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Introduction

These notes reflect and complement my talks on introductory material on difference fields, as well as
those on groups definable in ACFA. This is the final version. The main algebraic reference is [Co], the
main model-theoretic one is [CH].

Updated 15 December 2011.

Things to read:
3.2 is the main tool in proving that certain systems of difference equations have solutions.
3.15 till the end of the section define the rank based on |̂ , give examples and compute some ranks. It
also gives the definitions of internality, and modularity. 3.18 describes the first step of the semi-minimal
analysis of a type of finite rank.
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Notation

x, y, z, a, b, c (finite) tuples of variables, of elements
N, Z, Q, C the natural numbers, the integers, the rational

and complex numbers
Fq the field with q elements
L(E) language obtained by adjoining to L constant symbols

for elements of E

AB subfield of Ω generated by A and B
A[B] subring of Ω generated by A and B
Aalg algebraic closure of the field A
As separable closure of the field A

K[X1, . . . , Xn]σ = K[X1, . . . , Xn, X
σ
1 , . . . , X

σ
n , . . . , X

σj

i , . . .]
= difference polynomial ring in X1, . . . , Xn

I(S) ideal of polynomials vanishing on the set S
Iσ(S) ideal of difference polynomials vanishing on the set S
I(a/K) ideal of polynomials over K vanishing at a
Iσ(a/K) ideal of difference polynomials over K vanishing at a
K(A)σ smallest (inversive) difference field containing K(A)

= K(σi(A) | i ∈ Z), with the action of σ
K(A)σ+ = K(σi(A) | ı ∈ N)
acl(A) = model-theoretic algebraic closure of A

= smallest algebraically closed inversive difference field containing A.

Uσ variety conjugate of U under σ
U(K) points of the algebraic set U with their coordinates in K
qf-Diag(E) set of quantifier-free Lσ(E)-sentences which hold in some

L-structure containing E

qftp quantifier-free type
tpACF type in the reduct to the language of fields {+,−, ·, 0, 1}
tr.deg transcendence degree
dim dimension of an algebraic set
⊥ orthogonal
Fix(τ) {a ∈ U | τ(a) = a}
M ≺ N M is an elementary substructure of N , M ≡M N .
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1 Difference algebra

Rings are commutative with 1.

1.1. Difference rings. A difference ring is a ring R with a distinguished endomorphism σ. It is
naturally a structure of the language Lσ = {+,−, ·, σ, 0, 1}. A difference field is a difference ring which
is a field. Note that the endomorphism σ must then be injective, but will not necessarily be onto.

If σ is onto, then we say that R is inversive. Every difference ring R is contained in a smallest
inversive difference ring Rinv, the inversive hull of R, which is unique up to R-isomorphism. The
difference ring R1 is the pushout of the diagram

R
↑

σ(R) ↪→ R

where the horizontal arrow is the natural inclusion σ(R) ⊂ R and the vertical arrow is the isomorphism
σ−1. Thus the pairs (σ(R), R) and (R,R1) are isomorphic via σ−1. The ring R1 can be defined as the
quotient of R × R by the ideal I = {(r, 0) − (0, σ(r)) | r ∈ R}, the subring R being identified with
(R× 0) + I. The map σ−1 : R→ R1 is then defined by σ−1((r, 0) + I) = (0, r) + I.
One builds in the same fashion R2, R3, etc., and defines Rinv =

⋃
nR

n. Since each Rn is isomorphic
to R, it follows that any ∀∃ statement true in R will be true in Rinv, and in particular:
– If R is a domain, so is Rinv,
– If R is a field, so is Rinv.

A σ-ideal of R is an ideal I satisfying σ(I) ⊆ I. Thus R/I is also a difference ring.
Let I be a σ-ideal. If σ(a) ∈ I implies a ∈ I, then I is a reflexive ideal. If for all n > 0, aσ(a)n ∈ I

implies a ∈ I, then I is a perfect ideal. Note that a perfect σ-ideal is reflexive and radical. A prime
σ-ideal is a σ-ideal which is prime and reflexive. It follows that a perfect σ-ideal is an intersection of
prime σ-ideals.

1.2. Difference polynomial rings. Let R be a difference ring, X = (X1, . . . , Xn) a tuple of indeter-
minate. The difference ring R[X]σ is the polynomial ring over R in the indeterminates X,Xσ, Xσ2

, . . .,
where the action of σ is the one suggested by the names of the indeterminates: σ extends σ on K,
and sends Xσi

to Xσi+1
.

If 0 6= f(X) ∈ K[X]σ and 1 ≤ i ≤ n, the largest m such that Xσm
appears non-trivially in f(X)

is called the order of f(X) in Xi.

1.3. Noetherianity? Let K be a difference field, and X = (X1, . . . , Xn) be indeterminates. Then the
collection of σ-ideals ofK[X]σ does not satisfy the ascending chain condition (the ideal (X1X

σ2

1 , X1X
σ3

1 , . . .)
is not finitely generated as a σ-ideal. However, the collection of perfect σ-ideals of K[X]σ satisfies the
ascending chain condition. (More generally, if R has the acc on perfect ideals, so does R[X]σ). This
will have consequences for the σ-topology defined below.

1.4. Let U be a large inversive algebraically closed difference field. In analogy with the Zariski topology
on cartesian powers of U , we define the σ-topology, as follows:

A basic σ-closed subset of Un will be

V (I) = {a ∈ Un | f(a) = 0 ∀f(X) ∈ I} (1)
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where I ⊂ U [X]σ.
Note that if f(a)σ(f(a))m = 0, then f(a) = 0. It follows that if S ⊂ Un and

Iσ(S) = {f ∈ U [X]σ | f(a) = 0 ∀a ∈ S}

then Iσ(S) is a perfect σ-ideal. Hence, the σ-topology on Un is Noetherian: a strictly decreasing chain
of σ-closed subsets of Un gives a strictly increasing chain of perfect ideals of U [X]σ.

The usual properties of the Zariski topology immediately generalise to the σ-topology. Irreducible
σ-closed sets will correspond to σ-prime ideals; every σ-closed set will have finitely many irreducible
components; etc. If U is existentially closed, there will be a Nullstenllensatz: the correspondence
between irreducible closed sets and prime σ-ideals is then a bijection.

From now, all difference fields are inversive. We will work in a large algebraically closed
difference field U , which will contain all fields considered.

1.5. Notation. E a difference subfield of U , a an n-tuple of elements of U , A ⊂ U . Then E[A]σ
denotes the inversive difference ring generated by A over E, and E(A)σ the difference field generated
by A over E, i.e., E[A]σ = E[σi(A) | i ∈ Z], E(A)σ = E(σi(A) | i ∈ Z). We will also sometimes use
non-inversive structures: E(A)σ+ = E(σi(A) | i ≥ 0).

Iσ(a/E) = {f(X) ∈ E[X]σ | f(a) = 0}.

We also define an action of σ on the polynomial ring K[X]: fσ(X) is the polynomial obtained from
f(X) by applying σ to the coefficients of f .

1.6. Transformal transcendence. Let E be a difference subfield of U , and a an element of U .
We say that a is transformally transcendental over E if Iσ(a/E) = 0. Otherwise, we say that a is
transformally algebraic over E. A tuple is transformally algebraic over E iff all its elements are.

If (the singleton) a is transformally transcendental over E, then the elements σ(a), i ∈ N, are
algebraically independent over E. Hence, applying σ−1, so are the elements σ(a), i ∈ Z. Thus, the
difference field generated by a over E is isomorphic to the inversive closure of E(X)σ.

Similarly, one says that the n-tuple a is it transformally independent over E, if Iσ(a/E) = (0).
There are notions of transformal transcendental basis, transformal transcendental degree of an exten-
sion, etc.

1.7. Transformally algebraic elements. Let a be an element of U , E a difference subfield of U , and
assume that a is transformally algebraic over E. Letm be least such that some non-zero difference poly-
nomial f(X) = F (X,Xσ, . . . , Xσm

) is in Iσ(a/E). Choose such an f(X) of lowest degree when viewed
as a polynomial in Xσm

. Then F (a, . . . , σm−1(a), Y ) is irreducible over E(a, . . . , σm−1(a)) because
Iσ(a/E) ∩ E[X, . . . ,Xσm

] is prime, and is the minimal polynomial of σm(a) over E(a, . . . , σm−1(a)).
From F (a, . . . , σm(a)) = 0, we deduce that F σ(σ(a), . . . , σm+1(a)) = 0, so that the minimal

polynomial of σm+1(a) over E(a, . . . , σm(a)) divides F σ(σ(a), . . . , σm(a), Y ), and therefore has de-
gree bounded above by the degree of F (a, . . . , σm−1(a), Y ). It follows that Iσ(a/E), as a σ-ideal,
is finitely generated, since from some point on, the degree of the minimal polynomial of σn(a) over
E(a, . . . , σn−1(a)) must stabilize.
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This discussion generalises to finite tuples: let a be a finite tuple of elements of U , which are trans-
formally algebraic over E. Then for some m > 0, σm(a) ∈ E(a, σ(a), . . . , σm−1(a))alg. Furthermore,
if dm = [E(a, . . . , σm(a)) : E(a, . . . , σm−1(a))], then

dm+1 = [E(a, . . . , σm+1(a)) : E(a, . . . , σm(a))]

≤ [E(σ(a), . . . , σm+1(a)) : E(σ(a), . . . , σm+1(a))]

= [E(a, . . . , σm(a)) : E(a, . . . , σm−1(a))] = dm.

Hence, the numbers dm eventually stabilize, and their eventual value is called the limit degree of a
over E, denoted ld(a/E).

Replacing σ by σ−1 one defines in the same way the inverse limit degree of a over E, ild(a/E), as the
eventual value of [E(a, . . . , σm(a)) : E(σ(a), . . . , σm(a))]. We also define degσ(a/E) = tr.deg(E(a)σ/E),
the σ-degree. (If a is not transformally algebraic, we set it equal to +∞).

1.8. Exercise. Let E be a difference subfield of U , a a tuple in U such that σ(a) ∈ E(a)alg. Then

(i) a ∈ E(σ(a))alg. [Hint: Consider the tr.deg. over E]

(ii)
[E(a, σ(a), σ2(a)) : E(a, σ(a))]

[E(a, σ(a), σ2(a)) : E(σ(a), σ2(a))]
=

[E(a, σ(a)) : E(a)]

[E(a, σ(a)) : E(σ(a))]
=

ld(a/E)

ild(a/E)
.

[Hint: Compute [E(a, σ(a), σ2(a)) : E(σ(a))] in two different ways.]

(iii) If b ∈ E(a)alg, then ld(b/E(a)σ) = ild(b/E(a)σ).

1.9. One can also show that ld(a/E), ild(a/E) are invariant of the extension E(a)σ/E, i.e., do not
depend on the choice of generators of E(a)σ over E, and that limit degrees and inverse limit degrees
are multiplicative in towers (ld(a, b/E) = ld(a/E)ld(b/E(a)σ)). There are also notions of reduced
[inverse] limit degrees, by considering the degree of separability instead of the degree.

1.10. Extensions of σ to the algebraic closure of a difference field. Let E be a difference field,
and fix some extension of σ to the algebraic closure Ealg of E. The other extensions of σ to Ealg are
of the form τσ, where τ ∈ Aut(Ealg/E). Then

(Ealg, σ) 'E (Ealg, τσ) ⇐⇒ ∃ρ ∈ Aut(Ealg/E) τ = ρσ(σρ)−1.

1.11. Definition. Let E′ be an algebraic extension of E. We say that E′ is finite σ-stable (over E)
if σ(E′) = E′ and [E′ : E] is finite. Note that this corresponds to ld(E′/E) = 1 (= ild(E′/E)). If E′

is finite σ-stable over E, then so is its normal closure E′′ over E, and the σ-stability of E′′ does not
depend on the extension of σ to E′. This follows easily from the fact that if α ∈ E′, and P (X) ∈ E[X]
is the minimal polynomial of α over E, then σ(α) is a root of P σ(X) = 0, and E(α) |= ∃x P σ(x) = 0.
Hence the same is true of every E-conjugate of E(α). It follows that the splitting field of P (X) = 0
contains all roots of P σ(X) = 0, and shows that the normal closure of E′ over E is also finite σ-stable.

If M is an algebraic extension of E, define Core(M/E) to be the union of all finite σ-stable separable
extensions of E contained in M . Note that, by the above, if M is normal over E, then Core(M/E)
does not depend on the extension of σ to M .

Theorem. (Babbitt) Two extensions of σ to Ealg are E-isomorphic if and only if their restrictions to
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Core(Ealg/E) are isomorphic.
In particular, if E has no proper finite σ-stable extension, then all extensions of σ to Ealg are
E-isomorphic.

1.12. Some additional definitions. In model theory, it is convenient to use the language of al-
gebraic geometry à la Weil. Thus our varieties will be defined in terms of coordinates, and defined
by polynomial equations. We will use the large algebraically closed difference field U as a universal
domain. Varieties will always be reduced.

If V is a variety defined by a radical ideal I ⊂ U [X], then the field of definition of V , or of I, is
the smallest subfield K of U such that I ∩K[X] generates I. We use the same notation V for VK or
VU : for us, V is the set of points in the appropriate cartesian power of U which are annihilated by all
elements of I.

In model theory we reach an ambiguity, defined vs definable. So, I will say that V is defined over L
if L contains the field of definition of V (i.e., I ∩L[X] generates I); we will say that V is definable over
L if V is the set of elements of U which are annihilated by all elements of I ∩ L[X]. The difference
between the two notions appears in positive characteristic: if a is transcendental, then the variety {a}
is definable over Fp(ap) but not defined over Fp(ap).

A generic of the irreducible variety V over a field L (containing the field of definition of V ) is a
point of V such that I(a/L) =def {f(X) ∈ L[X] | f(a) = 0} equals I ∩ L[X]. In other words, the
specialisation L[V ]→ L[a] which sends X + I(V ) to a is an isomorphism.

Given a tuple a in U and the subfield L, we will also speak of the algebraic locus of a over L,
Locus(a/L), as the variety defined by the ideal I(a/L). Thus, by definition, a will be a generic of
Locus(a/L) over L.

The same terminology generalises to the context of difference fields. We will speak of the field of
definition of a difference variety, of the diference locus (Locusσ) of a tuple over a difference field, of a
generic of an irreducible difference variety, and define Iσ(a/E).

2 Model theory of difference fields - basic results

2.1. Definition. An existentially closed (e.c.) difference field is a difference field K such that every
finite system of σ-equations1 and inequations (over K) which has a solution in some difference field
extending K, has already a solution in K. Note that because of the equivalence x 6= 0 ⇐⇒ ∃y xy = 1,
we can restrict ourselves to systems of σ-equations.

2.2. Consider the theory, called ACFA, whose models are the Lσ-structures K satisfying:

(1) K is an algebraically closed field.

(2) σ is an automorphism of K.

(3) If U and V are absolutely irreducible (affine) varieties defined over K, with V ⊆ U × Uσ, such
that the projections of V to U and to Uσ are dominant, then there is a tuple a in K such that
(a, σ(a)) ∈ V .

Explanation of the axioms

1= difference equations
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— σ extends to an automorphism of K[X] which leaves the elements of X fixed. Thus, if I ⊂ K[X]
is the ideal of polynomials defining U , then σ(I) defines an absolutely irreducible variety Uσ, with
Uσ(U) = σ(U(U)).

— The projection maps are induced by π1 : U × Uσ → U and π2 : U × Uσ → Uσ. Our hypothesis
simply says that π1(V ) is Zariski dense in U , and π2(V ) is Zariski dense in Uσ. Equivalently, if
whenever (a, b) is a generic of V over K, then a is a generic of U over K, and b a generic of Uσ over
K.

One can show that the scheme of axioms (3) is first-order. The property “U an absolutely irre-
ducible variety” is a first-order property (quantifier-free in the language of fields) of the coefficients
of a set of polynomials whose vanishing defines U ; similarly for the fact that the projection maps are
dominant.

2.3. Proof that every difference field embeds in a model of ACFA. Let (K,σ) be a difference
field. Then σ lifts to an automorphism of Kalg, and so axioms (1) and (2) are no problem. So, let K
be an algebraically closed difference field, let U and V be varieties satisfying the hypotheses of (3).
We want to find a difference field L extending K, and containing a tuple a with (a, σ(a)) ∈ V .

Let (a, b) be a generic of V over K (recall, we work in U , which in particular is a large algebraically
closed field). Then a is a generic of U over K, and b is a generic of Uσ over K. This exactly says that
I(b/K) = σ(I(a/K)), so that σ extends uniquely to aK-isomorphism of fields τ : K(a)→ K(b) sending
a to b. Let L = K(a, b)alg. By properties of algebraically closed fields, τ lifts to an automorphism ρ of
L. Hence (L, ρ) is a difference field extending (K,σ) and contains a solution to our equation, namely
a.

We have shown that every instance of axiom (3) is satisfiable in some difference field containing K.
Hence, starting from an enumeration of all instances of axiom (3) with coefficients in K, and applying
a tower of such constructions, we can build a difference field K1 containing K, which is algebraically
closed, and such that every instance of axiom (3) with coefficients in K has a solution in K1. Iterating
the construction, we find an algebraically closed difference field K2 containing K1 and such that every
instance of axiom (3) with coefficients in K1 has a solution in K2. Etc. Then

⋃
n∈NK

n is our desired
model of ACFA.

2.4. Proof that models of ACFA are e.c.. Assume K |= ACFA, let f1(X), . . . , fm(X) ∈ K[X]σ,
and assume that there is a difference field L containing K, and a tuple a in L such that f1(a) = · · · =
fm(a) = 0. We want to show that there is such an a in K.

Let ` ∈ N be such that f1(X), . . . , fm(X) ∈ K[X, . . . , σ`(X)]. Consider the varieties
— U with generic over K the tuple b = (a, σ(a), . . . , σ`−1(a)),
— V with generic over K the tuple (b, σ(b)).

Then σ(b) = (σ(a), . . . , σ`(a)) is a generic of Uσ. Thus V ⊆ U × Uσ, and projects generically onto
U and onto Uσ. By axiom (3), there is c ∈ Kn` such that (c, σ(c)) ∈ V . Then c can be written
(d, σ(d), . . . , σ`−1(d)). Since I(c, σ(c)/K) contains I(b, σ(b)/K), we get that I(d, σ(d), . . . , σ`(d)/K)
contains I(a, σ(a), . . . , σ`(a)/K), and therefore that f1(d) = · · · = fm(d) = 0.

2.5. Corollaries/Remarks.

(1) The proof of the consistency shows that each instance of axiom (3) can be satisfied in an extension
of finite transcendence degree over K. This implies that:
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(i) If M is a model of ACFA containing K, and M0 is the subfield of M generated by all
elements of M which are transformally algebraic over K, then M0 is a model of ACFA, and
in fact M0 ≺M , see below.

(ii) To axiomatise ACFA, we may restrict instances of axiom (3) to varieties U , V with dim(U) =
dim(V ). Thus the induced projections are generically finite.

(2) ACFA axiomatises the class of e.c. difference fields (called difference closed by Scanlon). This
implies that the theory ACFA is model complete, see next paragraph for some explanations. In
particular, any inclusion between two models is elementary. It also implies that every formula
is equivalent to an existential formula, but we will be able to refine this, see below 3.4.

(3) If V ⊂ U × Uσ is as in axiom (3), and K is a model of ACFA, then the set of a ∈ U(K) such
that (a, σ(a)) ∈ V , denoted (U, V )] by Scanlon in his talk, is Zariski dense in U .

(4) It was crucial that the variety V is absolutely irreducible, so that we would be sure that any
generic of V projects onto a generic of U and onto a generic of Uσ.

2.6. Existentially closed models of an inductive theory. Suppose we have a first-order theory T
in a language L, which is inductive (i.e., any union of a chain of models is a model; equivalently, which
is axiomatised by sentences ∀∃). Within the class K of all models of T , we consider the subclass Kec of
existentially closed structures in K (a structure K in K is e.c. if any existential L(K)-formula which is
satisfiable in some member of K containing K, is already satisfiable in K). Since T is inductive, every
member of K is contained in a member of Kec (exercise: start with K, and build K1 such that every
existential L(K)-formula which has a solution in some structure of K containing K, has a solution in
K1; etc.).

IF the class Kec admits an axiomatisation, i.e., if there is some theory T ′ (containing T ) whose models
are exactly the members of K0, then T ′ is model-complete, i.e.: whenever M ⊂ N are models of T ′ then
M ≺ N . A consequence of this is that, modulo T ′, every formula ϕ(x) is equivalent to an existential
formula2. Equivalently: if T ′ is model-complete, then every formula ϕ(x) is equivalent to a universal
formula. The theory T ′ is then called the model companion of T .

Working with a model complete theory is not quite as good as working with a theory which has
quantifier-elimination. But it has still the nice property: if you work inside a large model M , and
suddenly decide to enlarge it to a larger model M∗, the validity of first-order formulas is the same in
M and in M∗: if a ∈M , then M |= ϕ(a) if and only if M∗ |= ϕ(a).

Some examples. Here are a few examples of theories with Kec axiomatisable:
Theory of abelian groups, Kec = {divisible abelian groups},
Theory of fields, Kec = {algebraically closed fields},
Theory of differential fields of characteristic 0, Kec = {differentially closed fields of characteristic 0},
Theory of ordered fields, Kec = {real closed fields} (language of ordered rings).

And here are two examples of theories where Kec is NOT axiomatisable:
Theory of groups,
Theory of fields with two commuting automorphisms.

2Actually, it is not only a consequence, it is an alternate definition of model completeness.
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3 Lecture 2 - Model theory of difference field (ctd)

3.1. Theorem. Let K be an algebraically closed difference field. Then ACFA∪ qf-Diag(K) is com-
plete in the language Lσ(K). In other words, if M1 and M2 are two models of ACFA which contain
K, then they are Lσ(K)-elementary equivalent, they satisfy the same Lσ-sentences with parameters
in K, denoted M1 ≡K M2.

Proof. Consider M1 ⊗K M2. Because K is algebraically closed, this is a domain, which contains
isomorphic copies of M1 and M2. Moreover there is a unique automorphism of M1 ⊗K M2 which
extends the given automorphisms of M1 and M2. Hence the difference domain M1⊗KM2 is contained
in some e.c. M3. But then we have M1 ≺M3, M2 ≺M3, which implies in particular M1 ≡K M2.

3.2. An important property. Let K be an algebraically closed difference field, and M a model of
ACFA containing it, which is sufficiently saturated. Let L be a difference field containing K. Then
there is a K-embedding of L inside U .

Proof. The proof of consistency of ACFA shows that L embeds in some model M1 of ACFA. By Thm
3.1, we have M1 ≡K M . The saturation of M implies that there is a K-embedding of M1 inside M .

Alternate proof: This follows from the saturation of M . Consider qf-Diag(L). We wish to show that
M can be made into a model of this set of Lσ(L)-sentences. By compactness, it suffices to consider
a finite fragment of it: but a finite fragment will simply be a finite collection of difference equations
and inequations with coefficients in K, and such a system, having a solution in L will have a solution
in M .

3.3. Definition of types. Let A be a subset of U |= ACFA, and a a tuple in A. (Usually, we pass
to the structure generated by A, and even to the difference subfield generated by A).

(1) The quantifier-free type of a over A, qftp(a/A), is the set of quantifier-free formulas of Lσ(A) (=
Lσ with new constants for the elements of A) satisfied by a in U . Thus it is a set of quantifier-free
formulas, in some tuple x of variables of the same length as a.

(2) The type of a over A, tp(a/A), is the set of all Lσ(A)-formulas satisfied by a in U . Hence it is
a set of Lσ(A)-formulas, containing ACFA, and which is maximal consistent: if ϕ(x) ∈ Lσ(A),
then either ϕ or ¬ϕ belongs to tp(a/A), depending on whether U |= ϕ(a) or U |= ¬ϕ(a).

(3) The set Sn(A) of all n-types over A (in the n-tuple of variables x) is endowed with a topology,
with basic open (and closed) sets 〈ϕ(x)〉A = {p ∈ Sn(A) | ϕ(x) ∈ p(x)}, where ϕ(x) ∈ Lσ(A).
Then Sn(A) is compact and Hausdorff for that topology.

(4) A type p ∈ Sn(A) is algebraic if it has only finitely many realisations. It is then an isolated
point in Sn(A): there is an L(A)-formula ϕ(x) which together with the elementry diagram of A,
implies p(x); we say that ϕ isolates p.

3.4. Corollary. Let K be an algebraically closed difference field.

(1) The completions of ACFA are given by describing the isomorphism type of the algebraic closure
of the prime field. For instance, the formula ∃y y2 = −1 ∧ σ(y) = −y describes the action of σ
on the field obtained by adjoining a square root of −1. It will in particular imply that the fixed
field is either of characteristic 2, or does not contain a square root of −1. More examples below.
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(2) Let a, b be tuples in M |=ACFA. Then

tp(a/K) = tp(b/K) ⇐⇒ K(a)algσ 'K K(b)algσ

by a K-isomorphism sending a to b.

(3) acl(K) = K.

(4) Let ϕ(x) be an Lσ-formula. Then, modulo ACFA, ϕ(x) is equivalent to a formula ∃y ψ(x, y),
where ψ(x, y) is quantifier-free, and whenever (a, b) satisfies ψ (in some difference field), then b
generates a finite σ-stable extension of the difference field generated by a.

(5) If U is e.c., then every definable subset of Un is of the form π(W ), where π : Un+m → Un is the
projection, W is defined by σ-equations, and π|W has finite fibers.

Proof. (1) Clear from 3.1.
(2) 3.1 tells us that any embedding f of E into another model U ′ of ACFA will be an elementary

isomorphism, i.e., given a formula ϕ(x) ∈ L and a in E, we will have U |= ϕ(a) iff U ′ |= ϕ(f(a)). Apply

this to the algebraically closed difference field E = K(a)algσ , and to a K-isomorphism f : K(a)algσ →
K(b)algσ sending a to b.

(3) Assume that α /∈ K. Let M be a model of ACFA containing K and α. As in (1), M ⊗K M
embeds into a model N of ACFA, in which there is a new realisation of tp(α/K): thus α cannot be
algebraic over K, since otherwise, tp(α/K) would have the same finite number of realisations in any
model of ACFA containing K (3.1).

(4) This will be clear from (2), using also 1.11. By compactness, it is enough to show that for each
type p (over ∅) and a realising p in some model M of ACFA, there is a formula θp(x) of the required
form which is satisfied by a and implies either ϕ(x) or ¬ϕ(x). Let k be the prime subfield of M . Then
Babbitt’s theorem and (2) tell us that the isomorphism type of the difference field Core(k(a)alg/k(a)σ)
completely determines tp(a/∅). The isomorphism type of this extension is described by formulas of
the required form (see below), and a finite fragment θp(x) will imply ϕ or its negation. The set of
types containing the formula ϕ(x) is covered by finitely many such open sets θp(x), say corresponding
to the types p1, . . . , pr, and therefore ϕ(x) is equivalent to

∨r
i=1 θpi(x).

(5) Clear from (4).

3.5. Describing the algebraic closure of E(a)σ. First of all note that in positive characteristic p,
an automorphism σ of a field has a unique extension to its perfect closure: σ(a1/p) = σ(a)1/p.

We have some tuple a, and wish to describe its type over the difference field K. We have already
described the K-isomorphism type of K(a)σ via the quantifier-free type of a over K. By Babbitt’s

theorem, it suffices to describe the isomorphism type of Core(K(a)algσ /K(a)σ); and to do that, it
suffices to describe the isomorphism type of L, for any finite σ-stable Galois extension L of K(a)σ.

Take such an L, and write it L = K(a)σ(α); replacing α by some σm(α), we may assume that the
minimal polynomial of α over K(a)σ has its coefficients in K(a)σ+; let P (X,Y ), Q(X,Y ) ∈ K(X)σ[Y ]
be such that P (a, Y ) is the minimal monic polynomial of α over K(a)σ, and σ(α) = Q(a, α). Thus
our formula describing L/K(a)σ (up to conjugation by an element of Gal(L/K(a)σ)) is: ∃y P (a, y) =
0 ∧ σ(y) = Q(a, y) (plus maybe some formulas saying that the denominators appearing in P and Q
are non-zero).

3.6. Other remarks. Let E be a difference subfield of U , a a tuple in U .
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(1) qftp(a/K), the quantifier-free type of a over E, determines the isomorphism type (over E) of
the difference field E(a)σ. Indeed, the difference domain E[a]σ+ is the structure generated by a
over E, and therefore its isomorphism type is determined by qftp(a/E). Passing to its field of
fractions and to its inversive hull, we get the result.

(2) Babbitt’s theorem 1.11 implies that if E(a)σ has no proper finite σ-stable extension, then

ACFA ∪ qftp(a/E) ` tp(a/E).

(3) The proof of (4) is an instance of a general model-theoretic reasoning. Assume that you have
a set of formulas ∆ which is closed under finite conjunctions. Assume that you can show that
every type can be axiomatised (over your original theory T ) by formulas in ∆. You can then
conclude that every formula is equivalent modulo T to a finite disjunction of formulas in ∆.

We take for ∆, the set of formulas which describe finite σ-stable Galois extensions of the difference
field generated by a; since the composite of two finite σ-stable Galois extensions is also finite
σ-stable Galois, ∆ is closed under conjunctions.

From now on, the difference field U will be a model of ACFA

3.7. Independence. We already saw in 3.4 that model-theoretic algebraic closure was what we
expected it to be: acl(A) is the field-theoretic closure of the inversive difference field generated by A.
We define an independence notion on subsets of U as follows:
Let A,B,C ⊂ U . We say that A and B are independent over C if the fields acl(CA) and acl(CB) are
free (or equivalently, linearly disjoint) over acl(C). We denote it by A |̂ CB.

3.8. Properties. This independence notion, being based on the independence in ACF, has all the
good properties of algebraic independence. In particular it is symmetric, and transitive: if B′ ⊂ B,
then

A |̂ CB ⇐⇒ A |̂ CB′ and A |̂ CB′B.

Note also that by definition

A |̂ CB ⇐⇒ acl(C,A) |̂ acl(C)acl(C,B)

and that
acl(C,A) = (acl(C)acl(A))alg.

Moreover, independence satisfies the extension property: given A, B and C, there is A′ realising
tp(A/C) in some elementary extension of K such that A′ and B are independent over C. Indeed,
without loss of generality, we may assume that C, A and B are algebraically closed difference fields,
with C ⊆ A ∩ B. Consider the difference domain A ⊗C B: by 3.2, there is a B-embedding of A into
U . The image A′ of A under this embedding is independent from B over C, and tp(A′/C) = tp(A/C).

Assume that a is a finite tuple, A ⊂ B are difference subfields of U , with A algebraically closed. Then

a |̂ AB ⇐⇒ Iσ(a/A)B[X]σ = Iσ(a/B).

In case A is not algebraically closed, independence can also be expressed in terms of transformal bases
and transcendence degrees. Select a transformal transcendence basis b of a over A. Then a |̂ AB iff
the elements of b remain transformally independent over B, and degσ(a/A(b)σ) = degσ(a/B(b)σ).
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3.9. Stationarity of non-forking extensions? Recall that if a |̂ AB one says a is independent
from B over A, or tp(a/B) does not fork over A, or is a non-forking extension of tp(a/A).

Definition. A type (over a set A) is stationary if it has a unique non-forking extension to any set
containing A.

We saw that in ACF (the theory of algebraically closed fields), if A is algebraically closed, then any type
over A is stationary. If A is a field which is not algebraically closed, then tp(a/A) will be stationary
if and only A(a) ∩As = A (i.e., iff A(a) is a primary extension of A).

In ACFA, types over algebraically closed sets are often non-stationary. The typical example is
given by any non-algebraic type realised in the fixed field. More later on that topic.

In analogy, we will say that a quantifier-free type p (over A) is stationary if for any B containing
A, it has a unique extension to a quantifier-free type over B which does not fork over A. I.e., we
request that q is a quantifier-free type over B which contains A and is such that if a realising q, then
a |̂ AB.

Then clearly we have: If A = acl(A), then any quantifier-free type over A is stationary. If A is
a difference field, a a tuple, then qftp(a/A) is stationary in case A(a)σ is a primary extension of A.
(This is actually not a necessary condition).

3.10. The independence theorem. There is an important result which allows to circumvent the
fact that most types are not stationary.

Theorem. Let E = acl(E) ⊂ A,B ⊂ U , and assume that A |̂ EB. Let c1, c2 be tuples realising the
same type over E, with c1 |̂ EA and c2 |̂ EB. Then there is c |̂ EAB which realises tp(c1/acl(A)) ∪
tp(c2/acl(B)).

Proof. Without loss of generality, A and B are algebraically closed difference fields. Replace ci by
acl(Eci) = Ci. By hypothesis, there is an E-isomorphism C1 → C2 which sends c1 to c2.

Let C be a field which is E-isomorphic to C1, and is free from (AB) over E. This isomorphism
gives us an extension σ1 of σ|E to C, and σ1 is compatible with σ|acl(AB)

(because of the freeness

assumptions). One now uses the fact that (AC)alg(BC)alg ∩ (AB)alg = AB to extend σ1 ∪ σ|acl(AB)

to an automorphism σ2 of (ABC)alg in such a way that the given isomorphism C1 → C extends to an
isomorphism ((AC1)

alg, σ)→ ((AC)alg, σ2), and similarly for (BC)alg. To do that, if ϕi : C1 → C was
the original E-isomorphism, we just extend ϕi ∪ idA to a field isomorphism ψ1 defined on (C1A)alg;
this ψ1 induces an extension of σ1 ∪ σ|A on (AC)Alg. One does the same with (BC)alg and verifies
that these extensions of σ1 ∪ σ|acl(AB)

are compatible.

3.11. This result has multiple uses. It allows to define the correct notion of stabilisers of types in a
group. It is also used in the proof that any completion of ACFA eliminates imaginaries. An important
consequence of elimination of imaginaries is that if U is a saturated model of ACFA, and S ⊂ Un
is U-definable, then there is a tuple a such that S is a-definable, and every automorphism of (the
difference field) U which leaves S invariant, fixes the tuple a elementwise.

Another way of stating the independence theorem, more model-theoretic: let c be a finite tuple.
Assume that p1(x) is a non-forking extension of tp(c/E) to A, and p2(x) is a non-forking extension of
tp(c/E) to B. Then there is a non-forking extension q(x) of tp(c/E) to AB which contains p1(x)∪p2(x).

3.12. Reducts of U . Let n > 1 and consider the difference field (U , σn). It is a reduct of U , i.e.,
has less structure than the Lσ-structure (U , σ). As (U , σ) is a model of ACFA, so is (U , σn). We will
denote this reduct by U [n].
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Sketch of proof. Let (M, τ) be difference field containing (U , σn). One can then show that there is a
field N containing M , and ρ ∈ Aut(N) such that

(M, τ) ⊂ (N, ρn) and (U , σ) ⊂ (N, ρ).

As U is e.c. in N , every system of σn-equations over U having a solution in M has a solution in U .
This shows that U [n] is e.c.

Corollary (char p > 0). Let m > 0 and n be integers, and consider τ = σmFrobn. Then (U , τ) |=
ACFA.

Proof. (U , τ) is definable in U [m].

3.13. The fixed field(s). Consider F = Fix(σ) = {a ∈ U | σ(a) = a}, the fixed field. As
Tom mentionned, this field is pseudo-finite: perfect (if the characteristic is p > 0, then F p = F );
Gal(F alg/F ) ' Ẑ; and F is PAC: every absolutely irreducible variety defined over F has an F -rational
point.

Proof. Perfectness is clear. Gal(F alg/F ) is topologically generated by σ, so F has at most one
extension of degree n for each n > 1. Considering the difference field extension U(t1, . . . , tn) of U
where σ(ti) = ti+1 for i < n, σ(tn) = t1 shows that F has an algebraic extension of degree exactly n.

Consider an absolutely irreducible variety U defined over F , and let V be the diagonal of U . By
ACFA, there is a ∈ U such that (a, σ(a)) ∈ V , i.e., a ∈ U(F ).

Assume that the characteristic is p > 0, and let τ be as in the corollary above. Then also Fix(τ) is
pseudo-finite.

3.14. Important properties of fixed fields. Let F = Fix(σ). Proofs can be easily generalised to
the other fixed fields. The first thing to notice is that

If K is a difference subfield of U , then F and K are linearly disjoint over their intersection F ∩K.
So in particular, F |̂ F∩KK.
Indeeed, we need to show that if c1, . . . , cn ∈ F are linearly independent in the F ∩K-vector space F ,
they remain linearly independent in the K-vector space FK. We take a minimal n such that there is
a counterexample c1, . . . , cn and let a1, . . . , an ∈ K such that

∑
i ciai = 0, and a1 6= 0. Wlog, a1 = 1.

Applying σ we get the equation
∑

i ciσ(ai) = 0. Substracting this equation from the first one, we get
a linear dependence relation of length ≤ n− 1 (since a1 = 1 = σ(a1)), contradiction.

F is stably embedded, i.e., for every n, every U-definable subset of Fn is definable with parameters
from F (and in fact, in the case of Fix(σ) or of Fix(σFrobn) one can show that it is definable in the
pure field language).

Proof. I told you that every completion of ACFA eliminates imaginaries. Let S ⊂ Fn be definable.
Note that σ is an automorphism of the Lσ-structure U (since it commutes with σ . . . ), and it leaves S
invariant. This implies that it fixes the canonical parameter3 of the definable set S, i.e., that canonical
parameter must be in F .

One of the consequences of stable embeddedness is the following: if a ∈ U , then tp(a/F ∩ acl(a)) `
tp(a/F ).

3If S is defined by ϕ(x, a), and E is the equivalence relation E(y, z) : ∀x ϕ(x, y) ↔ ϕ(x, z), then the canonical
parameter of S, pSq, is the E-equivalence class of a.
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In a stable theory all definable sets are stably embedded (and even, all sets). The converse is false:
stable embeddability does not imply stability!!

3.15. The SU-rank. The definition of independence/non-forking allows one to define a notion of
rank, i.e. a fonction from types of tuples to the class of ordinals. The rank of a type p (over a set A),
will equal SU(a/A) for any realisation a of p in U . It is defined by induction:

(i) SU(a/A) ≥ 0

(ii) If α is a limit ordinal, then SU(a/A) ≥ α if and only if SU(a/A) ≥ β for all β < α,

(iii) SU(a/A) ≥ α+ 1 if and only if there is some A ⊂ B ⊂ U such that a |̂/ AB and SU(a/B) ≥ α.

Then SU(a/A) is the smallest ordinal α such that SU(a/A) 6≥ α+ 1. There is such an α, and one can
show that if m is the transformal transcendence degree of a over acl(A), then

ωm ≤ SU(a/A) < ω(m+ 1).

3.16. Examples.
If a is transformally algebraic over A, then one shows easily that SU(a/A) ≤ degσ(a/A).

Also, if a is a transformally transcendental element, then SU(a/A) = ω: define by induction a1 =
σ(a) − a, ai+1 = σ(ai) − ai. We get then a descending chain of difference field extensions of A:
A(a)σ ⊃ A(a1)σ ⊃ A(a2)σ . . . , each difference field in this sequence being of transcendence degree
1 over the next one. So, SU(a/Aai) = i for every i, which implies SU(a/A) ≥ ω. On the other
hand, if B ⊃ A is such that a |̂/ AB, then degσ(a/B) < ∞, so that SU(a/B) < ω; this shows that
SU(a/A) 6≥ ω + 1, i.e., SU(a/A) = ω.

Let us look more closely at types of finite rank, one shows easily:
SU(a/A) = 0 if and only if a ∈ acl(A);
SU(a/A) = 1 if and only if a /∈ acl(A), and for every B ⊃ A, either a |̂ AB, or a ∈ acl(B).
Also, we have additivity of the rank: if SU(ab/A) < ω, then SU(ab/A) = SU(a/A) + SU(b/Aa)
(= SU(b/A) + SU(a/Ab)).

Exercise. Show the following:
if σ2(a) = a2 and a /∈ acl(E), then SU(a/E) = 1,
if σ2(a) = a+ 1, then one can have SU(a/E) = 2.

3.17. Canonical bases. Let K ⊂ L ⊂ U be (perfect) difference fields, and a a tuple in U . Consider
the difference locus of a over L, Locusσ(a/L), i.e., the σ-closed set defined by the σ-ideal Iσ(a/L)
of difference polynomials over L which vanish on a. This has a smallest field of definition L0, i.e., a
difference subfield L0 of L such that Iσ(a/L) is generated by its intersection with L0[X]σ. This field
is called the canonical base of qftp(a/L) (quite a mouthful), denoted (by me) qf-Cb(a/L).

Its algebraic closure, Cb(a/L) = acl(L0) is the smallest algebraically difference subfield L′ of acl(L)
satisfying A |̂ L′L. One can use this alternate definition to define Cb, so that it makes sense also for
infinite tuples.

3.18. Semi-minimal analysis. If SU(a/A) < ω, one can show that there is some B independent
from a over A, and b ∈ acl(Ba) such that SU(b/B) = 1. (This is a property of supersimple theories,
and can also be showed by hand). This is the start of an analysis of tp(a/A): one can repeat the
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procedure with tp(a/Bb), and get a sort of skew tower. Here is a procedure which is less fine, but does
not necessitate to increase the base.

Consider C = Cb(Bb/Aa) (as defined just above). So, this is an algebraically closed difference
field containing A, and one can show: For some m, if B1b1, . . . , Bmbm are independent realisations of
tp(Bb/acl(Aa)), then C ⊂ acl(B1b1 . . . Bm, bm). In fact, for m = SU(C/A), writing D = B1 · · ·Bm,
one has that

D |̂ Aa and acl(CD) = acl(Db1 . . . , bm),

i.e., C and the tuple (b1, . . . , bm) are equi-algebraic over D.
One then says that tp(C/A) is almost-internal to the set of A-conjugates of tp(b/B) (quite a

mouthful too). If b ∈ Fix(σ), one says tp(C/A) is almost Fix(σ)-internal.
So, we have just found some C ⊂ acl(Aa) which is a little special. Iterate the construction until

you reach a set which contains acl(Aa): this is the semi-minimal analysis of tp(a/A)).

3.19. Modularity/One-basedness. Let A ⊂ U , and S ⊂ Un be Aut(U/A)-invariant. Eg, A-
definable, or an intersection of A-definable sets, or a union of such. We say that S is modular (the
usual terminology is one-based) if whenever a1, . . . , am ∈ S, and A ⊂ C ⊂ U , then a1, . . . , am |̂ DC
where D = acl(Aa1 . . . am) ∩ C. In other words, Cb(a1 . . . am/C) ⊂ acl(Aa1 . . . am).

If p is a type over A, we say that p is modular if the set of its realisations is modular.

3.20. Properties. Assume that p does not fork over A0 ⊂ A. Then p is modular if and only if p|A0

is modular.
The class of modular sets is stable under union and fibration (if tp(a/A) and tp(b/Ab) are modular,

then so is tp(ab/A)).

4 Lecture 3 - Groups definable in ACFA

As before we work in a sufficiently saturated e.c. difference field U .

4.1. Definition. A group definable in U is a definable subset G ⊂ Un, together with a definable
ternary subset Γ ⊂ G3 which is the graph of a group operation. In particular, for any x, y ∈ G, there
are unique z1, z2, z3 in G such that Γ(x, y, z1) ∧ Γ(x, z2, y) ∧ Γ(z3, x, y).

4.2. Theorem (Kowalski-Pillay). G as above, defined over E = acl(E). There is an algebraic group
H, a definable subgroup G0 of finite index in G, and a definable homomorphism f G0 → H(U) with
finite kernel, everything being defined over E.

Sketch of proof. Let a1, a2, a3 be generics of G which are independent over E. By generic I mean that
we take elements of G which have maximal SU-rank over E. I denote the group operation of G by
·, the inverse map by −1. Now define b1, b2, b3 by a1 · a2 = b3, a1 · a3 = b2 and a−12 · a3 = b1. Then
b1 = b−12 · b3.

Consider the following triples:
(a1, a2, b3);
(a1, a3, b2);
(a2, a3, b1);
(b1, b2, b3).
Then in any triple, any element is algebraic (in the sense of acl) over E union the other two. E.g.,
a2 ∈ acl(E, a1, b3). For simplicity, I will now assume that tr.deg(E(a)σ/E) < ∞, and, replacing the
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points g ∈ G by (g, σ(g), . . . , σm(g)) for some m if necessary, that for all g ∈ G, σ(g) ∈ E(g)alg. Thus,

working now in ACF, and observing that acl(E, a1, b2) = E(a1, b2)
alg
σ is therefore equals to E(a1, b2)

alg,
we now get that in any triple, any element is algebraic (in the sense of field-theoretic algebraic closure)
over E union the other two. This gives us what is called a group configuration in ACF. A theorem
of Hrushovski tells us that there is an algebraic group H defined over E, and independent generics
a′1, a

′
2, a
′
3 of H(U) such that, setting b′1 = a′2

−1a′3, b
′
2 = a′1a

′
3 and b′3 = a′1a

′
2, we have

E(ai)
alg = E(a′i)

alg, E(bi)
alg = E(b′i)

alg

for i = 1, 2, 3.
We now go back to ACFA and work in the group G × H(U), with group law denoted by ·. Let

p = tp(a1, a
′
1/E), q = tp(a2, a

′
2/E) and r = tp(b3, b

′
3/E), P,Q,R their sets of realisations. Let us define

S(q, r) = {(g, g′) ∈ G×H(U) | ∃(x, x′) ∈ Q, (x, x′) |̂ E(g, g′)∧ (g, g′) · (x, x′) ∈ R}. One can then prove
that S(q, r) is definable (over E), contains P , and that S = S(q, r) · S(q, r)−1 is a group. Quotienting
H by S ∩ (1 × H), a finite (central) subgroup of H, and noting that S ∩ (G × (1)) is also finite, we
obtain that S is the graph of an isogeny from some subgroup G0 of G to H(U). But, as (a1, a

′
1) ∈ S,

and a1 is a generic of G, this subgroup has finite index in G.
In case SU(a/E) ≥ ω, we need to consider infinite tuples instead, but the proof is similar.

4.3. Remark. Assume that SU(a/E) = 1, and q = tp(a/E) is modular non-trivial. I.e.: its set of
realisations is modular in the sense defined above, and we can find a1, . . . , an and a′ realising q and such
that a′ ∈ acl(Ea1, . . . , an) but a′ /∈ acl(Eai) for any i. Enlarging E by incorporating to it some of the
a′is, we may assume that n = 2. Let (a3, a4) realise tp(a1, a2/acl(Ea′)), such that (a3, a4) |̂ Ea′(a1, a2).
Then SU(a1, a2, a3, a4/E) = 3, and any three of a1, a2, a3, a4 are independent over E. We have
acl(Ea1a2) ∩ acl(Ea3a4) = acl(Ea′), and by modularity, we also have acl(Ea1a3) ∩ acl(Ea2a4) =
acl(Ea′2), acl(Ea1a4)∩acl(Ea2a3) = acl(Ea′3) for some a′2, a

′
3 of SU-rank 1 over E. (The computations

use the additivity of the SU-rank). We then get a group configuration as above, and therefore a group.
The group configuration is given by the triples:

(a1, a2, a
′
1); (a1, a

′
2, a3), (a2, a

′
2, a4); (a1, a

′
3, a4); we have two more such triples: (a1, a4, a

′
3) and (a2, a3, a

′
3).

From these we obtain a group (the reasoning is similar to the one in 4.2). From the two additional
triples, one can show that the group H has to be abelian.

4.4. Study of definable subgroups of algebraic groups - prolongations. So, from now on, we
fix a connected algebraic group G, defined over some E = acl(E) ⊂ U .

For each m ∈ N, we define the group G(m) to be G×Gσ × · · · ×Gσm
, and a group homomorphism

pm : G→ G(m), g 7→ (g, σ(g), . . . , σm(g)). Observe that pm(G) is dense in G(m): if g ∈ G is a generic
of G such that the tuples σi(g), 0 ≤ i ≤ m, are algebraically independent over E, then pm(g) is a
generic point of G(m).

Let H be a definable subgroup of G (defined over E). For m ∈ N, we define H(m) to be the Zariski
closure of pm(H) in G(m). Then H(m) is an algebraic subgroup of G(m), not necessarily connected.
We also define

H̃(m) = {g ∈ G | (g, σ(g), . . . , σm(g)) ∈ H(m)}.

The subgroups H̃(m) form a decreasing sequence of quantifier-free definable subgroups of G containing

H, and we let H̃ be their intersection. Since E[X]σ satisfies the ascending chain condition on perfect
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σ-ideals, there is an integer m such that H̃(m) = H̃. Observe that Iσ(H/E) = Iσ(H̃/E). If m is such

that H̃ = H̃(m), then

SU(H) < ω ⇐⇒ degσ(H) <∞ ⇐⇒ dim(H(m)) = dim(H(m+1)).

4.5. There are several equivalent ways of defining generic types in stable groups. However, these
notions are in general not equivalent in the context of groups definable in simple theories.

Let H be an E-∞-definable subgroup of G; we will say that g ∈ H is a generic of H (over E) if for
every h ∈ H independent from g over E, gh and h are independent over E. The following observations
are immediate:

(1) g and h are independent over E if and only if the tuples pm(g) and pm(h) are algebraically
independent over E for every m ∈ N.

(2) g is a generic of H if and only g ∈ H and pm(g) is a generic (in the sense of algebraic groups)
of H(m) for every m ∈ N.

(3) g is a generic of H if and only if for every h ∈ H independent from g over E, hg and h are
independent over E.

(4) If H ′ is a definable subgroup of finite index of H, then any generic of H ′ is a generic of H. In
particular, generics of H are generic in H̃. This implies that [H̃ : H] <∞.

(5) g is a generic of G if and only if g is a generic of the algebraic group G and the tuples σm(g),
m ∈ Z, are algebraically independent over E.

4.6. Proposition. G has no definable subgroup of finite index.

Proof. Let H be a definable subgroup of finite index of G. Then for every m ∈ N, H(m) is a definable
subgroup of G(m) of finite index, and therefore equals G(m) since G(m) is connected. This shows that
H contains generics of G. But, if g is a generic of G, we will show below that E(g)σ has no finite
σ-stable extension. Hence qftp(g/E) ` tp(g/E) and H = G.

Assume that α generates a finite algebraic extension of E(g)σ, and let i < j be such that the
minimal monic polynomial of α over E(g)σ has its coefficients in E(σk(a) | i ≤ k ≤ j). Then the
minimal polynomial of σj−i+1(α) has its coefficients in E(σk(a) | j + 1 ≤ k ≤ 2j − i + 1). As these
two fields are free over E, either α ∈ E(g)σ or σj−i+1(α) /∈ E(g)σ(α). This shows that E(g)σ has no
proper finite σ-stable extension.

4.7. Theorem. Let G be a simple algebraic group, and H a definable subgroup of G which is Zariski
dense in G. Then either H = G, or for some τ = σmFrobn there is an algebraic group G′ and an
algebraic group isomorphism f : G → G′, a definable subgroup H1 of finite index in H such that
f(H1) is contained in G′(Fix(τ)).

Proof. Since every simple algebraic group is isomorphic to one defined over the algebraic closure of the
prime field, we may assume that G is defined over the algebraic closure of the prime field. As it suffices
to prove the result for the σ`-closure of H, we may assume that G is defined over Fix(σ) (G is defined
over Fix(σ`), work in U [`]). We will also assume that H is irreducible for the σ-topology. Consider
the algebraic groups H(n), and let ` be smallest such that H(`) is a proper subgroup of G`+1 (As H is
Zariski dense in G, we know that each H(n) projects onto any of the copies of G). The simplicity of

G then implies that H(`) is the graph of a group epimorphism ϕ : G` → G (the product of the first
` factors onto the last one), and the minimality of ` implies in fact that ϕ only depends on the first
factor, i.e., gives a group isomorphism G→ G. So H is defined by σ`(x) = ϕ(x). ϕ is not necessarily
an algebraic group isomorphism, since we only know that its graph is algebraic. So it is a constructible
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isomorphism, and a fundamental result of the theory of simple algebraic groups says that for some
m,n, ϕm = λhFrobn, where λh is conjugation by an element h. Consider the group H ′ defined by the
equation σ`m(g) = ϕm(g); it contains H. Using the axioms for ACFA, there is u ∈ G(U) such that
σ`m(u) = h−1Frobn(u). Then u−1H ′u ⊂ G(Fix(τ)), where τ = σ`mFrob−n.

4.8. Modular groups definable in ACFA.

Theorem. Let G be an algebraic group, H a definable subgroup which is modular, and X a quantifier-
free definable subset of Gn. Then X ∩Hn is a Boolean combination of cosets of definable subgroups of
Hn. Furthermore, if H is definable over E0 = acl(E0), then all definable subgroups of Hn are definable
over E0.

Proof. (Sketch). We may reduce to the case where H is quantifier-free definable, and irreducible for
the σ-topology, and X ⊂ H is σ-closed ireducible. (Every qf-definable set is a Boolean combination
of irreducible σ-closed sets). We assume G, H are definable over some set E0.

Let E be the smallest algebraically closed difference field over which X is defined and which
contains E0. Let S = {h ∈ H | hX = X}, fix a generic a of X over E, and a generic g of H over
acl(Ea). Then S is a σ-closed subgroup of H defined over E4, and b = ga is a generic of H over
acl(Ea). Consider the set Y = gX; then b is a generic of Y over acl(Eg); hence, qf-Cb(b/acl(Eg)
is the field of definition of Y , and by modularity of H, it is contained in acl(Eb), and therefore in
acl(Eb) ∩ acl(Eg) since Y is definable over acl(Eg).

Claim. If ρ ∈ Aut(U/E) then ρ(Y ) = Y iff ρ(gS) = gS.

Proof. Using the fact that X and S are defined over E, we have: ρ(Y ) = Y ⇐⇒ ρ(g)X = gX ⇐⇒
g−1ρ(g) ∈ S ⇐⇒ ρ(gS) = gS.

From this one deduces that the fields of definitions of Y and of gS are equi-algebraic over E (and
even, equi-definable over E): since every ρ ∈ Aut(U/E) which fixes the canonical parameter of one of
the sets fixes the canonical parameter of the other.

Let C be the algebraic closure over E of the canonical parameter of Y . By the remark before the
claim, C ⊂ acl(Eb) ∩ acl(Eg). From a |̂ Eb and C ⊂ acl(Eb) we get a |̂ Cb. If tp(d/Cb) = tp(a/Cb),
then qftp(bd−1/Cb) = qftp(g/Cb). Let ρ ∈ Aut(U/Eb) which sends a to d. Then ρ(gS) = gS because
ρ fixes C, and therefore bd−1 ∈ gS, and is generic over C because g was. Now the set of realisations of
tp(a/Cb) is dense (for the σ-topology) in X, and this gives bX−1 ⊆ gS, i.e. applying the inverse map,

X ⊆ Sg−1b.

But the definition of S and a ∈ X imply
Sa ⊆ X,

and therefore Sa = X, which is what we wanted to show.
Finally, one can show that all definable subgroups of H are defined over E0. The element g is

a generic of the set gS which, by modularity, is defined over acl(E0g); hence also S is defined over
acl(E0g). This being true for any generic g of H, we get that H is defined over E0.

4.9. Remark. Note that the proof shows that the connected component of the Zariski closure of H
must be commutative: the graph of x 7→ x−1 must be a coset of a subgroup. In characteristic 0, the
result generalises to arbitray definable X.

4This is where we use the fact that X is σ-closed; for a general X, the S obtained with this definition is not necessarily
a subgroup.
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5 Lecture 4 - Definable subgroups of abelian varieties

We are interested in describing subgroups of Abelian varieties, and determining those which are mod-
ular, those which are not. As we saw in the preceding section, definable subsets of modular groups
are quite nice.

5.1. Abelian varieties. An abelian variety is a connected algebraic group whose underlying variety
is complete and projective. It turns out that the group law is then commutative. Here are some
classical results:
Abelian varieties have few endomorphisms (the ring of endomorphisms is finitely generated); If A ≤ B
are abelian varieties, then A/B is an abelian variety, and there is an abelian subvariety C of B such
that A ∩ C is finite and A+ C = B. This means that C and B/A are isogenous: the homomorphism
C → B/A (induced by B → B/A) is onto and has finite kernel. An abelian variety is simple iff it has
no proper abelian subvariety. If A1, A2 are simple abelian varieties, then either Hom(A1, A2) = 0, or
Hom(A1, A2) 6= (0), in which case there is an isogeny f : A1 → A2, with finite kernel. Any isogeny
f : A→ B between two abelian varieties has a ??semi-inverse??, f ′ : B → A such that, if n = deg(f),
then f ◦ f ′ = [n]B and f ′ ◦ f = [n]A (multiplication by n in B and A respectively). It follows that
if A is a simple abelian variety, then E(A) = Q ⊗Z End(A) is a division ring. Every abelian variety
is isogenous to a direct product of finitely many simple abelian varieties. If Hom(A,B) = (0), then
every connected algebraic subgroup of A×B is of the form A1 ×B1 where A1 ≤ A and B1 ≤ B.

A references is to S. Lang’s book on abelian varieties chapter II.
The study of definable subgroups of abelian varieties reduces to the study of those of simple abelian

varieties, and then to the study of the “minimal ones”.

5.2. Notation and definitions. Let A and B be abelian varieties. We denote by Homσ(A,B) the
group of definable (in ACFA) homomorphisms from A to B, by Endσ(A) the ring of definable (in
ACFA) endomorphisms of A, and set Eσ(A) = Q

⊗
Endσ(A).

If f ∈ Homσ(A,B), we denote by σ(f) the element of Homσ(Aσ, Bσ) with graph the image by σ
of the graph of f . Note that σ(f) = σfσ−1, and that if f ∈ Hom(A,B), then σ(f) ∈ Hom(Aσ, Bσ).

We will say that f ∈ Homσ(A,B) is a definable isogeny if it is onto and its kernel is finite.

We say that two subgroups B and C of A are commensurable, written B ∼ C, if B ∩C is of finite
index in B and in C. We write C . B if C ∩B is of finite index in C.

Observe that ∼ is an equivalence relation on subgroups of A.
A definable subgroup B of A is c-minimal iff every definable subgroup of B is either finite or of

finite index in B.

5.3. Lemma. Let A, B be abelian varieties.

(1) Assume that Hom(A,Bσm
) = (0) for every m ∈ N. Then every definable subgroup C of A× B

is commensurable with a subgroup of the form C1 × C2, with C1 a definable subgroup of A, C2

a definable subgroup of B. We also have Homσ(A,B) = (0) and Endσ(A × B) = Endσ(A) ×
Endσ(B).

(2) Assume that A and B are isogenous. Then Eσ(A) ' Eσ(B).

(3) Let A1, . . . , Am be simple abelian subvarieties of A such that A and A1×· · ·×Am are isogenous.
Renumbering if necessary, assume that {A1, . . . , An} is maximal such that for all i 6= j and

19



k ∈ N, Ai and Aσ
k

j are not isogenous, and for each i ≤ n let m(i) be the number of indices j ≤ m
such that Aj and Aσ

k

i are isogenous for some k ∈ Z. Then

Eσ(A) '
n∏
i=1

Mm(i)(Eσ(Ai)).

Proof. (1) Let C be a definable subgroup of A × B. Without loss of generality, C is quantifier-free
definable and is connected for the σ-topology (since C is commensurable with C̃0). Let m be such
that C = C̃m. Then C(m) is a proper subgroup of A × B × Aσ × · · · × Aσm × Bσm ' A(m) × B(m).
Our hypothesis implies that Hom(A(m), B(m)) = (0), and therefore C(m) = C1 ×C2 where C1 ≤ A(m),
C2 ≤ B(m), from which the result follows.

The other items are proved in a similar fashion.

5.4. Theorem. Let A be a simple abelian variety and assume that for every m > 0, A and Aσ
m

are
not isogenous. Then A has no proper infinite definable subgroup, and Eσ(A) = E(A).

Proof. Every proper subgroup C of A(m) is commensurable to a product of some of the factors; hence,
if C 6= A(m), then p−1m (C) = (0).

Let f ∈ Eσ(A) be non-zero. Multiplying it by [n], we may assume it is in Endσ(A). Let S be its
graph, a definable subgroup of A × A, and consider S(m), S̃m. By the above, S(m) has to be of the

form C0 × · · · × Cm where each Ci is an algebraic subgroup of Aσ
i × Aσi

of dimension dim(A) and
which projects onto each of the factors; moreover Ci = Cσ

i

0 : this is because S is Zariski dense in C0,

and therefore Sσ
i

is Zariski dense in Ci. From this one deduces that S is the graph of some element
of E(A) (thought of as a finite-to-finite isogeny).

5.5. Theorem. Let A be a simple abelian variety, and assume that for some n > 0 A and Aσ
n

are
isogenous. Take the least such n, and fix two isogenies h : A→ Aσ

n
and h′ : Aσ

n → A, with h′h = [m]
and hh′ = [m] (if A = Aσ

n
, it is natural to choose h = h′ = idA). Then τ = h′σn and τ ′ = σ−nh are

in Endσ(A), and τ ′τ = ττ ′ = [m]A. Thus τ and τ ′ are invertible in Eσ(A).

(1) The ring Eσ(A) is generated over E(A) by τ and τ ′. It is naturally isomorphic to the twisted Lau-
rent polynomial ring E(A)t[τ, τ−1], with τ acting on E(A) by conjugation, and τ−1 = [1/m]τ ′.
Thus it admits a natural Z-grading.

(2) Let B be a definable subgroup of Ak. Then B is commensurable with a finite intersection of
kernels of definable homomorphisms Ak → A. If k = 1, a single endomorphism suffices, and
either B = A or B has finite rank.

(3) Let f be a non-zero element of Endσ(A). Then f is onto and ker(f) has finite rank. Also, f is
invertible in Eσ(A) if and only if ker(f) is finite if and only if f is a homogeneous element of the
graded ring Eσ(A) (that is, of the form aτk for some k ∈ Z and a ∈ E(A)).

(4) The definable subgroup B is c-minimal if and only if it is commensurable with ker(f), f an
element of Endσ(A) irreducible in Eσ(A).

5.6. Comments. I am not going to do the proof, it is long and very well done in the original paper
[H]. An interesting step in the proof shows that ker(f) . ker(g) if and only if there is h ∈ Eσ(A) such
that g = hf . From this one deduces that every definable subgroup B of A is commensurable to some
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ker(f) with f ∈ Endσ(A). (f = 0 if B = A). This shows that an abelian variety has only countably
many definable subgroups.

One can show the following result: Let 0 → B1 → B2 → B3 → 0 be a short exact sequence of
definable groups. Then B2 is modular if and only if B1 and B3 are modular. So this reduces the study
of modular subgroups to c-minimal ones.

5.7. Theorem (ACFA, char. 0). Let A be a simple abelian variety, and B a c-minimal subgroup of
A. Let F = Fix(σ) denote the fixed field of σ.

(1) Precisely one of the following happens:

(a) B = A.

(b) B is modular, of SU -rank 1.

(c) B is definably isogenous to a subgroup of finite index of H(F ), H an algebraic group defined
over F .

(2) Case (a) occurs if and only if A and Aσ
n

are not isogenous for any n > 0.

(3) If (c) holds, then A is isomorphic to an abelian variety A′ defined over Fix(σm) for some m.

Assume that A is defined over Fix(σ).

(4) B is not modular if and only if B ⊆ ker(σM − 1) for some M > 0 divisible by m.

Proof. (2) Assume that A is not isogenous to Aσ
n

for any n ∈ N∗. Then A has no proper definable
subgroups (since it is simple), and therefore B = A.

Conversely, if Aσ
n

and A are isogenous for some n ∈ N∗, then Endσ(A) has a non-homogeneous
element g. Then ker(g) is a proper definable infinite subgroup of A, which shows that A is not
c-minimal. This proves (2).

Assume therefore that A is isogenous to Aσ
n

(n positive and least such).
If B is modular, then its c-minimality implies SU(B) = 1.

Assume that B is not modular. We want to show (1)(c) and (3).

Claim. The generics of B are non-orthogonal to the formula σ(x) = x.

Proof. Some element a ∈ B realises a type (over some E = acl(E)) which is non-orthogonal to Fix(σ)
and has rank 1; so this means: there is a tuple c, with c |̂ Ea, such that E(c, a)σ contains some

element b with σ(b) = b, and a ∈ E(c, b)algσ 5. There is a first-order formula in Lσ(E) which expresses
this fact, and therefore there is a definable set D ⊂ B containing a and such that every element in
D realises a type of rank 1 which is non-orthogonal to σ(x) = x. The σ-closure of the definable set
a−1D then generates in finitely many steps a definable subgroup of B, which by c-minimality must
be commensurable with B. (This is an ACFA analogue of the result for algebraic irreducible varieties
containing 0 and is proved in the same fashion).

Then B has a definable subgroup C such that B/C is infinite and internal to F (that is, there is
a definable map from some power of F onto B/C). By c-minimality of B, C is finite.

Elimination of imaginaries implies that B/C is isogenous to H(F ), where H is an algebraic group
defined over F . So we get a definable homomorphism h : B → H(F ) with finite kernel. Then h(B)

5You can take this as a definition of non-orthogonality to Fix(σ)
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is c-minimal, and we may assume that H is the Zariski closure of h(B), which implies that H is an

abelian variety, A′. Hence Hom(A,A′σ
`

) 6= (0) for some `, and wma Hom(A,A′) 6= (0).
Thus A′ is a simple abelian variety, defined over F , and isogenous to A. This implies that A is

isomorphic to an abelian variety A′′ defined over some finite extension of F . This gives (3).
(4) We now assume that A is defined over F ; by the above, we have a definable isogeny h : B →

A′(F ), where A′ is defined over F . we may compose this h with an isogeny A′ → A, and therefore
assume that A′ = A.

The result will follow from the following claim:

Claim. Let A be an abelian variety defined over F , let B be a definable subgroup of A(U) and
ϕ : B → A(F ) a definable homomorphism with finite kernel D. Then B ⊆ A(Fix(σ`)) for some `.

Proof. The graph of ϕ is a definable subgroup of A2; as there are only countably many of those, it must
be defined over F alg. Hence, ϕ is definable over F alg, say, over Fix(σm); working in U [m] = (U , σm)
we may therefore assume that ϕ is defined over Fix(σ). Let F0 ≺ F be such that everything is defined

over F0. Since D is finite, if b ∈ B then b ∈ acl(F0(ϕ(b))) = F0(ϕ(b))algσ . By compactness, there is
` such that [F0(ϕ(b))σ(b) : F0(ϕ(b))σ] ≤ ` for every b ∈ B and this implies that b ∈ Fix(σ`!). (This
bound could be higher than |D|).

The other direction is clear: ker(σM − 1) = A(Fix(σM )).
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