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1 Definition and some early results

Definition 1.1. A pseudo-algebraically closed field (PAC), is a field F such that every absolutely
irreducible variety defined over F , has an F -rational point.

Recall that an irreducible variety over F is defined as the zero-set of a prime ideal in a
polynomial ring over F ; if this prime ideal generates a prime ideal in the polynomial ring over
the algebraic closure F alg of F , then the variety is absolutely irreducible. The property of being
PAC is first-order axiomatisable.

1.2. A bit of history PAC fields first appeared in the work of Ax [A] in the late 60’s on
pseudo-finite fields. Recall that a pseudo-finite field is an infinite model of the thepry of finite
fields. The axiomatisation of their theory is given by expressing in a first order way the fact
that the field F is

– PAC,
– perfect, i.e., if F is of positive characteristic p, then every element of F has a p-th root in

F ,
– and its absolute Galois group, Aut(F alg/F ) = G(F ), is isomorphic to Ẑ = lim← Z/nZ,

the profinite completion of Z.
Ax’s results in particular implied the decidability of the theory of pseudo-finite fields, as

well as a good description of definable sets and of the completions.
Later results on PAC fields dealt with relaxing the conditions on the Galois group, and

really paved the road for the subsequent developments; first appeared results analogous to
those of Ax for e-free PAC fields (Jarden and Kiehne [JK]), and ω-free PAC fields (Jarden [J]).
The final word came in the work of Cherlin, Van den Dries and Macintyre, (unfortunately still
unpublished, but see [CDM]) which completely described the elementary invariants of PAC
fields. In order to do that, they introduced an ω-sorted logic, in which one can speak about
profinite groups in a first-order way. Results in that direction were also obtained by Ershov,
see [E1] and [E2]. More details on the logic of profinite groups below 2.1.
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1.3. Some definitions on Galois groups. Recall that a field is called bounded if for any
integer n, it has only finitely many Galois extensions of degree n.

Given a free group F (X) on a set X, one can form the free profinite group on X has follows:
consider the family N of normal subgroups N of F (X) which are of finite index and contain
almost all the elements of X, and define

F̂ (X) = lim
N∈N

F (X)/N.

When |X| = e ∈ ω, one usually writes F̂e, and when |X| = ℵ0, one writes F̂ω.
A field F is e-free if its absolute Galois group is isomorphic to F̂e, and ω-free if it has an

elementary substructure with absolute Galois group isomorphic to F̂ω.

1.4. More history. At almost the same time, Duret ([Du]) proved the first result with a
stability theoretic flavour on PAC fields: he showed that if a PAC field is not separably closed,
then it has the independence property. [Recall that a field F is separably closed if any irreducible
polynomial f(X) over F is of the form Xpn − a for some integer n and element a of F .]

Then came a finer description of definable sets in pseudo-finite fields ([ChDM]), which
in particular showed that pseudo-finite fields did not have the strict order property. Later
work by Hrushovski (manuscript in 1991, published in [H]) developped the theory of S1-rank
for bounded PAC fields, showed that they satisfy the independence theorem and eliminate
imaginaries (provided one adds enough constants to the language). His results led to the
observation that any complete theory of pseudo-finite fields is supersimple of SU-rank 1: these
were the first examples of fields with a supersimple theory.

Other results: Pillay and Poizat ([PP]) showed that fields with a good notion of rank are
perfect and bounded. Jarden ([J]) and Chatzidakis and Hrushovski ([CH]) showed that perfect
PAC fields are algebraically bounded. Algebraic boundedness is a notion introduced by Van den
Dries [vdD], and which implies in particular, that taking the algebraic dimension of the Zariski
closure of a definable set, gives a good notion of dimension on definable sets.

There is also a good description of the algebraic closure ([CP]): if F is a PAC field, and
A ⊂ F , then A is algebraically closed in the sense of the theory of F if and only if F/A is a
regular extension (in characteristic 0, this simply means that Aalg ∩ F = A).

2 Elementary invariants: the results of Cherlin, Van den

Dries and Macintyre

All results in this section are from [CDM]. See also Ershov’s papers [E1] amd [E2].

2.1. Galois groups and their complete systems. Let F be a field. Then its absolute
Galois group, G(F ), is a profinite group,

G(F ) ' lim
←
Gal(L/F ),
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where L ranges over the set of all finite Galois extensions of F , and if L ⊂ M , one considers
the natural restrictions map Gal(M/F ) → Gal(L/K). G(F ) is therefore a topological group,
and is completely determined by the complete system of its finite quotients and the restriction
maps between them. We define the complete system of G(F ), noted by SG(F ), by

SG(F ) =
⋃
· Gal(L/F ).

We assign to elements of SG(F ) sorts indexed by the positive integers: σ ∈ Gal(L/F ) is of
sort n if and only if [L : F ] ≤ n. We put on SG(F ) an LG-structure, (with sorts the positive
integers), in such a way that SG(F ) can be viewed as a modular lattice, each node of the lattice
being a finite group; and we put enough information to have the group law on each node, as well
as the projection maps between nodes. This procedure works for arbitrary profinite groups, and
the complete systems of profinite groups then form an elementary class in this language. [It is
however unknown whether the class of complete systems arising from absolute Galois groups is
elementary: the only thing we know is that it is closed under ultraproducts.]

A subsystem of SG(F ) then corresponds, by duality, to a quotient of G(F ), i.e., by Galois
theory, to Gal(M/F ) for some (maybe infinite) Galois extension of F .

2.2. Interpretation of finite field extensions. Let F be a field, and L a finite algebraic
extension of F , with L = F (α) for some element α. Let f(X) = Xn + a1X

n−1 + · · ·+ an be the
minimal (monic) polynomial of α over F . One can then define on F n, uniformly in the tuple
(a1, . . . , an), a multiplication law �, such that

(b0, . . . , bn−1) 7→
n−1∑
i=0

biα
i

defines an isomorphism between (F n, +,�) and (L, +, ·) (the addition on F n being the natural
F -vector space addition). The uniformity implies that one can quantify over all algebraic
extensions of degree ≤ n.

Note that it is then an elementary property of (a1, . . . , an) that the extension L is Galois
over F (simply say that f(X) has n distinct roots in L). An element σ of Gal(L/F ) is then an
automorphism of F n which commutes with �.

From these simple remarks, it follows easily that, given an LG-sentence θ, one can produce
a sentence θ∗ of the langage of fields, such that in any field F ,

SG(F ) |= θ ⇐⇒ F |= θ∗.

2.3. Comments (1) This logic is the strongest logic of absolute Galois groups of fields which
is interpretable in the field.

(2) The tuple (a1, . . . , an) is then a code for the extension L = F (α). Consider the set
S of n-tuples (a1, . . . , an) ∈ F n such that the polynomial Xn +

∑n−1
i=0 an−iX

i is the minimal
polynomial of a generator of a Galois extension of F ; then one has a definable equivalence
relation on S: (a1, . . . , an) ∼ (b1, . . . , bn) if and only if the extension of F obtained by adjoining
a root of Xn +

∑n−1
i=0 an−iX

i contains all the roots of Xn +
∑n−1

i=0 bn−iX
i. One can therefore

think of finite Galois extensions of F as imaginary elements. Similarly, if σ ∈ Gal(L/F ), then
the conjugacy class of σ belongs to dcleq(F ).
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2.4. Theorem. Let K1 and K2 be PAC fields, containing a common subfield E, and such that
the extensions K1/E and K2/E are regular. Assume that [K1 : Kp

1 ] = [K2 : Kp
2 ]. Then

K1 ≡E K2 ⇐⇒ SG(K1) ≡SG(E) SG(K2).

Comments. (1) Recall that K1/E regular implies that the restriction map G(K1) → G(E) is
onto; it then induces, by duality, an inclusion SG(E) → SG(K1). There is a version of this
result which does not assume the extensions to be regular: one then requires the existence of
some ϕ ∈ G(E) such that ϕ(Ealg ∩K1) = Ealg ∩K2, and such that the induced automorphism
Φ of SG(E), defines a partial elementary map SG(K1) → SG(K2).

(2) The left-to-right implication always holds.
(3) One can show that the theory of graphs is interpretable in the LG-theory of systems of

absolute Galois groups of PAC fields ([E2], [CDM]). It then follows that the theory of PAC
fields is undecidable. Similarly, if C is a class of PAC fields such that the associated class of
complete systems has a decidable theory, then C has a decidable theory. The class of Frobenius
fields is such an example, see [HL]

3 More stability flavoured results

The results of the previous section already showed that the Galois groups were sole responsible
for complicated behaviour of PAC fields. Below, we first discuss two simple examples:

3.1. Back to bounded PAC fields. Let F be a bounded PAC field. Then for each n, SG(F )
has only finitely many elements of sort n. Thus, the complete system of a bounded absolute
Galois group is the equivalent of a “finite structure” - no surprise it behaves well.

If K1 is bounded, and K1 ≺ K2, then Ks
1K2 = Ks

2 , where Ks
i denotes the separable closure

of Ki.

3.2. A nice theory of unbounded PAC. Among the nice possible absolute Galois groups,
is F̂ω, see 2.1 for the definition. A PAC field such that SG(F ) ≡ SF̂ω, is called an ω-free PAC
field.

Some properties (see [CDM]): Th(SF̂ω) is ℵ0-categorical and ω-stable. SF̂ω has good ho-
mogeneity properties, which give a relative elimination of quantifiers, a good description of
definable sets and of types. It also yields a simple description of definable sets in ω-free PAC
fields: they are definable by Boolean combinations of formulas with only one quantifier (see
[J]).

3.3. Algebraic closure, dividing. If F is a field, and A ⊂ F , then A = acl(A) (A is
algebraically closed in the sense of Th(F )) implies that the extension F/A is regular. (For PAC
fields, this condition is also sufficient, see [CP].)

Assume that F0 ⊂ A, B are algebraically closed subsets of F , with F0 ≺ F . If tp(A/B)
does not divide over F0, then A and B are independent over F0 in the sense of Th(F s), and
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F ∩AsBs = AB. One can show, using Galois theory, that the second condition corresponds to:

SG(A) ∩ SG(B) = SG(F0),

and is therefore quite a natural condition.

3.4. Example. Let F be a PAC field of characteristic 6= 2, and assume that [F× : F×
2
] is

infinite. I.e., G(F ) has infinitely many quotients isomorphic to Z/2Z. As remarked before, each
quadratic extension of F can be thought of as an imaginary of F . If a, b ∈ F are non-squares,
their square roots generate the same Galois extension if and only if ab−1 is a square. This
defines an equivalence relation on the set of non-squares of F .

3.5. Local dividing, tree property This is one of the tools that was used to show that the
local character of dividing fails for unbounded PAC fields. Indeed, one can show (see [C1])
that if F is unbounded PAC, then for all κ ≥ ℵ0 there exists sets E0 ⊂ E1 of cardinality κ,
and a 1-type p over E, such that if E0 ⊂ E1 ⊂ E is such that p does not fork over E, then
|E1 \ E0| = κ. Essentially the same proof shows that the theory of an unbounded PAC is not
rosy.

Essentially the same construction shows that the theory of an unbounded PAC field has the
tree property of the second kind. Here is the proof when F is ω-free, of characteristic 6= 2: let
ai, i ∈ N, be distinct elements of F , bj, j ∈ N, elements of F× in distinct cosets of F×

2
, and

consider the formula ϕ(x, y, z) expressing that (x + y)z−1 is a non-zero square. Then, for any
i, the set {ϕ(x, ai, bj) | j ∈ N} is 2-inconsistent, since for j1 6= j2, bj1b

−1
j2

is not a square. On the
other hand, for any f : N → N, the set {ϕ(x, ai, bf(i)) | i ∈ N} is consistent, by basic properties
of ω-free PAC fields, and since the Galois extensions F (

√
x + ai) of F (x) are linearly disjoint

(as a family).

3.6. Three notions of independence. Paragraph 3.3 suggests three notions of independence:
let C ⊂ A, B be algebraically closed subsets of an ω-free PAC field F . Say that A and B are
∗-independent over C, where ∗ ∈ {I, II, III}, if A and B are independent over C in the sense
of Th(F s), and if

I. F ∩ AsBs = AB. This notion is symmetric, but not transitive.

II. If C ⊂ D = acl(D) ⊂ B, then F ∩ (AD)sBs = acl(AD)B. This notion is the transitive
closure of I: if B ⊂ D ⊂ C, then A |̂

CB implies A |̂
DB.

III. F ∩ (AB)s = AB. This notion is symmetric and transitive.

None of the three notions has the local property. Notion I (and II) can be generalized
to arbitrary PAC fields by replacing F ∩ AsBs = AB (i.e., SG(A) ∩ SG(B) = SG(C)) by:
tp(SG(A)/SG(B)) does not fork over SG(C). Notion III is however particular to ω-free PAC
fields. Note that if A = acl(A) ⊂ B, then any type over A has a unique non-III-forking
extension to B.
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3.7. Independence theorem ([C2]). Let F be an ω-free PAC field of characteristic 0. It
then satisfies the independence theorem over any algebraically closed set, for any of the three
independence relations given above. I.e.: let E, A, B, C1, C2 be algebraically closed subsets
of an ω-free PAC field, with E containing a p-basis of F if [F : F p] < ∞. Assume that

tp(C1/E) = tp(C2/E), and that C1
|̂ ∗EA, C2

|̂ ∗
EB, where ∗ ∈ {I, II, III}, and A and B are

independent over E in the sense of Th(F s). Then there is C realising tp(C1/A)∪ tp(C2/B) and

such that C |̂ ∗
EAB.

Comments There is also a dual version for type II-forking (i.e., A |̂ II

E C1, B |̂ II

E C2 and

(AB) |̂ II

E C.). The type I-version generalizes to arbitrary bounded PAC fields, modulo the
generalisation given in the previous paragraph.

It turns out that II-independence coincides with non-forking in the case of ω-free PAC fields.
The Independence theorem is therefore in agreement with the results that a non-simple theory
has the tree property of the first or of the second kind ([S]), and that theories with the tree
property of the first kind do not satisfy the independence theorem ([K]).

3.8. A few more stability theoretic results ([C3]). As suggested by the enumeration of
results I gave, one can show that properties such as NSOPn for n ≥ 3 hold of a PAC field F
if and only if they hold for its absolute Galois group. As the theory of SF̂ω is ω-stable, this in
particular implies that ω-free PAC fields have NSOP3. I believe that they also have NSOP1,
but some details need to be checked.
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