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 Annals of Mathematics, 140 (1994), 183-205

 The elementary theory of restricted
 analytic fields with exponentiation

 By Lou VAN DEN DRIES, ANGUS MACINTYRE, and DAVID MARKER*

 Introduction

 In [16] and [17] Wilkie proved the remarkable result that the field of real

 numbers with exponentiation is model complete. When we combine this with

 Hovanskii's finiteness theorem [9], it follows that the real exponential field is
 o-minimal. In o-minimal expansions of the real field the definable subsets of

 R' share many of the nice structural properties of semialgebraic sets. For

 example, definable subsets have only finitely many connected components,

 definable sets can be stratified and triangulated, and continuous definable

 maps are piecewise trivial (see [5]).
 In this paper we will prove a quantifier elimination result for the real field

 augmented by exponentiation and all restricted analytic functions, and use

 this result to obtain o-minimality. We were led to this while studying work of

 Ressayre [13] and several of his ideas emerge here in simplified form. However,

 our treatment is formally independent of the results of [16], [17], [9], and [13].

 An essential part of our approach is a re-examination of the model theory

 of the reals with restricted analytic functions. Let R{X, ... , Xm} denote the

 ring of all real power series in X, . . . , Xm that converge in a neighborhood of

 Im, with I = [-1,1]. For f E R{X,,..., Xm} we let f: Rm -> R be given
 by:

 f(x) _ (x), for x E Imv l ?, for x ? Im.

 We call the f's restricted analytic functions. Let Lan be the language of ordered

 rings {<, 0, 1, +, -, } augmented by a new function symbol for each function

 f. We let Ran be the reals with its natural Lan-structure and let T. be the
 theory of Ran.

 In [4] van den Dries observed that Tan is model complete and o-minimal, as

 a consequence of Gabrielov's theorem [8] that the complement of a subanalytic

 *Research by Lou van den Dries was partially supported by NSF Grant #DMS-8902641. Research

 by David Marker was partially supported by NSF Grant #DMS-9000138.
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 184 LOU VAN DEN DRIES, ANGUS MACINTYRE, AND DAVID MARKER

 set is subanalytic. Denef and van den Dries [2] proved the stronger result that

 Ran admits quantifier elimination if we add a function symbol -1 for x |- 1xI
 where 0-1 = 0 by convention.

 With hindsight, we can say that some rather basic questions on the ele-

 mentary theory of Ran went unasked (and hence unanswered) until recently,

 when these questions became urgent after the work of Wilkie and Ressayre. In

 Section 2 we fill these gaps. In particular we give a complete axiomatization

 of Tan. This will allow us to show that certain generalized power series fields

 can naturally be expanded to models of Tan. In Section 3 we use these results

 to prove a key valuation theoretic fact about models of Tan.

 Let Lan(exp) be the language Lan with a new unary function symbol exp.
 Let Tan(exp) be the theory obtained by adding to Tan the universal closures
 of the following axioms:

 E1) exp(x + y) = exp(x) exp(y).

 E2) x < y > exp(x) < exp(y).
 E3) x > 0 >y exp(y) = x.

 E4) x > n2 - exp(x) > xn; for each natural number n > O.

 E5) -1 < x < 1 -- exp(x) = E(x); where E is the function symbol of Lan
 corresponding to the exponential power series E 1 Xn E R{X}.

 Let log be a further unary function symbol and let Tan(exp, log) be the
 extension of Tan(exp) given by the following defining axiom.

 L) (x > O > exp(logx) = x) A (x < -- log(x) = 0).

 In Section 4 we will prove our main results:

 1) Tan (exp, log) admits quantifier elimination;

 2) Tan(exp) is complete;

 3) any function f: Rn -> R definable in (Ran, exp) is given piecewise by
 terms in the language Lan(exp, log).

 In Section 5 we use the quantifier elimination to give a very elementary

 proof that (Ran, exp) is o-minimal. This result was obtained earlier in [6]
 using an extension of Hovanskii's theorem, results of Wilkie [16] on noether-
 ian differential rings of C?-functions, and the nontrivial fact that the rings

 R{X,,... , Xm} are noetherian. The present proof bypasses all this, and is
 based instead on generalities about Hardy fields.

 1. Preliminaries

 We begin with some preliminaries on valuations and power series.

 (1.1) The standard real valuation. Let K be an ordered field. Let Fin(K)
 be the ring of elements bounded in absolute value by a rational number. Then
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 Fin(K) is a valuation ring with maximal ideal ,u(K), the infinitesimals of K,

 and units

 Un(K) = Fin(K) \ ,u(K).

 We let v denote the associated valuation given by the quotient map KX

 KX/l Un(K). We let v(Kx) denote the value group KX/ Un(K) written ad-
 ditively.

 Note that v(x) = v(y) if and only if x and y are in the same archimedean

 class of K. The valuation reflects the ordering of K in that 0 < x < y implies

 v(x) > v(y). The infinitesimals of K have positive value and the elements of

 K with infinite absolute value have negative value.

 If F C K, we identify v(FX) with a subgroup of v(Kx) in the obvious
 way.

 (1.2) Power series fields. Fix a field k and an ordered abelian group r.

 The power series field K = k((t")) consists of all formal power series

 x = E at

 with "exponents" -y E r and "coefficients" a, E k, such that the support of

 x, supp(x) = {y E r: a, 54 0}, is a well-ordered subset of r. These series
 are added and multiplied in the usual way (with tV t6 = t'+6) and form a
 field (see [7] for proofs of elementary facts of this sort). We consider k as a

 subfield of K by identifying c E k with ctd. Note that ord: KX -? r given by
 ord(x) = min(supp(x)) is a valuation of K with valuation ring

 k[[tr]] = {x E k((t')): if -y E supp(x) then -y > 0},

 maximal ideal

 IL = {x E k((t")): if -y E supp(x) then -y > 0},

 and residue field k. This valuation is henselian (see for example [14]).
 In fact K is maximal with value group r and residue field k (we will

 discuss this further in ?3).

 If k is an ordered field, then K can be ordered. Let x = Z alty and

 y= Z bl. Then x < y if ag < bg where g is least such that a9 7& bg. We will
 often consider the special case when k = R. In this case the valuation ord is

 equivalent to the valuation v given above.

 We will also use the fact that a henselian valued field with real closed

 residue field and divisible value group is real closed (see [12]). Thus if k is real
 closed and r is divisible, then K = k((t")) is itself real closed.

 Let X = (Xi,... ,Xn) and let k[[X]] denote the ring of power series
 EcZ xi, where i = (i1,...,in) ranges over N', ci E k and Xi = ..
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 186 LOU VAN DEN DRIES, ANGUS MACINTYRE, AND DAVID MARKER

 Let /Ln I-Lx ... x I-C Kn. If a = (al, ..,an) ESun and f = EciX' E k[[X]],
 then f(a) = E ciai is a well-defined element of K since only finitely many
 terms ciai contribute a nonzero coefficient to a given monomial P and the
 union of the supports of the elements cia' is well-ordered. (The case n = 1 is
 treated in [7], and the general case is similar.) One checks easily that the map

 f(X) |-+ f(a) is a k-algebra homomorphism from k[[X]] into k[[tf]].

 2. An axiomatization of Tan

 We let R(X1, ... , Xn) denote the ring of power series in X1,.. . , Xn over
 R which converge in a neighborhood of 0 and we let R{X1, . . ., Xn} denote the
 subring of power series which converge on a neighborhood of In, I = [-1,1].
 Note that for n = 0 both rings are just R.

 Let K D R be an ordered field. We follow the notation from (1.1) but
 write ,tt for 1Lu(K). If U C Rn is open we let

 U(K)={xEKn: x-aE Lun for some a E U}= Ua + n.
 aeU

 Note that U C U(K) and Rn(K) = Fin(K)n. We also set I(K) = {x E
 K: -1 < x < 1}.

 (2.1). Let K D R be an ordered field. We assume that for all f in

 R(Xi ... , Xn), n E N, K is equipped with a function fK: ,/Ln -- K, such
 that the following conditions are satisfied:

 Cl) (f + 9)K = fK + 9K and (f g 9)K = fK g 9K for f, g E R(X1 Xn)
 and CK is the constant function x -* c, for c E R C R(Xl,..., Xn);

 C2) (Xi)K: /,in -> K is the ith coordinate function (xi, Xn) F-4 Xi, for
 Xi E R(Xlv I ... I Xn);

 C3) If f E R(X1, .... Xn) and 91, vgn E (Xi1... IXm)R[XiI ... IXM]
 (i.e., the gi have constant term zero), then

 f(g1,. *gn)K(X) = fK(91(X),. * . )

 for all x E /ttm.

 (2.2). Condition Cl) says that f F fK is an R-algebra homomorphism
 from R(X1, .. ., Xn) into K/1.

 Given f E R(X1,. .. , Xn) we may also regard f as an element of

 R(Xl,..., Xn+l) in which the variable Xn+1 happens to be absent. In this
 way fK becomes a function on ,Ln+l. Fortunately, there is no real conflict,

 since the conditions easily imply fK(X1, * * * , Xn+i) = fK(X1, * * * , Xn)
 Note that fK(O) = f(0) E R for f E R(Xi,... ,Xn), since f = f(0) +

 En=1 Xihi for suitable hi E R(X1, . ., Xn).
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 RESTRICTED ANALYTIC FIELDS WITH EXPONENTIATION 187

 (2.3) Main Example. Let r be an ordered abelian group and let K =

 R((t")). As noted in (1.2), each f E R[[X1, ... , Xn]], and in particular each
 convergent f E R(X1, . .. , Xn), defines a function a ~-*f (a) from ,u7n into K.
 We denote this function fK. One verifies easily that conditions Cl), C2) and

 C3) are satisfied.

 Of course if r = {0}, we get K = R, ,u = {0} and fK(0) = f(0), for

 f ER(Xi I... iXn)

 We now derive some useful consequences of C1)-C3).

 LEMMA 2.4. Let f E R(X1, ... ,Xn). Then

 fK (/Ln) c f (0) + ,u C Fin(K).

 Proof. Let 0 < e E R. Note that f - f(0) + e has constant term

 e > 0. Thus there is g E R(X1, . . . , Xn) such that g2 = f - f(0) + e. Thus

 f = f(0) - , + g2 and fK(X) = f(0) - E + (9K(X))2. Thus fK(x) > f(0) -,
 for all E > 0 in R and x E /Ln. In the same way we get fK(x) < f(0) + E for
 all E > 0 in R and x E /,n. [1

 LEMMA 2.5. The valued field K is henselian.

 Proof. If suffices to show that if ai, .. ., an E ,u and q(T) = 1 + T +
 a1T2 + ... + anTn+1 then q(T) has a zero in the valuation ring Fin(K).

 Consider the polynomial p(Xi, ... , Xn ,T) = 1+ T + X1T2 +... + XnTn+1
 in R(X)[T], where X = (X1,. . . ,Xn). Since p(O,-1) = 0 and O (0, -1) = 1,
 the implicit function theorem gives us a power series a(X) E R(X) with

 a (0) =-1 and p(X, a (X)) = 0. Substituting a = (al, ... , an) E un, aK (a) is
 a zero of q(T). Moreover, aK(a) E Fin(K), by the previous lemma. [

 COROLLARY 2.6. If each positive element of K has an nth root, for n =

 2,3,..., then K is real closed.

 Proof. Since every positive element of K has an nth root, the value group
 is divisible. Since K has residue field R and K is henselian, it follows that K

 itself is real closed. [1

 (2.7). For open, nonempty U C Rn, let An(U) be the R-algebra of real
 analytic functions f: U -> R. We assign to each f E An(U) a function

 fK: U(K) -? K as follows:
 Given a E U, let

 fa (X) = -? i (a)X' E R(X)
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 188 LOU VAN DEN DRIES, ANGUS MACINTYRE, AND DAVID MARKER

 be the Taylor series of f at a. Then we put

 fK (a + x) = (fa)K (X)

 for x E ,uL.

 The following analogues of C1)-C3) hold:

 C1)U (f +9)K = fK + 9K, (f 9)K = fK g 9K for f,g E An(U) and CK is
 the constant function x |-4 c for c E R C An(U).

 C2)u If Xi denotes the ith coordinate function (xi,. , xn) F- xi from U
 to R, then (Xi)K is the ith coordinate function from U(K) to K.

 C3)u,v Given f E An(U), polynomials gi,... , g E R[X1, ... I Xm], and
 a nonempty open V C Rm with g(V) C U for g = (gi,...,gn): V -+R ,
 the function f o g E An(V) satisfies (f o 9)K(x) = fK(91 (x),** 9.g(x)), for
 x E V(K).

 To check C3)UV use the fact that (f ? 9)a = fg(a)(ga - g(a)) for a E V.
 Note that for f E An(U) and V C U open and nonempty, we have

 fK I U = f and (f I V)K = fK I V(K). If K = R, then fK = f.

 (2.8). We now assign to each series f E R{Xl,. ,Xn} a function fK
 from K' into K:

 Take a real analytic f E An(U) for some open neighborhood U C Rn of
 In such that f (x) = f (x) for all x E In, and put

 fK(X) = f fK(X) for x E I(K)n,

 fK o for x ~ I(K)n.
 Note that fK does not depend on the choice of f

 By associating to each f E R{X,, . .. , Xn } the function fK : Kn -- K,
 we make K into an Lan-structure such that Ran C K. We will also consider

 K occasionally as an Lan(-1)-structure, where -1 is a unary function symbol
 interpreted as multiplicative inverse, with 0-1 = 0.

 In particular for any ordered abelian group r, the ordered power series

 field K = R((tr)) has a natural expansion to an Lan-structure. We denote
 this expansion R((t"))an.

 An easy variant of Theorem 4.6 in [2] says that (Ran-1) admits quan-
 tifier elimination. By going carefully through the proof of this theorem one

 checks that it goes through with minor modifications for the Lan-structure K,

 provided K is real closed. More precisely:

 PROPOSITION 2.9. Let O(Xl,... ,Xm) be an Lan( 1)-formula. There is
 a quantifier-free Lan(-1)-formula 0*(X1,... ,Xm) depending on 0 but not on
 K, such that if K is real closed, then K F 0 +-+ 0*.
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 (2.10). The key step in [2] is Basic Lemma 4.10. Its proof uses at certain

 points that I and its powers In are compact. Of course, I(Kn) is not compact

 (if K 7& R), but we do not need this. The compactness of In is enough since

 if In is covered by finitely many open balls UA = {x E Rn: jjx - cli < E,}
 (A E A, where A is finite), then I(K)n is covered by the corresponding open

 sets U,(K) = {x E Kn: llx-cxll < 6 for some 6 E RI , < 6 < E>,}.

 COROLLARY 2.1 1. If K is real closed, then Ran - K. In particular

 Ran j R((t]F))an, if r is divisible.

 Proof. We have Ran C K as Lan(-1)-structures, and by (2.10) they are
 models of a common Lan(-')-theory with quantifier elimination. [1

 (2.12). We now give the promised axiomatization of Tan and begin with

 three axiom schemes corresponding to the conditions C1)-C3). As usual omit-

 ting initial universal quantifiers, we let x = (xi,... , Xm).

 AC 1) For f,g E R{X1,. ,Xm}, m EN

 f + g(X) = f (x) + (x);

 fg(X) = f (x) . x);
 m

 AlxiI <1 -0(X) =0Ai(X) =1;
 i=1

 and
 m

 Vlxill > 1 X)lX)
 i=1

 where 0 and 1 are the function symbols corresponding to the elements 0 and

 lofR{Xi,.. ,Xm}.

 AC 2)
 m

 Alxjj < 1 Xi(x) = xjj
 i=1
 m

 V xil > 1 >Xj(x) = 01

 where Xj is considered as an element of R{Xi .... v Xm}, 1 <j < m.
 AC3) For f E R{Xj... .,Xn } and 91, . . ., gn E R[Xi,... ,Xm] such that

 gi(0,. , O) = 0, f (91... 9n) E R{XI... I Xm}, and g(Im) C In, where g =
 (91, * . . I 9n) : Rm >- Rn:

 m

 A xi= I < f > 1 g 9n)(X) = f(g1(X), gn1W)
 i=l
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 (2.13). Let K be an Lan-structure which is an ordered field and a model

 of AC 1), AC2), AC3). We let fK be the interpretation of f in K. If c E R and '
 is the constant symbol associated to c viewed as an element of R{X, ... , Xm}
 for m = 0, then c |-+ FK defines an ordered field embedding of R into K.
 Identifying R with its image under this embedding, we consider K as an

 ordered field extension of R.

 We next associate to each f E R(X1, .. ., Xm) a function fK: ,uLm -> K.

 Choose E > 0 such that fe: = f(FXi,... ,cXm) E R{Xi,... IXm} For
 a EE /fm, let fK(a) = (f,)K(a).

 It is routine to check that fK does not depend on the choice of a, and
 that the assignment f H-4 fK satisfies C1)-C3). This assignment and the
 construction from (2.7) and (2.8) gives us a way of associating to each f in

 R{Xi,..., Xm} a function f1: Km -> K. We would like to have 4= fj .
 To get this we need a further set of universal axioms.

 AC4) For f, g E R{X1. .. , Xm}, 0< < E R, a = (al,. .., am) E Im, such
 that g = fa(FXi,..., ,Xm), where fa = Z 9i (a)Xi E R(Xi, IXm) is
 the Taylor series of f at a:

 m m A lil < 1 & AI-di + 2-zi < 1) f (al + EXl, . * , m + Exm) = (z-),
 i=l i=l

 where the ii's and E are the constant symbols associated to the ai and F.

 Clearly Ran satisfies AC4), and if K also satisfies AC4), then clearly

 f4 = fK.
 Combining (2.12) and (2.13) with (2.6), (2.9) and (2.11), we can draw the

 following conclusion:

 THEOREM 2.14. The theory Tan is axiomatized by

 1) the axioms for ordered fields,

 2) the universal axioms AC1)-AC4),

 3) for n = 2,3,... the axiom saying that each positive element has an nth
 root.

 In particular if K : Tan, then any substructure of K which is closed
 under nth-roots and division is itself a model of Tan.

 By [2, Section 4], we have quantifier elimination in the language Lan(-1)
 for the theory Tan extended by the defining axiom for -1. Adding also the
 unary function symbols ;f for n = 2,3,... and the defining axioms

 (x > 0 __ ((aI/)n = x A ax> O)) A (x < O - = O)

 we see that the extension by definitions of Tan obtained in this way has a
 universal axiomatization.
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 Combining this with quantifier elimination gives:

 COROLLARY 2.15. For each function f: Rn -> R definable in Ran there

 are Lan(-1,_()n=23 )-terms ti(Xi, ... 1Xvn), ... Atk(X . ... ,Xn) such that for
 all a E Rn there is an i with f(a) = t (a). (We say that f is piecewise given

 by the terms t1, * * * .. )

 Proof. Suppose not. Let q(x, y) be the formula defining "f(x) = y".

 Then the type Z(x) = {1-_(x, t(x)): t a term} is consistent. Let M l= Tan be
 a model containing a realization a of E(xt). Let N be the Lan(-', (?)n=2,3,...)-
 substructure of M generated by a-. Since Tan has a universal axiomatization

 in this language, N F Tan. By quantifier elimination N -< M. But N models

 Vy -q(a, y) and M models VEx-yq(, y), a contradiction. [1

 3. Valuation theoretic properties of models of Tan

 (3.1). Let M C N be models of Tan. If y E N \ M, we let M(y) N

 denote the definable closure of MU {y} in N. By o-minimality ([11]), the type

 of y over M is determined by the cut y makes in the ordering of M. Thus if N'

 is a second elementary extension of M, z E N' \ M, such that for all m E M

 we have m < y if and only if m < z, and M(z) is the definable closure of

 M U {z}, then there is an Lan-isomorphism of M(y) onto M(z) fixing M and
 sending y to z.

 Our main goal in this section is to show that the value group v(M(y)X)

 is equal to the value group of the real closure of M(y) (the field generated by

 M and y), which is the divisible hull of v(M(y)X), where v is the standard
 real valuation of (1.1).

 We will prove this by examining embeddings of models of Tan into power

 series models. We begin by proving several lemmas on extending embeddings.

 Our argument is essentially the proof that k((t")) is maximal with residue
 field k and value group r (see [14]).

 (3.2). If K is an ordered field and r = v(Kx), we call s: r -? Kx a
 section if s is a homomorphism from r to the multiplicative group of K and

 v(s(g)) = g for all g E r. The following argument shows that if every positive
 element of K has an nth root for all n, then there is always a section s. Let

 (9j)jEj be a basis for F as a Q-vector space. For each j E J, let bj E K such

 that v(bj) = gj and bj > 0. Then define s by s( qjgj) = J 7J0 for qj E Q.

 LEMMA 3.3. Let MN F Tan with M C N. Let r be the value group

 of M. Let s: r -> Mx be a section and suppose we have an Lan-embedding

 r: M -? R((t")), with r(s(g)) = t9 for all g E r. If y E N \ M and
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 v(M(y)x) = r, then we can extend r to an Lan-embedding from M(y) into

 R((t"))
 Proof. We view M as an Lan-substructure of R((tl))an by identifying

 M with its image under r. By remark (3.1) it suffices to find an element of
 R((t")) in the cut of y over M.

 We construct a sequence (xa: a < 3) of approximations to y, where 6 is
 an ordinal which is yet to be determined. Let ga = v(xa - y). We choose 6
 and (xa: a < 3) such that ga < go for a < A, and for all z E M, there is an
 a < 8 such that v(z - y) <ga.

 Let xo = 0.

 Given Xa E M, let ga = v(y - xa) and let aa be the residue of Yo We
 let xa+1 = Xa + aaftg

 Let a be a limit ordinal such that we have constructed xfl for o3 < a.
 There are two cases to consider.

 Case 1. There is z E M such that for all 3 < a, v(y - z) > go.
 In this case pick some such z, let Xa = z, and continue.

 Case 2. There is no such z.

 In this case let 6 = a. This completes the construction of (x>: a <6).

 For a < 6, let x> = E aagtg. If a < f3, then v(xl - xa) = ga. Thus
 aag = afog for all g < ga. If g E F and g < ga, for some a < 6, then let
 bg = aag. Otherwise let bg = 0.

 Let w = E bgt9. It is easy to check that supp(w) is well-ordered and for
 all a < E, v(w - x) = ga. We claim that w and y realize the same cut over
 M. Suppose not. Without loss of generality assume there is m E M with

 w < m < y; then v(y - m) > g, for all a < 6, a contradiction. F

 We next examine the case when the value group does extend. The next

 claim is a general fact about real closed fields.

 LEMMA 3.4. Let K and F be real closed fields with K C F. Let y E

 F \ K. If v(K(y)x) 7& v(K><), then for some a E K, v(y - a) V v(KX).

 Proof. We know that for some monic polynomial p(X) E K[X], v(p(y))

 is not in v(KX). Since K is a real closed field we can find b1,... , bmC1i . ... n,
 dj,...,dnEKsuch that:

 m n

 p(X) = fl(X - bi) ((X - Cj)2 + d2).
 i=1 j=1

 Suppose that for all i and j, v(y - bi) and v(y - cj) E v(KX). For some j
 we must have v((y - cj)2 + d2) ? v(KX). In this case v(y - cj) = v(dj) and
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 v((y-cj)2 + d2) > v(di). On the other hand (y-cj)2 + d? > d? > O. Thus
 V((y - Cj)2 + dj) < v(dZ), a contradiction. O

 (3.5). Let M, N, I, s and r be as in (3.3). Let y E N \ M be such that
 v(M(y)x) :# F. We wish to extend our embedding to M(y). By (3.4) there is

 an a E M such that v(y - a) V v(MX). Thus without loss of generality (by
 replacing y with y - a) we may assume v(y) = g V F. We may also assume
 y > 0. Let F1 be the divisible subgroup of v(NX) generated by F and g. We

 can extend s to sj: IF -- M(y)x by sl(y+qg) = 8(Y)yq for -y E F and q E Q.
 For m E M with m > 0, m < y if and only if v(m) > g if and only if m < V.

 Thus we can extend r to an Lan-embedding from M(y) into R((t]F)) such
 that r(s(h)) = th for all h E F1.

 COROLLARY 3.6. If M F Tan and v(MX) = F, then there is an Lan-

 embedding r of M into R((tF))an. Moreover for any section s: IF - MX,
 there is a r such that r(s(g)) = t9 for all g E r.

 Proof. Start with Mo = Ran, ro = {O}, s(O) = 1 and r the identity;
 then iterate (3.3) and (3.5). Note that we need only apply (3.5) to elements

 y = s(g). O

 We can now prove the main result of this section.

 COROLLARY 3.7. Suppose M,N F Tan and y E N\M. Then v(M(y)x)

 is the divisible hull of the value group of M(y).

 Proof. Let F = v(MX). By (3.6) there are an Lan-embedding of M

 into R((tr))an and a section s with r(s(g)) = V. If v(M(y)') = F, then,
 by (3.3), we can extend r to an embedding of M(y) into R((tF))an. Thus

 v(M(y)x) = F. Otherwise, let F1 be the divisible hull of v(M(y)x). Then
 (3.5) allows us to extend T to an embedding of M(y) into R((t]F))an. In this
 case v(M(y)x) = Fi. ?

 (3.8). Since the Q-linear dimension of the divisible hull of v(M(y)x)
 over v(MX) is at most one, (3.7) implies that the Q-linear dimension of

 v(M(y)X) over v(MX) is at most 1. This result also follows from a theo-

 rem of Wilkie [17] on "smooth" theories in view of the fact that Tan is smooth

 (cf. [6]).

 (3.9). We say that 1Z is a restricted analytic expansion of R if

 1R = (R, <, +, -, ' (fj)jEJ)

 for some index set J and functions fj: Rnj -* R definable in Ran. Let T
 be the theory of RZ, a restricted analytic expansion of R. If r is a divisible

 ordered abelian group, we can naturally view R((tF)) as a model of T.

This content downloaded from 129.199.98.79 on Thu, 06 Dec 2018 12:49:52 UTC
All use subject to https://about.jstor.org/terms



 194 LOU VAN DEN DRIES, ANGUS MACINTYRE, AND DAVID MARKER

 The following version of (3.7) holds for T:

 If N F T, M - N and y E N \ M, then the value group of the model of
 T generated by M U {y} in N is equal to the divisible hull of the value group

 of the field M(y).

 For example this applies to Re = (R, <, -, 0,O, 1, e) where

 e(x) = f exp(x) -1 < x <1
 0, otherwise

 The proof follows the same lines as the arguments above, though some care

 is needed if the residue field of M is not all of R. Let M l= T. Since the

 prime model of T is archimedean, M has a maximal archimedean elementary

 submodel K. One easily checks the following two facts:

 K is isomorphic to an elementary submodel of 1Z.

 Every element of Fin(M) is infinitely close to an element of K. Thus K

 is isomorphic to the residue field of M.

 The arguments adapt to prove that if F is the value group of M, then there

 is an elementary embedding r: M -* R((tF)) of T-models. If K is a maximal
 archimedean elementary submodel of M and s: IF - MX is a section, we
 can choose r such that r(K) C R and r(s(g)) = t9 for all g E F. Moreover,

 if M C N. L D K is a maximal archimedean elementary submodel of N,

 F1 2 F is the value group of N, and sl: Fi -, NX is a section extending s,
 then we can extend T to an embedding of T-models ri: N -* R((t]l)) where
 ri(L) C R and ri(si(g)) = t9 for all g E Fi.

 4. The theory of (Ran, exp)

 Let Tan(exp) be the Lan(exp) theory described in the introduction. If

 K = Tan(exp), we define log on K by exp(logx) = x for x > 0, while
 log(x) = 0 for x < 0. In this section we will prove that Tan(exp) has quantifier
 elimination in the language Lan(exp, log).

 Let K F Tan(exp). We write F Can K to indicate that F is an Lan-

 substructure of K, and in this case we say that F is log-closed if log(x) E F

 for all x E F. If L F Tan(exp), F Can K, and F is log-closed, then we say

 that u: F -* L is a log-preserving embedding if of is an Lan-embedding and

 log(ou(x)) = u(log(x)) for all x E F.
 We will prove the following embedding theorem.

 THEOREM 4.1. Suppose K t Tan(exp), F0 Can K is log-closed and F0 =

 Tan. If L is a IKI+-saturated model of Tan(exp) and uo: F0 -o L is a log-
 preserving embedding, then oo can be extended to a log-preserving embedding

 of K into L.
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 Theorem 4.1 will follow from three lemmas on extensions of embeddings.

 These lemmas were inspired by the ideas of Ressayre [13].

 For F Can K and y E K\F, we let F(y) denote the Tan-definable closure

 of FU{y} inK.

 LEMMA 4.2. Let KL,F0 and o0 be as in (4.1). Suppose x E K \ Fo
 and v(Fo(x)x) = v(FoJ). Let F = Fo(x). Then F is log-closed and o0 can be
 extended to a log-preserving embedding a: F -* L.

 Proof. By (3.7) we know that v(FX) = v(FoJ). Let 0 < w E F. There
 are z E F0 and E E F such that v(E) > 0 and w = z(1 +? ). Then log(w) =
 log(z) + log(l +? ). Since F0 is log-closed, log(z) E Fo. Since log is analytic
 at 1, there is an Lan-term 1, such that for v(6) > 0, 1(6) = log(l + 8). Thus
 log(l +? ) E F and log(w) E F. Hence F is log-closed.

 Let y E L realize the image under uo of the cut of x over F. By o-

 minimality, So extends to an Lan-embedding a: F -* L with a(x) = y. For
 w E F choose z and E as above. Then a(w) = u(z)(1 + o(E)). Since uo is log-
 preserving and of is an Lan-embedding, log u(z) = u(logz) and log(1?+f(,)) =

 u(log(l +?F)). Thus log a(w) = u(log w), so of is log-preserving. F

 Iterating (4.2) allows us to extend our embedding from F0 to a log-closed

 model F Can K of Tan such that v(FX) = v(Fo<) and for all y E K \ F,
 v(F(y)x) 7& v(FX). Once we have done this we close under exponentiation.

 LEMMA 4.3. Let KLF0 and oo be as in (4.1). Suppose that v(Fo(x)x) 7y
 v(Fo<) for all x E K\Fo. Suppose x E F0 and expx V F0. Let F= Fo(expx).
 Then F is log-closed and oo may be extended to a log-preserving embedding

 a: FO-L with u(expx)=expu(x).

 Proof. We first claim that v(expx) V v(FoJ). Otherwise, there are u E
 Fo and E E F, with v(E) > 0 and exp x = u(1 +?F). Let w = log u E F0. Then
 exp(x - w) = 1 + ,, and v(x - w) > 0. But then, since F0 is closed under

 restricted analytic functions, exp(x - w) E F0 and exp x E F0, a contradiction.

 Let g = v(expx) ? v(FoJ). By (3.7), v(FX) = v(FoJ) E Qg. Let 0 <
 w E F. There are a E F0, q E Q and E E F such that v(E) > 0 and
 w = a(1 +?F) exp(qx). Then log w = log a + log(l +,F) + qx E F.

 We claim that exp o(x) realizes the image under oo of the cut of expx
 over F0. Let w E F0, with w > 0. Then

 w < expx X logw < x

 X o(logw) <uo(x)

 o u0(w) <expuo(x).
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 Hence we can extend vo to an Lan-embedding u: F -* L with u(exp x) =
 exp(uo(x)). It is easy to see that of is log-preserving. O

 By iterating (4.2) and (4.3) we can keep extending the embedding until

 we reach a situation where 1) there is no way to extend F0 without extending

 the value group and 2) F0 is closed under exponentiation.

 LEMMA 4.4. Let K,L,F0 and o0 be as in (4.1). Suppose that F0 is closed

 under exponentiation and v(Fo(x)x) 7y v(Fx) for all x E K \ Fo. Let x E
 K \ F0. There is a log-closed F l= Tan such that Fo(x) C F Can K and a

 log-preserving embedding u: F -* L extending vo.

 Proof. Without loss of generality x > R and (by (3.4)) v(x) V v(FoJ).
 We build sequences /3o,31,... E F0 and xo0x1,... E K. For all n E N we will
 have xn > R and v(xn) V v(FoJ).

 Let xo = x. Given xn we see that v(Fo(logxn)x) g v(Fo<); for otherwise,
 since F0 is maximal with this value group, log1xn E F0 and, since F0 is closed
 under exponentiation, xn E F0, a contradiction.

 By (3.4), there is a fn E F0 such that v(logxn - On) V v(Fox). Let
 Xn+1 = I logXn - On, so logxn = fn + EnXn+1, where En = 1. Note that
 V(xn) < V(10gxn) < V(xn+l) _< 0-

 CLAIM 1. V(xn+1) < 0

 Otherwise, v(xn) = v(expo3n) E v(Fo<), since v(xn) = v(expf3n) +
 v(exp ,nxn+l) and v(expEnxn+l) = 0.

 CLAIM 2. v(xo),v(x1),... are Q-linearly independent over v(Fo<).

 Suppose
 n

 V(Xm) S qiv(xi) + V(w)
 i=m+l

 qi E Q and w E F0. There is c E K with v(c) = 0 such that
 n

 Xm = CW [I

 i=m+l

 Hence,

 Emxm+1 = log c + logw - O3m + qi log xi.

 For i > m + 1 and n E N, (log xi)n < xm+1. Thus v(logxi) > v(xm+l) for all
 i > m + 1. Also, v(log c) = 0 > v(xm+i). Since

 v(xm+i) > min(v(log c), v(log w - fn), v(log Xm+i), , v(log1xn)),

 we have v(xm+l) = v(logw - On) E v(Fox), a contradiction.
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 Let Fn+1 = Fn(xn) and F = U F. Let y E L realize the image under
 oo of the cut of x over F0. Define a sequence (yn) in L by: yo = y, and
 Yn+1 = logyn-uo(fln)

 En

 CLAIM 3. For all i, yi realizes the image under oo of the cut of xi over F0.

 We prove this by induction on i. Suppose it is true for yn (and without
 loss of generality we assume Fn = 1). Let w E F0. Then

 W < Xn+1 ? W + On3 < Xn+1 + On3

 X (exp w) (exp 3n) < Xn

 ? (expoo(w))(expo(oi3n)) < Yn

 4* J0(W) < Yn+1.

 CLAIM 4. We can extend oo to an Lan-embedding On: Fn -* L, by send-
 ing xi to yi for i < n.

 For n = 1, this follows immediately from Claim 3. Assume we have

 un : Fn -* L with 'n(Xi) = Yi for i < n. We must show that Yn realizes the
 image under On of the cut of xn over Fn.

 Let w > 0, w E Fn. There are z E Fo and F E K with v(s) > 0 and

 q , qn-1 E Q such that

 n-1

 W=Z~~l+6)Xiqi. w = z(1 ? I)fx .
 i=O

 Let m be least such that qm :; 0. Let u = z-l/qm, ri = -qj/qm, for j < n,
 rn = 1/qm and 6 = (1 +>)-1/qm - 1. Assume qm < 0. (If qm > 0 the argument
 is similar.)

 Then
 n

 Xn<WIXm<U(1?+6) JJ Xj'
 j=m+1

 '?* ,mxm+1 < logu - Om + log( + ?6) + rj log xj.

 As in Claim 2, v(xm+i) < v(logxj) < v(log(l + 8)). Thus xn < w if and only
 if Fmxm+1 < log u - Om if and only if Fmym+1 < log uo(u) - oo (1m) if and only
 if Yn < On(w).

 We let of = U n: F -* L.

 CLAIM 5. F is log-closed and u: F -* L is log-preserving.

 Let 0 < w E Fn+l By (3.6) and Claim 2,

 V(Fn+l ) = v(Fox) e Qv(xo) ... 0 QV(xn)
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 Thus there are u E F0, q0, qnq E Q and E E F+l with v(E) > 0 such that
 W='U(1?+)Hxqi. Then

 log w = log U + log(l +? ) + E qi log xi

 = log u + log(l + ?) + qi(Eixi+l + ?i) E Fn+2

 Also u(logw) = logu(u) + log(1 + o (F)) + Eqi(Fiyi+i + o{(Li)) = logu(w). D

 Theorem 4.1 is now easily obtained by iterating lemmas (4.2), (4.3) and
 (4.4). We can now prove our main results.

 COROLLARY 4.5. Tan(exp) admits quantifier elimination in the language
 Tan (exp,log).

 Proof. We use the following test for quantifier elimination (see for ex-
 ample [15]).

 Let T be an L-theory. Suppose that whenever M, N F T, N is IMI+-
 saturated, A is an L-substructure of M and a: A -* N is an L-embedding,
 then of extends to an L-embedding of M into N. Then T admits quantifier
 elimination in the language L.

 We can apply this test to Tan(exp, log) using (4.1). We need only show
 that an Lan(exp, log)-substructure A of a model of Tan(exp, log) is a model
 of Tan. By (2.14) it suffices to show A is closed under -1 and ~f. But for

 x > 0, x-l = exp(-logx) and 6/x5 = exp( n ), while for x < 0, x-1 =
 - exp(- log(-x)).

 COROLLARY 4.6. Tan(exp) is a complete axiomatization of Th (Ran,exp)
 and admits a universal axiomatization in the language Lan(exp,log).

 Proof. Let M = Tan (exp). We can view M as an extension of (Ran, exp).
 By quantifier elimination, (Ran, exp) - M. Since Tan has a universal axioma-
 tization and E3) can be re-written as

 Vx > 0 (exp(log x) = x),

 Tan(exp, log) can be universally axiomatized. [1

 COROLLARY 4.7. If f: Rn * R is Lan(exp)-definable, then there are

 terms ti(yi,... NO)... A tk(ylv, . ,yN) in the language Lan(exp,log) such that
 for all Xi,... ,Xn there is an i such that f(x) = ti(x).

 Proof. Since Tan(exp, log) is universally axiomatized and admits quan-
 tifier elimination, the proof is as in (2.15). [

 (4.8). Let ei(x) = expx and let en+l(x) = exp(en(x)). In [6] it was
 shown that if the function f: R -> R is definable in (Ran, exp), then there
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 are an n and an M such that f(x) < en(x) for x > M. A simpler proof of

 this fact can be obtained from (4.7) and results in the next section.

 (4.9). As an odd footnote to (4.5), note that since in (4.1) we do not need

 the substructure to be closed under exp, we can also eliminate quantifiers in the

 language Lan. (lF)on=2,3,... 1g) without exp. We see no real applications of
 this observation yet.

 (4.10). Suppose 1? is a restricted analytic expansion of Re. The argu-

 ments of this section and (3.9) combine to show that (1?, exp) admits quanti-

 fier elimination in the language where we add a function symbol for log and

 function symbols for functions f: RN -* R that are definable without pa-
 rameters in 1Z. From [16] we know that Re is model complete. Combining this

 with quantifier elimination, we can conclude Wilkie's result that the ordered

 exponential field of real numbers is model complete.

 The arguments above also show that the theory of (1?, exp) can be ax-

 iomatized by the theory of 1? and the axioms E1)-E5). For 1? = Re this is

 Ressayre's theorem ([13]).

 5. o-minimality and Hardy fields

 In this final section we will apply the results of Section 4 to show that

 (Ran, exp) is o-minimal.

 (5.1). Let L = {<, 0, 1, ?,-, . . .} be an expansion of the language of

 ordered rings where we add no new relation symbols. Let

 R = (RI +,-j,, <, 0, 1, ... .)

 be an L-structure expanding the ordered field of real numbers and let T =

 Th(R).
 We refer to L-terms with parameters from R as R-terms.

 Our first lemma gives an equivalent characterization of o-minimality if T

 has quantifier elimination.

 LEMMA 5.2. Suppose T has quantifier elimination. Then T is o-minimal

 if and only if for each R-term t(X) in one variable X there is m E R such
 that either t(x) > 0 for all x > m, or t(x) = 0 for all x > m, or t(x) < 0
 for all x > m.

 Proof. (=X) This implication is clear.
 ( =) We assume that all R-terms have the property described above. Let

 S C R be definable with parameters. By quantifier elimination either there is

 an m such that (m, +oo) C S or there is an m such that (m,? +) n s = 0.
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 With the use of fractional linear transformations a similar property holds at

 -oc, and to the right and left of each r E R. Thus there is an m > 0 such

 that

 i) either (m, +oo) C S or (m, +oo) n S = 0,

 ii) either (-oo, -m) C S or (-oo, -m) n S = 0,

 and for each r E R there is E > 0 such that

 iii) either (r, r + e) C S or (r, r +eF) n s = 0, and
 iv) either (r-a, r) C S or (r-a, r) n s = 0.

 Hence the boundary 0(S) of S in R is closed, bounded, and contains
 only isolated points. Thus 0(S) is finite, and S is a finite union of points and
 intervals. R

 (5.3). Lemma 5.2 suggests that Hardy field methods might be useful in

 proving o-minimality.

 If f, g: R -* R, we say that f and g have the same germ at +00 if there
 is m E R such that f(x) = g(x) for all x > m. We let 5 be the ring of germs

 at +oo of (not necessarily continuous) functions f: R -* R. We will usually
 not distinguish notationally between a function and its germ. We use the term

 "ultimately" to abbreviate "for all sufficiently large real numbers".

 A subring A of 0 is called a 0-domain if for each f E A either ultimately

 f(x) > 0, ultimately f(x) < 0, or ultimately f(x) = 0. If A is a 5-domain,
 then A is an integral domain and A has a natural ordering given by f > 0 if

 and only if ultimately f(x) > O. A 0-field is a 0-domain that happens to be

 a field. If A is a 0-domain then A has a (unique) fraction field in 0, and this
 fraction field is a 0-field.

 We identify R with the 0-field of germs of constant functions. If we view
 x as the identity function, then R[x] is a 0-domain and its fraction field R(x)
 is a 5-field.

 (5.4). If F is an n-ary function symbol of L we define Fge: gn _, 0
 by Fg (f i... . fn) = the germ at +oo of the function x ~-4 F(fi (x), . . . , fn (x)).
 Similarly for each term t(xi, .. . , xn) we define tg: gn -5 0 by letting
 tg(f1,.. .,fn) be the germ of the function x ~-4 t(fi(x),...,fn(x)). When
 F is the function symbol for addition (respectively multiplication) Fg is the
 usual addition (respectively multiplication) on 0.

 An 1R-field is a 0-field that is closed under Fg for all function symbols F
 in L. Lemma 5.2 immediately implies:

 LEMMA 5.5. If T has quantifier elimination and there is an 1Z-field con-
 taining R(x), then 1R is o-minimal.

 (5.6). From now on we make two assumptions on T:
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 i) T admits quantifier elimination.

 ii) T has a universal axiomatization.

 By the results of Section 2 and Section 4, these assumptions hold for

 Tan(-1, (; J)n=2,3,... ) and Tan (exp, log).

 If N l= T and M is an L-substructure of N, then by i) and ii) we have
 M - N.

 (5.7). If K is an 1Z-field then we can naturally expand K to make it an L-

 structure. For each n-ary function symbol F of L, interpret F as FK: Kn -* K
 where FK = Fg I Kn.

 LEMMA 5.8. If K is an 1Z-field, then as viewed with its natural L-
 structure, K l= T.

 Proof. Let M be a proper elementary extension of the expansion

 (1Z, (f)f: R-AR). So for each f: R -* R we have a unary function symbol
 whose interpretation in M is a function fm: M -* M.

 Fix a E M positive infinite. If f and g have the same germ, then there

 is m E R such that M =b Vx > m(f(x) = g(x)). Hence fM(a) = gM(a),

 so the value of fM (a) depends only on the germ of f and a. Define the
 map ia: g -5 M by f F-+ fp (a). One checks immediately that ia is a ring

 homomorphism such that ia(Fg(fi ... , fn)) = FM(ia(fl), ... v ia(fn)) for each
 n-ary function symbol F of L and fi, ... , fn E g.

 In particular, ia I K: K -* M is an ordered field embedding and ia(K)
 is an L-substructure of M. Since T has a universal axiomatization, ia(K)

 is the underlying set of a model of T. For any n-ary function symbol F, if

 fi, * * , fn E K) then

 ia(FK(f, *... *fn)) = ia(Fg(fi i...n)) = FM(ia(fl) ...,ia(fn))

 Thus ia is an L-structure isomorphism between K and ia(K). Thus K l
 T.

 If K is an 1Z-field and g E we say that g is comparable to K if for each
 f E K either ultimately g(x) < f(x), or ultimately g(x) > f(x), or ultimately

 g(x) = f(x).

 LEMMA 5.9. Suppose T is o-minimal. Let K be an 1Z-field. If g E g is
 comparable to K, then

 K(g): = {tg(fl - * *n, f9): t(xi,.., xn+l) is a term and f, *,fn E K}

 is an 14-field. Clearly it is the smallest 1Z-field containing K U {g}.
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 Proof We let M, a and ia be as in the proof of (5.8). By (5.8) we can

 view K as a model of the o-minimal theory T.

 We may of course assume that g V K. Since g is comparable to K, g
 determines a cut in K. Let f E K and suppose that f(x) is ultimately less

 than g(x). There is an m E R such that M == Vx > m (f(x) < g(x)).
 Thus ia(f) < ia(g). Similarly, if f(x) is ultimately greater than g(x), then

 ia(f) > ia(g). Thus ia(g) realizes the image under ia of the cut of g in K.
 Fix a term t(xi,... ., x+l) and fi, .. ., fin E K. Since T is o-minimal, there

 are ho, h1 E K U {+oo} such that ho < g < h1 and the sign of t(fi,... , fni Y)
 is constant for y E (ho, hi) n K. Assume that t(f1, . .. , fn, y) > 0 for all
 y E (ho,h1). We will show that the term t(fi(x),... fn(x),g(x)) is ulti-
 mately positive. In the other cases, similar arguments will show that the term

 t(fi(x) * ... , fn (x), g(x)) is either ultimately zero or ultimately negative.
 Since K is isomorphic to ia(K),

 ia(K) I= Vy (ia(ho) < y < ia(hi) -+ t(ia(fi)) ... ia (fn), y) > 0).

 By quantifier elimination ia (K) is an elementary submodel of the L-reduct

 of M, so

 M F Vy (ia(ho) < y < ia(hi) -+ t(ia(fi) ... * ia(fn) vY) > 0).

 In particular M A4 t (ia (i), . . * , ia (n), ia (9)) > 0. Thus

 t(fi (a), .. , fn (a), g(a)) > 0.

 If we choose another positive infinite b E M and consider the associated

 embedding ib: g - MA, then we conclude by the same reasoning that
 t(f1(b)I.. Ifn(b)Ig(b)) > 0. Since (1Z,(f)f: R-,R) < M, there is an m E R
 such that t(fi(y),...,fn(y),g(y)) > 0 for all y > m. Thus we see that
 t(fi (x), . . . , fn (x), g(x)) is ultimately positive.

 We have shown that K(g) is an A-field.

 (5.10). A Cl-germ is an element g E g which is the germ at +oo of a
 Cl-function defined on an interval (m, +oo). In that case g has a derivative

 9 E g, defined as the germ at +oo of the derivative of such a function.
 A Hardy field is a g-field K such that for all f E K, f is a C1-germ and

 l E K. We call K an 1Z-Hardy field if it is an A-field which is also a Hardy
 field.

 Identifying R with a subring of 0 in the usual way, we see that R is an

 1Z-Hardy field.

 If R* is any o-minimal expansion of the ordered field R, then the Hardy
 field H(R*) of germs at +oo of functions f: R -* R that are R-definable
 in R* is an 1Z*-Hardy field. If the theory of R* has quantifier elimination
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 and a universal axiomatization, then H(R*) is R*(x), the smallest R*-field

 containing R and the germ of the identity function.

 Next we recall two well known results on Hardy fields. For the reader's

 convenience we repeat here short proofs by Boshernitzan ([1]).

 LEMMA 5.1 1. Let K be a Hardy field and f E K.

 a) ef E g is comparable to K.

 b) If f > 0, then log (f ) is comparable to K.

 Proof. a) We may assume ef V K. Let Q = {h E 5: h has arbitrarily
 large zeros}. Given g e K we have to show that ef - g is not in Q. If
 ef- g E Q, then g > 0 and h = 1 - ge-f E Q. Hence h' = e-f(f'g - g') Q.

 But then f'g - g' E Q n K = {0}. Thus f' = i = (log(g))' and ef = rg for
 g

 some real number r. Since ef - g E Q we must have r = 1 and ef = g E K.
 b) Again we assume log(f) V K. If g E K and h = log(f) - g E Q, then

 h'- g 9'E Q n K={0}. Thus g'= L and g = log(f)+ r for some r E R. - ff
 But then, arguing as above, log(f) E K.

 LEMMA 5.12. Suppose T is o-minimal. Let K be an 1Z-Hardy field and
 f E K. Then K(ef) is an 1Z-Hardy field, and if f > 0, then K(log (f))
 is an 1Z-Hardy field. Hence every 1Z-Hardy field can be extended to an 1?-

 Hardy field that is closed under exponentiation and under taking logarithms of

 positive elements.

 Proof. Let g E K(ef). Choose a term t(xi, ... .,xn+i) and fi, . , fn E
 K such that 9 = t(fi, I ... I fn7 ef). We must show that g is a C1-germ whose
 derivative belongs to K(ef). We may assume that ef V K.

 Since T is o-minimal, we can find L-formulas 01(x-), ... I.0, v() and
 '01 (XI ,y),...,/m(x,y) such that in any K 1= T, the sets Cj = {x E An+:
 K l= qj(x)} are cells partitioning gn+l and Oj(x,y) defines the graph of a
 Cl-function hj on an open neighborhood of Cj such that hj agrees with the
 function defined by t on Cj. (This form of cell decomposition is proved in [3]
 for strongly o-minimal expansions of the real field and by [10] every o-minimal
 structure is strongly o-minimal.)

 By (5.8), K l= T. Since ef is comparable to K, it determines a cut in K.

 Let C be the single cell of the partition such that "(fi, ... ., fn7 v) E C" is in
 the type of ef over K and let h be the corresponding C1-function on an open
 neighborhood of C. There are go, gi E K U {?oo} such that go < ef < gi and

 (fl, f * *, fny y) E C for all y E (go, gj) n K.
 Let M be as in (5.8). Let a E M be a positive infinite element. Arguing

 as in (5.8) we see that (f1(a), . . ., fn (a), ef(a)) E C. Since this does not depend
 on the choice of a, there is an m E R such that (f1 (x), . . ., fn (x), ef() ) E C
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 for all x > m. Thus g(x) = h(fi(x), .. ., fn(x), ef(x)) for all x > m. Changing
 m if necessary, we may also assume that fi,.. . .,f are C1 on (i, +oo). Hence
 by the chain rule and the fact that (ef)' = f'ef we obtain that g is C1 on

 (m, +oo) and g' E K(ef ).
 In the same way we can show that K(logf) is an 1Z-Hardy field for

 f>O.

 COROLLARY 5.13. (Ran,exp) is o-minimal.

 Proof. Let 1? = (Ran-1 , (;K)n=2,3,...). The structure 1? is o-minimal
 and satisfies the assumptions of (5.6). Let H(1Z) be the 1Z-Hardy field of

 germs of +oo of definable functions. By (5.12) we can extend H(R) to an 1Z-
 Hardy field K that is closed under exponentiation and under taking logarithms

 of positive elements. Now consider (1Z, exp, log) which admits quantifier elim-

 ination by (4.5). Clearly K is an (1Z, exp, log)-Hardy field. Thus by (5.5),

 (JZ, exp, log) is o-minimal. Hence (Ran, exp) is o-minimal. [

 (5.14) Remarks. Lemma (5.9) was inspired by a similar result of Bosher-
 nitzan ([1, Theorem 4.1]) on germs of continuous functions. The paper [1] also

 gives examples of real closed Hardy fields containing R(x) and real power

 series E anx-n converging for all sufficiently large x, such that K cannot be
 extended to a Hardy field containing the germ at +oo of the function defined by

 this power series for large x. These examples show that (Ranj- v (,/)n=2,3 ...)_
 Hardy fields are essential in the proof of (5.11) as real closed Hardy fields can-
 not always be extended to real closed Hardy fields closed under the restricted

 analytic operations.

 Several results of this section can be generalized somewhat.

 While o-minimality is a fundamental assumption in (5.9) and (5.12), the
 assumption that T is universally axiomatized and admits quantifier elimination

 is more a matter of convenience, since this can always be achieved by adding

 function symbols for definable functions. In a similar manner we can also

 avoid the assumption that L contains no new relation symbols as long as T is

 o-minimal.

 The proof we gave of (5.12) shows the following:

 Suppose T is o-minimal, K is an 1Z-Hardy field, h is a Cl-germ comparable
 to K and h' E K(h). Then K(h) is an R-Hardy field.
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