The basic model theory of valued fields

Zoé Chatzidakis CNRS - Université Paris 7

12 May 2008

partially supported by MRTN-CT-2004-512234 and ANR-06-BLAN-0183

Languages

A language is a collection \mathcal{L} , finite or infinite, of symbols. These symbols are of three kinds:

- function symbols,
- relation symbols,
- constant symbols.

Example. The language of ordered (abelian) groups:

$$\mathcal{L}_{og} = \{+, -, 0, <\}.$$

+ is a binary function, - a unary function, 0 a constant symbol, and < a binary relation.

\mathcal{L} -structures

Interpretation of the language symbols in a universe

Examples

- 1. ($\mathbb{Z}, +, -, 0, <$), the natural structure on the additive group of the integers,
- 2. ($\mathbb{R}, +, -, 0, <$), the natural structure on the additive group of the reals,
- 3. (multiplicative notation) $(\mathbb{R}^{>0},\cdot,^{-1},1,<)$ the multiplicative group of the positive reals.

Formulas and definable sets

Formulas are built up using the languages symbols, as well as =, \land , \lor , \rightarrow , \neg , variable symbols, parentheses, and *quantifiers* \exists , \forall . Below we'll discuss them in a language $\mathcal{L}_{og} \cup \{c_1, \ldots, c_n\}$ (c_1, \ldots, c_n new symbols of constants)

Terms: built up from functions, variables, and constants: x + x, x + x + x, ..., nx, -nx ($n \in \mathbb{N}$), $c_1 + c_2$, $2c_3$. General form for term $t(x_1, \ldots, x_m)$:

$$\sum_{i=1}^m n_i x_i + \sum_{j=1}^n \ell_j c_j,$$

where the n_i , ℓ_i belong to \mathbb{Z} .

Qf-formulas: apply relations and Boolean connectives to terms: $\bar{x} = (x_1, \dots, x_m), t_1(\bar{x}), \dots, t_4(\bar{x})$ terms:

$$ig(t_1(ar x) = t_2(ar x) \wedge t_3(ar x) < t_4(ar x)ig) \lor \quad ig(t_1(ar x) < t_2(ar x)ig)$$

Formulas with quantifiers, satisfaction, definable sets

Quantify over *free* variables. Satisfaction is what it should be. More precisely, if M is an \mathcal{L} -structure, then each term defines a function from some cartesian power of M to M. Then, if \bar{a} , \bar{b} are tuples in M, and t_1 , t_2 are terms, we will have

$$M \models t_1(\bar{a}) = t_2(\bar{b})$$

if and only if the evaluations of the terms t_1 at \bar{a} and t_2 at \bar{b} give the same element.

Satisfaction is then defined by induction on the complexity of the formulas. Definable set = set of tuples satisfying a formula.

One can also allow parameters: this can be viewed as for instance looking at fibers of definable sets under a projection. E.g., have formula $\varphi(\bar{x}, \bar{y})$, \bar{x} and \bar{y} tuples of variables, and in a model look at family of definable sets defined by $\varphi(\bar{x}, \bar{a})$ as \bar{a} varies within the model.

Example of formula

$$\varphi(x, y) := x < y \land \forall z \ x < z \to y = z \lor y < z.$$

Says that y is a successor of x for the ordering. The elements a, b of the ordered group G satisfy φ (notation: $G \models \varphi(a, b)$) iff b is a successor of a in the ordering. So, φ defines in $(\mathbb{Z}, +, -, 0, <)$ the graph of the successor function. But in $(\mathbb{R}, +, -, 0, <)$, it defines the emptyset, since the ordering is dense.

Theory

Theory = set of formulas with no free variables (called *sentences*; think of *axioms*). Hopefully consistent (= is satisfied by some structure). Sometimes *complete*: given a sentence φ , either φ or $\neg \varphi$ (but not both) is a consequence of the theory.

Examples

- 1. The theory of abelian ordered divisible groups (complete): the obvious axioms.
- The theory of ordered Z-groups (complete): axioms for an ordered abelian group, with a unique smallest positive element (denoted 1); for all n > 1, the axiom

$$\forall x \bigvee_{i=0}^{n-1} \exists y \ ny = x - i.$$

Language of rings: $\{+, -, \cdot, 0, 1\}$. Usual interpretation in a ring. Language of ordered rings: add the binary symbol <.

3. The theory of algebraically closed fields: axioms for commutative fields, and for all n > 1, the axiom

$$\forall x_0,\ldots,x_n, \exists y \ (x_n=0 \lor \sum_{i=0}^n x_i y^i=0).$$

(incomplete: one needs to specify the characteristic).

 The theory of real closed fields (language of rings): axioms for commutative fields; ∀x∃y y⁴ = x²; for all n ≥ 1, the axiom:

$$\forall x_0,\ldots,x_{2n+1},\exists y \ (x_n=0\vee\sum_{i=0}^{2n+1}x_iy^i=0).$$

(complete)

 The theory of real closed fields (language of ordered rings): axioms for commutative ordered fields; ∀x x > 0 → ∃y y² = x; every polynomial of odd degree has a root. (complete)

Quantifier-elimination

We fix a theory T (= set of axioms). As the name indicates, T eliminates quantifiers iff every formula is equivalent, modulo T, to a formula without quantifiers.

Other formulation: In every model M of T, if $D \subset M^{n+1}$ is quantifier-free definable, and $\pi: M^{n+1} \to M^n$ is the projection, then $\pi(D)$ is quantifier-free definable.

Examples

- 1. Algebraically closed fields (note: we do not mention the characteristic).
- 2. Real closed fields in the language of ordered rings.

- 3. Divisible abelian groups in the language of ordered abelian groups.
- 4. Ordered Z-groups in the language of Pressbürger:

$$\{+, -, 0, 1, <, \equiv_n\}_{n \ge 2}$$

where \equiv_n is defined by the axiom $x \equiv_n y \leftrightarrow \exists z \ nz + x = y$, and 1 is the smallest positive element.

Valued fields - definition

Recall that a valued field is a field K, with a map $v : K^{\times} \to \Gamma \cup \{\infty\}$, where Γ is an ordered abelian group, and satisfying the following axioms:

$$\blacktriangleright v(x) = \infty \iff x = 0,$$

$$\blacktriangleright \forall x, y \ v(xy) = v(x) + v(y)$$

$$\forall x, y \ v(x+y) \geq \min\{v(x), v(y)\}.$$

By convention, ∞ is greater than all elements of Γ .

Languages

Several natural languages.

1. Maybe the most natural (used in the definition) is the *two-sorted* language with a sort for the valued field and one for the value group; each sort has its own language (the language of rings for the valued field sort, and the language of ordered abelian groups with an additional constant symbol ∞ ; there is a function v from the field sort to the group sort. Thus our structure is

$$((K, +, -, \cdot, 0, 1), (\Gamma \cup \{\infty\}, +, -, 0, \infty, <), \nu).$$

Formulas are built as in classical first-order logic, except that variables come with their sort. Thus for instance, in the three defining axioms, all variables are of the field sort. To avoid ambiguity, one sometimes write $\forall x \in K$, or $\forall x \in \Gamma$. Or one uses a different set of letters.

2. Another natural language is the language $\mathcal{L}_{\rm div}$ obtained by adding to the language of rings a binary relation symbol |, interpreted by

$$x|y \iff v(x) \leq v(y).$$

Note that the valuation ring \mathcal{O}_{K} is quantifier-free definable, by the formula 1|x, and that the group Γ is isomorphic to $K^{\times}/\mathcal{O}_{K}^{\times}$, the order been given by the image of |. Hence the ordered abelian group Γ is *interpretable* in (K, +, -.., 0, 1, |).

In both languages, the residual field k_K , as well as the residue map $\mathcal{O}_K \to k_K$, are interpretable: k_K is the quotient of \mathcal{O}_K by the maximal ideal of \mathcal{O}_K .

Variations on this are:

the field K in the language of rings with a (unary) predicate for the valuation ring;

 $\mathcal{O}_{\mathcal{K}}$ in the language of rings with a binary function symbol Div interpreted by $\operatorname{Div}(x, y) = xy^{-1}$ if $v(y) \leq v(x)$, 0 otherwise.

EQ for algebraically closed valued fields

Theorem

The theory of algebraically closed valued fields eliminates quantifiers in the language $\mathcal{L}_{\mathrm{div}} = \{+, -, \cdot, 0, 1, |\}.$

Corollary. Every formula in the variables $\bar{x} = (x_1, \ldots, x_n)$ is equivalent, modulo the theory of algebraically closed valued fields (ACVF), to a Boolean combination of formulas of the form

$$v(f(\bar{x})) \leq v(g(\bar{x})), \qquad h(\bar{x}) = 0,$$

where f, g, h are polynomials over \mathbb{Z} .

Three sorts?

The proof of eq of ACVF puts in evidence a trichotomy of valued field extensions. Namely, given a subfield A of an algebraically closed field K, one can reduce the study of an extension B/A to the study of extensions of the following type:

- a. B/A immediate (same value group, same residue field),
- b. B/A purely residual,
- c. B/A totally ramified.

The proof of quantifier elimination is done using a back-and-forth argument: we are given two \aleph_1 -saturated algebraically closed valued fields K and L, two countable substructures A and B of K, L respectively, and an \mathcal{L}_{div} -isomorphism $f : A \to B$. We also have some $c \in K$ and want to extend f to A(c). We let C be the algebraic closure of A(c). It then suffices to extend f to C.

One extends f in three stages, to

- the subfield A_0 generated by A,
- ▶ a purely residual extension A₁ of A₀ contained in C and having same residue field as C,
- ▶ a totally ramified extension A₂ of A₁ contained in C and having same value group as C,
- the immediate extension C/A_2 .

The language of Pas-Denef

This splitting of cases is also apparent in the results of Ax-Kochen-Ershov, and in their proof. This suggest passing to three sorts: the valued field, the value group, and the residue field, with additional maps the valuation and the residue map. It turns out that for quantifier-elimination results this is not quite enough. One language, which is quite convenient, is the language \mathcal{L}_{Pas} :

- It has three sorts: the valued field, the value group and the residue field.
- The language of the field sort is the language of rings.
- ► The language of the value group is any language containing the language of ordered abelian groups (and ∞).
- The language of the residue field is any language containing the language of rings.
- In addition, we have a map v from the field sort to the value group (the valuation), and a map ac from the field sort to the residue field (*angular coefficient map*).

The angular coefficient map

It is a multiplicative map $\overline{\mathrm{ac}}: K \to k_K$, which is multiplicative, sends 0 to 0, and on \mathcal{O}_K^{\times} coincides with the residue map. It therefore suffices to know this map on a set of representatives of the value group.

In all natural examples, there is a natural coefficient map (because there is a natural section of the value group):

▶ On the valued field k((t)), (v(t) = 1, v trivial on k), define $\overline{ac}(0) = 0$, and $\overline{ac}(t) = 1$. Thus, if $a_j \neq 0$ then

$$\overline{\mathrm{ac}}(\sum_{i\geq j}a_it^i)=a_j.$$

• On \mathbb{Q}_p , define $\overline{\mathrm{ac}}$ by $\overline{\mathrm{ac}}(p) = 1$.

In most cases we do strengthen the language by adding this $\overline{\mathrm{ac}}$ map.

However, note that it is definable in the field \mathbb{Q}_p : indeed, $\overline{\mathrm{ac}}$ equals 1 on the (p-1)-th-powers. It therefore suffices to specify the values of $\overline{\mathrm{ac}}$ on a system of generators of the finite group $\mathbb{Q}_p^{\times}/\mathbb{Q}_p^{\times p-1}$.

It is not true that every valued field has an angular component map. However, every valued field K has an *elementary extension* K^* which has an angular component map.

Relative qe for Henselian fields of residue characteristic 0

Theorem

Let (K, Γ_K, k_K) be an \mathcal{L}_{Pas} -structure, where K is a Henselian valued field, and k_K has characteristic 0. Then every formula $\varphi(x, \xi, \bar{x})$ $(x, \xi, \bar{x}, tuples of variables of the valued field, valued group, residue field sort) of the language is equivalent to a Boolean combination of formulas$

 $\varphi_1(x) \wedge \varphi_2(v(f(x)), \xi) \wedge \varphi_3(\overline{\mathrm{ac}}(f(x)), \overline{x}),$

where f(x) is a tuple of elements of $\mathbb{Z}[x]$, φ_1 is a **quantifier-free** formula of the language of rings, φ_2 is a formula of the language of the group sort, and φ_3 is a formula of the language of the residue field sort.

Example

Consider the natural \overline{ac} map on k((t)), where k is a field of characteristic 0, and look at the \mathcal{L}_{Pas} -structure

 $(K, \mathbb{Z} \cup \{\infty\}, k)$

where the language of the group sort is the Pressbürger language. Then in the above the formula φ_2 will be a formula without quantifiers.

A definable (with parameters) function $K \to \Gamma$ will therefore be locally defined by expressions of the form

$$(\sum_{i} m_{i}v(f_{i}(x)) + \alpha)/N$$

where the f_i are polynomials over K, $\alpha \in \Gamma_K$, and N is some integer.

Aside on the *p*-adics

One of the language in which the field of *p*-adic numbers eliminates quantifiers is the language of Macintyre, \mathcal{L}_{Mac} , which is obtained by adding to \mathcal{L}_{div} predicates P_n , n > 1, which are interpreted by

$$P_n(x) \leftrightarrow \exists y \ y^n = x \land x \neq 0.$$

In fact, the relation | is unnecessary, as it is quantifier-free definable in \mathbb{Q}_p : for instance, if $p \neq 2$, we have:

$$v(x) \leq v(y) \iff y = 0 \lor P_2(x^2 + py^2).$$

The definition however depends on p, and for uniformity questions it is better to include | in the language.

If one wishes to study the *p*-adics in a three-sorted language with angular components, one is obliged to add angular components of higher order, namely, for each *n*, a multiplicative map $\overline{\operatorname{ac}}_n : K \to \mathbb{Z}/p^n\mathbb{Z}$, which on \mathbb{Z}_p coincides with the usual mod p^n reduction. We also require that $\overline{\operatorname{ac}}_n = \overline{\operatorname{ac}}_{n+1} \mod p^n$. Note that this requires introducing many new sorts.

The \mathcal{L}_{div} theory of the valued field \mathbb{Q}_p is axiomatised by expressing the following properties:

K is a Henselian valued field of characteristic 0, with residue field \mathbb{F}_p . Its value group is a Z-group, with v(p) the smallest positive element.

Elementary extension

An extension K^* of our field K, which has the same elementary properties as K: if $\varphi(\bar{x})$ is a formula, and \bar{a} a tuple in K, then

$$K \models \varphi(\bar{a}) \iff K^* \models \varphi(\bar{a}).$$

Notation: $K \prec K^*$.

Examples.

- ▶ Let *K* be a subfield of \mathbb{Q}_p , relatively algebraically closed in \mathbb{Q}_p . Then $K \prec \mathbb{Q}_p$.
- If a theory T eliminates quantifiers, and M₁ ⊂ M₂ are two models of T, then M₁ ≺ M₂.
- If $K \subset L$ are algebraically closed [valued] fields, then $K \prec L$.

Saturated extensions

Saturated models: K is \aleph_1 -saturated if whenever $A \subset K$ is countable, and $\Sigma(\bar{x})$ is a collection of formulas with parameters in A and which is finitely satisfiable in K, then there is a tuple \bar{a} in K which satisfies all formulas in $\Sigma(\bar{x})$.

In particular an \aleph_1 -saturated valued field will have the following properties:

- No countable set is cofinal in its value group
- Every countable pseudo-convergent sequence has a pseudo-limit.
- The valuation map has a cross-section (and therefore there is an angular component map)

Every structure has an \aleph_1 -saturated elementary extension.

Criterion for quantifier-elimination

Let T be a theory, and Δ a set of formulas, which is closed under Boolean combinations. In order to show that every formula is equivalent modulo T to a formula in Δ , it suffices to show the following:

Whenever M and N are two \aleph_1 -saturated models of T, A, B are countable substructures of M, N respectively, and $f : A \to B$ is a bijection which preserves all formulas in Δ , i.e., for a tuple a in A and a formula $\varphi(x) \in \Delta$,

$$M \models \varphi(a) \iff N \models \varphi(f(a)),$$

if $c \in M$, then f extends to a bijection with domain containing c and which preserves formulas in Δ .