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ZOÉ CHATZIDAKIS

Introduction. This is the set of notes of a special topics course I gave at
Notre Dame in the Fall 2000 (September 20-October 13). I develop here some
of the model theory of difference fields (a difference field is simply a field with a
distinguished automorphism σ), at a fairly elementary level. I reproduce many of
the classical proofs of stability theory in the particular context we are working in,
my feeling being that a proof in a concrete situation is much easier to understand
than in a more general context. I tried to avoid using results from stability
theory, and succeeded except at one or two places (where the neophyte is asked
to just accept the result). I also inserted some comments for people with a
working knowledge of stability theory, and these are enclosed by the symbols
���. These comments can simply be skipped.
The notes are organized as follows. Chapter 1 gives some preliminary alge-

braic results and definitions (difference fields, varieties, Zariski topology, etc.).
Chapter 2 introduces the theory ACFA of generic difference fields, and proves el-
ementary results about it. Chapter 3 introduces the notions of independence and
SU-rank, and shows various results about them. In chapter 4 we study the fixed
field, and in chapter 5 the notions of orthogonality and modularity. Chapter 6
introduces generics and stabilizers of groups. Finally, chapter 7 contains some
of the hard results in the area, and the applications by Hrushovski to problems
in number theory. At the end of the notes, you will find some references and
“further reading” on difference fields, with comments.
I would like to thank A. Berenstein for his careful reading of the notes and

many helpful suggestions.
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Notation

N, Z, Q, C the natural numbers, the integers, the rational
and complex numbers

Fq the field with q elements
L(E) language obtained by adjoining to L constant symbols

for elements of E
AB subfield of Ω generated by A and B
A[B] subring of Ω generated by A and B
Aalg algebraic closure of the field A

K[X1, . . . , Xn]σ = K[X1, . . . , Xn, X
σ
1 , . . . , X

σ
n , . . . , X

σj

i , . . . ]
= difference polynomial ring in X1, . . . , Xn

I(S) ideal of polynomials vanishing on the set S
Iσ(S) ideal of difference polynomials vanishing on the set S
I(ā/K) ideal of polynomials over K vanishing at ā
Iσ(ā/K) ideal of difference polynomials over K vanishing at ā
clσ(A) smallest difference field containing A

= field generated by {σi(A) | i ∈ Z}, with the action of σ
aclσ(A) clσ(A)

alg

Uσ variety conjugate of U under σ
U(K) points of the algebraic set U with their coordinates in K
qfdiag(E) set of quantifier-free L(E)-sentences which hold in some

L-structure containing E
qftp quantifier-free type
tpACF type in the reduct to the language of fields {+,−, ·, 0, 1}
tr.deg transcendence degree
dim dimension of an algebraic set
⊥ orthogonal
Tor(A) torsion points of the group A
Torp′(A) torsion points of the group A of order prime to p
��� The text enclosed by these symbols is meant

as comments for those with a working knowledge of
stability theory
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§1. Definitions, preliminary results.

1.1. Definition. A difference field is a field K with a distinguished endo-
morphism σ. An inversive difference field is a difference field where the endo-
morphism is onto (and therefore an automorphism). Given a difference field K,
there is a “smallest” inversive difference field extending K, which is unique up
to K-isomorphism. Therefore we will adopt the following

CONVENTION: In what follows, all difference fields will be assumed
to be inversive

Consider the language L = {+,−, ·, 0, 1, σ}, where +,−, · are binary opera-
tions, 0, 1 are constants and σ is a unary function symbol. Then every difference
field is naturally an L-structure. Inclusion of difference fields corresponds to in-
clusion of L-structures, and similarly for morphisms of difference fields. A good
reference for basic results on difference fields is R.M. Cohn’s book, Difference
algebra [1].

1.2. Difference polynomials, difference equations. Let (K,σ) be a dif-
ference field, and X̄ = (X1, . . . , Xn) a tuple of indeterminates. The difference
polynomial ring in X̄ over K, denoted K[X̄]σ, is defined as follows:
As a ring,K[X̄]σ is simply the polynomial ring in the indeterminatesX1, . . . , Xn,

Xσ
1 , . . . , X

σ
n , . . . , X

σm

1 , . . . .
The action of σ on K[X̄]σ is the one suggested by the names of the indeter-

minates. Then K[X̄]σ is also an L-structure.
Remarks. (1) A difference ring is a ring with a distinguished injective endo-
morphism. So, K[X̄]σ is a difference ring.
(2) This map σ is injective, but is not surjective. One could instead take

K[Xσi

j ]j=1,... ,n,i∈Z.

The elements of K[X̄]σ are called difference polynomials. If f(X̄) ∈ K[X̄]σ, then
f(X̄) = 0 is called a σ-equation, and the set {ā ∈ Kn | f(ā) = 0} is called a
σ-closed set.

1.3. Definitions. (1) Let T be a theory, M a model of T . Then M is exis-
tentially closed (among models of T ) if whenever N is a model of T containing
M , then every existential sentence with parameters in M which is satisfied in N
is already satisfied in M .
(2) A generic difference field is a difference fieldK such that every finite system

of σ-equations (over K) which has a solution in some difference field extending
K, has already a solution in K.

1.4. Exercise 1. Show that if K is a generic difference field, then K is an
existentially closed difference field. [Hint: recall that in a field x ̸= 0 ⇐⇒
∃y xy = 1].

1.5. Our first goal is to show that the generic difference fields form an ele-
mentary class (with axiomatization called ACFA). We will then study some easy
properties of this theory. We first need however to recall some definitions of
basic algebraic geometry and of field theory. Proofs and details can be found in
S. Lang’s book, Introduction to algebraic geometry [2].
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1.6. Algebraic sets, varieties, etc.. Here and in what follows we fix a large
algebraically closed field Ω. All fields considered will be subfields of Ω. If K is
a subfield of Ω, we denote by Kalg the algebraic closure of K, i.e., the set of
elements of Ω which are algebraic over K. We first define affine algebraic sets.

Affine n-space, An(Ω), is simply Ωn (for n ∈ N). An algebraic subset of Ωn is
a subset defined by polynomial equations f1(X̄) = · · · = fm(X̄) = 0, where the
fi(X̄) are polynomials in X̄ = (X1, . . . , Xn), with coefficients in Ω.
These sets are also called Zariski closed. The Zariski closed subsets of Ωn gen-

erate a topology on Ωn, called the Zariski topology. This topology is Noetherian
(the ascending chain condition on ideals of Ω[X̄] implies the descending chain
condition on Zariski closed sets).

1.7. Let V be an algebraic set. We define

I(V ) = {f(X̄) ∈ Ω[X̄] | f(ā) = 0 for all ā ∈ V }.

The coordinate ring of V , Ω[V ], is defined to be Ω[X̄]/I(V ).
We say that V is defined over the subfield K of Ω, if I(V ) is generated by

I(V ) ∩ K[X̄]. In this case we can also form the coordinate ring of V over K,
K[V ] = K[X̄]/I(V ) ∩K[X̄].

A closed subset V of Ωn is irreducible if whenever V = V1∪V2 with V1, V2 closed
subsets of Ωn, then V = V1 or V = V2. An irreducible closed set is also called a
variety.
If V is a variety, we define the field of rational functions of V to be the field

of fractions of Ω[V ]; we denote it by Ω(V ).
Because the Zariski topology is Noetherian, it follows that every algebraic set

V can be written (uniquely up to permutation) as

V = V1 ∪ · · · ∪ Vm
for some m and varieties V1, . . . , Vm such that Vi ̸⊆ Vj for i ̸= j. The Vi are
called the irreducible components of V .

1.8. Some classical results.
1 - An (affine) algebraic set V is a variety if and only I(V ) is prime.
2 - If V ⊆W are algebraic sets, then I(V ) ⊇ I(W ).
3 - (Nullstellensatz) Let I be an ideal of Ω[X̄], and let V (I) = {ā ∈ Ωn |

f(ā) = 0 for all f(X̄) ∈ I}. Then

V (I) ̸= ∅ ⇐⇒ I ̸= (1).

4 - If I ⊆ J are ideals in Ω[X̄] then V (I) ⊇ V (J).
5 - If I is a radical ideal of Ω[X̄] (i.e., an ∈ I implies a ∈ I), then I(V (I)) = I.
6 - If V is an algebraic subset of Ωn then V (I(V )) = V .
7 - If V1, . . . , Vm are the irreducible components of V , then I(V1), . . . , I(Vm)

are the minimal prime ideals containing I(V ), and I(V ) =
∩

i=1,... ,m I(Vi).

1.9. Remarks. (1) If K is a subfield of Ω, one can also define the notion of
K-irreducible subsets of Ωn: an algebraic set V is K-irreducible if it is defined
over K and cannot be written as the union of two proper algebraic subsets which
are defined over K. This corresponds to the ideal I(V ) ∩K[X̄] being prime.
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(2) One can show that if the algebraic set V is defined over K, then V is a
variety if and only if V is Kalg-irreducible (if and only if I(V )∩K[X̄] generates
a prime ideal in Kalg[X̄]).
(3) It may be that an algebraic set is defined by polynomial equations with

their coefficients in K, but is not defined over K. This can happen in positive
characteristic. Indeed, assume that K is a field of characteristic p > 0, and that
a ∈ K does not have a p-th root in K. Then the set V = {a1/p} is defined by the
equation Xp−a = 0 (with coefficients in K), but I(V ) is generated by X−a1/p,
and V is therefore not defined over K as a1/p /∈ K.
(4) If V is an algebraic set, there is a smallest field K over which V is defined,

and this field is called the field of definition of V . If V is defined by polynomial
equations with coefficients in K, then the field of definition of V is contained in
— K if char(K) = 0,
— the perfect hull of K (= closure of K under p-th roots) if char(K) = p > 0.

[Recall that in characteristic p > 0, the Frobenius map x 7→ xp defines an
injective endomorphism of the field K, as (x + y)p = xp + yp. Hence, K1/pn

=
{a ∈ Ω | apn ∈ K} is a subfield of Ω, and so is the perfect hull K1/p∞

of K:
K1/p∞

=
∪

n∈NK
1/pn

.]

1.10. Dimension, generics. Let V ⊆ Ωn be a variety defined over K. We
define the dimension of V , dim(V ), to be tr.deg(Ω[V ]/Ω). Note that if V ⊆ Ωn,
then dim(V ) ≤ n. The tuple ā = (a1, . . . , an) is a generic of V over K if the
K-morphism K[X̄] → K[ā] which sends Xi to ai for i = 1, . . . , n, has kernel
I(V ) ∩K[X̄].
If V is an algebraic set, then dim(V ) is the maximum of the dimensions of the

irreducible components of V .

Remark. If V is K-irreducible, then the irreducible components of V are con-
jugate under Aut(Kalg/K), and therefore have the same dimension. Thus one
can also define dim(V ) as tr.deg(K[V ]/K), and define a notion of generic over
K.

1.11. Locus of a point. Let K be a subfield of Ω, and ā = (a1, . . . , an).
Define

I(ā/K) = {f(X̄) ∈ K[X̄] | f(ā) = 0},
where X = (X1, . . . , Xn). Then I(ā/K) is a prime ideal of K[X̄]. The set V of
points of Ωn at which all elements of I(ā/K) vanish, is therefore K-irreducible,
and is called the locus of ā over K. Then
— ā is a generic of V over K,
— Let b̄ ∈ Ωn. Then b̄ ∈ V ⇐⇒ I(b̄/K) ⊇ I(ā/K).
— Assume that b̄ = (b1, . . . , bn) ∈ V . Then there is a unique K-morphism

φ : K[ā] → K[b̄] which sends ai to bi for i = 1, . . . , n. This morphism is an
isomorphism if and only if b̄ is a generic of V .
— Let V1 be an irreducible component of V , let L = K(ā) ∩ Kalg, and let

L̂ be the normal closure of L over K (= the field generated by all conjugates

of L under the action of Aut(Kalg/K)). Then the set {V τ
1 | τ ∈ Aut(L̂/K)} is

precisely the set of irreducible components of V .
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Remark - warning. If the characteristic is p > 0, the locus V of ā over K is
not necessarily defined over K. One has: V is defined over K if and only if K(ā)
is a separable extension of K, i.e.: K(ā) and K1/p are linearly disjoint over K.

1.12. Morphisms.
Let V ⊆ Ωn, W ⊆ Ωm be algebraic sets. Let us write Ω[V ] = Ω[x̄], where

x̄ = (x1, . . . , xn), and each xi is the image of Xi in Ω[V ].
One can think of an element of Ω[V ] as a function V → Ω. Indeed, clearly an

element f(X̄) of Ω[X̄] defines a function : Ωn → Ω. This function restricts to a

function f̂ defined on V . One then has: f̂ = ĝ if and only if f − g vanishes on
V , if and only if f − g ∈ I(V ).
A morphism f : V → W is given by a tuple (f1(x̄), . . . , fm(x̄)) of elements

of Ω[V ], such that for all ā ∈ V one has (f1(ā), . . . , fm(ā)) ∈ W . Note that it
suffices to check this for generics of the irreducible components of V .
Given f : V → W as above, we obtain a dual morphism of Ω-algebras f∗ :

Ω[W ] → Ω[V ], given by f∗(g) = g ◦ f , i.e., f∗(g)(x̄) = g(f1(x̄), . . . , fm(x̄)) ∈
Ω[V ].

Assume that f , V and W are all defined over K, and let ā be a generic of V over
K. One has that f∗ is injective if and only if f(V ) is Zariski dense in W , if and
only f(ā) is a generic of W over K. (The proof is an exercise). In this case, one
says that f is generically onto.

§2. The theory ACFA. Notation is as in the previous chapter.

2.1. Consider the theory, called ACFA, whose models are the L-structures K
satisfying:

(1) K is an algebraically closed field.
(2) σ is an automorphism of K.
(3) If U and V are varieties defined over K, with V ⊆ U × Uσ, such that the

projections of V to U and to Uσ are generically onto, then there is a tuple
ā in K such that (ā, σ(ā)) ∈ V .

Explanation of the notation
— σ extends to an automorphism of K[X̄] which leaves the elements of X̄

fixed. Then Uσ = V (σ(I(U)), i.e., Uσ ∩Kn = σ(U ∩Kn).
— The projection maps are induced by π1 : U × Uσ → U and π2 : U × Uσ →

Uσ. Our hypothesis simply says that π1(V ) is Zariski dense in U , and π2(V ) is
Zariski dense in Uσ. Equivalently, if whenever (ā, b̄) is a generic of V over K,
then ā is a generic of U over K, and b̄ a generic of Uσ over K.

Why (3) is first-order.
Write I(U) = (f1(X̄), . . . , fm(X̄)), and I(V ) = (g1(X̄, Ȳ ), . . . , gs(X̄, Ȳ )). Choose
a tuple ū, and polynomials Fi(Ū , X̄) ∈ Z[Ū , X̄], Gj(Ū , X̄, Ȳ ) ∈ Z[Ū , X̄, Ȳ ],
such that fi(X̄) = Fi(ū, X̄) for i = 1, . . . ,m and gj(X̄) = Gj(ū, X̄, Ȳ ) for
j = 1, . . . , s.

Fact: The following properties of the tuple ū are expressible by a first-order
formula:
— F1(ū, X̄), . . . , Fm(ū, X̄) generate a prime ideal I in K[X̄],
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— G1(ū, X̄, Ȳ ), . . . , Gs(ū, X̄, Ȳ ) generate a prime ideal J in K[X̄, Ȳ ], which
intersects K[X̄] in I.

The second property tells us that the dual of the projection map gives an in-
clusion K[X̄]/I ⊆ K[X̄, Ȳ ]/J , which exactly says that V (J) projects generically
onto V (I). From the fact, we deduce that each instance of axiom (3) is elemen-
tary. (Note that (3) is in fact a scheme of axioms: one for each triple (n,m, d),
where n is an upper bound on the number of variables of U , m an upper bound
on the number of polynomials defining the varieties U and V , and d an upper
bound on the degree of these polynomials.)

Remarks. The above fact holds for an arbitrary field K, and the formulas ex-
pressing the required properties of the tuple ū do not depend on the field K. For
a proof, see e.g. the paper by Van den Dries and Schmidt [13]. In this paper there
are other very nice (and useful) definability results for ideals in polynomial rings
over fields. E.g., define uniformly the minimal prime ideals containing an ideal
I, which when dualised, corresponds to finding the K-irreducible components of
an algebraic set.
Recall that every formula of the field language is equivalent modulo the theory

of algebraically closed fields, to a quantifier-free formula. Hence for instance the
property of ū, that F1(ū, X̄), . . . , Fm(ū, X̄) generate a prime ideal in Kalg[X̄],
is an elementary property of the tuple ū in K.

2.2. Theorem. Every difference field embeds in a model of ACFA. The models
of ACFA are exactly the generic difference fields.

Proof. Let (K,σ) be a difference field. Then σ lifts to an automorphism of Kalg,
and so axioms (1) and (2) are no problem. So, let K be an algebraically closed
difference field, let U and V be varieties satisfying the hypotheses of (3). We
want to find a difference field L extending K, and containing a tuple ā with
(ā, σ(ā)) ∈ V .
Let (ā, b̄) be a generic of V over K (recall, we work in Ω). Then ā is a generic

of U over K, and b̄ is a generic of Uσ over K. This exactly says that I(b̄/K) =
σ(I(ā/K)), so that σ extends uniquely to a morphism τ : K(ā) → K(b̄) sending
ā to b̄. Let L = K(ā, b̄)alg. By properties of algebraically closed fields, τ lifts to
an automorphism ρ of L. Hence (L, ρ) is a difference field extending (K,σ) and
contains a solution to our equation.

A standard chain argument now shows that every difference field embeds in a
model of ACFA (Exercise). We now need to show that the models of ACFA are
generic. Let K be a model of ACFA, f1(X̄), . . . , fm(X̄) ∈ K[X̄]σ, and assume
that there is a difference field L containing K, and a tuple ā in L such that
f1(ā) = · · · = fm(ā) = 0. We want to show that there is such an ā in K.
Let ℓ ∈ N be such that f1(X̄), . . . , fm(X̄) ∈ K[X̄, . . . , σℓ(X̄)]. Consider the

varieties
— U with generic over K the tuple b̄ = (ā, σ(ā), . . . , σℓ−1(ā)),
— V with generic over K the tuple (b̄, σ(b̄)).
Then σ(b̄) = (σ(ā), . . . , σℓ(ā)) is a generic of Uσ. Thus V ⊆ U × Uσ, and

projects generically onto U and onto Uσ. By axiom (3), there is c̄ ∈ Knℓ

such that (c̄, σ(c̄)) ∈ V . Then c̄ can be written (d̄, σ(d̄), . . . , σℓ−1(d̄)). Since
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I(c̄, σ(c̄)/K) contains I(b̄, σ(b̄)/K), we get that I(d̄, σ(d̄), . . . , σℓ(d̄)/K) contains
I(ā, σ(ā), . . . , σℓ(ā)/K), and therefore that f1(d̄) = · · · = fm(d̄) = 0.

2.3. Corollaries. (1) ACFA is model complete, i.e., if K1 ⊆ K2 are models of
ACFA, then K1 ≺ K2.
(2) Every formula is equivalent, modulo ACFA, to an existential formula.

2.4. Exercise 2. Show that if all models of a theory T are existentially closed
(among models of T ), then T is model complete. [Hint of proof: show first that if
A ⊆ B and A is existentially closed in B, then there is an elementary extension
C of A containing B. Let now A ⊆ B be models of T . Using the first step,
construct elementary chains (Ai)i∈ω and (Bi)i∈ω, with A0 = A, B0 = B, and
Ai ⊆ Bi ⊆ Ai+1 ⊆ Bi+1. Then

∪
iAi =

∪
iBi is an elementary extension of both

A and B.]

2.5. Definition. Let E ⊆ K1,K2 be subfields of Ω. One says that K1 and K2

are algebraically independent over E, or free over E, if for every n ∈ N, when-
ever a1, . . . , an ∈ K1 are algebraically independent over E, then they remain
algebraically independent over K2.
This notion corresponds to independence in the theory of algebraically closed

fields, and is a symmetrical notion: K1 is free from K2 over E if and only if K2

is free from K1 over E (see Lang’s book [2]). It is also transitive: if K2 ⊆ K3,
then K1 and K3 are free over E if and only if K1 and K2 are free over E, and
K1K2 and K3 are free over E.

2.6. Definition. Let E ⊆ K1,K2 be subfields of Ω. One says that K1 and
K2 are linearly disjoint over E if for every n ∈ N, whenever a1, . . . , an ∈ K1 and
b1, . . . , bn ∈ K2 are such that

∑n
i=1 aibi = 0 and not all bi’s are 0, then there

are c1, . . . , cn ∈ E such that
∑n

i=1 aici = 0 and not all ci’s are 0.

Recall also that the tensor product K1⊗EK2 is defined as follows: Fix a basis
Bi of the E-vector space Ki, with 1 ∈ Bi, i = 1, 2. Then, as an E-vector space,
K1 ⊗E K2 has basis

{a⊗ b | a ∈ B1, b ∈ B2}.
If c =

∑
a∈B1

caa and d =
∑

b∈B2
dbb (with the ca and db in E; all but finitely

many of the ca’s and db’s are 0), then we write c⊗ d for the element∑
a∈B1,b∈B2

cadb(a⊗ b). Multiplication on the elements of the basis is given by

(a⊗ b) · (c⊗ d) = (ac)⊗ (bd),

and extended by linearity to the whole space. Note that K1 and K2 embed in
K1 ⊗E K2, via a 7→ a⊗ 1 and b 7→ 1⊗ b. If e ∈ E, a ∈ K1 and b ∈ K2, then we
have ae⊗ b = e(a⊗ b) = a⊗ eb.

Fact. K1 and K2 are linearly disjoint over E if and only if K1⊗EK2 is a domain,
equal to K1[K2], the subring of Ω generated by K1 and K2.
For details and proofs, see Lang’s book [2]. The proof of the fact is not

difficult. One should note that linear disjointness is a symmetrical notion, and
implies algebraic independence. It is also transitive. Here are some special cases:
— If E is an algebraically closed field, then K1 and K2 are algebraically

independent over E if and only if they are linearly disjoint over E.



MODEL THEORY OF DIFFERENCE FIELDS 9

— If one of K1 or K2 is a Galois extension of E, then K1 and K2 are linearly
disjoint over E if and only if K1 ∩K2 = E.

2.7. If E is a subset of K, one denotes by L(E) the language obtained by
adjoining to L constant symbols for the elements of E. ThenK expands naturally
to an L(E)-structure, by interpreting the constant symbol corresponding to e ∈
E by the element e itself. The set of quantifier-free L(E)-sentences true in
K is denoted by qfdiag(E), and it describes the isomorphism type of the L-
substructure of K generated by E. So, a model of qfdiag(E) will be an L-
structure containing an isomorphic copy of the L-substructure of K generated
by E. Elementary equivalence in the language L(E) is denoted by ≡E .

Theorem. Let K1 and K2 be models of ACFA, containing a common alge-
braically closed difference subfield E. Then K1 ≡E K2.

Proof. To avoid confusion we will denote by σi the automorphism of Ki that we
are considering.

Step 1. Choose an E-isomorphic copy K ′2 of the field K2 (by an E-isomorphism
φ), which is free from K1 over E, and let σ′2 = φσ2φ

−1. Because E is alge-
braically closed, K1 andK

′
2 are then linearly disjoint over E. Then the difference

fields (K2, σ2) and (K ′2, σ
′
2) are E-isomorphic via φ, and therefore elementarily

equivalent over E. Hence, replacing K2 by K ′2, we may assume that K1 and K2

are linearly disjoint over E.

Step 2. We will now show that σ1 and σ2 have a common extension toK1K2 (the
subfield of Ω generated by K1 and K2). We first define τ(a⊗ b) = σ1(a)⊗ σ2(b)
for a ∈ K1, and b ∈ K2. Since σ1 and σ2 agree on E, and K1 and K2 are linearly
disjoint over E, this is well-defined. This extends (by linearity) to K1 ⊗E K2,
which we identify with K1[K2], and we then extend τ to the field of fractions of
K1[K2], i.e., to K1K2.

Step 3. The difference field (K1K2, τ) embeds in a model L of ACFA. Because
ACFA is model complete (Corollary 2.3(1)) we then have Ki ≺ L for i = 1, 2,
which implies that K1 and K2 satisfy the same L(E)-sentences, and shows the
result.

2.8. Corollary. Let E be an algebraically closed difference field. Then
ACFA∪qfdiag(E) is complete.

Proof. If K1 and K2 are models of ACFA∪qfdiag(E), then K1 and K2 contain
difference subfields E1 and E2 respectively, which are isomorphic to E. Moving
K2 by an isomorphism, we may assume that E1 = E2. The result then follows
by Theorem 2.7.

2.9. Corollary. The completions of ACFA are obtained by adjoining to ACFA
a description of the isomorphism type of the difference field consisting of elements
algebraic over the prime field.

Proof. If T = Th(K) is a complete theory containing ACFA, then T will specify
the characteristic, and therefore the isomorphism type of the prime field k. Note
that the elements of k are in fact (interpretations of) terms of the language L.
Let L be a finite Galois extension of k of degree n over k, α a generator of L
over k, and p(X) ∈ k[X] its minimal (monic) polynomial. Since L is Galois over
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k, and k is fixed by σ, σ(L) will contain all the roots of p(X), and therefore will

equal L. Hence, σ(α) =
∑n−1

i=0 aiα
i for some elements ai ∈ k. The sentence

∃x p(x) = 0 ∧ σ(x) =
n−1∑
i=0

aix
i

will therefore belong to T . The set of all such sentences will describe the iso-
morphism type of the difference subfield kalg of K.
The converse follows from Theorem 2.7.

2.10. Notation. If A is a subset of an algebraically closed difference field
K, we denote by clσ(A), the difference field generated by A, and by aclσ(A)
the smallest algebraically closed difference field containing A. Note that clσ(A)
is the field generated by the sets σi(A), i ∈ Z, and that aclσ(A) is simply the
algebraic (field-theoretic) closure of clσ(A).
Recall that the model-theoretic definable and algebraic closure are defined as

follows: let M be a model of a theory, and A ⊂ M . The definable closure of
A in M , denoted dcl(A), is the set of elements a ∈ M , such that there is some
formula φ(x) ∈ L(A), which is satisfied by a inM and by no other element ofM .
We will then say that the formula φ(x) defines a. So, dcl(A) will in particular
contain all elements of the substructure of M generated by A. The algebraic
closure of A in M , denoted acl(A), is the set of elements a ∈ M which satisfy
some L(A)-formula which is satisfied by only finitely many elements of M .
Clearly dcl(A) ⊆ acl(A), and A ⊆ B implies dcl(A) ⊆ dcl(B) and acl(A) ⊆

acl(B). Moreover, one can show that acl(acl(A)) = acl(A) (and of course
dcl(dcl(A)) = dcl(A)). In the particular case of difference fields, clearly cl(A) ⊇
clσ(A), and acl(A) ⊇ aclσ(A).

2.11. Corollary. Let (K1, σ1) and (K2, σ2) be models of ACFA, containing
a common difference subfield (E, σ). Then

K1 ≡E K2 ⇐⇒ (Ealg, σ1|Ealg
) ≃E (Ealg, σ2|Ealg

).

Proof. The left to right implication is clear, as elements of Ealg are algebraic over
E. For the converse, let φ : Ealg → Ealg be an E-isomorphism such that φσ1 =
σ2φ. Extend φ to an automorphism ψ of Ω, and let (K ′1, σ

′
1) = (ψ(K1), ψσ1ψ

−1)
be the difference field image of K1 by ψ. Then K1 ≡E K ′1, and σ

′
1 and σ2 agree

on Ealg. So we may apply 2.7

2.12. Corollary. Let φ(x̄) be a formula. Then, modulo ACFA, φ(x̄) is
equivalent to a disjunction of formulas of the form ∃y ψ(x̄, y), where ψ(x̄, y)
is quantifier-free, and for every difference field K and (ā, b) in K satisfying ψ,
we have that b is algebraic over (ā, σ(ā), . . . ).

2.13. Exercise 3. Give a proof of 2.12. [Hint: First note that if E is a sepa-
rably closed difference field, then qfdiag(E) ⊢ qfdiag(Ealg) modulo the theory
of difference fields. Then, for every model K of ACFA, and tuple ā satisfying
φ, find a formula ψa implying φ and of the required form. Use compactness to
conclude.]
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2.14. Definition of types and saturated models. LetM be an L-structure,
A a subset of M , and ā an n-tuple of elements of M . The type of ā over A in
M , denoted tp(ā/A) or sometimes tpM (ā/A), is the set of L(A)-formulas φ(x̄)
satisfied by ā in M , where x̄ is a fixed n-tuple of variables. A partial n-type
over A is a set Γ(x̄) of L(A)-formulas in the variables x̄, such that every finite
conjunction of elements of Γ(x̄) is satisfiable by some n-tuple of M . By com-
pactness, a partial n-type over A will be realised in some elementary extension
M∗ of M , i.e., M∗ will contain some tuple ā which satisfies all formulas of Γ(x̄).
If κ is an infinite cardinal, an L-structure M is κ-saturated if for every A ⊆M

with |A| < κ, every (partial) type over A is realised in M . The structure M is
saturated iff it is |M |-saturated. Saturated models are quite useful, as they realise
many types and have many automorphisms: if M is saturated and f : A→ B is
an elementary map between two subsets of M of size < |M |, then f extends to
an automorphism of M .

2.15. Corollary. Let E be a difference subfield of a model K of ACFA, and
let ā and b̄ be tuples in K of the same length. Then tp(ā/E) = tp(b̄/E) if and
only if there is an E-isomorphism (of difference fields) aclσ(Eā) → aclσ(Eb̄)
sending ā to b̄.

Proof. Extend the E-isomorphism aclσ(Eā) → aclσ(Eb̄) to an E-isomorphism
φ : K → K1 (for some difference field K1). Then tpK(ā/E) = tpK1(b̄/E) (since
φ(ā) = b̄). By Theorem 2.7, K1 ≡aclσ(Eb̄) K, which implies that tp(ā/E) =

tp(b̄/E).

2.16. Corollary. Let K be a model of ACFA, and A a subset of K. Then
aclσ(A) equals the model-theoretic algebraic closure of A, acl(A).

Proof. Clearly aclσ(A) ⊆ acl(A). Choose an aclσ(A)-isomorphic copy K1 of K,
which is linearly disjoint from K over aclσ(A). As in 2.7, KK1 embeds in a
model L of ACFA. By 2.15, if a ∈ K \ aclσ(A), then there is b ∈ K1 \ aclσ(A)
realising the same type over aclσ(A) as a. Hence no type realised in K \ aclσ(A)
is algebraic.

2.17. Saturated models of ACFA. Let K be a saturated model of ACFA.
Then K has the following property: if E is an algebraically closed difference
subfield of K, and F is a difference field extending E, and with |F | < |K|, then
there is an E-embedding of F into E.
Thus saturated models of ACFA, of large enough cardinality, play the role of

universal models of algebraic geometry.

§3. σ-closed sets, independence and SU-rank. We keep the notation
and conventions introduced before. We work in a (sufficiently saturated) model
K of ACFA.

3.1. σ-closed sets, and the topology it generates. We work in a (suffi-
ciently saturated) model K of ACFA. In analogy with the Zariski topology, we
define the σ-topology on Kn. Given B ⊂ K[X̄]σ, X̄ = (X1, . . . , Xn), we set

V (B) = {ā ∈ Kn | f(ā) = 0 for all f(X̄) ∈ B}.
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Dually, if S ⊆ Kn, we define

Iσ(S) = {f(X̄) ∈ K[X̄]σ | f(ā) = 0 for all ā ∈ S}.
If E is a difference subfield of K and ā ∈ Kn, we define

Iσ(ā/E) = {f(X̄) ∈ E[X̄]σ | f(ā) = 0}.

We call the sets of the form V (B) the σ-closed subsets of Kn. One checks
easily that V (Iσ(B)) = B. Some of the following results are theorems (see
Cohn’s book):

Facts and remarks. Note that Iσ(S) is an ideal I of K[X̄] with the following
properties:

(i) f ∈ I ⇐⇒ σ(f) ∈ I.
(ii) If fmσ(f)n ∈ I, then f ∈ I.

Ideals satisfying (i) are called reflexive σ-ideals (and σ will then induce an injec-
tive endomorphism on the quotient of K[X̄] by such an ideal). Ideals satisfying
in addition condition (ii) are called perfect σ-ideals. Prime ideals satisfying (i)
and (ii) are called prime σ-ideals. Perfect σ-ideals are the analogues of radical
ideals, and are intersections of prime σ-ideals.

3.2. Fact. Even though K[X̄]σ does not satisfy the a.c.c. on σ-ideals, it
satisfies it on perfect σ-ideals, and this implies that the σ-topology on Kn is
Noetherian.

3.3. Exercise 4. Show that if I is a prime σ-ideal then Iσ(V (I)) = I. [Warn-
ing: your proof should use the fact that K is a model of ACFA. You may use
the fact that a field with a distinguished endomorphism embeds in an inversive
difference field].

3.4. Definition. Let E be a difference subfield of K, and a ∈ K. We say that
a is transformally transcendental over E if Iσ(a/E) = 0. Otherwise, we say that
a is transformally algebraic over E. A tuple is transformally algebraic over E if
all its elements are.

If a is transformally transcendental over E, then the elements σ(a), i ∈ N,
are algebraically independent over E. Hence, applying σ−1, so are the elements
σ(a), i ∈ Z. Thus, the difference field generated by a over E is isomorphic to

E(Xσi | i ∈ Z) (with the obvious action of σ).

Similarly, one says that n-tuple ā is it transformally independent over E, if
Iσ(ā/E) = (0). There are notions of transformal transcendental bases, transfor-
mal transcendental degree of an extension, etc.

Assume now that a is transformally algebraic over E, and let m be least such
that some f(X) = F (X,Xσ, . . . , Xσm

) ∈ Iσ(a/E). Choose such an f(X) of
lowest degree when viewed as a polynomial in Xσm

. Then F (a, . . . , σm−1(a), Y )
is irreducible over E(a, . . . , σm−1(a)) because Iσ(a/E)∩E[X, . . . ,Xσm

] is prime,
and is the minimal polynomial of σm(a) over E(a, . . . , σm−1(a)).
From F (a, . . . , σm(a)) = 0, we deduce that σ(F )(σ(a), . . . , σm+1(a)) = 0, so

that the minimal polynomial of σm+1(a) over E(a, . . . , σm(a)) divides
σ(F )(σ(a), . . . , σm(a), Y ), and therefore has degree bounded above by the de-
gree of F (a, . . . , σm−1(a), Y ). It follows that Iσ(a/E), as a σ-ideal, is finitely
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generated, since from some point on, the degree of the minimal polynomial of
σn(a) over E(a, . . . , σn−1(a)) must stabilize.

Note that we also have that

aclσ(Ea) = E(a, . . . , σm−1(a))alg.

Similarly, if ā is transformally algebraic over E, then there is an n such that
aclσ(Eā) = E(ā, . . . , σn(ā))alg.

3.5. Exercise 5.

(1) Use the preceding remarks to show that every prime σ-ideal of E[X̄]σ, is
finitely generated (as a σ-ideal).

(2) (harder) Let I be a perfect σ-ideal of K[X̄], X̄ = (X1, . . . , Xn), and assume
that I∩K[Xi]σ ̸= 0 for all i = 1, . . . , n. Show that any descending sequence
of σ-closed subsets Fj of V (I) is finite [Hint: Look at the Zariski closures
of {(ā, σ(ā), . . . , σm(ā)) | ā ∈ Fj} for m large enough, use induction on the
dimension of the algebraic sets considered.]

(3) Using (2), show that the σ-topology is Noetherian.

3.6. Definition. Let A, B, C be subsets of a model K of ACFA. We say that
A and B are independent over C if the fields aclσ(CA) and aclσ(CB) are free

(or equivalently, linearly disjoint) over aclσ(C). We denote it by A |⌣CB.

Remarks. Independence is clearly a symmetrical notion, and is transitive, i.e.:
let B′ ⊂ B. Then

A |⌣CB ⇐⇒ A |⌣CB
′ and A |⌣C∪B′B.

Note also that by definition

A |⌣CB ⇐⇒ aclσ(C,A) |⌣aclσ(C)aclσ(C,B)

and that

aclσ(C,A) = (aclσ(C)aclσ(A))
alg.

Assume for simplicity, that C ⊆ B are algebraically closed difference fields.
Then A and B are independent over C if and only if, for every tuple ā ∈ A, the
ideal Iσ(ā/B) is generated by its intersection with C[X̄]σ.

Moreover, independence satisfies the extension property: given A, B and C,
there is A′ realising tp(A/C) in some elementary extension of K such that A′ and
B are independent over C. Indeed, without loss of generality, we may assume
that C, A and B are algebraically closed difference fields, with C ⊂ A ∩B. Let
A′ be a C-isomorphic copy of A which is free from B over C. Then A′ is linearly
disjoint from B over C, reasoning as in Step 2 of Theorem 2.7, we get that there
is an elementary extension L of K which contains the difference fields A′ and B.
Then A′ and B are independent over C, and tpL(A

′/C) = tpL(A/C).

3.7. Exercise 6. Let K be a model of ACFA, and A, B, C, D algebraically
closed difference subfields of K. Give a proof, or convince yourself, of the fol-
lowing facts:

(1) (Symmetry) If A |⌣CB then B |⌣CA.
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(2) (Transitivity). If C ⊆ A ∩B and B ⊆ D,

A |⌣CD ⇐⇒ A |⌣CB and A |⌣BD.

(3) A |⌣CB if and only if for every finite tuple b̄ from B, A |⌣C b̄.
(4) (Extension) In some elementary extension ofK there is A′ realising tp(A/C)

with A′ |⌣CB. (This was already explained above)

(5) There is a finite subset E of C such that A |⌣EC.

3.8. The independence theorem. Let K be a model of ACFA (sufficiently
saturated), let E = aclσ(E) ⊆ K, and ā, b̄, c̄1 and c̄2 tuples in K, such that

(i) tp(c̄1/E) = tp(c̄2/E),
(ii) ā and c̄1 are independent over E, ā and b̄ are independent over E and b̄

and c̄2 are independent over E.

Then there is c̄ realising tp(c̄1/E∪ ā)∪ tp(c̄2/E∪ b̄), independent from (ā, b̄) over
E.

Proof. Let c̄ realise tp(c̄1/E), independent from (ā, b̄) over E. Let A = aclσ(Eā),
B = aclσ(Eb̄), C = aclσ(Ec̄), and fix E-isomorphisms (of difference fields)
φ1 : aclσ(Ec̄1) → C and φ2 : aclσ(Ec̄2) → C, with φi(c̄i) = c̄.
Let σ0 be the restriction of σ to (AB)algC. Since A is linearly disjoint from

aclσ(E, c̄1) and from C over E, we may extend φ1 to a field-isomorphism ψ1 :
aclσ(Ac̄1) → (AC)alg, which is the identity on A. Then σ1 = ψ1σψ

−1
1 is an

automorphism of (AC)alg which agrees with σ on A and on C. Indeed, σ1
agrees with σ on A because ψ1 is the identity on A, and on C because ψ1

extends the difference field isomorphism φ1 : aclσ(Ec̄1) → C. Note also that by
definition of σ1, the isomorphism ψ1 is an isomorphism between the difference
field (aclσ(Ac̄1), σ) and the difference field ((AC)alg, σ1)
Similarly, we may extend φ2 to a field-isomorphism ψ2 : aclσ(B, c̄2) → (BC)alg

which is the identity on B. The automorphism σ2 = ψ2σψ
−1
2 agrees with σ on

B and C.

Assume that there is an automorphism τ of L = (AB)alg(AC)alg(BC)alg

which extends σ0, σ1 and σ2. Then we can find some model M of ACFA con-
taining (L, τ). As τ extends σ0, we then have that tpM (AB/E) = tpK(AB/E)
(by 2.7). By 2.15, we also have

tpM (c̄/A) = tpK(c̄1/A), and tpM (c̄/B) = tpK(c̄2/B)

because τ extends σ1 and σ2, and the ψi are difference fields isomorphisms fixing
A and B respectively. Clearly, c̄ is independent from (A,B) over E, and this
will have finished the proof.

It remains to show that there is such an automorphism τ of L. To do that, it
suffices to show that σ0 and σ1 have a common (and necessarily unique) extension
τ1 to (AB)alg(AC)alg, and that τ1 and σ2 have a common extension to L.
To show that σ0 and σ1 have a common extension τ1 to (AB)alg(AC)alg, it is

enough to show that their domains are linearly disjoint over their intersection,
and that σ0 and σ1 agree on this intersection. Similarly for τ1 and σ2.
The domain of σ0 is (AB)algC, the domain of σ1 is (AC)alg, which is a Galois

extension of AC. By definition, σ0 is the restriction of σ (∈ Aut(K)), and we
know that σ1 and σ agree on AC. It follows that it suffices to show that
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(AB)algC ∩ (AC)alg = AC. (1)

(Here we are using the fact that (AC)alg is a Galois extension of AC to reduce
the linear disjointness over AC to intersecting in AC). Similarly, to show that
τ1 and σ2 have a common extension to L, it will be enough to show that

(AB)alg(AC)alg ∩ (BC)alg = BC. (2)

Unfortunately the proof of either of these equations uses tools slightly beyond
the scope of this course, since I had chosen not to assume anything known in
stability theory. For sake of completeness I will give the proof using stability
results. The reader unfamiliar with stable theories may just skip this part and
admit the equations (1) and (2), and therefore the result. Let us prove (2) first.
Algebraists would prove it via specialisations, the ideas are essentially the same
(but not the way it is said).
Let α ∈ (BC)alg ∩ (AB)alg(AC)alg, and write α =

∑n
i=1 βiγi, where βi ∈

(AB)alg, γi ∈ (AC)alg. Let ā′, b̄′ and c̄′ be tuple of elements from A, B and
C respectively, and fi(X̄, Ȳ , U), gi(X̄, Z̄, V ) be polynomials over E, such that
fi(ā

′, b̄, U) is the minimal polynomial of βi over AB, and gi(ā
′, c̄′, V ) is the

minimal polynomial of γi over AC for i = 1, . . . , n. Then

K |= ∃u1, . . . , un, v1, . . . , vn
∧
i

(
fi(ā

′, b̄′, ui) = 0∧gi(ā′, c̄′, vi) = 0
)
∧α =

∑
i

uivi.

Note that this is a formula of the field language, satisfied by (ā′, b̄′, c̄′, α). By
assumption, ā′ is independent from (BC)alg over E, in the sense of the theory of
algebraically closed fields. Hence every formula represented in tpACF (b̄

′, c̄′, α/A)
is already represented in tpACF (b̄

′, c̄′, α/E) (here tpACF denotes the type in the
theory of algebraically closed fields). This precisely means that there is a tuple
ē in E such that

K |= ∃u1, . . . , un, v1, . . . , vn
∧
i

(
fi(ē, b̄

′, ui) = 0∧ gi(ē, c̄′, vi) = 0
)
∧α =

∑
i

uivi.

If β′1, . . . , β
′
n, γ
′
1, . . . , γ

′
n satisfy

∧
i

(
fi(ē, b̄

′, β′i) = 0 ∧ gi(ē, c̄
′, γ′i) = 0

)
∧ α =∑

i β
′
iγ
′
i, then β′i ∈ B and γ′i ∈ C, which shows that α ∈ BC, and proves (2).

Permuting A, B, C, we obtain that (AC)alg∩(AB)alg(BC)alg = AC, from which
we get (1).

3.9. ��� Corollary. All completions of ACFA are supersimple, and inde-
pendence corresponds to non-forking.

Proof. See the paper by Kim and Pillay [15]. They show that if you have an
independence notion, which is

(i) symmetric,
(ii) transitive,
(iii) has the extension property,
(iv) is such that, given a finite tuple ā and a set A, there is A0 ⊆ acleq(A) such

that ā and A are independent over A0, and |A0| ≤ |L|+ ℵ0,
(v) satisfies the independence theorem.
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Then this notion of independence coincides with non-forking, and the theory
is simple. If in (iv), the set A0 can always be taken finite, then the theory is
supersimple.
In our case, given the complete theory of a model K of ACFA, items (i) – (iii)

are immediate because similar statements hold for non-forking in algebraically
closed fields, (v) is 3.8. From our definition of independence and the descending
chain condition on σ-closed sets (3.2), it follows that in (iv) we can always take
A0 to be finite. ���

3.10. Definitions of forking and of the SU-rank. The SU-rank is a rank
on types, based on non-independence in the same way the U-rank is.

Let K be a model of ACFA, sufficiently saturated, E ⊆ F algebraically closed
subsets of K, and ā a tuple of elements, p = tp(ā/E), q = tp(ā/F ). We say that

q forks over E, or that q is a forking extension of p, iff ā |⌣/ EF . Otherwise, we
say that q does not fork over E, or that q is a non-forking extension of p to F .

We define SU(p) = SU(ā/E) ≥ α by induction on the ordinal α:
— SU(p) ≥ 0
— SU(p) ≥ α+1 iff p has a forking extension q such that SU(q) ≥ α, iff there

is B = aclσ(B) containing E such that aclσ(Eā) and B are not linearly disjoint
over aclσ(E), and SU(ā/B) ≥ α.
— If α is a limit ordinal, then SU(p) ≥ α iff SU(p) ≥ β for all β < α.
We then define SU(p) to be the least α such that SU(p) ̸≥ α + 1 if it exists,

and ∞ otherwise.

3.11. Exercise 7. Let ā, E ⊆ F,K be as above. Give a proof, or convince
yourself of the following facts:

(1) SU(ā/F ) ≤ SU(ā/E). [Hint: show by induction on α that SU(ā/F ) ≥ α
implies SU(ā/E) ≥ α.]

(2) If ā |⌣EF , then SU(ā/E) = SU(ā/F ). [Again, use induction on α. The
independence theorem intervenes in the proof.]

(3) Deduce from Remark 3.6 and the noetherianity of the σ-topology that
SU(ā/E) <∞.

3.12. Remark. As explained in the exercise, Fact 3.2 yields that the SU-
rank of a type (of a finite tuple) exists. It is however much stronger: You could
imagine that there could exist an infinite descending sequence of σ-closed sets
all defined over aclσ(∅).

3.13. Natural sum on ordinals. Every ordinal can be written uniquely as

α = ωα1a1 + · · ·+ ωαnan,

where α1 > · · · > αn ≥ 0 are ordinals, and a1, . . . , an are positive integers. If
β = ωβ1b1 + · · · + ωβmbm, then we define α ⊕ β as follows. First, relaxing the
condition on a1, . . . , an, b1, . . . , bm to be positive and allowing them to be 0, we
may assume that m = n and αi = βi for i = 1, . . . , n. Then one sets

α⊕ β = ωα1(a1 + b1) + · · ·+ ωαn(an + bn).

One verifies that ⊕ is commutative and transitive.
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While ⊕ coincides with the usual ordinal addition on finite ordinals, it def-
initely does not on infinite ones. For instance 1 ⊕ ω = ω ⊕ 1 = ω + 1, but
1 + ω = ω.

3.14. Properties of the SU-rank. One can show that the SU-rank satisfies
the so-called Lascar inequality: given another tuple b̄,

SU(ā/Eb̄) + SU(b̄/E) ≤ SU(ā, b̄/E) ≤ SU(ā/Ab̄)⊕ SU(b̄/A).

This is shown by induction. For the first inequality, one shows that SU(b̄/E) ≥ α
implies SU(ā/Eb̄)+α ≥ SU(ā, b̄/E). For the second, that SU(ā, b̄/E) ≥ α implies
SU(ā/Eb̄) ⊕ SU(ā/E) ≥ α. The proof is not difficult, but one can also consult
e.g. Wagner’s book on simple theories [19].

3.15. SU-rank of definable sets, or of formulas. Let S ⊆ Kn be a
definable set, defined by a formula φ(x̄) over some E, and assume that K is
sufficiently saturated (otherwise our definition will not make sense). We define
SU(φ) = SU(S) = sup{SU(ā/A) | ā ∈ S}. One can show that this sup is
attained, i.e., that there is some ā satisfying φ and such that SU(ā/A) = SU(φ).

3.16. Remarks. Note the following special cases:

SU(ā/E) = 0 ⇐⇒ ā ∈ aclσ(E)

SU(ā/E) = 1 ⇐⇒ ā /∈ aclσ(E) and for all F ⊃ E,

either ā is independent from F over E, or ā ∈ aclσ(F ).

To simplify, let us assume that E is an algebraically closed difference field (since
SU(ā/aclσ(E)) = SU(ā/E).) Let us also assume for the moment, that the tuple
ā is transformally algebraic over E, that is, that tr.deg(clσ(Eā)/E) = n is finite.
Then, tp(ā/F ) forks over E if and only if

tr.deg(clσ(F ā)/F ) < tr.deg(clσ(Eā)/E).

This implies that SU(ā/E) ≤ n. Equality however does not always hold. For
instance, one can show that any non-realised type containing the formula σ2(x) =
x2, or the formula σ2(x) = x2 + 1, has SU-rank 1.

3.17. The type of SU-rank ω. Let E = aclσ(E), and consider an ele-
ment a ∈ K which is transformally transcendental over E, that is, the ele-
ments σi(a), i ∈ Z, are algebraically independent over E. Let b0 = a, and
bn = σ(bn−1) − bn−1 for n ≥ 1. Then, letting Ln = clσ(Ebn), we get that
each Ln contains Ln+1, and has transcendence degree 1 over Ln+1. Hence,
SU(bn/Ebn+1) = 1 (since it is not 0, and is at most 1). Hence, SU(a/Ebn) = n,
which implies that SU(a/E) ≥ ω. On the other hand, any forking extension of
tp(a/E) has finite SU-rank (since if a is not independent from F over E, then a
satisfies some σ-equation, i.e., tr.deg(clσ(Fa)/F ) <∞). Hence, SU(a/E) = ω.

Note that

ω = SU(a, b1/E) = SU(a/Eb1) + SU(b1/E) < SU(a/Eb1)⊕ SU(b1/E) = ω + 1.

3.18. Other examples. Let V be a variety of dimension d defined over some
E = aclσ(E) ⊆ K. Assume that if ā = (a1, . . . , an) is a tuple of V (K) which is
generic over E, then the elements a1, . . . , ad are algebraically independent over
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E. Consider the type pV (x̄) over E which says that x1, . . . , xd are transformally
independent over E (i.e., satisfy non non-trivial difference equation over E), and
that (x1, . . . , xn) ∈ V . According to the additivity rule (one can also see it
directly), if ā realises pV , then SU(ā/E) = ωd. The type pV (x̄) is in a sense a
generic type of the variety V . One can show that this type is complete.

Finally, one shows easily that if ā is any tuple of K, then SU(ā/E) is of the
form ωn+m for some non-negative integers n,m.

3.19. Definition of imaginaries, etc. Let M be a model of a complete
theory T in a language L. We assume M to be sufficiently saturated. Let
S ⊆ Mn be a 0-definable set, and let E ⊆ S2 be a 0-definable equivalence
relation. Then each E-equivalence class ā/E, with ā ∈ S, is called an imaginary
element.

Given S and E as above, the set S/E is interpretable inM . To each such pair,
we associate a new sort, and let Meq be the many-sorted structure with sorts
indexed by the pairs (S,E) as above, the “real sort” being the L-structure M ,
and the sort indexed by (S,E) being the set S/E; there is also a projection map
S → S/E for each (S,E). The structure Meq is then interpretable in M . The
difference between many-sorted logic and 1-sorted logic, is that all quantifiers,
variables and constants have a sort attached to them, so that you will have things
like ∀x ∈ M , ∀y ∈ S/E. Note also that Mn becomes a sort, so that an n-tuple
of M can be thought of as an element of Meq.

An important example of imaginary is the following. Let D ⊆ Mk be a
definable set, defined by some formula φ(x̄, b̄), where φ(x̄, ȳ) ∈ L and b̄ is an
n-tuple from M . Define an equivalence relation E on Mn by:

E(ȳ, z̄) : ∀x̄ (φ(x̄, ȳ) ↔ φ(x̄, z̄)).

Then the equivalence class b̄/E has the following property: for all ρ ∈ Aut(M),
ρ(D) = D if and only if ρ fixes b̄/E.

The imaginary element b̄/E will be called a code for D.

We say that T eliminates imaginaries if whenever D ⊆ Mk is definable (with
parameters), then there is tuple d̄ in M , such that for any ρ ∈ Aut(M),

ρ(D) = D ⇐⇒ ρ fixes the elements of the tuple d̄.

If the language L has at least two terms t0, t1 and T |= t0 ̸= t1, then T eliminates
imaginaries if and only if whenever S ⊆ Mn is 0-definable, and E ⊆ S2 is a 0-
definable equivalence relation, then there is a 0-definable function f : S → Mk

for some k, such that for every ȳ, z̄ ∈ S, we have

M |= f(ȳ) = f(z̄) ⇐⇒ E(ȳ, z̄).

3.20. Some facts. (1) If T eliminates imaginaries, and A ⊂ M , then T (A)
eliminates imaginaries as well (T (A) is the set of sentences in the language L(A)
obtained by adjoining to L a constant symbol for each element of A, which hold
in the L(A)-structure (M,a)a∈A.)
(2) ��� Assume that M is stable. Working in Meq instead of M , one has

the following: if a is independent from b over cd and from c over bd, then a is
independent from (bc) over acleq(bd) ∩ acleq(cd). Note that a tuple of elements
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of M can be thought of as an imaginary element. The proof uses the following
ingredients. By elimination of imaginaries and stability, we know that every type
p over an algebraically closed set E is stationary (i.e., has a unique non-forking
extension to any superset of E), and is definable over E, i.e., given a formula
φ(x̄, ȳ) ∈ L, there is a formula dφ(ȳ) ∈ L(E) such that for every tuple b̄ in E,
we have that

φ(x̄, b̄) ∈ p ⇐⇒ M |= fφ(b̄).

The non-forking extension p′ of p to a set F containing E will then be defined
analogously: for every b̄ ∈ F , φ(x̄, b̄) ∈ p′ ⇐⇒ M |= dφ(b̄). One defines the
canonical base of p, denoted by Cb(p), to be the set of codes of the formulas
dφ(ȳ) (and by elimination of imaginaries, this is a subset of E). By definition
we have that p does not fork over Cb(p), and that the restriction of p to Cb(p)
is stationary. Moreover, if E0 ⊂ E is such that p does not fork over E0, then
acl(E0) contains Cb(p).
Hence, we look at the canonical base of tp(a/acl(bcd)) and from the indepen-

dence relations, deduce that it is contained in acl(bd) ∩ acl(cd).
We will use the fact that every completion of the theory ACF of algebraically

closed fields eliminates imaginaries and is stable. Note that the above proof
extends to the case of M simple with stable forking (for those of you who know
what this means). ���
(2’) Let us rephrase (2) in a more algebraic language. We work within a

sufficiently large algebraically closed field Ω. It is known that any algebraic set
V defined over Ω has a smallest field of definition. If one looks at what it means
in terms of independence, it translates as follows: let E and F be algebraically
closed subfields of Ω, let ā be a tuple of elements of Ω, and assume that

ā |⌣EF and ā |⌣FE.

This means that if V is the locus of ā over (EF )alg, then V is defined over E
and V is defined over F . Indeed, let V1 be the locus of ā over E. As E ⊂ EF ,
we certainly have V1 ⊇ V . From the fact that ā is free from F over E, we
know that the dimensions of V1 and V (which equal respectively tr.deg(ā/E)
and tr.deg(ā/EF )) are equal. As V1 is irreducible, this implies that V = V1, so
that V is defined over E. Reasoning similarly with the locus of ā over F , one
obtains that V is defined over F .
The uniqueness of the smallest field of definition of V then implies that V is

defined over E ∩ F . Hence, all equations over EF satisfied by ā are implied by
equations over E ∩ F . This implies that tr.deg(ā/E ∩ F ) = dim(V ), so that

ā |⌣E∩FEF.

(3) In the case of fields, any finite set has a code. Let us show how it works
for elements of M : we want to code the definable set {a1, . . . , an}. Consider the
polynomial f(X) =

∏n
i=1(X − ai), and let b1, . . . , bn be its coefficients. Then

any permutation of {a1, . . . , an} fixes b1, . . . , bn, and conversely. Hence the tuple
(b1, . . . , bn) is a code for the set {a1, . . . , an}. There is a similar trick for finite
sets of tuples.
(4) The uniqueness of the field of definition of algebraic sets also gives eas-

ily that any completion of the theory of algebraically closed fields eliminates
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imaginaries. Indeed, let K be an algebraically closed field. By elimination of
quantifiers, we know that any definable subset D of Kn is a Boolean combination
of algebraic sets. Then D can be written V \W , where V is the Zariski closure of
D, andW is some definable subset of V , with the property that every irreducible
component of its Zariski closure W̄ is strictly contained in some irreducible com-
ponent of V . In particular, dim(W̄ ) < dim(V ). Clearly any automorphism ρ of
K which leaves D invariant will also leave V and W invariant. The automor-
phism ρ leaves V invariant if and only if it fixes the field of definition of V . The
result follows by induction on the dimension.

This type of proof generalises to other theories of fields which eliminate quan-
tifiers: the theory of differentially closed fields of characteristic 0, and also the
theory of separably closed fields of finite degree of imperfection (in that case,
one needs however to add some constant symbols to the language).

3.21. Theorem Any completion of ACFA eliminates imaginaries.

Sketch of the proof. ��� We work in a saturated model K of ACFA. We are
given a 0-definable function f , and a tuple ā, and we look at the equivalence
class e of ā for the equivalence relation E(x̄, ȳ) ⇐⇒ f(x̄) = f(ȳ). We want to
show that there is a real tuple which is equi-definable with e.
Let E = acleq(e) ∩ K. If e is definable over E, then we are done: choose a

tuple b̄ ∈ E over which e is definable. Then b̄ ∈ acleq(e). Since we are in a field,
there is a tuple c̄ which codes the finite set of conjugates of b̄ over e. Then c̄ and
e are equi-definable. Hence, we may assume that e is not definable over E, and
in particular that ā /∈ E. Our aim is to show that there is a tuple b̄ realising
tp(ā/e) which is independent from ā over E.

Let p = tp(ā/e). Since p is non-algebraic, there is b̄ realising p and such that
acleq(eā) ∩ acleq(eb̄) = acleq(e), and therefore

aclσ(Eā) ∩ aclσ(Eb̄) = E. (∗)

Choose b̄ realising p, satisfying (∗) and of maximal SU-rank over Eā (note that
f(b̄) = e). Let c̄ realise tp(b̄/Eā), independent from b̄ over Eā. Then c realises p,
as e ∈ dcleq(ā). Moreover, aclσ(Ec̄) ∩ aclσ(Eb̄) ⊆ aclσ(Eb̄) ∩ aclσ(Eā) (because
aclσ(Eāb̄) ∩ aclσ(Eāc̄) = aclσ(Eā)), and therefore the tuple (b̄, c̄) also satisfies
(∗). By maximality of the SU-rank of b̄ over Eā and because tp(a/e) = tp(b/e),
we get that

SU(c̄/Eb̄) ≤ SU(b̄/Eā).

We also know that

SU(c̄/Eāb̄) = SU(c̄/Eā) = SU(b̄/Eā).

As SU(c̄/Eāb̄) ≤ SU(c̄/Eb̄), we obtain that

SU(c/Eāb̄) = SU(b̄/Eā) = SU(c̄/Eb̄),

so that clσ(c̄) is independent from aclσ(Eāb̄) over aclσ(Eā) and over aclσ(Eb̄)
(in the sense of the theory of algebraically closed fields). By elimination of
imaginaries of the theory of algebraically closed fields, this implies that clσ(c̄)
is (ACF-)independent from clσ(ā, b̄) over aclσ(Eā) ∩ aclσ(Eb̄) = E, i.e., that c̄
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is (ACFA-) independent from (ā, b̄) over E. Hence SU(b̄/Eā) = SU(c̄/Eā) =
SU(c̄/E), so that ā and b̄ were independent over E.

Hence, we have shown that there is a realisation b̄ of p, which is independent
from ā over E. Since e is not definable over E, there is ā′ realising tp(ā/E)
and with f(ā′) ̸= f(ā). Since tp(ā′/E) = tp(ā/E), there is c̄′ realising tp(ā′/E),
with f(ā′) = f(c̄′), and independent from ā′ over E and we may assume that
this c̄′ is also independent from b̄ over E. Apply the independence theorem to
tp(ā/Eb̄) ∪ tp(ā′/Ec̄′) to derive a contradiction. ���

3.22. Corollary. Let ā, b̄, c̄, d̄ be tuples in K, and assume that ā is indepen-
dent from b̄ over (c̄d̄) and from c̄ over (b̄d̄). Then ā is independent from (b̄c̄) over
aclσ(b̄c̄) ∩ aclσ(b̄d̄).
Proof. Either use the remark about simple theories with stable forking given in
3.20(2), or equivalently, the fact that independence in models of ACFA corre-
sponds to independence of algebraically closed sets for the theory of algebraically
closed fields. One uses also the fact that aclσ(AB) = (aclσ(A)aclσ(B))alg.

3.23. A useful remark. Let K be a model of ACFA, E an algebraically
closed subset of K and ā a tuple of elements of K. As in the case of algebraically
closed fields, one can show that Iσ(ā/E) has a smallest field of definition (as a
σ-ideal). Or more simply, this follows from the elimination of imaginaries. So,
let us suppose that E is the algebraic closure of this smallest field of definition,
so that in particular it is the algebraic closure of a finite tuple, and therefore
is ranked by the SU-rank.

Claim. For n sufficiently large, if ā0, . . . , ān are independent realisations of
tp(ā/E), then E ⊆ aclσ(ā0, . . . , ān).

Proof. We assume K sufficiently saturated. Construct by induction on n ∈ N a
sequence ān, n ∈ N, of realisations of tp(ā/E), with ān |⌣E ā0, . . . , ān−1 for every
n. Then

SU(E/ā0, . . . , ān) ≤ SU(E/ā0, . . . , ān−1)

for every n, so that there is some index m such that SU(E/ā0, . . . , ām+1) =
SU(E/ā0, . . . , ām). Take the smallest such m. Then

E |⌣ā0,... ,ām
ām+1,

and by assumption

ām+1
|⌣E ā0, . . . , ām.

Corollary 3.22 then gives

ām+1
|⌣E∩aclσ(ā0,... ,ām)E, ā0, . . . , ām,

and therefore E ⊆ aclσ(ā0, . . . , ām).

3.24. Exercise 8. Show that the formula σ2(x) = x2 has SU-rank 1. I.e., you
need to show that given any algebraically closed difference field E and element
a satisfying σ2(x) = x2, one cannot have tr.deg(clσ(Ea)/E) = 1.
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§4. Study of the fixed field. A particularly important definable subset of
a model K of ACFA is the fixed field, Fix(σ) = {x ∈ K | σ(x) = x}. It turns
out that this subfield is responsible for much of the bad behaviour of models
of ACFA. We will show that Fix(σ) is a pseudo-finite field, i.e., is elementary
equivalent to an ultraproduct of finite fields (or equivalently, is an infinite model
of the theory of finite fields). Pseudo-finite fields were first studied by Ax, see [9].
Some very nice results on pseudo-finite fields were also obtained in two papers
by E. Hrushovski and A. Pillay ([11] and [12])

4.1. Theorem. Let K be a model of ACFA, and F = Fix(σ). Then F is a
pseudo-finite field.

Proof. We need to show that

(i) F is perfect (i.e., if char(F ) = p > 0, then every element is a p-th power).

(ii) Gal(F alg/F ) ≃ Ẑ ≃ lim← Z/nZ ≃
∏

p prime Zp.

(iii) F is pseudo-algebraically closed (PAC), i.e., every variety defined over F
has a point with coordinates in F .

Item (i) is no problem: if the characteristic is p > 0, then every element a has a
unique p-th root, denoted by a1/p. Hence σ(a) = a implies σ(a1/p) = a1/p, and
F is perfect. Item (iii) is no problem either: let U be a variety defined over F ,
and consider the diagonal subvariety V ⊆ U × U , i.e., V is defined by x̄ ∈ U ,
ȳ ∈ U , and x̄ = ȳ. Then U = Uσ, and U, V satisfy the hypotheses of axiom (3)
of ACFA, so that there is ā ∈ K with (ā, σ(ā)) ∈ V , i.e., ā ∈ U and σ(ā) = ā.
Let us now look at item (ii). First of all, if L is a finite Galois extension of

F , then σ(L) = L: if α generates L over F , then σ fixes the coefficients of the
minimal monic polynomial of α over F , so that σ(α) ∈ L. Hence σ restricts
to an element of Gal(L/F ). By Galois theory, F = Fix(σ) is the subfield of L
fixed by the group generated by σ|L, and this shows that Gal(L/F ) is cyclic,

generated by σ|L.
We will now show that for every n, F has at most one Galois extension of

degree n. Given a finite Galois extension L of F , there is a 1-1 correspondence
between algebraic extensions of F contained in L, and subgroups of Gal(L/F ),
under which the extensions which are Galois over F correspond to the normal
subgroups of Gal(L/F ). Every finite algebraic extension of F is contained in
a finite Galois extension of F , and all subgroups of a cyclic group are normal.
Hence every algebraic extension of F is Galois.
Assume now by way of contradiction that F has two Galois extensions, L

and M , of the same degree n over F . Consider Gal(LM/F ). Then Gal(LM/L)
and Gal(LM/M) are subgroups of Gal(LM/F ) of order d = [LM : F ]/n. But
Gal(LM/F ) is cyclic, and therefore has only one subgroup of order d: this implies
that L =M .
To show (ii), it will be enough to show that for every n, F has at least

one Galois extension of degree n. But this is easy: consider the difference field
extension L = K(X1, . . . , Xn) of K (X1, . . . , Xn indeterminates), with σ(Xi) =
Xi+1 for i = 1, . . . , n− 1, and σ(Xn) = X1. Then

L |= ∃x σn(x) = x ∧
∧

1≤i<n

σi(x) ̸= x,
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so that K satisfies the same sentence. Let a ∈ K be such that σn(a) = a,
σi(a) ̸= a for 1 ≤ i < n. By Galois theory, a generates a Galois extension of
degree n of F .

4.2. An example We saw earlier that if A is an algebraically closed difference
field, then ACFA ∪ qftp(A) is complete. Hence, in a sense, ACFA is close to
having quantifier-elimination. However, it does not. Here is an example:

Let a, b ∈ Fix(σ) be transcendental elements, and assume that a does not have
a square root in Fix(σ) (so, we assume that char(Fix(σ)) ̸= 2). Then we have:

K |= ∀y y2 = a→ σ(y) ≠ y

K |= ∃y y2 = b2 ∧ σ(y) = y.

However, a and b2 have the same quantifier-free type, as the quantifier-free type
of a transcendental element of the fixed field is unique: it simply says that the
element satisfies no non-trivial equation (over Q or over Fp).

4.3. Proposition. Let K |= ACFA, and consider F = Fix(σ) = {x ∈ K |
σ(x) = x}. Every definable subset of Fn is definable in the pure field F . In
other words, the structure on F induced by K is the one of the pure field F .

Proof. We assume K sufficiently saturated. Let S ⊂ Fn be definable (in K).
Then σ(S) = S. By elimination of imaginaries, this implies that there is a tuple
c̄ of elements of F , and a formula φ(x̄, ȳ) such that φ(x̄, c̄) defines S. Hence, we
have shown that S is definable over F . To finish the proof, it suffices to show
that there is a “small” subset C of F such that every field-automorphism of F
which fixes C is an elementary map within the structure K (exercise).
Let C be a countable elementary substructure of the field F . Then Calg and

F are linearly disjoint over C because C ≺ F . If Cn is the unique algebraic
extension of C of degree n, then FCn is an algebraic extension of F of degree
n also, and therefore is the unique algebraic extension of F of degree n. Hence
F alg = FCalg.
Let ρ be a field-automorphism of F which is the identity on C. Because Calg

and F are linearly disjoint over C, we can extend ρ to a field-automorphism ρ̃
of FCalg which is the identity on Calg. Since F alg = FCalg, we get that ρ̃ is
defined on F alg = aclσ(F ). We have

σρ̃|F = ρ̃σ|F
because σ|F = idF , and

σρ̃|Calg
= ρ̃σ|Calg

because ρ|Calg
= idCalg . Hence, ρ̃ commutes with σ on Calg and on F , so that ρ̃

is an automorphism of the difference field aclσ(F ). By 2.15, ρ̃ is an elementary
map.

4.4. Exercise 9. Let K be a model of ACFA, F its fixed field.

(1) Let E be a subfield of F such that EalgF = F alg, and ā a tuple of elements
of F . Show that SU(ā/E) = tr.deg(E(ā)/E).
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(2) Let S be a definable subset of Fn. Show that SU(S) equals the algebraic
dimension of the Zariski closure (in K) of S.

§5. Orthogonality and modularity. In this section we will show that we
can reduce the study of types of finite SU-rank to the study of types of SU-rank
1. We will always be working in a model K of ACFA, which we will assume to
be sufficiently saturated.

5.1. Definitions. Let A and B subsets of K, and p, q types over A and B
respectively.

(1) If A = B, then we say that p and q are almost orthogonal (denoted by
p ⊥a q) if whenever ā realises p and b̄ realises q, then ā and b̄ are independent
over A.

(2) We say that p and q are orthogonal (denoted by p ⊥ q) if whenever C
contains A ∪ B, and ā is a realisation of p which is independent from C
over A, b̄ is a realisation of q which is independent from C over B, then ā
and b̄ are independent over C.

(3) Recall that S ⊆ Kn is ∞-definable over E, or type-definable over E, if there
is a partial n-type Φ over E (i.e., a consistent set of L(E)-formulas in the
variables (x1, . . . , xn)) such that S is the set of n-tuples from K satisfying
Φ.

(4) Let S be a set which is (∞-) definable over B. We say that p is orthogonal
to S (denoted by p ⊥ S, or by p ⊥ φ if S is defined by φ) if p is orthogonal
to all types over supersets of B which are realised in S, i.e.: for all C
containing A ∪ B, and ā realising p and independent from C over A, and
b̄ ∈ S, we have that ā and b̄ are independent over C. One also says that p
is foreign to S or to φ.

5.2. Remark and example. Note that in (4) above, we do not require
that b̄ be independent from C over B. Here is an example which shows that
orthogonality to a set and to a type are different.

Let E = aclσ(E) ⊆ K, and let p be the type of a transformally transcendental
element a over E, let P be the set of realisations of p over E.
Then p is orthogonal to all types of finite SU-rank over E: indeed, assume that

a is transformally transcendental over F = aclσ(F ) ⊃ E, and that SU(b/F ) <
ω, but a and b are not independent over F . This means that Iσ(a/aclσ(Fb))
is non-zero, and therefore that a is transformally algebraic over aclσ(Fb), i.e.,
SU(a/Fb) < ω. But this contradicts Lascar’s inequality: on the one hand, we
have SU(a, b/F ) ≥ SU(a/F ) = ω, and on the other, we have SU(a, b/F ) ≤
SU(a/Fb)⊕ SU(b/F ) < ω.
However, let c = σ(a)−a, let a′ be a realisation of tp(a/aclσ(Ec)), independent

from a over Ec, and let b = a − a′. Then σ(b) = σ(a) − σ(a′) = (a + c) −
(a′ + c) = a − a′ = b, so that SU(b/E) = 1 = SU(b/Ea′). So we have that
tp(b/E) ̸⊥ tp(a/Ea′), and therefore tp(b/E) ̸⊥ P .

5.3. Another comment about orthogonality. Orthogonality or non-orthogo-
nality tell us about interactions between sets. For instance, let D1 and D2 be
two infinite definable sets, defined over some E = aclσ(E).
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If all types realised in D1 are orthogonal to all types realised in D2, then
this means that whenever you take a tuple ā of elements in D1 and a tuple b̄
of elements of D2, then they are independent over any set containing E. In
particular, any definable map f : S → Dm

2 , where S ⊆ Dn
1 , for some integers

m,n, will take only finitely many values.
Assume in addition that all types realised in D1 and in D2 are stationary

(Recall that a type over a set A is stationary if it has a unique non-forking
extension to any set containing A). It will then follow that any definable subset
of D1 ×D2 is a finite union of rectangles, i.e., is of the form

∪n
i=1 Si × Ti, where

Si is a definable subset of D1 and Ti is a definable subset of D2.

5.4. Exercise 10. Let E = aclσ(E) ⊂ K, ā, b̄ tuples from K, and assume
that SU(ā/E) = SU(b̄/E) = 1. Show that tp(ā/E) ̸⊥ tp(b̄/E) implies that
tr.deg(clσ(Eā)/E) = tr.deg(clσ(Eb̄)/E).

5.5. Exercise 11. Let p, q, r be types over algebraic closed sets A, B, and C
respectively. Assume that p, q and r have SU-rank 1, and that A |⌣BC. Show
that if p ̸⊥ q and q ̸⊥ r, then p ̸⊥ r. [Warning: your proof should use all the
assumptions on A, B, C: their being algebraically closed, and the independence
hypothesis. Non-orthogonality is not an equivalence relation on types of SU-
rank 1. One can however show that the relation E defined by E(p, q) if and
only if there is r of SU-rank 1 such that p ̸⊥ r and q ̸⊥ r defines an equivalence
relation on types of SU-rank 1.]

5.6. Exercise 12. Let E = aclσ(E) ⊂ K, and a ∈ K with SU(a/E) = 1.
Assume that tp(a/E) ̸⊥ (σ(x) = x). We know that tr.deg(clσ(Ea)/E) = 1,
so that E(a)alg = aclσ(Ea). Show that there exists an integer N such that
[E(a, σk(a)) : E(a)] ≤ N for every k ∈ Z. [Hint: take E′ = aclσ(E

′) independent
from a over E such that there is some b ∈ aclσ(E

′a) \ E′, with σ(b) = b. Then
for every k one has [E(a, σk(a)) : E(a)] = [E′(a, σk(a)) : E′(a)], so we may
assume that E = E′. Let m = [E(a, b) : E(a)], n = [E(a, b) : E(b)]. Show that
[E(a, b, σk(a)) : E(a)] ≤ mn.]

5.7. Remark. One can show that the converse is true, but the proof is much
harder.

5.8. Exercise 13/Example. Let E = aclσ(E) ⊂ K, let a ∈ E, and let
b ∈ K \ E satisfy σ(x)− x = a.

(a) Show that tp(b/E) ̸⊥ (σ(x) = x).
(b) Show that tp(b/E) is not almost orthogonal to some type containing σ(x) =

x, if and only if there is an integer m > 0 and α ∈ E satisfying σm(x) =
x+a+· · ·+σm−1(a). [Hint: assume that c ∈ (aclσ(Eb)\E)∩Fix(σ); looking
at the coefficients of the minimal polynomial of c over clσ(Eb), we may in
fact assume that c ∈ clσ(Eb), so that c = g(b) for some g(X) ∈ E(X).
Look at the sets S0 of poles and S1 of zeroes of g, and use the equation
g(b) = gσ(b+ a).]

5.9. Proposition. Every finite SU-rank type is non-orthogonal to a type of
SU-rank 1.
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Proof. Let E = aclσ(E) ⊂ K, and let ā be a tuple in K with SU(ā/E) = n < ω.
We want to find F = aclσ(F ) independent from ā over E, and b ∈ aclσ(F ā) \ F
such that SU(b/F ) = 1.

By definition of the SU-rank, there is some tuple d̄ such that SU(ā/Ed̄) = n−1.
Given such a tuple, we may always write it as (b̄, c̄), with c̄ independent from ā
over E. Find (b̄, c̄) such that c̄ and ā are independent over E, SU(ā/Eb̄c̄) = n−1,
and SU(b̄/Ec̄) is least possible.
Let ā′ realise tp(ā/Eb̄c̄) and independent from ā over Eb̄c̄. Then SU(ā/Eb̄c̄ā′) =

SU(ā/Eb̄c̄) = n− 1.

Claim. ā and ā′ are not independent over Ec̄.
Otherwise, assume that ā and ā′ are independent over Ec̄, and let c̄′ = (c̄, ā′).

Since ā′ realises tp(ā/Eb̄c̄), we have SU(ā′/Eb̄c̄) < SU(ā′/Ec̄); hence, by sym-
metry we get SU(b̄/Ec̄ā′) < SU(b̄/Ec̄), so that the pair (b̄, c̄′) contradicts the
minimality of SU(b̄/Ec̄).

Hence ā′ and ā are not independent overEc̄, so that SU(ā/Ec̄ā′) = SU(ā′/Ec̄ā) =
n − 1. It follows that ā′ is independent from b̄ over Ec̄ā. As it was indepen-
dent from ā over Ec̄b̄ by definition, we get that ā′ is independent from (āb̄) over
aclσ(Ec̄ā) ∩ aclσ(Ec̄b̄) (by 3.22). Let d̄ ∈ aclσ(Ec̄ā) ∩ aclσ(Ec̄b̄) be such that ā′

and āb̄ are independent over Ec̄d̄. By the claim, we know that d̄ /∈ aclσ(Ec̄),
and this implies that

SU(ā/Ec̄d̄) < n,

as d̄ ∈ aclσ(Ec̄ā). We now obtain

n− 1 = SU(ā/Ec̄b̄) ≤ SU(ā/Ec̄d̄) < SU(ā/Ec̄) = n,

so that SU(ā/Ec̄d̄) = n− 1, which implies that SU(d̄/Ec̄) = 1.

5.10. Definitions. Let S be an (∞-) definable set, defined over some E =
aclσ(E). We say that S is modular if, for every m and n, and ā ∈ Sm, b̄ ∈ Sn,
we have that ā and b̄ are independent over aclσ(Eā) ∩ aclσ(Eb̄).
A type (over some set E) is modular if the set of its realisations is modular.

Remarks. (1) In general, one requires that ā and b̄ are independent over
acleq(Eā) ∩ acleq(Eb̄). We use the fact that Th(K) eliminates imaginaries.
(2) This notion is also sometimes referred to as “1-basedness” in the case of

stable theories.
(3) There is no harm in extending the notion to sets which are invariant under

E-automorphism of K, i.e., sets of realisations of a set of types over E.

5.11. Canonical bases. Let E = clσ(E), ā a tuple. Since Iσ(ā/E) is finitely
generated as a σ-ideal, there is an integer m such that the (algebraic) locus V
of (ā, . . . , σm(ā)) over E completely describes qftp(ā/E), i.e.,
If b̄ is such that (b̄, . . . , σm(b̄)) has locus V over E, then qftp(b̄/E) = qftp(ā/E).
Let k0 be the field of definition of V , and let k be the difference field generated

by k0. Then tp(ā/E) does not fork over k, and k is in a sense smallest with that
property (not quite true in positive characteristic). We call k the canonical base
of tp(ā/E), and denote it by Cb(ā/E).

5.12. Comments. (1) It is well-known that if c̄i, i ∈ ω, is an independent
sequence of generics of V over E, then k0 is contained in the field generated
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by c̄0, . . . , c̄N for some N . Hence, the same is true in our case provided E is
algebraically closed: if āi, i ∈ ω, is a sequence of independent realisations of
tp(ā/E), then k is contained in clσ(ā0, . . . , āN ) for some N .
(2) Our definition does not quite agree with the usual definition of canonical

bases for types in simple theories.
(3) What we are really interested in, is that kalg is the smallest algebraically

closed difference field over which tp(ā/E) does not fork. We could also have
defined Cb(ā/E) as kalg. What really matters, is that by 1), there is an integer N
such that if ā1, . . . , āN are independent realisations of tp(ā/E) then Cb(ā/E) ⊂
aclσ(ā1, . . . , āN ). See Remark 3.23 for a proof.

5.13. Corollary. Let S be modular. Then for every n, m, and ā ∈ Sn,
b̄ ∈ Km, we have that ā and b̄ are independent over C = aclσ(Eā) ∩ aclσ(Eb̄).
Proof. Let āi, i ∈ ω, be a sequence of realisations of tp(ā/aclσ(Eb̄)), independent
over Eb̄, and with ā0 = ā. Then C = aclσ(Eāi) ∩ aclσ(Eb̄) for i ∈ ω because
tp(āi/Eb̄) = tp(ā/Eb̄). Since ā is independent from {āi | i > 0} over Eb̄, we have

C = aclσ(Eā) ∩ aclσ(Eāi | i > 0).

By the above, aclσ(Eāi | i > 0) contains the canonical base of tp(ā/aclσ(Eb̄)).
By modularity, we get that this canonical base is contained in C, and therefore
that ā and b̄ are independent over C.

5.14. Remark. This is a particularly nice way of phrasing modularity: a set
S is modular if and only if, for every tuple ā of elements of S and set B, we
have that aclσ(Eā) ∩ aclσ(EB) contains the canonical base of tp(ā/aclσ(EB)).
It coincides with the definition of 1-basedness.

5.15. What is modularity? Or rather, what is it not? Modularity forbids
the existence of complicated sets. For instance, in the theory of algebraically
closed fields, no infinite set is modular. This comes from the typical counterex-
ample to modularity: let a, b, c be algebraically independent over Q, say, and let
d = ac+ b. Then

Q(a, b)alg ∩Q(c, d)alg = Qalg,

but (a, b) and (c, d) are not independent.

In case the elements of S have SU-rank 1, modularity is equivalent to the
non-existence of a SU-rank-2 family of “curves”, that is, a set C(e), e ∈ D, of
definable subsets of S2 of SU-rank 1, where D is definable, has SU-rank 2, and
is such that if d ̸= d′ ∈ D, then C(d) ∩ C(d′) is finite.
When we are in a stable situation and there is a group around, there is a

remarkable theorem of Hrushovski-Pillay ([14]) which says:

Theorem. Let G be a stable group (maybe with additional structure), and
assume that G is modular. Then for every n, any definable subset of Gn is a
Boolean combination of cosets of definable subgroups of Gn, and these subgroups
are defined over acl(∅).
Thus in particular, a stable modular group has essentially only one group law.

Moreover, one can show that it is necessarily abelian by finite.

The completions of ACFA are unstable, and we will not be able to apply
directly the result of Hrushovski-Pillay. In fact, in positive characteristic this
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result will be false. However, all the quantifier-free formulas are “stable” and
they control independence (I will not define what a stable formula is, let me just
say that if T is a stable theory then all formulas are stable). It will follow that
some restricted version of H-P’s theorem holds in positive characteristic, while
the full result holds in characteristic 0.

5.16. Lemma. Let T be a complete theory satisfying the conclusion of 3.20(2),

that if A |⌣CB and A |⌣BC then A |⌣acl(B)∩acl(C)BC (e.g., eliminating imaginar-
ies, and stable or with stable forking), let A,B,C be algebraically closed sets
containing E = acl(E), and assume that C is independent from (A,B) over E.
Then acl(AC) ∩ acl(BC) = acl((A ∩B)C).

Proof. Let α ∈ acl(AC) ∩ acl(BC). By hypothesis, C |⌣EAB, so that C |⌣AB.

Since α ∈ acl(AC), we get (C,α) |⌣AB. Similarly, (C,α) |⌣BA. By 3.20, we

obtain (C,α) |⌣A∩B(A,B), which gives α ∈ acl((A ∩B)C).

5.17. Proposition. Let E = aclσ(E) ⊂ F = aclσ(F ) ⊂ K, let ā be a tuple
in K which is independent from F over E, and let S be a set of realisations of
a set of types of SU-rank 1 over E.

(1) If tp(ā/E) is modular, then so is tp(ā/F ).
(2) S is modular if and only if all types realised in S are modular.
(3) If SU(ā/E) = 1 and tp(ā/F ) is modular, then tp(ā/E) is modular.

Proof. (1) Let b̄ be a finite set of realisations of tp(ā/F ), and let c̄ be a finite
tuple of elements of K. By modularity, b̄ is independent from aclσ(F c̄) over
D = aclσ(Eā)∩aclσ(F c̄). This implies that b̄ is independent from aclσ(F c̄) over
aclσ(FD) ⊆ aclσ(F b̄) ∩ aclσ(F c̄), and shows that tp(ā/F ) is modular.
(2) One direction is clear: if S is modular and P ⊂ S, then P is modular. For

the other direction, assume that this is not true, and let n be minimal such that
there are ā1, . . . , ān ∈ S, a tuple b̄ in K and C = aclσ(E, ā1, . . . , ān)∩aclσ(Eb̄),
with (ā1, . . . , an) and b̄ not independent over C.
Note that, by minimality of n and because all tuples have SU-rank 1, we

have that the elements ā1, . . . , ān are independent over E. Moreover, the types
tp(āi/E) are pairwise non-orthogonal: indeed, assume by way of contradic-
tion that tp(ān/E) is orthogonal to tp(ā1/E). By minimality of n and tran-
sitivity of forking, we have that (ā1, . . . , ān−1) and b̄ are independent over
C ′ = aclσ(E, ā1, . . . , ān−1) ∩ aclσ(Eb̄), and that ān and b̄ are not indepen-
dent over (C ′, ā1, . . . , ān−1) = (E, ā1, . . . , ān−1). Hence C = C ′, and ān ∈
aclσ(E, ā1, . . . , ān−1, b̄) \ aclσ(E, ā1, . . . , ān−1). Since tp(ān/E) is orthogonal
to tp(ā1/E), we get that ān ∈ aclσ(E, ā2, . . . , ān−1, b̄), which contradicts the
minimality of n.
By definition and because SU(āi/E) = 1, this means that for each i ≥ 2 there

is Fi containing E and independent from āi over E, such that aclσ(Fiāi)\Fi con-
tains a realisation ā′i of tp(ā1/E). Moving the Fi’s by an E-automorphism, we
may choose them such that (F2, . . . , Fm) is independent from (ā1, . . . , ān, b̄) over
E. Setting F = aclσ(F2, . . . , Fm) and using 5.16, we then have aclσ(F, ā1, . . . , ān)∩
aclσ(F b̄) = aclσ(FC), but (ā1, . . . , ān) is not independent from b̄ over aclσ(FC).
As each āi is equi-algebraic over F with the realisation ā′i of tp(ā1/E), we get

that:
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— aclσ(F, ā1, ā
′
2, . . . , ā

′
n) = aclσ(F, ā1, . . . , ān),

— SU(ā1, . . . , ān/F ) = n = SU(ā1, ā
′
2, . . . , ā

′
n/F ) = SU(ā1, ā

′
2, . . . , ā

′
n/E).

Therefore (by transitivity of independence), we get that

(∗): F and (ā1, ā
′
2, . . . , ā

′
n, b̄) are independent over E.

Hence, letting D = aclσ(E, ā1, ā
′
2, . . . , ā

′
n) ∩ aclσ(Eb̄), we have (by 5.16)

aclσ(F, a
′
2, . . . , ā

′
n) ∩ aclσ(F b̄) = aclσ(FD) = aclσ(FC).

By modularity of tp(ā1/E), we also have that (ā1, ā
′
2, . . . , ā

′
n) and b̄ are indepen-

dent over D, and by (∗), this gives that they are independent over aclσ(FD).
But, since each ā′i is equi-algebraic with āi over F , we have that ā1, ā

′
2, . . . , ā

′
n

and b̄ are not independent over aclσ(FC) = aclσ(FD): this gives us the desired
contradiction.
(3) Assume that tp(ā/F ) is modular. Note that if φ is an E-automorphism of

K, then φ(tp(ā/F )) is also modular. Let ā1, . . . , ān be realisations of tp(ā/E), b̄
a tuple of elements of K, and C = aclσ(Eā1, . . . , ān) ∩ aclσ(Eb̄). For each i, let
Fi be such that tp(āi, Fi/E) = tp(ā, F/E); then each tp(āi/Fi) is modular. Using
(1), and moving the Fi by some E-automorphism of K, there is F ′ independent
from (ā1, . . . , ān, b̄) over E, such that tp(āi/F

′) is modular for i = 1, . . . , n. By
5.16, we have aclσ(F

′ā1, . . . , ān) ∩ aclσ(F ′b̄) = aclσ(F
′C). By (2), we get that

(ā1, . . . , ān) and b̄ are independent over aclσ(F
′C). Since F ′ is independent from

(ā1, . . . , ān, b̄) over E, this implies that (ā1, . . . , ān) is independent from b̄ over
C and therefore that tp(ā/E) is modular.

5.18. Corollary. Let p and q be types over algebraically closed sets, which
are of SU-rank 1, and are non-orthogonal. Then p is modular if and only if q is
modular.

Proof. Let p′ and q′ be non-forking extensions of p and q to some set A = aclσ(A)
containing the sets over which p and q are defined, and such that p′ is non-almost-
orthogonal to q′. Use 5.17.

5.19. Non-example. Let E = aclσ(E) ⊂ K, let ā be a tuple, and assume
that SU(ā/E) ≥ ω. We claim that tp(ā/E) is not modular.
Indeed, we know that some element of the tuple ā, say a1, is transformally

transcendental over E. Take b̄ realising tp(ā/E) and independent from ā over E,
and let c be transformally transcendental over aclσ(Eāb̄), let d = a1c+ b1. Then
certainly (ā, b̄) and (c, d) are not independent over E. Since d = a1b+b1, we have
that (c, d) is independent from (ā, b̄) over aclσ(Ea1b1), and so it is enough to show
that (a1, b1) and (c, d) are not independent over C = aclσ(Ea1b1) ∩ aclσ(Ecd).
We claim that the canonical base of tp(c, d/Ea1b1) contains a1b1. Indeed,

let (c′, d′) be a realisation of tp(c, d/Ea1b1), independent from (a1, b1, c, d) over
Ea1b1. Then a1, b1, c, c

′ are independent over E. However (a1, b1) belongs to
the field generated by (c, d, c1, d1). As (a1, b1) does not belong to aclσ(Ecd),
this implies that (a1, b1) and (c, d) are not independent over C = aclσ(Ea1b1) ∩
aclσ(Ecd).

5.20. Sets of SU-rank 1. Let us again concentrate on sets S of SU-rank 1,
defined over E. Because all our tuples have SU-rank 1, we get a pre-geometry
on S, where the closure operator is simply acl(E,−): given A ⊂ S and b ∈ S,
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either b ∈ acl(E,A), or b is independent from A over E. The exchange principle
holds, and the SU-rank of a set is the dimension of this set, etc.

Definition. A SU-rank-1 type p over E is called trivial if whenever ā1, . . . , ān, ā
realise p, then either ā /∈ aclσ(E, ā1, . . . , ān), or ā ∈ aclσ(Eāi) for some i. In
other words, if P is the set of realisations of p, then aclσ(EP ) =

∪
ā∈P aclσ(Eā).

5.21. Exercise 14. Show that a trivial type is modular.

5.22. Some additional properties of modular types in models of ACFA.

(1) If the type p is non-orthogonal to a modular type of SU-rank 1, then p is
non-almost-orthogonal to a (modular) type of SU-rank 1.

(2) If p is a non-trivial modular type of SU-rank 1, then p is non-orthogonal to
the generic of a group of SU-rank 1 defined over the same set as p (see the
definition of generic in the next chapter).

§6. Groups, generic types, stabilisers. In this section, contrary to my
promise, I will use some results on simple theories. You may very well replace
everywhere “simple”, or “supersimple”, by complete theory extending ACFA.
The notion of generic is meant to be the analogue of a generic of an algebraic
group (so, generic in the sense defined in 1.10). A good reference for generics
and stabilisers in simple theories is Pillay’s paper [16]. But see also Wagner’s
book [19].

6.1. Generics in groups. Let G be a group (maybe with extra structure),
whose theory is simple [Or: let G be a group definable in some model of ACFA].
We call a type p over some set E = acl(E) a generic type of G, if p is realised
in G, and whenever a ∈ G and b realising p are independent over E, then b · a
is independent from a over E. An element of G is generic over E if it realises a
generic type over E.
Let H be a definable subgroup of G, let a ∈ G, consider the coset a ·H and

let E = acl(E) be a set over which a ·H is defined. We say that b is a generic
of the coset a ·H over E if b ∈ a ·H and whenever h ∈ H is independent from b
over E, then b · h is independent from h over E.

Some facts.

(1) Generics exist. A non-forking extension of a generic type is generic.
(2) Assume that tp(b/E) is generic, and let a ∈ G be independent from b over

E. Then a · b is independent from a over E, and a · b and b ·a realise generic
types over E. (The definition described a generic element of G in terms
of its action on G by multiplication on the left. This shows that it can be
defined also in terms of the action by multiplication on the right, and that
a “left” generic is also a “right” generic.)

Below we will give some examples illustrating this notion. First we need some
definitions from algebraic geometry.

6.2. Projective space, projective varieties. Let n be an integer, and
consider the set of lines through the origin O in affine n + 1-space An+1(Ω).
This set can be viewed as the set of equivalence classes of An+1(Ω) \ O for the
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equivalence relation

(x0, . . . , xn) ∼ (y0, . . . , yn) ⇐⇒ ∃λ ̸= 0

n+1∧
i=0

xi = λyi.

We denote this set by Pn(Ω), and call it the projective n-space. The equivalence
class of (x0, . . . , xn) is usually denoted by (x0 : · · · : xn).
If F (x0, . . . , xn) is a homogeneous polynomial over Ω, i.e., for some d all

monomials appearing in F have total degree equal to d, then the equation
F (x0, . . . , xn) = 0 is compatible with the equivalence relation, and defines a
subset of Pn(Ω). The topology whose closed sets are finite intersections of sets
of this form, is called the Zariski topology.

Note that we can view Pn(Ω) as the union of n + 1 copies of affine n-space.
Indeed, for i = 0, . . . , n, define

Ui = {(x0 : · · · : xn) | xi ̸= 0}.

Then the map fi : (x1, . . . , xn) 7→ (x1 : · · · : xi−1 : 1 : xi : · · · : xn) defines a
bijection between An(Ω) and Ui. Moreover, Pn(Ω) =

∪n
i=1 Ui. Each Ui is open

for the Zariski topology, and the maps fi are homeomorphisms (for the Zariski
topology on An(Ω) and the induced topology on Ui).
Closed subsets of projective n-space are called projective sets. If X is closed

and irreducible (i.e., for each i, Ui ∩X is a variety), then we call X a projective
variety. One can show that the product of two projective varieties is a projective
variety.
Morphisms between projective varieties are defined locally using the covering

by affine spaces.

6.3. Algebraic groups.
We say that G is an algebraic group if G is an open subset of a projective

variety, and we have a group operation G×G→ G which is an morphism, i.e., is
everywhere defined, and is locally defined by rational functions. We also require
that the inverse map G→ G is a morphism.
Here are some examples:
— The additive group, usually denoted Ga to distinguish it from the affine

line A (with no structure). It is an open subset of P1.
— The multiplicative group Gm (so Gm(K) = K \ {0}).
— Also, some projective group varieties (i.e., closed for the Zariski topology),

which are called abelian varieties. Some examples are elliptic curves, and also
certain groups of the form Cn/Λ, where Λ is a 2n-dimensional lattice subgroup
of Cn generating the R-vector space Cn.

6.4. Some elementary facts about algebraic groups. We did not require
in our definition that G be irreducible (by which I mean, that the Zariski closure
of G in the projective space we are working in, is a variety).
If G is not irreducible, then one can verify that the irreducible components of

G are disjoint, so that there is a unique irreducible component of G, denoted G0

and called the connected component of G, which contains the identity element e
of G. One has [G : G0] <∞.
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Let G be an algebraic group, and H a subgroup of G, H̄ its Zariski closure.
Then H̄ is also an algebraic group.

6.5. Examples of generics. We let K be an algebraically closed field, suf-
ficiently saturated, and G an algebraic group defined over some subfield E of
K.
The first thing to remark, is that a generic of G(K) for the theory ACF of

algebraically closed fields, is simply a generic in the sense of algebraic geometry.
This is fairly immediate from the definition: let d = dim(G), assume that g is
a generic of G, independent from h ∈ G over E. We know that g · h ∈ E(g, h),
and (using the inverse map), that g ∈ E(g · h, h−1) = E(g · h, h). Hence g and
g · h are equi-algebraic over E(h). This implies

tr.deg(g · h/E(h)) = tr.deg(g/E(h)) = d ≤ tr.deg(g · h/E) ≤ d = dim(G),

so that equality holds and g · h is independent from h over E, as desired.

Let us now assume that K is a model of ACFA, sufficiently saturated, and let
H be a definable subgroup of G(K), defined also over E = aclσ(E). Then the

σ-closure H̃ of H is a σ-closed subgroup of G(K). Thus there is a natural notion

of generic for H: an element g ∈ H is generic if and only if Iσ(g/E) = Iσ(H̃/E).
Using the description of generics of algebraic groups, one can show (easily if
SU(H) < ω, with a little more work in the general case) that this definition is

the correct one. Furthermore, that [H̃ : H] < ∞, so that a generic of H is also

a generic of H̃.

One interesting consequence of elimination of imaginaries, is the following: let
H̃0 be the connected component of H̃ (i.e., the irreducible component in the

sense of the σ-topology which contains the identity element). Then both H̃ and

H̃0 are defined over E. The cosets of H̃0 in H̃ are then imaginary elements, and
algebraic over E (since [H̃ : H̃0] < ∞). By elimination of imaginaries, they are
defined over E.

6.6. Lemma. Let G be a group, H a definable subgroup of G, defined over
some E = acl(E), and g ∈ G a generic of G over E. Then g is a generic of g ·H
(over C = E ∪ c̄, where c̄ is the code of g ·H).

Proof. Let h be a generic of H over Eg. We claim that g′ = g · h is a generic
of g · H over Eg. Indeed, let h1 ∈ H be independent from g′ over Eg. Then
g′ · h1 ∈ g · H, and we need to show that h1 and g′ · h1 are independent over
Eg. But, g′ · h1 is equi-algebraic with h · h1over Eg, and it is therefore enough
to show that h1 and h ·h1 are independent over Eg, which follows because h is a
generic of H over Eg. As C ⊂ acl(Eg), this implies that g′ is a generic of g ·H
over C.
By genericity of g, we know that g′ and h are independent over E, so that h

is also a generic of H over Eg′. From g ·H = g′ ·H and the previous step, we
deduce that g is a generic of gḢ over C.

6.7. Stabilisers. Let G be a group (maybe with extra structure), whose
theory is simple, let p be a type over E = acl(E). Assume that the independence
theorem is satisfied over E: i.e., given a and b independent over E, and any two
non-forking extensions p1 to (E, a) and p2 to (E, b) of some type p over E, p1∪p2
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extend to some type p′ over (E, a, b) which does not fork over E. [Or: let G be
a group definable in a model of ACFA.]
We define S(p) to be the set of elements h ∈ G, such that there exists a

realisation g of p such that h · g realises p, and h is independent from g and from
h · g over E.
One then defines Stab(p) = S(p) ·S(p). By the independence theorem over E,

we have that if h1 and h2 are independent elements of S(p), then h1 · h2 ∈ S(p).
This will imply that Stab(p) is a subgroup of G, with generics in S(p). One can
show that Stab(p) is ∞-definable.

6.8. Example. Let K be a model of ACFA, G an algebraic group defined
over E = aclσ(E), and let p be a type over E, X ⊆ G(K) its set of realisations.

By definition, if h ∈ S(p), then there are g, g1 ∈ X such that g |⌣Eh, g1 |⌣Eh,
and h · g = g1. In particular, h = g1 · g−1, so that h ∈ X ·X−1. The requirement
that h be independent from g and from g1 over E then implies that necessarily
SU(h/E) ≤ SU(g/E) = SU(g1/E).
Let Y be the σ-closure of X. Then Y is irreducible, and g, g1 belong to

Y . This implies in particular that S(p) ⊂ Stab(Y ) =def {h ∈ G(K) | hY = Y }.
Note that Stab(Y ) is clearly a subgroup of G(K), and is quantifier-free definable,
so that it is σ-closed. If I am not mistaken, one can then show that Stab(p) is
the intersection of all definable subgroup of Stab(Y ) which are defined over E
and have finite index in Stab(Y ).

6.9. Remarks/Exercise 15. Let us now assume that p has a unique non-
forking extension to any set containing E, and let P be the set of realisations of
p. [This hypothesis is verified for instance when p is definable over E and T is
stable.]
(1) Then Stab(p) = S(p): this is because the quantifier “there exists” in the

definition of S(p) can be replaced by the quantifier “for all”.
(2) If E′ ⊃ E, and p′ is the non-forking extension of p to E′, then Stab(p) =

Stab(p′).
(3) Let h ∈ E. Then h ∈ S(p) ⇐⇒ h · P = P .

No completion of ACFA is stable. However, in the language of “local stability
theory”, all quantifier-free formulas are stable. We will see below some of the
consequences this has.

6.10. Proposition. Let E = aclσ(E) ⊂ K, K a sufficiently saturated model
of ACFA.

(1) Let p be a type over E, and assume that whenever F contains E, then p
has a unique non-forking extension to F . Then p is definable over E, i.e.,
given a formula φ(x̄, ȳ), there is a formula (over E) dφ(ȳ) which defines in
K the set of c̄ such that φ(x̄, c̄) belongs to the unique-non-forking extension
of p to K.

(2) Let p be a quantifier-free type over E. Given a quantifier-free formula
φ(x̄, ȳ), there is a quantifier-free formula (over E) dφ(ȳ) which defines in
K the set of c̄ such that φ(x̄, c̄) belongs to some/all non-forking extensions
of p to K.
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Proof. (1) is well-known, but we will give the proof. Assume by way of contra-
diction that p is not definable, i.e., that there is some formula φ(x̄, ȳ) such that
the set X of tuples c̄ of K such that φ(x̄, c̄) belongs to the unique non-forking
extension of p to K is not definable. Then, for every L(E)-formula ψ(ȳ), there
are c̄1 ∈ X, c̄2 /∈ X which both satisfy ψ(ȳ). By compactness, there are c̄1, c̄2
in K, realising the same type over E, and such that c̄1 ∈ X, c̄2 /∈ X. Let f
be an automorphism of K which leaves E fixed and sends c̄1 to c̄2. If q is the
unique non-forking extension of p to K, then f(q) is also a non-forking extension
of p to K, and so must equal q: but this contradicts the fact that φ(x̄, c̄1) ∈ q,
φ(x̄, c̄2) /∈ q = f(q).
We now sketch a proof of (2). The crucial point is the following observation:

since quantifier-free types correspond exactly to descriptions of the isomorphism
type of the “difference field generated by”, it follows that if F = aclσ(F ) contains
E, then there is a unique quantifier-free type q over F which extends p and is
such that whenever ā realises q, then ā is independent from F over E.
This implies that, given p = qftp(ā/E) and c̄ independent from ā over E, we

have:

qftp(ā/E) ∪ qftp(c̄/E) ∪ Σ(x̄, ȳ) ⊢ qftp(ā, c̄/E),

where Σ(x̄, ȳ) is the set of quantifier-free formulas over E expressing that the
tuples x̄ and ȳ are independent over E. The proposition follows by compactness.

6.11. Remarks. (1) Let E = aclσ(E), ā a tuple in K. Let C be the set of
codes of all (quantifier-free) definitions of qftp(ā/E). Then certainly tp(ā/E)
does not fork over C. Moreover, if D ⊂ E and tp(ā/E) does not fork over D then
aclσ(D) ⊃ C. Hence, we are getting that for quantifier-free types, our definition
of a canonical base agrees with the classical one.

(2) Let G be a group definable in K by quantifier-free formulas (over some
E = aclσ(E)), and assume in addition that the group operation and the inverse
map are piecewise definable by terms of the language {+,−, ·,−1, σ, σ−1, e(e ∈
E)}, so that if a, b ∈ G, then a · b ∈ clσ(E, a, b) and a−1 ∈ clσ(E, a). [By the
multiplication being piecewise defined, we mean that there is a definable finite
partition of G2, and that on each piece of this partition multiplication is defined
by a term.] If p is a quantifier-free type over E realised in G, then we may also
define Stab(p) to be the set of elements b of G such that whenever a realises p
and is independent from b over E, then b · a realises p and is independent from
b over E. All remarks made in 6.9 go through to this particular case. Examples
of such groups are algebraic groups defined over E.

6.12. Theorem. Let G be a group, quantifier-free definable in a model K of
ACFA, and assume that G is modular, and the group operation and the inverse
map are piecewise defined by terms of the language {+,−, ·,−1, σ, σ−1, e(e ∈ E)}.
If X is a quantifier-free definable subset of G, then X is a Boolean combination
of quantifier-free definable subgroups of G. Furthermore, if G is defined over
E = aclσ(E), then so are these subgroups.

Proof. We will fist show that if p is a quantifier-free type defined over some
A = aclσ(A) containing E, then the set P of realisations of p is contained in a
coset of some quantifier-free definable subgroup S of G, and p is the generic type
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of this coset. Without loss of generality, we will assume that A is the algebraic
closure (over E) of the canonical base of p.
Define S = Stab(p), the set of elements b ∈ G, such that there is a ∈ P ,

independent from b over A and such that b · a ∈ P .

Claim. S is quantifier-free definable (over A).
Let a ∈ P and consider Iσ(a/A). Then Iσ(a/A) completely determines p: let

b ∈ G. Then

Iσ(b/A) = Iσ(a/A) ⇐⇒ b ∈ P.

Let F (X) be a tuple of difference polynomials over A generating the σ-ideal
Iσ(a/A) (as a σ-ideal).
By the piecewise quantifier-free definability of the group operation, there is a

quantifier-free formula ψ(y, x) such that, if a ∈ P is independent from g ∈ G
over A, then

K |= ψ(g, a) ⇐⇒ F (g · a) = 0.

Let φ be the formula F (x) = 0∧ψ(y, x). Then S is defined by the formula dφ(y):
Let g ∈ G. Then g satisfies dφ(y) if and only if F (x) = 0 ∧ ψ(g, x) belongs
to the non-forking extension of p to A ∪ g, if and only if whenever a ∈ P is
independent from g over A, then b = g · a satisfies F (x) = 0. Note that because
b and a are equi-algebraic over aclσ(A, g), this implies that b belongs to P and
is independent from g over A (because b cannot satisfy “more” equations than
F (x) over aclσ(A, g)).

[In the classical stable (non-superstable) case, one cannot get S to be defin-
able, only ∞-definable. There the defining formulas are of the form ∀z̄ dφ(z̄) ↔
dφ∗(z̄, y), where φ∗(z̄, y, x) = φ(z̄, y · x).]
Fix a ∈ P , and g a generic of G over Aa. Then b = g · a is a generic of G

over Aa, and is independent from a over A. Let G0 ≺ G contain A, g, let P0

be the set of realisations of the non-forking extension of p to G0, and Q0 the
set of realisations of the non-forking extension q0 of qftp(b/Ag) to G0. Then
Q0 = g · P0. If τ ∈ Aut(G0/A), then τ also acts on the set of formulas over
G0. By abuse of notation, if U is an (∞-) definable over G0 subset of G, we
will denote by τ(U) the (∞-) definable subset of G defined by applying τ to the
formulas defining U .

Claim. Let τ ∈ Aut(G0/A). Then τ(Q0) = Q0 ⇐⇒ τ(g · S) = g · S.
Since p is definable over A, we have that τ(P0) = P0, and τ(S) = S. Hence

τ(Q0) = Q0 ⇐⇒ τ(g) · P0 = g · P0 ⇐⇒ g−1 · τ(g) · P0 = P0 ⇐⇒ g−1 · τ(g) ∈
S ⇐⇒ τ(g · S) = g · S.
By elimination of imaginaries of ACFA, we get that the codes of Q0 and of

g · S are equi-algebraic over A. Let c̄ be the code of g · S. Because g is a generic
of G over A, and S is a subgroup of G defined over A, we get that g is a generic
of g · S (see Lemma 6.6), and that c̄ is equi-algebraic with the canonical base of
qftp(g/aclσ(Ac̄)), so that SU(g/Ac̄) = SU(S). By the claim, we also get that the
canonical base of q0 is equi-algebraic over A with c̄. Since q0 is the non-forking
extension of qftp(b/aclσ(Ag)) to G0, it follows that c̄ is equi-algebraic over A
with Cb(b/Ag). By modularity, we have:
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aclσ(Ac̄) = aclσ(Ab) ∩ aclσ(Ag) (∗)
Since g is a generic of G over Aa, we have that a is independent from g and from
b = g · a over A, and therefore also over Ac̄ by (∗). Hence, using the symmetry
of independence, we have:

SU(P ) = SU(b/Ag) = SU(b/Ac̄) = SU(b/Ac̄a) = SU(g/Ac̄a) = SU(g/Ac̄) = SU(S)

(The fourth equality is because b and g are equi-algebraic over Aa ⊂ Aac̄). Hence
SU(P ) = SU(S). If h ∈ S is independent from a over A, then b = h · a ∈ P , and
is independent from a and from h over A. Hence the generics of S are of the
form d · e−1, for d, e ∈ P independent over A. This implies that Sd = Sa for all
d ∈ P , and therefore that P ⊂ Sa. It remains to show that if b is a generic of
Sa, then b ∈ P . Let b be a generic of Sa over A, and choose d ∈ P independent
from b over A. Then Sd = Sa, so that there is h ∈ S such that b = h · d.
From SU(S) = SU(b/A) = SU(b/Ad) = SU(h/Ad) ≤ SU(S), we deduce that h is
independent from d over A, so that h · d ∈ P (by definition of S).

Hence the type p can be described as follows:
— x belongs to the coset Sa.
— If S′ is a definable subgroup of G, and the coset S′b is definable over A and

strictly contained in Sa, then x does not belong to S′b.
Indeed, if b ∈ Sa is not a generic of Sa, then the realisations of qftp(b/A) are

the generics of some S′b strictly contained in Sa and defined over A. It follows,
by compactness, that every formula is equivalent to a Boolean combination of
formulas of the form “x belongs to a coset of some definable subgroup of G”.

We will now show that S is in fact defined over E. By modularity, tp(g/Ac̄)
is definable over aclσ(Eg), and since g · S is a coset of a group, this implies that
g · S is also defined over aclσ(Eg). Hence so is S = g−1 · (g · S), and we obtain
that S is defined over aclσ(Eg) ∩A = E.

§7. General results about models of ACFA. We state here some results
without proofs. We are working in a model K of ACFA. Let us start with an
easy one:

7.1. Proposition. Let ϕ be the identity if char(K) = 0, and the Frobenius
automorphism x 7→ xp if char(K) = p > 0. Let m ≥ 1 and n be integers. Then
the difference field (K,σmϕn) is also a model of ACFA.

Proof. See below exercise 7.19.

7.2. The dichotomy theorem. Using Theorem 4.1, we obtain that, in posi-
tive characteristic the fields Fix(σmϕn) are pseudo-finite fields. We will refer to
these fields as the fixed fields of K.
Assume that (m,n) = 1 (or m = 1, n = 0), let F = Fix(σmϕ−n). One can

then show that SU(F ) = 1. From this, it follows that if S ⊂ F is definable and
infinite, then F = a1S + a2S + · · · + anS for some elements a1, . . . , an ∈ K.
This implies that all non-algebraic 1-types containing the formula σ(x) = x [or
σm(x) = ϕn(x) if the characteristic is positive] are non-orthogonal; since the field
F is certainly non-modular, and has no induced structure from K, this implies
the following:
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A type p which is non-orthogonal to one of the formulas σm(x) = ϕn(x) cannot
be modular.

In fact, the converse is also true:

Theorem. Let K be a model of ACFA, and let p be a type of SU-rank 1 over
E = aclσ(E) ⊂ K. Then p is modular if and only if p is orthogonal to all
formulas σm(x) = ϕn(x).
If char(K) = 0, then p is modular if and only if p has a unique non-forking

extension to any set containing E.

7.3. Discussion/Theorem. ��� In characteristic 0, we therefore get that
modular types of SU-rank 1 are definable, and hence stable. Using proposition
5.9, one can then show that if a (finite SU-rank) formula φ(x̄) is orthogonal to
σ(x) = x (i.e., to all types containing the formula σ(x) = x), then all types con-
taining φ(x̄) are stable and definable, the set S defined by φ is stably embedded,
i.e., all subsets of Sm which are definable in K are definable with parameters
from S, so that S with the structure induced from K is superstable of finite
U-rank and one-based.
In characteristic p > 0, if a finite SU-rank formula is orthogonal to all formulas

defining fixed fields, then the set it defines is also modular, but is usually not
stable. ���

7.4. For p a prime and q a power of p, consider the difference field Fq =
(Falg

p , σq), where σq : x 7→ xq. Let U be a non-principal ultrafilter on the set Q
of all prime powers.

Theorem (Hrushovski [7], Macintyre [8]). The difference field
∏

q∈Q Fq/U is a
model of ACFA.

7.5. One can then show that the theory ACFA coincides with the set of sen-
tences true in all but finitely many of the difference fields Fq. This is the analogue
of Ax’s theorem, which states that the theory of pseudo-finite fields coincides
with the set of sentences true in almost all finite fields. Hrushovski’s proof gives
more: it gives estimates on the size of finite definable sets. Before stating his
result, let me remark that one can replace the scheme of axioms (3) of the theory
ACFA by the apparently weaker scheme of axioms

(3’) If U and V are varieties of dimension d defined over K, with V ⊆ U×Uσ,
such that the projections of V to U and to Uσ are generically onto, then
there is a tuple ā in K such that (ā, σ(ā)) ∈ V .

Let me explain why this (together with axiom schemes (1) and (2)), will give
us an axiomatisation of ACFA. The proof that every difference field K embeds
in a model of ACFA actually shows that every difference field embeds in a model
L of ACFA, all of whose elements are transformally algebraic over K. This
means that given a tuple ā ∈ L, there is an integer m such that aclσ(Kā) =
K(ā, . . . , σm(ā))alg. Hence, every particular instance of axiom (3) is implied by
finitely many instances of axiom (3’).

7.6. Theorem (Hrushovski). Let F (X̄, Z̄) and G(X̄, Ȳ , Z̄) be tuples of poly-
nomials over Z. There is a positive constant C with the following property:
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For all prime p and power q of p, and tuple c̄ in Falg
p , if the equations F (X̄, c̄) =

0 and G(X̄, Ȳ , c̄) = 0 define varieties U and V satisfying the requirements of
axiom (3’), then

|Card({ā ∈ Falg
p | (ā, āq) ∈ V })− cqd| ≤ Cqd−1/2,

where

d = dim(U) = dim(V ), and c = [K(V ) : K(U)]/[K(V ) : K(Uσ)]ins.

This theorem is a strengthening of a theorem of Lang-Weil for the number of
points of varieties defined over finite fields: take U defined over Fq, and V the
intersection of the diagonal with U × U . The above formula then gives you an
estimate on the number of points of U with their coordinates in Fq.

7.7. Some applications of these theorems. You may recall the proof of
Ax that if V is a variety defined over C, and f : V → V is a morphism which
is injective on the set V (C) of points of V with their coordinates in C, then f
defines a bijection of V (C) (i.e., f is also surjective). This is done as follows:
this statement will hold in C if and only if it holds in all algebraically closed
fields of characteristic p > 0, if and only if it holds in all Falg

p , p a prime. So,

let V be a variety and f : V → V a morphism, both defined over Falg
p . Then

for some q = pm, they are defined over Fq. Thus, for every n ≥ 1, f is a
map V (Fqn) → V (Fqn), is injective, and therefore also surjective since V (Fqn) is
finite. Because Falg

p =
∪

n Fqn , we get that f defines a permutation of V (Falg
p ).

Corollary. Let B be a group of finite SU-rank defined in a model K of ACFA,
and assume that f is a definable endomorphism of B. Then

[B : f(B)] = Card(Ker(f)).

Proof. Without loss of generality, we may assume that K is countable. Let
φ(x̄, ū), ψ(x̄, ȳ, ū) be L-formulas and b̄ ∈ K be such that φ(x̄, b̄) defines B and
ψ(x̄, ȳ, b̄) defines the graph of f . By 7.4, the difference field K embeds into an
ultraproduct

∏
q Fq/U of the difference fields Fq. Take a representative (b̄q)q of

b̄. Then for almost all q (in the sense of the ultrafilter U), we have that φ(x̄, b̄q)
defines a group Bq in Fq, and ψ(x̄, ȳ, b̄q) defines an endomorphism fq of Bq. Note
also that because B is of finite SU-rank, there is an integer m such that every
element ā of B satisfies σm(ā) ∈ clσ(b̄)(ā, . . . , σ

m−1(ā))alg. Hence the same is
also true for almost all Bq. By 7.6, the Bq are therefore finite, and we obtain
trivially that

[Bq : fq(Bq)] = Card(Ker(fq)).

Thus the same holds in K. Note that Ker(f) is infinite if and only if the size of
the Ker(fq) is unbounded.

7.8. Application to families of finite simple groups. With the exception
of the sporadic finite simple groups and the alternating groups An, the finite
simple groups are members of infinite families. Some of these families are of the
form G(Fq) for some linear algebraic group G (for instance SLn(Fq)). Hence
looking at G(F ) for F a pseudo-finite field, one gets uniformity results on the
family G(Fq), q a prime power.
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Some of these families however do not originate directly from a simple algebraic
group, but their definition involves some automorphism of the field Fq. They are
the so-called “twisted finite simple groups”. And they become definable in the
structure (Falg

p , σq). Using 7.4, one then also gets uniformity results for these
families.
Typical examples of uniformity results: we know that in a finite simple group

H, every non-trivial conjugacy class X generates the whole group. The unifor-
mity gives a bound on the number N such that H = (X ·X−1)N .

7.9. The Jacobi conjecture for difference fields.
Let n ≥ 1, let u1(X1, . . . , Xn), . . . , un(X1, . . . , Xn) ∈ K[X1, . . . , Xn]σ (K a

difference field, and we will assume it is a model of ACFA). The equations

u1(x1, . . . , xn) = · · · = un(x1, . . . , xn) = 0

define a σ-closed subset of Kn, and some of the irreducible components of this
set will be of finite SU-rank. If Y is an irreducible component of finite SU-rank
of this set, let us define the order of Y as Sup{tr.deg(clσ(Eā)/E) | ā ∈ Y },
where E = aclσ(E) is such that the elements u1, . . . , un are defined over E. The
Jacobi’s conjecture gives an explicit bound H on the order of the irreducible
components of finite SU-rank. This bound is defined as follows: for each k and
i, define hik to be the order of uk when viewed as a difference polynomial in xi
(so, it equals m if xσ

m

i appears in uk and xσ
m+1

i does not). One then sets

H = max
θ∈Sym(n)

n∑
k=1

h
θ(k)
k .

Hrushovski uses the fact that if an irreducible σ-closet set Y has order d, then
in a structure Fq, it will have approximately cqd points for some fixed constant
c. Thus the order of Y will be limq logq(Card(Y (Fq)). One uses this remark to
reduce the Jacobi’s conjecture to a problem about number of points in algebraic
sets.

7.10. Modular subgroups. One can show that if one has an exact sequence

0 → A→ B → C → 0

of definable groups (in a modelK of ACFA), then B is modular [and stable] if and
only if A and C are modular [and stable]. Hence the study of modular definable
subgroups of an algebraic group reduces to the study of definable subgroups of
simple algebraic groups, i.e., of Ga(K), Gm(K), or of a simple abelian variety.

In characteristic 0, one can show that no proper definable subgroup of Ga(K)
is definable. Indeed, it is fairly easy to show that such a group is commensurable
with one defined by an equation of the form

∑n
i=0 aiσ

i(x) = 0, with ai ∈ K
(recall that two definable groups G1 and G2 are commensurable if [G1 : G1∩G2]
and [G2 : G1 ∩G2] are both finite). Furthermore the operator

∑n
i=0 aiσ

i can be
written as a composition of operators of the form σ − b, and the sets defined by
the equation σ(x)− bx are non-orthogonal to the fixed field.

Let A be an abelian variety, defined over the fixed field F of the model K of
ACFA. Then σ(A) = A, and therefore, if f(T ) =

∑n
i=0 aiT

i ∈ Z[T ], then the
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equation

f(σ)(x) =
n∑

i=0

[ai]σ
i(x) = 0

defines a subgroup of A(K). (Here, [ai]x denotes x+ · · ·+ x ai times). We will
denote this group by Ker(f(σ)).
A beautiful result of Hrushovski states that in characteristic 0, f(T ) is rela-

tively prime to all cyclotomic polynomials Tm − 1 if and only if Ker(f(σ)) is
modular, and therefore stable. [He actually has a complete characterisation of
the modular definable subgroups of an arbitrary abelian variety.]

A similar statement holds for definable subgroups of Gm(K): if f(T ) =∑
i aiT

i ∈ Z[T ], then the equation
∏
σi(xai) = 1 defines a subgroup of Gm(K)

(denoted Ker(f(σ))), and this subgroup is modular if and only if f(T ) is rela-
tively prime to all cyclotomic polynomials Tm − 1, m ≥ 1.

7.11. Application to the Manin-Mumford conjecture.
The Manin-Mumford conjecture is a conjecture in number theory, of which

various versions have been proved by various people. Here I will only state the
version of which Hrushovski gives a proof using difference fields. It is weaker
than the full Manin-Mumford conjecture, because of the restriction on the field
of definition, but is stronger in the sense that the constant M below can be
effectively computed from the data. If G is a group, let us denote by Tor(G) the
set of torsion elements of G. I will certainly not give the full proof, but will try
to indicate the main steps of the proof and some of its ingredients.

Theorem. Let A be a commutative algebraic group defined over some number
field k (= finite extension of Q), and let X be a subvariety of A. Then

X ∩ Tor(A) =
M∪
i=1

ai + Tor(Ai),

where the Ai are group subvarieties of A. The number M is bounded above
by c deg(X)e, where c and e are constants depending on A, and deg(X) is the
degree of X given some embedding of A (and of X) in projective space.

7.12. A first idea for a proof. Show that there is σ ∈ Gal(kalg/k) and a
functional equation f(σ)(x̄) = 0 valid on Tor(A) and such that: whenever K is
a model of ACFA extending (kalg, σ), then the equation f(σ)(x̄) = 0 defines a
modular subgroup of A(K).
Assume that we have done that. Then:
(1) We get the qualitative version of the result, because of modularity. Indeed,

let B be the subgroup of A(K) defined by the equation f(σ)(x̄) = 0. Then by the
results we got above, X ∩B is a Boolean combination of cosets of quantifier-free
definable subgroups of B. We can therefore write X ∩B as a finite union of sets
of the form (a + C) \ U , where C is a σ-closed subgroup of B, irreducible as a
σ-closed set, and U is a union of cosets which are strictly contained in a + C.
The σ-closure of (a + C) \ U equals a + C, and must also be contained in the
σ-closed set X ∩ B. This shows that X ∩ B is in fact a finite union of cosets of
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definable subgroups of B. Write

X ∩B =
n∪

i=0

ai +Bi.

Now, if ai + Bi intersects Tor(A), then we may take ai ∈ Tor(A). Note also
that ai + Bi ⊂ X implies that ai + Ai ⊂ X, where Ai is the Zariski closure of
the subgroup Bi of A, and therefore is an algebraic subgroup of A. Hence we
have that ai + Tor(Ai) ⊂ X, and this gives the result.
(2) If we have explicit bounds on the degree of f and the absolute values

of its coefficients, then we get an explicit bound on the number of irreducible
components of the σ-closed set X ∩B, and hence on the number M of cosets.

Unfortunately, this strategy needs to be slightly modified. First of all, the
commutative algebraic group A may have a vector subgroup, i.e., an algebraic
subgroup V which is isomorphic to Gn

a for some n. As we saw above, no definable
subgroup of Gn

a(K) is modular. So the first step of the proof is to show that it is
enough to prove the result for A/V , where V is the maximal vector subgroup of
A. This is done using an easy algebraic result, and a more complicated model-
theoretic one showing that if B is a definable subgroup of A(K) which is such
that B/B ∩ V is modular, then the intersection of B with any set is of a special
form (see below 7.15). So, one reduces the proof of the theorem to the case

where A has no algebraic subgroups isomorphic to Ga (such an algebraic group
is called a semi-abelian variety).

Also, it turns out that finding explicit bounds on coefficients and degree of
the equation is not effective. One bypasses this difficulty by looking first at
Torp′(A), the prime-to-p torsion subgroup of A, proving the desired result there,
and then using another prime ℓ. This produces explicit but very ugly bounds on
the number n of cosets.
More precisely: We get a bound for the number of cosets in X ∩ Torp′(A),

and this bound only depends on the degree of X. Hence, it also works for
(a+X)∩Torp′(A), for any a ∈ Tor(A). Now one uses that Torp′(A)+Torℓ′(A) =
Tor(A). But there is definitely some work involved. For details, please see [6].

7.13. Why do we need a bound on the coefficients of the equation?

Let f(T ) =
∑ℓ

i=0miT
i ∈ Z[T ]. We are interested in the number of ir-

reducible components of the σ-closed set X ∩ Ker(f(σ)), and we can find a
bound on this number as follows. We first look at the Zariski closed sets
Y = (X×Xσ×· · ·×Xσℓ

) and C = {(x0, . . . , xℓ) ∈ Aℓ+1 |
∑ℓ

i=0mixi = 0}. Then
the number of irreducible components of Y ∩C is bounded by deg(X)ℓ+1deg(C),
where the degree is computed via a certain embedding of A in projective space.
Unfortunately, the degree of C will depend on the values of the |mi| (and in-
crease if they do – of course), which means that already to know the number of
irreducible components of Y ∩ C, we need to know things about f(T ).

7.14. Existence of the equation, and some bounds. Here Hrushovski
chooses a prime p of good reduction (for A). Grosso modo, this means that,
reducing modulo p the equations defining A, one gets an algebraic group Ā de-
fined over some finite field Fq, and which resembles A. Moreover, let Lp be the



42 ZOÉ CHATZIDAKIS

field generated over k by the elements of Torp′(A). Then Lp is an unramified
extension of the field k, i.e., reduction “mod p”: Ok → Fq extends to a homo-
morphism OLp → Falg

p , and this homomorphism defines a 1-1 map on Torp′(A)

(with values in Torp′(Ā)).
The automorphism x 7→ xq of Falg

p lifts to an automorphism of Lp fixing k,

and one takes for σ any automorphism of Qalg extending this automorphism.
It then suffices to find the functional equation on Ā (because reduction mod

p is injective on the torsion). Observing that if

0 −→ A1 −→ A3 −→ A2 −→ 0

is a short exact sequence of (connected) commutative algebraic groups, then
Tor(A3) contains Tor(A1) and projects into Tor(A2), reduces to finding such
an equation (and bounds on its coefficients and degree) for each of the simple
factors of Ā: for the abelian ones, its existence and bound on the degree and
absolute value of the coefficients are given by a result of Weil. For products of
copies of Gm, it is more or less σ(x) − xq, and Ga(K) has no torsion elements,
so we do not need to look at what happens in Ga(Falg

p ).

We have therefore taken care of the p′-torsion, and furthermore have shown
that there is an effective bound on the number n such that

Torp′(A) ∩X =
n∪

i=1

ai + Torp′(Ai)

for some algebraic subgroups Ai of A and elements a1, . . . , an. Take now another
prime ℓ of good reduction. Proceeding as above, one gets an automorphism τ of
Qalg, such that τ satisfies a functional equation g(τ) on Torℓ′(A), and therefore
also on Torp(A) (the p-component of Tor(A)). Let Mp = k(Torp(A)). Then a
result of Serre tells us that Lp ∩Mp is a finite extension of k, say of degree m.
Hence there is an automorphism ρ of LpMp, which extends σm on Lp and τm on
Mp. Note the following: write f(T ) = a

∏
(T −αi), where a ∈ Z, the αi are in C.

Then Ker(f(σ)) is modular if and only if none of the αi is a root of unity. Also,
let h(T ) =

∏
(T − αm

i ), and choose b ∈ Z such that bh(T ) ∈ Z[T ]; then bh(σm)
vanishes on Torp′(A), and is relatively prime to all cyclotomic polynomials, hence
defines a modular subgroup of A(K). Reasoning similarly with τ , we get that
there is a modular subgroup B of some model of ACFA extending (LpMp, ρ),
which contains Tor(A). This gives us the qualitative version of Manin-Mumford
conjecture: we have shown that Tor(A) ∩ X is a finite union of cosets of the
torsion subgroups of some connected algebraic subgroups of A. This fact is used
in the proof.
Unfortunately, we do not know a priori that the constantm of Serre’s result has

an effective bound. This means that we do not know a bound on the complexity
of the set B defining our modular subgroup, and hence cannot derive a bound on
the number of irreducible components of the σ-closed set B∩X. However, we do
have explicit bounds (depending on p and ℓ) on the number of cosets appearing
in the decompositions of Torp′(A)∩X and Torℓ′(A)∩X, and this will be enough
to apply the strategy alluded to at the end of (7.12).
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7.15. The reduction to the semi-abelian variety case. We will state here
the two results which are needed to reduce the problem from the commutative
algebraic group A to the semi-abelian variety A/V . We will not state the model-
theoretic result in its full generality, only the particular case that is of interest
to us.

Definition. Let A be a commutative algebraic group, V its maximal vector
group. We call a subvariety X of A special if X = Y +C, where Y is a subvariety
of V , and C is a coset of a (connected) algebraic subgroup E of A.
We call a definable subset D of A(K) special, if X = Y + C, where Y is a

definable subset of V (K), C is a coset of a definable subgroup of A(K).

7.16. Proposition. Let A be a commutative algebraic group, and V its max-
imal vector subgroup, π : A→ A/V . Let B be a definable subgroup of A(K) of
finite SU-rank, and assume that π(B) is modular. Then every definable subset
of B is a Boolean combination of special sets.

The proof uses the following crucial ingredients:

(1) The fact that any definable subset of Fix(σ)n is definable with parameters
from Fix(σ) (see 4.3).

(2) The stability and the modularity of π(B) with the structure induced by K.
(3) The fact that B ∩ V is strongly related to Fix(σ). [In fact, there is a

definable bijection between B ∩ V and Fix(σ)k]
(4) The fact that any definable subset of (V ∩B)×π(B) is a Boolean combina-

tion of “rectangles”, i.e., sets of the form U1×U2 where U1, U2 are definable
and included in B ∩ V and π(B) respectively.

(5) If Y is a definable subset of B, then there is a group H, contained in
(Y · Y −1)n for some n (and hence definable), such that Y H/H is finite.
This is a property of groups of finite SU-rank.

7.17. Corollary. Let B be as above, and X a subvariety of A. Then X ∩B is
contained in a finite union of finitely many special varieties which are contained
in X.

Proof. Go to the Zariski closure of X ∩B.

7.18. Lemma. Let A be a commutative algebraic group, T the group of
torsion points of A (or the group of torsion points of order prime to p, for
some prime p), and assume that X ∩ T is contained in the union of the special
subvarieties Di of X, i = 1, . . . ,M . Then the Zariski closure of X ∩ T is the
union of at most M cosets of connected algebraic subgroups of A.

Proof. It is enough to show that if D is a special subvariety of X, then the
Zariski closure of D ∩ T is a coset of a group subvariety of A.
Write D = C+Y , where C is a coset of the connected group variety E, and Y

is a subvariety of V . We will first show that we may assume that Y is contained
in an algebraic subgroup V1 of V which intersects E in (0). Indeed, because V is
a vector space, there is a definable endomorphism π : V → V , with π2 = π and
Ker(π) = V ∩E. Then E+Y = E+π(Y ) because Ker(π) ⊆ E, and C = C+E
because C is a coset of E. Therefore

D = C + Y = C + E + Y = C + E + π(Y ) = C + π(Y ),
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and we may replace Y by π(Y ) ⊆ π(V ) = V1, and V1 ∩ E = (0).

Fix d0 ∈ D∩T , and for d ∈ D∩T define f(d) = d−d0. Then f(d) ∈ (E+V1)∩T .
Write f(d) = e + y, with e ∈ E, y ∈ V1. Since f(d) is a torsion element and
V1 ∩E = (0), we get that necessarily y = 0 (V has no torsion elements), so that
f(d) ∈ E, and d ∈ E + d0. Hence

D ∩ T = (E + d0) ∩ T = (E ∩ T ) + d0.

The only thing remaining to be shown, is that the Zariski closure B of E ∩ T is
a connected subgroup of A. Let B0 be the connected component of B. Because
E ∩ T is divisible, E ∩ T has no subgroup of finite index, which implies that
B0 ∩ T = B, so that B = B0.

7.19. Exercise 16. Let (E, σ) be an algebraically closed difference field, let
m ≥ 1 and let (L, τ) be a difference field extending (E, σm)). For each i =
1, . . . ,m − 1, choose Li realising σi(tpACF (L/E)), linearly disjoint from the
composite field of L0 = L, . . . , Li−1) over E. Let f0 = idL, and for i = 1, . . . ,m−
1 let fi : L → Li be an isomorphism extending σi. For i = 0, . . . ,m− 2, define
σi : Li → Li+1 by

σi = fi+1f
−1
i

and define σm−1 : Lm−1 → L0 by

σm−1 = τf−1m−1.

(1) Show that the σi agree with σ on E.
(2) Show that σm−1 · · ·σ0 = τ .
(3) Show that there is a difference field (M,σ) containing (E, σ) and such that

M contains L, and σm agrees with τ on L.
(4) Deduce that if K is a model of ACFA, then (K,σmϕn) is also a model of

ACFA (m ≥ 1, n ∈ Z).
(5) Deduce that if K is a model of ACFA, and F = Fix(σmϕn), then F is a

pseudo-finite field.
(6) Let F be as in (5). Show that every definable (in K) subset of F k is

definable with parameters from F . If furthermore m = 1, then show that the
structure induced on F is the pure field structure. [Repeat the proof of Propo-
sition 4.3. This result does not extend to the case m > 1, as σ defines then an
automorphism of F , which is not definable in the pure field language.]
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