H′ is K-isomorphic to an algebraic subgroup of H0 which is defined over CK ∩ CU . Thus
when CK is algebraically closed, it will be defined over CK .

The Galois duality works as well for subgroups of H(CU) defined by equations (i.e., corre-
sponding to algebraic subgroups of H′, whose irreducible components are defined over CU).
It works less well for arbitrary definable subgroups of H(CU). In order for it to work, we
need to replace K(S) by its definable closure dcl(KS), i.e., the subfield of U which is fixed
by all elements of Autel(U/KS). Because the theory of U eliminates imaginaries (1.10 in
[4]), any orbit of an element of S under the action of a definable subgroup of H(CU) has a
“code” inside dcl(KS).
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Remark 4.19 Problems with the algebraic closure. Assume that U is a generic
difference field containing K, and sufficiently saturated. Then if K is not relatively alge-
braically closed in the field of fractions of R0, we may not be able to find a K-embedding of
R0 into the σ`-difference field U . Thus in particular, a priori not all Picard-Vessiot domains
K-embed into U . This problem of course does not arise if we assume that K is algebraically
closed, or, more precisely, if we assume that
All extensions of the automorphism σ to the algebraic closure of K define K-isomorphic
difference fields.

This is the case if K has no finite (proper) σ-stable extension, for instance when K = C(t),
with σ(t) = t+ 1 and σ the identity on C.
However, in another classical case, this problem does arise: let q ∈ C be non-zero and not
a root of unity, and let K = C(t), where σ is the identity on C and σ(t) = qt. Then K has
non-trivial finite σ-stable extensions, and they are obtained by adding n-th roots of t.
Let us assume that, inside U , we have σ(

√
t) =

√
q
√
t. Let us consider the system

σ(Y ) = −√qY, Y 6= 0

over K. Then the Picard-Vessiot ring is R′ = K(y), where y2 = t and σ(y) = −√qy.
Clearly R′ does not embed in U . If instead we had considered this system over K(

√
t),

then the new Picard-Vessiot ring R′′ is not a domain anymore, because it will contain a
non-zero solution of σ(X)+X = 0 (namely, y/

√
t). In both cases however the Galois group

is Z/2Z. And because R′ embeds in R′′, it also embeds in K(T )⊗ϕ(CL) D
′
U .

This suggests that, when CK = DK , if one takes M to be the subfield of U generated over
KCU by all tuples of U satisfying some linear difference equation overK, thenM⊗CUD

′
U is a

universal (full) Picard-Vessiot ring of KD′
U . This ring is not so difficult to describe in terms

ofM. Observe thatM containsDU . ThusM⊗CUD
′
U is isomorphic toM⊗DU (DU⊗CUD

′
U).

It is a regular ring, with prime spectrum the Cantor space C (i.e., the prime spectrum of
DU ⊗CU D

′
U), and σ acting on C. As a ring, it is isomorphic to the ring of locally constant

functions from C to M.

It would be interesting to relate this ring to the universal Picard-Vessiot rings defined
in [23].

Remark 4.20 Saturation hypotheses. The saturation hypothesis on U is not really
needed to define the model-theoretic Galois group, since we only need U to contain a copy
of L to define it. We also used it in the proof of Proposition 4.11, when we needed a
K-embedding of L into U . Thus, to define the model-theoretic Galois group, we only need
U to be a generic difference field containing K. Its field of constants will however usually
be larger than CK . Indeed, the field CU is always a pseudo-finite field (that is, a perfect,
pseudo-algebraically closed field, with Galois group isomorphic to Ẑ). However, one can
show that if F is a pseudo-finite field of characteristic 0, then there is a generic difference
field U containing F and such that CU = F . Thus, the field of constants of U does not need
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to be much larger than CK . In the general case, a general non-sense construction allows
one to find a pseudo-finite field F containing CK and of transcendence degree at most 1
over CK .

Remark 4.21 A partial description of the maximal σ`-ideal p of R. We keep the
notation of the previous subsections, and will first assume that the Picard-Vessiot ring
R′ = R/q is a domain contained in U .

We will describe some of the elements of q. Write CL = CK(α1, . . . , αm), and αi =
fi(Y )/gi(Y ), where fi(Y ), gi(Y ) ∈ K[Y ] are relatively prime. Then σ(fi)(AY ) and σ(gi)(AY )
are also relatively prime. Looking at the divisors defined by these polynomials, we obtain
that there is some ki ∈ K such that σ(fi)(AY ) = kifi(Y ) and σ(gi)(AY ) = kigi(Y ). Then
(q, fi(Y )) and (q, gi(Y )) are σ-ideals. By the maximality of q, this implies that either fi(Y )
and gi(Y ) are both in q, or else, say if fi(Y ) /∈ q, that there is some ci ∈ CR′ such that
gi(y) = cifi(y), because fi(y) is invertible in R′. If Pi(Z) is the minimal monic polynomial
of ci over CK and is of degree r, then gi(Y )rPi(gi(Y )/fi(Y )) ∈ q. In case CR′ = CK (this
is the case for instance if CK is algebraically closed), then ci ∈ CK , and gi(Y ) − cifi(Y )
will belong to q. (Note also that if ki = kj, then also for some dj ∈ CK we will have
fj(Y ) − djfi(Y ) ∈ q, and gj(Y ) − cjdjfi(Y ) ∈ q). The σ-ideal I generated by all these
polynomials in R could all of q. In any case one shows easily that q is a minimal prime
ideal containing it (because KCL[Y, det(Y )−1] and R/I have the same Krull dimension,
which is also the Krull dimension of R′).

A better result is obtained by Kamensky in [13] Proposition 33: if CR′ = CK , and
instead of looking at a generating set of CL over CK one applies the same procedure to all
elements of CL, one obtains a generating set of the ideal q.

In case R′ is not a domain, we reason in the same fashion to get a partial description
of the σ`-ideal p.
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