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Languages

A language is a collection L, finite or infinite, of symbols. These
symbols are of three kinds:
– function symbols,
– relation symbols,
– constant symbols.

Example. The language of ordered (abelian) groups:

Log = {+,−, 0, <}.

+ is a binary function, − a unary function, 0 a constant symbol,
and < a binary relation.



L-structures

Interpretation of the language symbols in a universe

Examples

1. (Z,+,−, 0, <), the natural structure on the additive group of
the integers,

2. (R,+,−, 0, <), the natural structure on the additive group of
the reals,

3. (multiplicative notation)
(R>0, ·,−1, 1, <) the multiplicative group of the positive reals.



Formulas and definable sets
Formulas are built up using the languages symbols, as well as =,
∧, ∨, →, ¬, variable symbols, parentheses, and quantifiers ∃, ∀.
Below we’ll discuss them in a language Log ∪ {c1, . . . , cn}
(c1, . . . , cn new symbols of constants)

Terms: built up from functions, variables, and constants: x + x ,
x + x + x , . . . , nx , −nx (n ∈ N), c1 + c2, 2c3.
General form for term t(x1, . . . , xm):

m∑
i=1

nixi +
n∑

j=1

`jcj ,

where the ni , `j belong to Z.

Qf-formulas: apply relations and Boolean connectives to terms:
x̄ = (x1, . . . , xm), t1(x̄), . . . , t4(x̄) terms:(

t1(x̄) = t2(x̄) ∧ t3(x̄) < t4(x̄)
)
∨

(
t1(x̄) < t2(x̄)

)



Formulas with quantifiers, satisfaction, definable sets

Quantify over free variables. Satisfaction is what it should be.
More precisely, if M is an L-structure, then each term defines a
function from some cartesian power of M to M. Then, if ā, b̄ are
tuples in M, and t1, t2 are terms, we will have

M |= t1(ā) = t2(b̄)

if and only if the evaluations of the terms t1 at ā and t2 at b̄ give
the same element.
Satisfaction is then defined by induction on the complexity of the
formulas. Definable set = set of tuples satisfying a formula.



Allowing parameters

One can also allow parameters: this can be viewed as for instance
looking at fibers of definable sets under a projection. E.g., have
formula ϕ(x̄ , ȳ), x̄ and ȳ tuples of variables, and in a model look
at family of definable sets defined by ϕ(x̄ , ā) as ā varies within the
model.



Example of formula

ϕ(x , y) := x < y ∧ ∀z x < z → y = z ∨ y < z .

Says that y is a successor of x for the ordering.
The elements a, b of the ordered group G satisfy ϕ (notation:
G |= ϕ(a, b)) iff b is a successor of a in the ordering.
So, ϕ defines in (Z,+,−, 0, <) the graph of the successor function.
But in (R,+,−, 0, <), it defines the emptyset, since the ordering is
dense.



Theory

Theory = set of formulas with no free variables (called sentences;
think of axioms). Hopefully consistent (= is satisfied by some
structure). Sometimes complete: given a sentence ϕ, either ϕ or
¬ϕ (but not both) is a consequence of the theory.

Examples

1. The theory of abelian ordered divisible groups (complete): the
obvious axioms.

2. The theory of ordered Z -groups (complete): axioms for an
ordered abelian group, with a unique smallest positive element
(denoted 1); for all n > 1, the axiom

∀x
n−1∨
i=0

∃y ny = x − i .



Language of rings: {+,−, ·, 0, 1}. Usual interpretation in a ring.
Language of ordered rings: add the binary symbol <.

3. The theory of algebraically closed fields: axioms for
commutative fields, and for all n > 1, the axiom

∀x0, . . . , xn,∃y (xn = 0 ∨
n∑

i=0

xiy
i = 0).

(incomplete: one needs to specify the characteristic).



4. The theory of real closed fields (language of rings): axioms for
commutative fields; ∀x∃y y4 = x2; for all n ≥ 1, the axiom:

∀x0, . . . , x2n+1,∃y (xn = 0 ∨
2n+1∑
i=0

xiy
i = 0).

(complete)

5. The theory of real closed fields (language of ordered rings):
axioms for commutative ordered fields;
∀x x > 0 → ∃y y2 = x ; every polynomial of odd degree has a
root. (complete)



Quantifier-elimination

We fix a theory T (= set of axioms). As the name indicates, T
eliminates quantifiers iff every formula is equivalent, modulo T , to
a formula without quantifiers.
Other formulation: In every model M of T , if D ⊂ Mn+1 is
quantifier-free definable, and π : Mn+1 → Mn is the projection,
then π(D) is quantifier-free definable.

Examples

1. Algebraically closed fields (note: we do not mention the
characteristic).

2. Real closed fields in the language of ordered rings.



3. Divisible abelian groups in the language of ordered abelian
groups.

4. Ordered Z -groups in the language of Pressbürger:

{+,−, 0, 1, <,≡n}n≥2

where ≡n is defined by the axiom x ≡n y ↔ ∃z nz + x = y ,
and 1 is the smallest positive element.



Valued fields - definition

Recall that a valued field is a field K , with a map
v : K× → Γ ∪ {∞}, where Γ is an ordered abelian group, and
satisfying the following axioms:

I v(x) = ∞ ⇐⇒ x = 0,

I ∀x , y v(xy) = v(x) + v(y)

I ∀x , y v(x + y) ≥ min{v(x), v(y)}.
By convention, ∞ is greater than all elements of Γ.



Languages

Several natural languages.
1. Maybe the most natural (used in the definition) is the
two-sorted language with a sort for the valued field and one for the
value group; each sort has its own language (the language of rings
for the valued field sort, and the language of ordered abelian
groups with an additional constant symbol ∞; there is a function v
from the field sort to the group sort. Thus our structure is(

(K ,+,−, ·, 0, 1), (Γ ∪ {∞},+,−, 0,∞, <), v
)
.

Formulas are built as in classical first-order logic, except that
variables come with their sort. Thus for instance, in the three
defining axioms, all variables are of the field sort. To avoid
ambiguity, one sometimes write ∀x ∈ K , or ∀x ∈ Γ. Or one uses a
different set of letters.



2. Another natural language is the language Ldiv obtained by
adding to the language of rings a binary relation symbol |,
interpreted by

x |y ⇐⇒ v(x) ≤ v(y).

Note that the valuation ring OK is quantifier-free definable, by the
formula 1|x , and that the group Γ is isomorphic to K×/O×K , the
order been given by the image of |. Hence the ordered abelian
group Γ is interpretable in (K ,+,−.·, 0, 1, |).



In both languages, the residual field kK , as well as the residue map
OK → kK , are interpretable: kK is the quotient of OK by the
maximal ideal of OK .

Variations on this are:
the field K in the language of rings with a (unary) predicate for the
valuation ring;
OK in the language of rings with a binary function symbol Div
interpreted by Div(x , y) = xy−1 if v(y) ≤ v(x), 0 otherwise.



EQ for algebraically closed valued fields

Theorem
The theory of algebraically closed valued fields eliminates
quantifiers in the language Ldiv = {+,−, ·, 0, 1, |}.

Corollary. Every formula in the variables x̄ = (x1, . . . , xn) is
equivalent, modulo the theory of algebraically closed valued fields
(ACVF), to a Boolean combination of formulas of the form

v(f (x̄)) ≤ v(g(x̄)), h(x̄) = 0,

where f , g , h are polynomials over Z.



Three sorts?

The proof of eq of ACVF puts in evidence a trichotomy of valued
field extensions. Namely, given a subfield A of an algebraically
closed field K , one can reduce the study of an extension B/A to
the study of extensions of the following type:

a. B/A immediate (same value group, same residue field),

b. B/A purely residual,

c. B/A totally ramified.

The proof of quantifier elimination is done using a back-and-forth
argument: we are given two ℵ1-saturated algebraically closed
valued fields K and L, two countable substructures A and B of K ,
L respectively, and an Ldiv-isomorphism f : A → B. We also have
some c ∈ K and want to extend f to A(c). We let C be the
algebraic closure of A(c). It then suffices to extend f to C .



One extends f in three stages, to

I the subfield A0 generated by A,

I a purely residual extension A1 of A0 contained in C and
having same residue field as C ,

I a totally ramified extension A2 of A1 contained in C and
having same value group as C ,

I the immediate extension C/A2.



The language of Pas-Denef

This splitting of cases is also apparent in the results of
Ax-Kochen-Ershov, and in their proof. This suggest passing to
three sorts: the valued field, the value group, and the residue field,
with additional maps the valuation and the residue map. It turns
out that for quantifier-elimination results this is not quite enough.
One language, which is quite convenient, is the language LPas:

I It has three sorts: the valued field, the value group and the
residue field.

I The language of the field sort is the language of rings.

I The language of the value group is any language containing
the language of ordered abelian groups (and ∞).

I The language of the residue field is any language containing
the language of rings.

I In addition, we have a map v from the field sort to the value
group (the valuation), and a map ac from the field sort to the
residue field (angular coefficient map).



The angular coefficient map

It is a multiplicative map ac : K → kK , which is multiplicative,
sends 0 to 0, and on O×K coincides with the residue map. It
therefore suffices to know this map on a set of representatives of
the value group.

In all natural examples, there is a natural coefficient map (because
there is a natural section of the value group):

I On the valued field k((t)), (v(t) = 1, v trivial on k), define
ac(0) = 0, and ac(t) = 1. Thus, if aj 6= 0 then

ac(
∑
i≥j

ai t
i ) = aj .

I On Qp, define ac by ac(p) = 1.



More on ac

In most cases we do strengthen the language by adding this ac
map.

However, note that it is definable in the field Qp: indeed, ac equals
1 on the (p − 1)-th-powers. It therefore suffices to specify the
values of ac on a system of generators of the finite group
Q×

p /Q×
p

p−1
.

It is not true that every valued field has an angular component
map. However, every valued field K has an elementary extension
K ∗ which has an angular component map.



Relative qe for Henselian fields of residue characteristic 0

Theorem
Let (K , ΓK , kK ) be an LPas-structure, where K is a Henselian
valued field, and kK has characteristic 0. Then every formula
ϕ(x , ξ, x̄) (x, ξ, x̄ , tuples of variables of the valued field, valued
group, residue field sort) of the language is equivalent to a Boolean
combination of formulas

ϕ1(x) ∧ ϕ2(v(f (x)), ξ) ∧ ϕ3(ac(f (x)), x̄),

where f (x) is a tuple of elements of Z[x ], ϕ1 is a quantifier-free
formula of the language of rings, ϕ2 is a formula of the language of
the group sort, and ϕ3 is a formula of the language of the residue
field sort.



Example

Consider the natural ac map on k((t)), where k is a field of
characteristic 0, and look at the LPas-structure

(K , Z ∪ {∞}, k)

where the language of the group sort is the Pressbürger language.
Then in the above the formula ϕ2 will be a formula without
quantifiers.

A definable (with parameters) function K → Γ will therefore be
locally defined by expressions of the form

(
∑

i

miv(fi (x)) + α)/N

where the fi are polynomials over K , α ∈ ΓK , and N is some
integer.



Aside on the p-adics

One of the language in which the field of p-adic numbers eliminates
quantifiers is the language of Macintyre, LMac, which is obtained
by adding to Ldiv predicates Pn, n > 1, which are interpreted by

Pn(x) ↔ ∃y yn = x ∧ x 6= 0.

In fact, the relation | is unnecessary, as it is quantifier-free
definable in Qp: for instance, if p 6= 2, we have:

v(x) ≤ v(y) ⇐⇒ y = 0 ∨ P2(x
2 + py2).

The definition however depends on p, and for uniformity questions
it is better to include | in the language.



Qp with angular component maps

If one wishes to study the p-adics in a three-sorted language with
angular components, one is obliged to add angular components of
higher order, namely, for each n, a multiplicative map
acn : K → Z/pnZ, which on Zp coincides with the usual mod pn

reduction. We also require that acn = acn+1 mod pn. Note that
this requires introducing many new sorts.



Axioms for the p-adics

The Ldiv theory of the valued field Qp is axiomatised by expressing
the following properties:

K is a Henselian valued field of characteristic 0, with residue field
Fp. Its value group is a Z -group, with v(p) the smallest positive
element.



Elementary extension

An extension K ∗ of our field K , which has the same elementary
properties as K : if ϕ(x̄) is a formula, and ā a tuple in K , then

K |= ϕ(ā) ⇐⇒ K ∗ |= ϕ(ā).

Notation: K ≺ K ∗.

Examples.

I Let K be a subfield of Qp, relatively algebraically closed in
Qp. Then K ≺ Qp.

I If a theory T eliminates quantifiers, and M1 ⊂ M2 are two
models of T , then M1 ≺ M2.

I If K ⊂ L are algebraically closed [valued] fields, then K ≺ L.



Saturated extensions

Saturated models: K is ℵ1-saturated if whenever A ⊂ K is
countable, and Σ(x̄) is a collection of formulas with parameters in
A and which is finitely satisfiable in K , then there is a tuple ā in K
which satisfies all formulas in Σ(x̄).

In particular an ℵ1-saturated valued field will have the following
properties:

I No countable set is cofinal in its value group

I Every countable pseudo-convergent sequence has a
pseudo-limit.

I The valuation map has a cross-section (and therefore there is
an angular component map)

Every structure has an ℵ1-saturated elementary extension.



Criterion for quantifier-elimination

Let T be a theory, and ∆ a set of formulas, which is closed under
Boolean combinations. In order to show that every formula is
equivalent modulo T to a formula in ∆, it suffices to show the
following:
Whenever M and N are two ℵ1-saturated models of T , A, B are
countable substructures of M, N respectively, and f : A → B is a
bijection which preserves all formulas in ∆, i.e., for a tuple a in A
and a formula ϕ(x) ∈ ∆,

M |= ϕ(a) ⇐⇒ N |= ϕ(f (a)),

if c ∈ M, then f extends to a bijection with domain containing c
and which preserves formulas in ∆.


