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Abstract. We develop a notion of differentiability over an algebraically closed field K of char-
acteristic zero with respect to a maximal real closed subfield R. We work in the context of an
o-minimal expansion R of the field R and obtain many of the standard results in complex analysis
in this setting. In doing so we use the topological approach to complex analysis developed by
Whyburn and others. We then prove a model theoretic theorem that states that the field R is
definable in every proper expansion of the field K all of whose atomic relations are definable in R.
One corollary of this result is the classical theorem of Chow on projective analytic sets.
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1. Introduction

Algebraically closed fields and their various expansions are studied extensively in
model theory. In contrast to differentially closed fields (DCF), or fields with auto-
morphisms (ACFA), which carry no uniformly definable topology of interest (these
are so-called simple structures), we study here expansions of algebraically closed
fields of characteristic zero within the topological environment of an o-minimal
structure. We develop in this setting a notion of differentiability that is analogous
to the classical one, over C.

Let K be an algebraically closed field of characteristic zero. Then K = R(
√−1)

for some real closed subfield R. Note that R is not unique in any way. For example
C, the algebraic closure of R, is also the algebraic closure of a nonarchimedean real
closed field (since there is only one algebraically closed field of size 2ℵ0).

We fix one such real closed R and i =
√−1. Since K = R(i) it can be identified,

as in the classical case, with R2. Every subset of Kn is identified with a subset
of R2n and every function from Kn into K is identified with a function from R2n
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into R2. Since R has a natural ordering and topology, it induces the product
topology on R2 and hence on K, making it into a topological field. Moreover, just
like the metric on C, K has a notion of distance, evaluated in R.

Since R need not be Dedekind complete, as an ordered set, nor even archime-
dean, the topology which it induces on K is, in general, far from being locally
compact or connected. However, we will restrict ourselves to the category of de-
finable sets in some o-minimal expansion R of R. This category has the following
”tameness” properties (see [D1] for a general reference on o-minimality):

1. Rn is (definably) connected and locally (definably) connected. (An R-
definable subset of Rn is definably connected if it has no decomposition into
R-definable, relatively open, nonempty subsets).

2. Rn is locally (definably) compact. (An R-definable set X ⊆ Rn is called
definably compact if every R-definable function f(t) from an interval (a, b) ⊆
R into X has a limit point in X , as t approaches b).

3. Every R-definable subset of Rn can be partitioned into finitely many de-
finably connected sets.

We are going to consider in this context a notion analogous to analyticity of
functions in the classical setting. Classically, the theory of complex differentiability
is developed via the notions of integrals and converging power series, but neither
of these is available in our setting. As we discovered while working on this pa-
per, the question of developing the basic theory of differentiation over C through
integration-free methods, was studied extensively, mainly by Whyburn in his book
Topological Analysis [W]. This approach, which replaces the use of integrals with
winding numbers, turns out to be compatible with o-minimality and allows us
to prove analogues of most of the classical results in complex analysis, with the
exception of the theory of analytic continuation.

The structure of the paper — main results

The basic theory of differentiation over K is developed in Section 2. In Sections 2.1–
2.3 the topological notion of winding number is treated in the o-minimal context.
In Sections 2.4–2.10 we define K-differentiability and prove its basic properties,
such as infinite differentiability, maximum principle, removable singularity, identity
theorem, Liouville’s theorem. Some of these are stronger than the corresponding
classical results, as for example, the following theorem on removable singularities.

Theorem 1.1. Let U ⊆ K be a definable open set, f : U → K a definable contin-
uous function, which is K-differentiable on U \ L, where dim(L) = 1. Then f is
K-differentiable on all of U .

O-minimality puts strong restrictions on the definable K-differentiable functions
over K. As we show, isolated singularities of such functions are either removable
or poles, and as a result we prove:
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Theorem 1.2. Assume that f : K → K is a definable function in an o-minimal
expansion of R, such that f is K-differentiable outside a finite set A. Then f is a
rational function over K outside A.

Note (see 2.28) that if we allow functions with restricted domains then there
are many transcendental C-differentiable functions which are definable in o-minimal
expansions of R.

In Section 2.11 we show that, in the o-minimal context, there are strong re-
strictions on the behavior of K-differentiable functions at the boundary of their
domain.

In Section 3 we apply results from Section 2 and prove the following model
theoretic corollary.

Theorem 1.3. Let R be an o-minimal expansion of a real closed field R, K an
expansion of the algebraic closure K of R. Assume that all atomic relations of K
are definable in R. If K is a proper expansion of 〈K, +, ·〉 then R ⊆ K is definable
in K.

When we translate this theorem to the classical setting of compact complex
manifolds we obtain in Section 3 a proof to the theorem of Chow on the algebraicity
of projective analytic sets.

We assume familiarity with basic o-minimality and suggest as a reference [D1]
and [D2]. As a reference for the classical material in complex analysis we mainly
used [R].

The work in this paper covers only K-differentiability in one variable. The
multivariable case will be treated in a subsequent paper.

Most of this work was conducted while the authors were visiting the Mathemat-
ical Science Research Institute during the spring 1998. We thank the Logic semi-
nar at the University of Illinois, Urbana-Champaign (especially Matthias Aschen-
brenner), and Margarita Otero for commenting on earlier versions of this paper.

2. Differentiability

2.1. Four topological facts

In several places in the paper we are going to use the facts below. We assume here
that we work in an o-minimal expansion of a real closed field R.

To simplify the arguments we let

R = {−∞} ∪ R ∪ {+∞},

and identify it (definably) with some closed and bounded interval in R, in the
obvious way. R, with this induced topology, has all the topological properties of
closed and bounded intervals. We equip (R)n with the product topology.
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Fact 2.1. Given ε > 0, let {Ft : t ∈ (0, ε)} be a definable family of definably
connected closed subsets of R

n
, such that for every t1 < t2 we have Ft1 ⊆ Ft2 .

Then
F =

⋂
t∈(0,ε)

Ft

is definably connected as well.

Proof. Since R can be identified with a closed interval in R, we may assume that
all the Ft’s are contained in a closed and bounded box in Rn.

Let I = (0, ε). Assume for contradiction that F is not definably connected.
Then there is a definable open set U ⊆ Rn such that U ∩ F and F ∩ (Rn \ U)
are nonempty, and such that (cl(U) \ U) ∩ F = ∅ (i.e., U ∩ F is closed in F ). We
may assume that U is bounded. cl(U) \ U is called the frontier of U and denoted
by fr(U).

Since each Ft is definably connected, fr(U) ∩ Ft 6= ∅ for every t ∈ I. By curve
selection there is a definable σ : I → Rn such that for every t ∈ I, σ(t) ∈ fr(U)∩Ft.
By o-minimality, since fr(U) is closed and bounded, there is c ∈ fr(U) such that
limt→0 σ(t) = c. Since the Ft’s form a decreasing family of closed sets c lies in
every Ft and therefore c ∈ F . Contradiction. �

We say that a definable U ⊆ Rn is locally definably connected at u0 ∈ Rn if for
all sufficiently small ε > 0 the set

{
u ∈ U : |u − u0| < ε

}
is definably connected. (Note that u0 need not be in U !).

Fact 2.2. Let U ⊆ Rn be a definable open set, locally definably connected at u0 ∈
Rn, and assume that f : U → Rk is definable and continuous. Let Ω ⊆ (R)n+k be
the topological closure of the graph of f , as a subset of (R)n+k. Let

Ωu0 =
{
v ∈ (R)k : (u0, v) ∈ Ω

}
.

Then Ωu0 is definably connected.

Proof. For t > 0 let Bt = {z ∈ U : |z−u0| < t}. Fix ε > 0 such that for t ∈ (0, ε) the
set Bt is definably connected. By continuity, the set f(Bt) is definably connected,
and hence also its topological closure in (R)k, which we denote by Ft. The family
{Ft : t ∈ (0, ε)} satisfies the assumptions of Fact 2.1, thus F =

⋂
t∈(0,ε) Ft is

definably connected. It is not difficult to see that F = Ωu0 . �

Note that Ωu0 , in the above, is the set of limit points of f(u) in R
k

as u
approaches u0.

The facts below are true in any o-minimal structure with definable choice.
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Fact 2.3. Let X ⊆ Mn be a definable, definably compact set, Y ⊆ Mk a defin-
able set, and assume that V is a definable, relatively open subset of X × Y . Fix
y0 ∈ Y and assume that X × {y0} ⊆ V . Then there is a definable relatively open
neighborhood W ⊆ Y of y0 such that X × W ⊆ V .

Proof. Assume that there is no such W . Then, by definable choice, there is a
definable path γ = (γ1, γ2) from some interval (0, δ) into X ×Y such that for every
t ∈ (0, δ), γ(t) /∈ V and γ2(t) tends to y0 as t tends to 0. Since X is definably
compact, γ1(t) tends to some x0 ∈ X , as t approaches 0. Since V is open and
X × {y0} ⊆ V , there is an open V1 ⊆ V containing (x0, y0). But then, there is a t
such that γ(t) ∈ V . Contradiction. �

Fact 2.4. Let Z, X, Y be definable sets, X definably compact. Let F : X × Y → Z
be a definable continuous map, y0 ∈ Y . Then for every ε > 0 there is a relatively
open neighborhood W ⊆ Y of y0 such that |F (x, y)− F (x, y0)| < ε for every y ∈ W
and every x ∈ X.

Proof. Let
V =

{
(x, y) ∈ X × Y : |F (x, y) − F (x, y0)| < ε

}
.

Then X × {y0} ⊆ V and we can apply the last fact. �

2.2. Winding numbers on the unit circle

We fix R an o-minimal expansion of R, i =
√−1 and K = R(i) the algebraic

closure of R. Every element of K can be uniquely written as x + iy, for x, y ∈ R
and thus K is identified with R2, equipped with its topology. We use the letters
z, w to denote elements of K and, depending on the context, we sometimes think of
these as elements of R2. Addition and multiplication of these is done with respect
to the field operations of K. For z = x + iy ∈ K, we let, as usual,

|z| =
√

x2 + y2

and take S1 ⊆ K to be the unit circle, i.e.,

S1 =
{
z ∈ K : |z| = 1

}
,

a subgroup of K×.
We are going to define here the notion of a winding number for definable (par-

tial) maps from R2 into R2. This is the main ingredient in developing the basic
theory of differentiability in K without integration.

We now fix a parameterization of S1 as follows: We take a definable continuous
σ : [0, 1] → S1 such that σ(0) = σ(1) = e the identity of S1 and such that σ|[0, 1)
is a bijection of [0, 1) and S1. We do so in a “counterclockwise” manner (it is easy
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to see that this makes sense in our context just like in the classical setting). The
ordering of [0, 1) induces a linear ordering on S1 via σ|[0, 1).

We define a “universal covering” of S1 as follows. Let H = Z × S1 and define
a group operation on it:

(n, s) + (m, t) =
{

(m + n, st) if s, t ≤ st

(m + n + 1, st) otherwise.

The identity element of H is (0, e) and the group inverse of an element (m, s) ∈ H
is (−m − 1, s−1) for s 6= e and (−m, e) for s = e.

H can be linearly ordered lexicographically, using the above linear ordering of S1

and the standard ordering of Z. The following is easy to verify.

Claim 2.5. H is a linearly ordered, abelian, divisible group. The projection map
π : H → S1 is a group homomorphism.

〈H, +〉 is clearly not first-order definable. It is what we call in [PS] a
∨

-definable
group. As such it is equipped with a group topology which in this case is also
the weakest topology on H making π continuous, and it coincides with the order
topology. At a neighborhood of every point which is not in π−1(e), this topology
is just the subset topology induced on H by R3. It is not difficult to show that it
is definably connected, i.e., for every definable set V ⊆ R3, if V ∩ H is clopen in H
(with respect to the group topology), then V ∩ H is either empty or equals H.

Definition 2.6. Let f : [0, 1] → S1 be a definable continuous map. A map
f̂ : [0, 1] → H is called an extension of f if it is continuous and for every x ∈ [0, 1]
we have πf̂(x) = f(x).

We are mainly interested in the following universal property of H.

Proposition 2.7. Every definable continuous map f : [0, 1] → S1 has an extension
f̂ : [0, 1] → H which is definable (as a map into R3) and in particular sends [0, 1]
onto a definable set.

The extension is unique up to a constant in the following sense. If g1 and g2
are two definable extensions, then there is an element in H of the form (m, e) such
that g1 = g2 + (m, e).

Proof. The map π : H → S1 induces a local ordering on S1. Namely, given p ∈ S1

we fix a small definable open interval I in H such that π is one-to-one on I and
p ∈ π(I); π induces an linear ordering on π(I), which is independent of our choice
of I. We use the notions “right of p” and “left of p” with respect to this no-
tion. (except for the point e ∈ S1, this is the same ordering which S1 inherits
from [0, 1)).



Vol. 7 (2001) o-minimal algebraically closed fields 415

Existence

We assume first that f is not locally constant at any point of [0, 1]. Let s0 < s1 <
· · · < sN be the collection of all points s ∈ [0, 1] such that f(s) = e. If sN < 1,
then let sN+1 = 1.

We define f̂ : [0, 1] → H as follows. For x ∈ [0, s0) we let f̂(x) = (0, f(x)), and
define

f̂(s0) = lim
x→s−

0

f̂(x).

Then, by induction, we define f̂ on the interval (si, si+1), depending on the
local behavior of f at s+

i :

Case 1: f is strictly increasing at s+
i (with respect to the linear ordering of [0, 1]

and the local ordering of S1).
Given x ∈ (si, si+1), we then let

f̂(x) = f̂(si) +
(
0, f(x)

)
.

Case 2: f is strictly decreasing at s+
i (with respect to the ordering above).

Given x ∈ (si, si+1) we then let

f̂(x) = f̂(si) +
( − 1, f(x)

)
.

In both cases we let
f̂(si+1) = lim

x→s−
i+1

f̂(x).

Note that if i < N , then f̂(si+1) is of the form (n, e) for some n ∈ Z.
Clearly, f̂ satisfies πf̂ = f . For continuity, it is sufficient to check that f̂ is

continuous at s+
i for i = 0, . . . , N .

Assume first that f is increasing at s+
i . We have that,

lim
x→s+

i

f̂(si) +
(
0, f(x)

)
= f̂(si) + lim

x→s+
i

(
0, f(x)

)
,

with the limits taken in H.
As x tends to si from the right, f(x) tends, in S1, to e from the right. Hence,

(0, f(x)) tends to (0, e), and so f̂(x) tends to f̂(si). The second case is similarly
proved.

If f is constant on some interval (at most finitely many, by o-minimality), then
we can replace in the above argument each si by that interval, say [s0

i , s
1
i ], and

perform a similar process.
Note that since N is finite this process produces a definable f̂ , whose image is

contained in the interval [(−N, e), (N, e)] ⊆ H.
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Uniqueness

Assume that g1, g2 are two definable continuous functions from [0, 1] into H which
satisfy πg1(x) = πg2(x) for all x ∈ [0, 1].

For every x ∈ [0, 1], we have π(g1(x)− g2(x)) = e, and therefore g1(x)− g2(x) is
of the form (n, e) for some n ∈ Z. Since g1 − g2 is a definable continuous function
on a definably connected set, its image must be definably connected and therefore
contains a single point. Hence, g1 − g2 = (n, e). �

Remark 2.8.

1. Even though H is not definable, every bounded part of it is definable.
Therefore, for every definable continuous function f : [0, 1] → S1, the
image of [0, 1] under f̂ is a (bounded) definably connected set, with respect
to the group topology.

2. Assume that {fa : a} is a definable family of continuous functions from
[0, 1] into S1. Then, by o-minimality there is an N such that f−1

a (e) has at
most N definably connected components. One can therefore carry out the
above construction uniformly in a, and thus the family {f̂a : a} is definable
as well.

3. If f : [0, 1] → S1 is a nonsurjective definable continuous function, then
there is x ∈ S1 such that no element of the form (m, x) lies in the image
of f̂ . Since this image is definably connected, it follows that in H we have
|f̂(1) − f̂(0)| < (1, e).

Definition 2.9.

1. Let f : [0, 1] → S1 be a definable continuous function and let f̂ : [0, 1] → H
be some definable extension of f . We define the winding number of f to be

W (f) = f̂(1) − f̂(0).

2. Let f : S1 → S1 be a definable continuous map. Then the winding number
of f is defined to be W (fσ). We still write W (f) for it.

By the uniqueness part of 2.7, the definition of W (f) does not depend on our
choice of f̂ . Moreover, if {fa : a} is a definable family of continuous functions
from [0, 1] into S1 then, by Remark (2), the family {W (fa) : a} is definable as well.

The notion of winding numbers is particularly interesting when f : [0, 1] → S1

satisfies f(1) = f(0). We call such an f a circular map. We say that f is a circular
bijection if f is circular and f |[0, 1) is injective. We use the notions of circular
maps and circular bijections more generally, for functions from [0, 1] into R2 that
satisfy the same conditions. The winding number for circular maps are integers by
the following claim.
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Claim 2.10. If f : [0, 1] → S1 is a definable continuous circular map, then W (f) =
(m, e), for some m ∈ Z. We write W (f) = m.

Proof. Let f̂ be an extension of f . Then πf̂(1) = πf̂(0) and therefore f̂(1)− f̂(0) =
(m, e) for some m ∈ Z. �

As the following fact shows, the definition of winding numbers for circular maps
does not depend on our initial choice of σ, only on its “orientation”.

Fact 2.11. If σ′ : [0, 1] → [0, 1] is a definable order-preserving bijection and f :
[0, 1] → S1 is a definable continuous circular map, then W (fσ′) = W (f). If σ′ is
order-reversing, then W (fσ′) = −W (f).

Proof. Going through the proof of 2.7, we replace everywhere si by s′
i = σ′−1(si).

Since σ′ is order-preserving, the behavior of fσ′ at s′
i
+ is the same as that of f

at s+
i . Hence, (̂fσ′)(s′

i) = f̂(si), and limx→s′
N

(̂fσ′) = limx→sN f̂ . It follows that
W (fσ′) = W (f).

We leave the order-reversing case for the reader. �
Definition 2.12. Let σ′ : [0, 1] → S1 be a definable continuous circular bijection.
We say that σ′ has positive orientation if σ−1σ′ : [0, 1] → [0, 1] is order-preserving
(i.e, σ′ is “counterclockwise”). Otherwise, we say that σ′ has negative orientation.

We can now list some of the main properties of W (f).

Lemma 2.13.
(1) Let σ′ : [0, 1] → S1 be a definable circular bijection. If σ′ has positive

orientation, then W (σ′) = 1. If σ′ has negative orientation, then W (σ′) =
−1.

(2) If f : [0, 1] → S1 is a definable continuous circular map which is not sur-
jective, then W (f) = 0.

(3) If f, g : [0, 1] → S1 are definable continuous maps, then W (f · g) = W (f)+
W (g), where multiplication and addition are taken in K and H, respectively.
In particular, if g(x) = f(x)−1 for all x ∈ [0, 1], then W (g) = −W (f).

(4) Let D be a definable, definably connected set, and F (x, y) a definable con-
tinuous function from [0, 1] × D → S1, such that for every d ∈ D, F (−, d)
is circular. Then W (F (−, d)) is constant as d varies over D.

(5) Let f : S1 → S1 be of the form f(z) = z0 · z for some fixed z0 ∈ S1. Then
W (f) = 1.

(6) Let f1, f2 be definable continuous maps from [0, 1] into S1 such that f1(1) =
f2(0). Let f : [0, 1] → S1 be the concatenation of the two maps. Namely,

f(t) =
{

f1(2t) t ∈ [0, 1/2)
f2(2t − 1) t ∈ [1/2, 1].

Then f is continuous and W (f) = W (f1) + W (f2).
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Proof. (1) is immediate from 2.11. (2) follows from Remark (3) above.
For (3), let h1 = f̂ · g and note that by definition of addition in H, h2 = f̂ + ĝ

is also an extension of f · g. But then

W (f · g) = f̂(1) + ĝ(1) − (f̂(0) + ĝ(0)) = W (f) + W (g).

(4). By Remark 2.8 (2), the map d 7→ W (F (−, d)) is a definable map from D
into Z. It is thus sufficient to show that the map is locally constant.

Assume that W (F (−, d0)) = m, and consider H(x, d) = F (x, d) ·F (x, d0)−1. H
is still a continuous function, and for every d ∈ D, H(−, d) is circular. Moreover,
H(x, d0) = e for all x ∈ [0, 1].

By 2.4, since [0, 1] is definably compact, there is an open neighborhood U ⊆ D
of d0 such that for all x ∈ [0, 1] and d ∈ U , |H(x, d)−H(x, d0)| = |H(x, d)−e| < 1.
But then for all d ∈ U , H(−, d) is a nonsurjective circular map from [0, 1] into S1,
hence W (H(−, d)) = 0. It follows from (3) that W (F (−, d)) = W (F (−, d0)) = m
and therefore that the winding number of F (−, d) remains constant as d varies
over U .

(5) is an immediate consequence of (3) together with the fact that the winding
number of the identity map is 1 and of any constant map is 0.

(6) follows from the definition of f̂ . �
Definition 2.14. Let f : [0, 1] → R2 be a definable continuous function, w /∈
f([0, 1]). The winding number of f with respect to w, denoted by W (f, w), is
defined as W (f∗) where f∗(z) = (f(z) − w)/|f(z) − w|.
Fact 2.15. Let f : [0, 1] → R2 be a definable continuous circular map, and let
W be a definably connected component of R2 \ f([0, 1]). If w1, w2 ∈ W , then
W (f, w1) = W (f, w2).

Proof. Consider the map H : [0, 1] × W → S1 defined by H(x, w) = (f(x) − w)/
|f(x) − w|.

For every w ∈ W , H(−, w) is a definable continuous circular map. Hence,
by 2.13 (4), W (H(−, w1)) = W (f, w1) = W (f, w2) = W (H(−, w2)). �

The following lemma will be used later on.

Lemma 2.16. Suppose that π1, π2 : [0, 1] → R2 are definable continuous, circular
maps whose image does not contain 0, and moreover for every t ∈ [0, 1], the line
segment between π1(t) and π2(t) does not contain 0. Then

W (π1, 0) = W (π2, 0).

Proof. Consider H : [0, 1] × [0, 1] → R2 defined by

H(t, s) = (1 − s)π1(t) + sπ2(t).

H is definable and continuous. The assumption ensures that H(t, s) is never 0,
hence we can apply 2.13(4). �
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2.3. Winding numbers and simple closed curves

Definition 2.17. A definable set C ⊆ R2 is called a simple closed curve if there
is a continuous definable circular bijection π : [0, 1] → C.

The following theorem is the o-minimal version of the Jordan curve lemma. It
is due to Woerheide [Wo].

Theorem 2.18. If C ⊆ R2 is a simple closed curve, then R2 \ C is a disjoint
union of two definably connected open sets, one of which is bounded and the other
is unbounded. We call the bounded component the interior of C, Int(C).

Lemma 2.19. Let π : [0, 1] → R2 be a continuous, definable circular bijection,
whose image is a simple closed curve C. If w lies in the unbounded component of
R2 \ C, then W (π, w) = 0. If w lies in the interior of C, then either W (π, w) = 1
or W (π, w) = −1.

Proof. Assume that w lies in the unbounded component of R2\C. Then, using 2.15,
we may assume that w lies very far from C. It easily follows from 2.13(2) that
W (π, w) = 0.

In the case that w lies in the interior of C we offer two proofs. For one proof,
see V.2.2 in [W]. The proof there works almost verbatim in our context. For another
proof, we observe first that there is w1 in the interior of C such that the horizontal
line through w1 crosses C exactly once, to the right of w1 (we omit the proof here).
Now, the map π∗(t) = (π(t) − w1)/|π(t) − w1| from [0, 1] onto S1 takes the value
e exactly once, and moreover π∗ is either locally increasing or decreasing at this
point. It follows that W (π∗, w1) is either 1 or or −1. By 2.15, W (π∗, w) = ±1
as well. �

Definition 2.20. Let C be a definable simple closed curve, given by the map π.
We say that C has positive orientation if W (π, w) = 1 for w in the interior of C.
If W (π, w) = −1, we say that C has negative orientation.

Given a definable simple closed curve C, we always will assume that C has
positive orientation (clearly, we can always find such π).

Definition 2.21. Let C ⊆ R2 be a definable, simple closed curve, f : C → R2

a definable continuous function, w ∈ R2 \ f(C). Then WC(f, w) is defined to be
W (fπ, w) for any definable parameterization π of C with positive orientation.

Definition 2.22. A definable simple closed curve is called star-shaped if there is
p in the interior of C such that, for every z ∈ C, the line segment between p and z
lies entirely within Int(C).
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Fact 2.23. Let C ⊆ R2 be a definable, star-shaped, simple closed curve with inte-
rior D. Let f : D ∪ C → R2 be a definable continuous map. If w /∈ f(D ∪ C), then
WC(f, w) = 0.

Proof. Take p as in the definition. Without loss of generality p = 0. For r ∈ R, let
Cr = {rz : z ∈ C}. Since C is star-shaped, the simple closed curve Cr is contained
in D for every r ∈ (0, 1).

Since w /∈ f(D ∪ C), the map f∗(z) = (f(z) − w)/|f(z) − w| is well defined
on D ∪ C. By continuity, there is r > 0 sufficiently small such that f∗|Cr is a
nonsurjective map from Cr into S1. It follows that WCr (f∗) = 0.

Since w /∈ f(D∪C) there is a continuous function H : C × [r, 1] → S1 such that
H(x, 1) = (f(x)−w)/|f(x)−w| and H(x, r) = f∗(rx). By 2.13 (4), WC(f(x), w) =
WC(f∗(rx), w) = WCr(f∗, w) = 0. �
Lemma 2.24. Let C be a definable, star-shaped, simple closed curve whose interior
is D. Let f : D∪C → R2 be a definable continuous function and let W be a definably
connected component of R2 \ f(C). If there exists w ∈ W such that WC(f, w) 6= 0,
then W ⊆ Int(f(D)).

Proof. Note first that since C is a closed and bounded set, so is f(C) and hence
R2 \ f(C) is a finite union of definable open sets that are definably connected. In
particular, W is an open set and hence it is sufficient to show that W ⊆ f(D).

Assume that there is w′ ∈ W that is not in f(D). By 2.23, WC(f, w′) = 0, and
therefore, by 2.15, WC(f, w) = 0. �

We are going to need the following lemma.

Lemma 2.25. Let C be a definable simple closed curve whose interior is D, A ⊆ D
definable and let f : (D ∪C) \A → R2 be a definable continuous function. Assume
that for w ∈ R2, there are definable simple closed curves C1, . . . , Ck ⊆ D such that
their interiors U1, . . . , Uk ⊆ D are pairwise disjoint and f−1(w) is contained in
the union of the Ui’s. Assume also that A ⊆ ⋃

i Ui.
Then

WC(f, w) = ΣiWCi(f, w).

Proof. We will prove the lemma for the case k = 2; the general case is proved
similarly. Assume that πi : [0, 1] → Ci, i = 1, 2, are definable continuous circular
bijection of positive orientation. Since D is definably connected, it is not hard to
see that one can define now a continuous map h : [0, 1] → D with the following
properties:

h(t) =
{

π1(4t) t ∈ [0, 1/4)
π2(4(t − 1/2)) t ∈ [1/2, 3/4),

and for t ∈ [1/4, 1/2) ∪ [3/4, 1], h(t) = h(5/4 − t), and h(t) /∈ C1 ∪ C2.
The image of h, call it C3, consists of C1 ∪ C2 together with a curve which is

repeated twice, along opposite directions, and connects C1 and C2.
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It is easy to see that

W (fh, w) = W (fπ1, w) + W (fπ2, w) = WC1(f, w) + WC2(f, w).

Now, let γ be any definable simple path connecting C3 to C such that γ lies
entirely in D \ (U1 ∪U2). We can find a definable map g : [0, 1] → C ∪γ ∪C3, which
goes back and forth along γ and concatenates π with a map of negative orientation
along C3.

We then have W (fg, w) = W (fπ, w) − W (fh, w).
It is left to see that W (fg, w) = 0. For that, we need to continuously separate

the two copies of γ such that we get now a simple closed curve whose interior is
contained in D1 = D \U1 ∪U2. Since w does not lie in f(D1), the winding number
of f with respect to w, along boundary of D1 is zero. �

2.4. Differentiability in R and in K

First we recall some facts on the notion of R-differentiability (see Section 7 of [D1]).
Given a definable open U ⊆ Rm and definable f : U → Rn, f is called R-
differentiable at c ∈ U if there is a linear map T : Rm → Rn such that

lim
|h|→0

|f(c + h) − f(c) − T (h)|
|h| = 0.

T is then denoted by dcf and is called the R-differential of f at c.
If n = 1 the partial R-derivatives, ∂f

∂xj
, of f are defined just as in the classical

case. If f is R-differentiable, then all the partial derivatives exist, but the converse
is not true in general. However, if all the partial derivatives exist and continuous
on some neighborhood of c, then f is R-differentiable on this neighborhood and
the map c 7→ dcf is also continuous. The converse of the last statement is true as
well.

For an open set V ⊆ Rm and f : V → Rn, we write f = (f1, . . . , fn). If f
is R-differentiable at c, then so are all the fi’s and then the matrix of the partial
derivatives is just the matrix of dcf with respect to the standard basis.

We define differentiability with respect to K just as in the classical case. The
basic definitions depend on the definability of the functions and sets in question,
but we will use them here only for definable objects.

Definition 2.26. Let U ⊆ K be a definable open set, z0 ∈ U . A (definable)
function f : U → K is K-differentiable at z0 if

lim
h→0

f(z0 + h) − f(z0)
h

exists in K (where the limit is taken with respect to the topology of R2). This
limit, if it exists, is called the K-derivative of f at z0 and is denoted by f ′(z0).
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Given α ∈ K, the map z 7→ αz is a K-linear endomorphism of K, as a vector
space over the field K. We denote this map by λα when it is viewed as an endo-
morphism of the R-vector space 〈R2, +〉. Given any R-linear map λ : R2 → R2, it
is easy to see that λ = λα for some α ∈ K if and only if its matrix, with respect to
the standard basis, is of the form (

a b
−b a

)
,

for a, b ∈ R.
The following fact is easy to prove, just as in the classical case.

Fact 2.27. Let f : U → K be a (definable) function on an open subset of K,
z0 ∈ U . Then the following are equivalent.

(1) f is K-differentiable at z0.
(2) f is R-differentiable at z0, as a function from R2 to R2, and dfz0 equals to

λα for some α ∈ K.
(3) f = (f1, f2), as a function from R2 into R2, is R-differentiable at z0 and

∂f1

∂x1
(z0) =

∂f2

∂x2
(z0)

∂f1

∂x2
(z0) = − ∂f2

∂x1
(z0).

The basic rules of differentiation (for addition, multiplication and composition
of functions) can be proved here just like in the classical case.

In particular, if f ∈ K[x] is a polynomial over K, then the notion of K-derivative
which we have defined above agrees with the formal definition of derivatives for
polynomials. Thus, for polynomial maps, the notion of derivatives is independent
of our initial choice of the real closed field R, even though the topology on K and
hence the general definition of derivative depend on R.

The known examples for K-differentiable functions in o-minimal structures all
arise from the classical setting:

Example 2.28.
(1) Consider R = Ran, the expansion of the field of real numbers by functions

f : [0, 1]n → R, where f is real analytic on an open set containing [0, 1]n.
Let B ⊆ C be the closed complex unit disc. If F is a complex analytic
function on an open subset of C, containing B, then the real and imaginary
parts of F |B are given by restricted analytic functions and therefore are
definable in Ran. Thus F |B is definable there as well.

(2) It is easy to see that the complex exponential function is not definable in
any o-minimal expansion of R. But its restriction to the set R × [−1, 1] ⊆
R2, considered as a subset of C, is definable in Ran,exp, the expansion
of Ran by the real exponential function exp : R → R (see [DMM] for a
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reference to the o-minimality of Ran and Ran,exp). If R is a nonarchimedean
elementary extension of Ran,exp, then we can get in R new K-differentiable
functions using the classical ones. For example, if α ∈ R is an infinitesimal
element, then the map z 7→ exp(αz) is definable in R and K-differentiable
on R × [−1/α, 1/α] ⊆ K.

2.5. K-differentiability and winding numbers

The arguments in Sections 2.5-2.10 adapt ideas of Whyburn and Connell, mainly
from [W], [C1], [C2] to the context of o-minimal structures. In many cases, the ar-
guments are practically identical to the original ones and we include them here only
for the sake of completeness. In other cases, o-minimality allows us to strengthen
these results (e.g. 2.31 and 2.37), or simplify the arguments.

Fact 2.29. Let U ⊆ K be a definable open set, f : U → K a definable map. If f
is K-differentiable at z0 ∈ U and if f ′(z0) 6= 0, then there is an ε > 0 such that
for every r < ε and every circle C around z0 with radius r, WC(f, f(z0)) is well
defined and equals 1.

Proof. Since f ′(z0) 6= 0 the function f(z) does not take the value f(z0) at z 6= z0
sufficiently close to z0.

Let d = f ′(z0). Then for C a circle around z0 sufficiently small, (f(z) −
f(z0))/d(z − z0) is close to 1, for z ∈ C. But then-

f(z) − f(z0)
|f(z) − f(z0)| · |d||z − z0|

d(z − z0)

is close to 1 as well. Hence, by 2.13 (2), (3) the maps z 7→ (f(z)−f(z0))/|f(z)−f(z0)|
and z 7→ d(z − z0)/|d||z − z0| have the same winding number on C. By 2.13 (5),
the winding number of the latter function is 1. �

The following technical lemma is the main ingredient for the results in this
section.

Lemma 2.30. Let C be a definable, star-shaped, simple closed curve whose in-
terior is D. Let f : D ∪ C → K be a definable continuous function, which is
K-differentiable on D \L, where L is definable and dim(L) = 1. Assume that W is
a definably connected component of K \ f(C). Then the following are equivalent.

(1) W ∩ f(D) 6= ∅,
(2) W ⊆ f(D).
(3) There exists w ∈ W such that WC(f, w) 6= 0.
(4) For all w ∈ W , WC(f, w) 6= 0.

Proof. It is immediate that (4) implies (3). By 2.24, (3) implies (2), and again, it
is immediate that (2) implies (1). It is thus left to show that (1) implies (4).
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By replacing L with its topological closure we may assume that L is a closed
set. Note that W ∩ f(D) must be infinite since f(D) is definably connected, and
by (1), f is not a constant map. If we let U = f−1(W ), then U is a nonempty open
subset of D, and f takes infinitely many values on U .

Since the notion of a winding number is uniformly definable we may work in
an ℵ1-saturated structure. We assume that f and C are ∅-definable. Now, if z is
generic in U over ∅, then z /∈ L and therefore f is K-differentiable at z. Moreover,
by o-minimality, f ′ is continuous there. We claim that there is such a z for which
f ′(z) 6= 0. If not, then f ′(z) = 0 for every generic z in U . But then f is locally
constant on U \ L and since this set is dense in U , f is locally constant on U , thus
taking only finitely many values there, contradicting our previous observation.

Take z1 ∈ U \ L such that f is continuously differentiable at z1 and f ′(z1) 6= 0.
Then, as a function from R2 to R2, f is a C1 function at z1, whose differential at
z1 is invertible. By the Inverse Function Theorem (see (7.2.11) in [D1]), f is a local
homeomorphism at z1. In particular, W ∩ f(D) contains a nonempty open set.

Let w0 be a generic element of W ∩f(D) over ∅. Since dim(w0/∅) = 2, f−1(w0)
is finite and hence for every z ∈ f−1(w0), dim(z/∅) = 2. In particular, f is a C1

function at z in the sense of R, and z /∈ L. Moreover, for every such z we have
f ′(z) 6= 0, since otherwise there is an open, definably connected, neighborhood V
of z such that f ′ is zero on V , contradicting the fact that f−1(w0) is finite.

Let f−1(w0) = {z1, . . . , zk}. By 2.29, around each zi there is a closed disc Di,
with boundary Ci such that WCi(f, w0) = 1 and such that they are all pairwise
disjoint. Moreover, for every z ∈ D \ ⋃

i Di, f(z) 6= w0.
We now can apply 2.25 and obtain

WC(f, w0) = ΣiWCi(f, w0) = k 6= 0.

By 2.15, for every w ∈ W , WC(f, w) = k 6= 0. �

2.6. The Maximum principle, Identity theorem and ”Liouville’s theo-
rem”

Theorem 2.31 (The Maximum Principle). Let C ⊆ K be a definable, star-shaped
simple closed curve whose interior is D. Let f : D ∪ C → K be a definable
continuous function which is K-differentiable on D \ L, where dim(L) = 1. If z0
is any point in D, then either f(z0) ∈ f(C) or f(z0) ∈ Int(f(D)). In particular,

|f(z0)| ≤ Maxz∈C |f(z)|.

Proof. Assume that f(z0) /∈ f(C) and let W be the definably connected component
of K \ f(C) containing f(z0). By 2.30, W ⊆ f(D), hence f(z0) ∈ Int(f(D)).
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The rest easily follows: Indeed, let M be the maximum of |f | on D ∪ C. If
|f(z)| = M for z ∈ D, then clearly, f(z) /∈ Int(f(D)). But then, there is c ∈ C
such that |f(z)| = |f(c)| = M . �

We derive many of the basic results in complex analysis from the maximum
principle. Below are several such theorems.

Definition 2.32. For f : U → K, z0 ∈ U , we write

lim
z→z0

f(z) = ∞

if limz→z0 |f(z)| = +∞ in R.

Part (1) of the theorem below is sometimes called, in the classical setting, the
identity theorem. Classically, the assumption on f is that its zero set has an
accumulation point. In the o-minimal case this is the same as being infinite. (2) is
a strengthening of (1) and it handles boundary points of dom(f).

Theorem 2.33. Let U ⊆ K be a definably connected open set, f : U → K a
definable function which is K-differentiable on U .

(1) If f(z) = w0 for infinitely many z ∈ U , then f(z) = w0 for all z ∈ U .
(2) Let Û be the set of points z0 in the topological closure of U such that the

limit of f(z), as z tends to z0 in U , exists in K. We denote this limit, if
it exists, by f(z0). If f(z) = w0 for infinitely many z ∈ Û , then f(z) = w0

for all z ∈ Û .

Proof. Clearly, it is sufficient to prove (2). We may assume that w0 = 0.
Let Z = {z ∈ Û : f(z) = 0} and assume that Z is infinite and different than Û .
Our plan is to use f in order define a new K-differentiable function on some

open set which is constant along a star-shaped simple closed curve, and hence
should be constant on its interior.

Let ∂Z denote the boundary of Z in Û (namely, Cl(Z) \ Int(Z)). We claim
that ∂Z is infinite. If not, then Z ∩ (Û \ ∂Z) is nonempty and has no boundary
in Û \ ∂Z, therefore Û \ ∂Z is definably disconnected. However, this is impossible
because Û is contained in the closure of an open definably connected set U , and
∂Z is finite.

Using rotation and translation, we may assume that 0 ∈ K lies on ∂Z and that
∂Z is the graph of a C1 function h : I → R, for I ⊆ R an open interval around
0 ∈ R, and that h has a local extremum at 0 (and h(0) = 0). Moreover, we may
assume that Z lies “below ∂Z”. More precisely, for some ε > 0, if x ∈ I and
h(x) < t < ε, then the point x + it lies in U \ Z.

Let 0 < r < ε. For t ∈ [−1, 1], consider the R-line y = tx + r through ir and
let γr(t) ∈ K be the first intersection point (if any) for x > 0, of this line with ∂Z.
Note that if r is sufficiently small, then ir ∈ U \ Z and for all t ∈ [−1, 1], γr(t) is
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well defined. It follows that the line segment Ir(t) between ir and γr(t) lies entirely
in U \ Z.

Let γ1
r ⊆ ∂Z be the curve drawn by γr(t) as t varies in [−1, 1], and let γ2

r , γ3
r , γ4

r

be the results of rotating γ1
r around ir in angles of π/2, π, 3π/2, respectively. The

union of these four curves forms a definable simple closed curve which we denote
by γr, and its interior is Dr. This is a star-shaped curve (as witnessed by ir), and
if we choose r sufficiently small, then Dr is contained in U .

We let z0 = ir and define the function g(z) on Dr ∪γr by the following formula:

g(z) = f(z) · f
(
z0 + i(z − z0)

) · f(
z0 − (z − z0)

) · f(
z0 − i(z − z0)

)
.

g(z) is K-differentiable on Dr and continuous on the closure of Dr. Since γ1
r is

contained in Z, g vanishes on the boundary γr of D.
By the maximum principle for star-shaped simple closed curves, g(z0)=f(z0)=

0, contradicting our assumption that z0 /∈ Z. �

We can now prove that K-differentiable maps are open.

Corollary 2.34. Let U ⊆ K be a definably connected open set, f : U → K a
definable function which is K-differentiable on U . If f is not a constant map on
U , then it maps every open subset of U onto an open subset of K.

Proof. Let z0 be in U . Then, by 2.33, there is an open disc D centered at z0,
such that D and its boundary C are contained in U , and for every z ∈ C we have
f(z) 6= f(z0). By 2.31, f(z0) lies in the interior of f(D). �

Remark 2.35. Notice that the openness of K-differentiable maps immediately
implies the maximum principle not only for star-shaped simple closed curves, but
for all simple closed curves.

The following theorem is the direct analogue of Liouville’s theorem.

Theorem 2.36. Let f : K → K be a definable K-differentiable function. If |f | is
bounded on K, then it is constant.

Proof. Take some z0 ∈ K and let h(z) = (f(z) − f(z0))/(z − z0) for z 6= z0,
h(z0) = f ′(z0). By the differentiability of f , h(z) is differentiable on K \ {z0} and
continuous at z0. By the maximum principle, for any circle C of radius r around
z0,

|h(z0)| ≤ max
z∈C

∣∣∣∣f(z) − f(z0)
r

∣∣∣∣ .

It follows that h(z0) = 0. Since z0 is arbitrary f ′ vanishes at every point in K,
hence f(z) is a constant function. �
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2.7. Removable singularities

The theorem below is stronger than the standard removable singularity theorem
in that we are able to remove not only isolated singularities but a one dimensional
set of them. Similar theorems, in the classical setting, can be found in the more
advanced literature on the subject.

Theorem 2.37. Let U ⊆ K be a definable open set, f : U → K a definable contin-
uous function, which is K-differentiable on U \L, where L is definable, dim(L) ≤ 1.
Then f is K-differentiable on U .

Proof. We fix z0 ∈ L and show that f is K-differentiable at z0. Let D ⊆ U be a
small open disc centered at z0, whose boundary is C ⊆ U .

For y ∈ U \ L, consider the function hy(z) = (f(z) − f(y))/(z − y). It is
continuous, as a function of z, at every z ∈ D ∪ C \ {y}, and moreover, since f is
differentiable at y, hy(z) has a continuous extension to z = y. As a function of z
again, hy(z) is differentiable on D \ (L ∪ {y}).

By the maximum principle, |hy(z)| attains its maximum on C. Hence (now
varying y also), for every y ∈ D \ L and every z′ ∈ D, we have∣∣∣∣f(z′) − f(y)

z′ − y

∣∣∣∣ ≤ max
z∈C

∣∣∣∣f(z) − f(y)
z − y

∣∣∣∣ .

In particular, for every y ∈ D \ L∣∣∣∣f(z0) − f(y)
z0 − y

∣∣∣∣ ≤ max
z∈C

∣∣∣∣f(z) − f(y)
z − y

∣∣∣∣ .

Consider now the expression on the right hand side of the last inequality. If
we let y vary over a closed and bounded disc D1 ⊆ D around z0, which does not
intersect C, then this expression is bounded, and hence also is the expression on
the left.

By o-minimality, it follows that (f(z0)− f(y))/(z0 − y) approaches a limit in K
as y approaches z0 along any definable path. It remains to show that this limit is
independent of the path.

For y1, y2 ∈ D \ L and z ∈ D \ {y1, y2}, consider the function

hy1,y2(z) =
f(z) − f(y1)

z − y1
− f(z) − f(y2)

z − y2
.

As before, hy1,y2 can be extended to a continuous function on D, which is K-
differentiable on D \ (L ∪ {y1, y2}). By the maximum principle,∣∣∣∣f(z0) − f(y1)

z0 − y1
− f(z0) − f(y2)

z0 − y2

∣∣∣∣ ≤ max
z∈C

∣∣∣∣f(z) − f(y1)
z − y1

− f(z) − f(y2)
z − y2

∣∣∣∣ .
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On the other hand, using 2.4 (applied twice to F (x, y) = hy(x)), for every ε > 0
there is a closed disc D1 around z0 such that for every y1, y2 ∈ D1 and z ∈ C,∣∣∣∣f(z) − f(y1)

z − y1
− f(z) − f(y2)

z − y2

∣∣∣∣ < ε.

It follows that as y1 and y2 approach z0 along definable paths γ1, γ2, respectively,
which do not intersect L, we have

lim
y1∈γ1→z0

f(z0) − f(y1)
z0 − y1

= lim
y2∈γ2→z0

f(z0) − f(y2)
z0 − y2

.

Denote f(z0)−f(y)
z0−y by g(y). Since dimL ≤ 1, there are at most finitely many

limit points (including, possibly ∞), for g(y), as y approaches z0 along L. It
follows that g(y) has at most finitely many limit points (including possibly ∞) as
y approaches z0 in U and at least one of those lies in K. But U \ {z0} is locally
definably connected at z0, and g(y) is continuous there, so by 2.2 the set of limit
points is definably connected, and therefore contains a single point. But then f is
K-differentiable at z0. �
Theorem 2.38. Let U ⊆ K be an open set, z0 ∈ U , and assume that f : U → K
is a definable function which is K-differentiable on U \ {z0}, and bounded on some
neighborhood of z0. Then f can be extended, as a K-differentiable function, to z0.

Proof. The function h(z) = (z − z0)f(z) is continuous on U and differentiable at
U \{z0}. By 2.37, h is K-differentiable at z0, hence limz→z0 f(z) exists. Thus f can
be extended, as a continuous function, to z0. By 2.37 again, f is now differentiable
at z0 as well. �
Remark. It might seem at first that 2.38 is too weak. Namely that, as in Theo-
rem 2.37, we could have removed not only isolated singularities but a one dimen-
sional set of them. This of course is false, for consider one branch of the function
f(z) =

√
z on U \ {x ∈ R : x > 0}, where U ⊆ K is the open unit disc. f is

K-differentiable and bounded but its singularities cannot be removed. As we will
show in Section 2.11, we can always, under the assumptions of 2.38, define f on
every z0 ∈ L such that it is continuous when we approach z0 along a given defin-
ably connected neighborhood. But since U \ L is not in general locally connected
at generic z0 ∈ L, there will often be more than one way to define f at z0, as in
the example.

2.8. Infinite differentiability

Lemma 2.39. Assume that h is a definable K-differentiable function on a defin-
able open set U ⊆ K, z0 ∈ U . Then for all ε > 0 there exists an open disc D1
around z0 such that ∣∣∣∣h(y) − h(x)

y − x
− h′(z0)

∣∣∣∣ < ε,
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for all x 6= y, both in D1. In particular, h′(z) is continuous at z0.

Proof. Let ε > 0. By the K-differentiability of h there is an open disc D around
z0, with boundary C ⊆ U such that for every z ∈ D ∪ C,∣∣∣∣h(z) − h(z0)

z − z0
− h′(z0)

∣∣∣∣ < ε/2.

As in the proof of 2.37, since C is definably compact, there is another open disc
D1 ⊆ D around z0 such that for every y ∈ D1 and z ∈ C,∣∣∣∣h(z) − h(z0)

z − z0
− h(z) − h(y)

z − y

∣∣∣∣ < ε/2.

We thus have, for every z ∈ C and y ∈ D1,∣∣∣∣h(z) − h(y)
z − y

− h′(z0)
∣∣∣∣ < ε.

We now change the roles of the variables and for a fixed y ∈ D1 consider the
function g(x) = (h(y)−h(x))/(y−x)−h′(z0). This function is (or can be extended
to be) continuous at every point of D1. It is also differentiable at D1 \ {y}. By the
maximum principle,∣∣∣∣h(y) − h(x)

y − x
− h′(z0)

∣∣∣∣ ≤ Maxz∈C

∣∣∣∣h(y) − h(z)
y − z

− h′(z0)
∣∣∣∣ ,

for every x, y ∈ D1.
Putting the last two equalities together we get the desired result. �

Theorem 2.40. Let U ⊆ K be a definable open set and assume that f : U →
K is a definable function which is K-differentiable on U . Then f is infinitely
differentiable on U .

Proof. It is enough to show that f ′(z) is K-differentiable on U . We fix z0 ∈ U . By
replacing f(z) with f(z + z0) − f(z0) − f ′(z0)z, we may assume that z0 = 0 and
that f(0) = f ′(0) = 0.

Let h(z) = f(z)/z, and h(0) = 0. Then h is K-differentiable on U \ {0} and
continuous at 0. By 2.38, it is K-differentiable at 0 as well and by differentiation
rules we have for z 6= 0 that

h′(z) = f ′(z)/z − f(z)/z2.

By the differentiability of h, limz→0 f(z)/z2 exists and by 2.29, limz→0 h′(z)
exists. Therefore, limz→0 f ′(z)/z exists and since f ′(0) = 0, this implies that f ′(z)
is K-differentiable at 0. �
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2.9. Taylor-like and Laurent-like series

Lemma 2.41. Let U ⊆ K be an open definable set, z0 ∈ U , and let f : U\{z0}→K
be a definable K-differentiable function. Then the following hold:

(i) The limit of f(z) as z tends to z0 exists, (possibly equals ∞).
(ii) Either f(z) or 1/f(z) can be extended, as a K-differentiable function, to z0.
(iii) Assume that D ⊆ U is an open disc around z0 with boundary C ⊆ U ,

w0 ∈ K \ f(C), such that WC(f, w0) = 0. Then limz→z0 f(z) 6= w0.

Proof. (i) Consider Γ(f) ⊆ K × K, the graph of f . It is a set of dimension two,
hence its frontier has at most dimension one. In particular, there is a point c ∈ K
such that (z0, c) does not lie in the closure of Γ. The function 1/(f(z)− c) is thus a
K-differentiable function on U \{z0} which is bounded at z0. By 2.38, 1/(f(z)− c)
has a limit at z0. If this limit is nonzero, then limz→z0 f(z) exists in K. Otherwise,
limz→z0 f(z) = ∞.

(ii) is immediate from (i) and 2.38.

(iii) Assume that limz→z0 f(z) = w0. By 2.38, f can be extended to a differen-
tiable function on U with f(z0) = w0. But then w0 ∈ f(D), contradicting 2.30. �

As the following lemma shows, in the o-minimal context there are no (using
the classical terminology) essential singularities, only removable singularities and
poles.

Lemma 2.42. Let U ⊆ K be an open definable set, z0 ∈ U , f : U \ {z0} → K a
definable K-differentiable function, which is not constantly zero at a neighborhood
of z0. (By 2.41 limz→z0 f(z) ∈ K ∪ {∞}).

(i) If limz→z0 f(z) is in K (hence f is K-differentiable at z0) then there is a
unique n ∈ N such that limz→z0 f(z)/(z − z0)n exists in K and is different
from zero. We call n the order of f at z0.

(ii) If limz→z0 f(z) = ∞ then there is a unique n > 0 in N such that
limz→z0 f(z)(z − z0)n exists in K and is different from zero. We call z0 a
pole of f and −n is the order of f at z0.

Proof. (i) If f(z0) 6= 0 then we take n = 0. So we assume that f(z0) = 0. Take
D ⊆ U an open disc containing z0, whose boundary is C ⊆ U and such that
0 /∈ f(D ∪ C \ {z0}) (by 2.33, there is such D). By 2.41(iii), since limz→z0 f(z) =
0, we have WC(f, 0) = n 6= 0. Define h(z) = f(z)/(z − z0)n. Since WC((z −
z0)n, 0) = n, we can conclude from 2.13(3) that WC(h, 0) = 0. Therefore, again by
2.41(iii), the limit of h(z) as z approaches z0 exists (possibly ∞) and is different
than 0. If limz→z0 h(z) = ∞, then we consider 1/h instead of h and then, by
the same argument, we see that limz→z0 1/h(z) 6= 0, contradiction. Therefore,
limz→z0 f(z)/(z − z0)n exists in K. The uniqueness of n is easy to verify.

For (ii), replace f(z) by 1/f(z). �
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As a corollary of the proofs of the above lemma we obtain.

Corollary 2.43. Let U ⊆ K be an open definable set, z0 ∈ U , f : U \ {z0} → K a
definable K-differentiable function, which is not constantly zero at a neighborhood
of z0. Then the order of f at z0 equals WC(f, 0), for all sufficiently small circles
C ⊆ U centered at z0.

The following two theorems give expansions for f at points which are (possi-
bly) isolated singularities. These are analogous to either the Taylor expansion for
analytic functions or the Laurent expansions for meromorphic functions.

Theorem 2.44. Let U ⊆ K be a definable open set, z0 ∈ U , f : U → K a definable
K-differentiable function, which is not constantly zero in a neighborhood of z0. Let
n (≥ 0) be the order of f at z0, as given by 2.42(i).

Then there are an, an+1, . . . , ai, . . . ∈ K, i ≥ n, such that an 6= 0 and for every
k ≥ n,

lim
z→z0

f(z) − Σk−1
i=nai(z − z0)i

(z − z0)k
= ak.

Proof. By 2.42(i), limz→z0 f(z)/(z −z0)n 6= 0. We let an equal this limit. Consider
now the function fn(z) = f(z) − an(z − z0)n. If fn is constantly zero in a neigh-
borhood of z0, then we take ak = 0 for k > n. Otherwise, applying 2.42(i) to fn,
we obtain an m ∈ N such that

fn(z)
(z − z0)m

→ c 6= 0

as z tends to z0. We have m > n, for otherwise, limz→z0 fn(z)/(z − z0)m = 0. We
then let am be this limit and define ai = 0 for i = n + 1, . . . , m − 1. We proceed
similarly to obtain the whole sequence of the ai’s. �
Theorem 2.45. Let U ⊆ K be a definable open set, z0 ∈ U , f : U \{z0} → K a de-
finable K-differentiable function. Assume that limz→z0 f(z) = ∞. Let −n (< 0) be
the order of f at z0, as given by 2.42(ii). Then there are a−n, a−n+1, . . . , a−1, a0 ∈
K, such that a−n 6= 0 and for every −n ≤ k ≤ 0,

lim
z→z0

(
f(z) − Σk−1

i=−nai(z − z0)i
)
(z − z0)−k = ak.

In particular, the function

f(z) −
(

a−n

(z − z0)n
+ · · · + a−1

z − z0

)

has a limit at z0 and hence can be extended, as a K-differentiable function, to z0.

Proof. The same as 2.44, with 2.42(ii) replacing 2.42(i). �
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Let f : U \ {z0} → K be a definable K-differentiable function. If f vanishes
on some punctured neighborhood of z0, we let n(f, z0) = ∞ and define an(f, z0)
to be 0 for all n ∈ Z. Otherwise, we let n(f, z0) denote the order of f at z0 and
let 〈ak(f, z0) : k ∈ Z〉 be the sequence as given in 2.44 and 2.45, where ak(f, z0)
is taken to be 0 if k < n(f, z0). We sometimes omit z0 in the notation and write
n(f) and ak(f) instead.

We list some basic properties of the expansion above.

Theorem 2.46. Let U ⊆ K be a definable open set, z0 ∈ U , and let f : U \{z0} →
K be a definable, K-differentiable function.

(1) If g : U \ {z0} → K is another definable K-differentiable map, then ak(f +
g, z0) = ak(f, z0) + ak(g, z0).

(2) For all k ∈ Z,
ak(f ′, z0) = kak+1(f, z0).

In particular, if n(f, z0) 6= 0, then n(f ′, z0) = n(f, z0)−1, and if n(f, z0) =
0, we have n(f ′, z0) ≥ n(f, z0).

(3) If f can be extended to a K-differentiable function at z0, then

ak(f, z0) =
f (k)(z0)

k!
,

for k ≥ 0.

Proof. (1) is immediate from the definition of the ai’s and the distributivity of the
limit through addition.

For (2), let n = n(f) and note that g(z) = f(z)(z−z0)−n approaches an(f) 6= 0,
as z approaches z0. Hence, g(z) is (or can be extended to be) K-differentiable at z0.
It follows that g′(z) has a limit at z0 and therefore g′(z)(z − z0) tends to zero as z
tends to z0. But g′(z)(z − z0) = f ′(z)(z − z0)−(n−1) − nf(z)(z − z0)−n (even when
n = 0), therefore

lim
z→z0

f ′(z)
(z − z0)n−1 = lim

z→z0

nf(z)
(z − z0)n

= nan(f, z0),

and in particular, the order of f ′(z) is n − 1 if n 6= 0. Replacing now f(z) by
f(z) − an(z − z0)n, we may repeat the argument to obtain the desired result.

(3) follows from (2) by induction, using the fact that if g is K-differentiable at
z0, then a0(g, z0) = g(z0). �

As the following theorem shows, there are no entire functions definable in an o-
minimal structure other than the polynomial ones, and no meromorphic functions
on all of K other than rational ones. We are going to make model theoretic use of
this theorem in Section 3.
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Theorem 2.47. Let A ⊆ K be a finite set (possibly empty), f : K \ A → K a
definable, K-differentiable function. Then f(z) is a rational function.

Proof. We may assume that f has a pole at every element of A = {z1, . . . , zk}.
Then, by 2.45, there are P1(z), . . . , Pk(z), rational functions, with poles at
z1, . . . , zk, respectively, such that g(z) = f(z) − ΣiPi(z) can be extended to a
K-differentiable function on all of K.

If g is bounded on K, then, by 2.36, it must be constant and therefore f is a
rational function. If not, we consider the function g(1/z), which must have a single
pole at 0 and is bounded as |z| tends to ∞. By 2.45, there is n > 0 and a polynomial
p(z) of degree at most n such that h(z) = g(1/z) − p(z)/zn is a K-differentiable
function on all of K. Since p(z)/zn is bounded as |z| tends to ∞, h(z) is bounded
on K and therefore it is a constant function. Hence, f(z) is rational. �

We conclude this section with several other properties of the expansions. In the
classical setting these are usually proved using the convergence of the power series
expansion. As we already pointed out, we cannot hope for any such convergence
in our setting, but it turns out that these properties are still true here.

Theorem 2.48. Let U ⊆ K be a definably connected open set, z0 ∈ U . Let
f, g : U \{z0} → K be definable, K-differentiable functions. If ak(f, z0) = ak(g, z0)
for all k ∈ Z, then f(z) = g(z) for all z ∈ U . In particular, if f and g are
K-differentiable at z0 and f (k)(z0) = g(k)(z0) for all k ≥ 0, then f = g on U .

Proof. By the additivity of the ai’s, ak(f − g, z0) = 0 for all k ∈ Z. But then, by
2.44 and 2.45, f − g is identically zero on U . �

As in the classical case, we identify R with the x-axis in R2.

Corollary 2.49. Let U ⊆ K be a definable open set containing 0, and let f :
U \ {0} → K be a definable K-differentiable function. Then the following are
equivalent.

(1) There is a definable open set V around 0 such that f(z) ∈ R for all z ∈
V ∩ R.

(2) For every k ∈ Z, we have ak(f, 0) ∈ R.

Proof. (1) ⇒ (2) because R is a closed subset of R2.

(2) ⇒ (1): For z = x + y
√−1, we define z̄ = x − y

√−1. Let V ⊆ U be
a definably connected open set containing 0, which is symmetric with respect to
the x-axis, and let g(z) = f̄(z̄) for z ∈ V . It is not hard to see that g(z) is K-
differentiable on V \ {0}, and that ak(g, 0) = ak(f, 0) for all k. By 2.48, it follows
that f(z) = g(z) for all z ∈ V , which implies that f̄(z) = f(z) for all z ∈ V ∩ R,
therefore f(z) ∈ R. �
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Theorem 2.50. Let D ⊆ K be the open unit disc, C its boundary, and let f :
D ∪ C → K be a definable continuous function which is K-differentiable on D.
Assume also that |f(z)| ≤ 1 for all z ∈ D. Then for all k ≥ 0,

f (k)(0)
k!

≤ 2k,

and for all z ∈ C ∪ D, ∣∣∣∣f(z) − Σn−1
k=0

f (k)(0)
k!

zk

∣∣∣∣ ≤ |2z|n .

Proof. For n ≥ 1, let

hn(z) = f(z) − Σn−1
k=0

f (k)(0)
k!

zk.

Then, by our assumptions, |h1(z)| ≤ 2 on D and by 2.46,

f (n)(0)/n! = lim
z→0

hn(z)/zn.

By the maximum principle, for every ρ ∈ R such that 0 < ρ ≤ 1,∣∣∣∣f (n)(0)
n!

∣∣∣∣ ≤ max
|z|=ρ

∣∣∣∣hn(z)
zn

∣∣∣∣ ≤ max
z∈C

∣∣∣∣hn(z)
zn

∣∣∣∣ =
∣∣∣∣max

z∈C
hn(z)

∣∣∣∣ .
By induction, the right hand size is no more than 1 + 1 + 2 + · · · + 2n−1 = 2n,

which implies the desired estimates. �
As we already pointed out, the winding number of a uniformly definable family

of functions with respect to a uniformly definable simple closed curves and points
is uniformly definable as well. This, together with 2.43, gives us the following.

Theorem 2.51. Let U ⊆ K, W ⊆ Rn, be definable open sets. F : U × W → K is
a definable function such that for every w ∈ W , F (−, w) is K-differentiable on U
outside, possibly, a finite set.

Then there is N ∈ N such that for every z ∈ U and every w ∈ W , either
F (−, w) is constantly zero at some neighborhood of z, or the order of F (−, w) at z
is between −N and N .

2.10. Counting zeroes and poles; residues

Definition 2.52. Let U ⊆ K be a definable open set, A ⊆ U finite, and assume
that f : U \ A → K is a definable K-differentiable function. For z0 ∈ U we define
the residue of f at z0 to be

resz0(f) = a−1(f, z0).
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Assume that A is contained in the interior of a definable, simple closed curve C.
We define

RESC(f) = Σc∈Int(C) resc(f).

Note that since resc(f) = 0 for c /∈ A, this is well defined. When K = C and
R = R,

RESC(f) =
1

2πi

∫
C

f(z)dz.

If f is K-differentiable on the interior of C, then for every z0 ∈ Int(C) we clearly
have

f(z0) = RESC
f(z)

z − z0
.

We can obtain an analogue of classical results on counting the zeroes and poles
of a definable function.

Proposition 2.53. Let U ⊆ K be a definable open set containing a definable,
simple closed curve C together with its interior. Assume that, for a finite A,
f : U \ A → K is a definable, K-differentiable function, such that no zero or pole
of f lies on C. Then

RESC
f ′

f
= N − Z = WC(f, 0),

where N is the total number of zeroes of f in Int(C) and Z is the total number of
poles of f in Int(C), both counted with multiplicities.

Proof. We will use 2.46(2) and (3). If n(f, c)=0 for c∈Int(C), then n(f ′/f, z0)≥ 0
and therefore resc(f ′/f) = 0. Hence, in order to calculate RESC(f ′/f), we need
only look at the poles and zeroes of f . It is sufficient to show that for every such
c ∈ Int(C), resc(f ′/f) equals the order of f at c (where, as we recall, this order is
taken to be negative if c is a pole and positive if c is a zero).

Assume that limz→c f(z)(z − c)−n = an 6= 0, n 6= 0. Then, by 2.46,

lim
z→c

f ′(z)
f(z)

(z − c) = lim
z→c

f ′(z)(z − c)−(n−1)

f(z)(z − c)−n
=

nan

an
= n.

The fact that N − Z = WC(f, 0) follows from 2.43 and 2.25. �
We can now prove analogues of a theorem by Rouché.

Theorem 2.54. Let U be a definable open set, C ⊆ U a definable closed sim-
ple curve, whose interior is contained in U . If f, g : U → K are definable, K-
differential functions, and if |f(z)− g(z)| < |g(z)| for all z ∈ C, then f and g have
the same number of zeroes in the interior of C.

Proof. Note that for every z ∈ C, the line segment between f(z) and g(z) can-
not intersect 0, hence, f and g satisfy the assumptions of 2.16. It follows that
WC(f, 0) = WC(g, 0). The theorem now follows from 2.53. �
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From the results and arguments developed so far (see also 2.43 and 2.51) we
again obtain a definability result for uniformly definable families of definable func-
tions.

Theorem 2.55. Let U ⊆ K, W ⊆ Rn, be definable open sets. F : U × W → K
a definable function such that for every w ∈ W , F (−, w) is K-differentiable on U
outside, possibly, a finite set. Let C ⊆ U be a definable closed curve whose interior
is contained in U .

Then the function G : W → K, which is defined by G(w) = RESC F (−, w), is
definable. In particular, if K = C and R = R, then the function

G(w) =
1

2πi

∫
C

F (z, w)dz,

is definable.

We comment that in the above, one can also vary U and C in some uniformly
definable family.

The following is an analogue of a classical theorem of Hurwitz. It plays a crucial
role in the subsequent development of the multivariable theory.

Theorem 2.56. Let W ⊆ Rn, U ⊆ K be definable open sets, F : U × W →
K a definable continuous function such that for every w̄ ∈ W , F (−, w̄) is a K-
differentiable function on U .

Take (z0, w̄0) ∈ U × W and suppose that z0 is a zero of order m of F (−, w̄0).
Then for every definable neighborhood V of z0 there are definable open neighbor-
hoods U1 ⊆ V of z0 and W1 ⊆ W of w̄0 such that F (−, w̄) has exactly m zeroes in
U1 (counted with multiplicity) for every w̄ ∈ W1.

Proof. Let C ⊆ V be a circle centered at z0 such that Int(C) ⊆ V and the only
zero of F (−, w̄0) on C ∪ Int(C) is at z0.

Since C is definably compact, |F (−, w̄0)| attains a minimum ε > 0 on C. By 2.4,
there is a definable open W around w̄0 such that for all z ∈ C and w̄ ∈ W ,

|F (z, w̄) − F (z, w̄0)| < ε/2 < |F (z, w̄0)|.

For every w̄ ∈ W we now apply 2.54 to F (z, w̄) and F (z, w̄0). �

2.11. Behavior at boundary points

As we saw, when f is a definable, K-differentiable function on an open set U ⊆ K
and z0 is an isolated point of ∂U , then z0 is either a removable singularity or a
pole of f . The following theorem gives a weaker version of that result for boundary
points of U that are not necessarily isolated.
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For f : U → K a definable function, z0 ∈ K, we define LimU
z0

f to be the set of
all limit points of f(z) in K ∪ {∞}, as z approaches z0 inside U . It is easy to see
that for w ∈ K we have,

w ∈ LimU
z0

f ⇔ ∀ε > 0∃z ∈ U
(|z − z0| + |f(z) − w| < ε

)
. (1)

Since LimU
z0

f is a subset of the frontier of Graph(f), together possibly with
f(z0), its dimension is at most one.

Theorem 2.57. Let U ⊆ K be a definable open set, f : U → K a definable
K-differentiable function.

(1) For every z0 ∈ ∂U , LimU
z0

f is a finite subset of K ∪ {∞}.
(2) Let L be the set of points in ∂U at which U is locally definably connected.

Then for every z0 ∈ L, LimU
z0

f contains a single element and for all but
finitely many z0 ∈ L this element is in K.

Proof. To prove (1), we assume, towards contradiction, that for some z0 ∈ ∂U ,
the set LimU

z0
f ∩ K is infinite. If U is not definably connected, then for one of its

connected components, V , the set LimV
z0

f ∩ K is infinite. By arguing now for V
instead of U , we may assume that U itself is definably connected.

We may also assume that f ′(z) 6= 0 for all z ∈ U . Indeed, either f is constant
on a neighborhood U of z0 in which case the result is immediate, or there is such
a neighborhood U where f ′(z) does not vanish.

We assume also that R is ℵ1-saturated and that U and f are ∅-definable. We
let W = f(U). By 2.34, W is open.

A reduction step: We may assume that f is one-to-one on U and that f−1 is
K-differentiable on W .

Indeed, for every w ∈ W , there are finitely many elements in f−1(w). We define
g(w) to be the nearest such element to z0 among these (if there are several such
we choose one definably). We can partition W into definably connected open sets
W1, . . . , Wk and a set S of smaller dimension such that g is R-differentiable on
each Wi.

For each i, by the chain rule, the R-differential of g|Wi is nonsingular at every
point and moreover, since it as the inverse of the R-differential of f , it is K-linear.
Therefore g|Wi is K-differentiable.

For each Wi, we let Ui = g(Wi). Note that f is one-to-one on each Ui and,
by 2.34, Ui is open.

We fix w0 generic in LimU
z0

f ∩ K over z0. Since
⋃

Wi is dense in W , w0 lies in
the topological closure of Wi for some i. By our definition of g and o-minimality,
there is an i0 which satisfies the following:

∀ε∃w ∈ Wi0(|g(w) − z0| + |w − w0| < ε).
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But then, it easily follows that z0 ∈ ∂Ui0 and w0 ∈ LimUi0
z0 f . Since w0 is generic

over z0, the set LimUi0
z0 f is infinite.

By replacing U with Ui0 we may assume that f is one-to-one on U and that
f−1 is K-differentiable, thus establishing the reduction step.

Claim 2.58. For every w ∈ K, if dim(w/z0) ≥ 1, then the set

L(w) =
{
z ∈ Cl(U) : w ∈ LimU

z f
}

is finite.

Proof. Assume towards contradiction that L(w) is infinite.
Note that for every z ∈ U , we have LimU

z f = {f(z)}. Therefore, L(w) ∩ U
is finite (or else f is constant on U) and L(w) ∩ ∂U is infinite. Take z generic in
L(w)∩∂U over {z0, w}. Then dim(z) = dim(z/w) = 1 and therefore dim(w/z) = 1.
It follows that LimU

z f is infinite which implies that there are infinitely many z ∈ ∂U

for which LimU
z f is infinite. This is impossible since it implies that the frontier of

the graph of f in K × K has dimension two. We thus proved the claim.
For ε > 0 let

Uε = {z ∈ U : |z − z0| < ε}.

We take w0 ∈ K generic in LimU
z0

f over z0. By the above claim, there is ε > 0
sufficiently small such that the only z ∈ L(w0) ∩ Cl(Uε) is z0 itself. Moreover, we
may choose it such that w0 is still generic over {ε, z0}.

Since w0 is generic, there are infinitely many w ∈ LimU
z0

f for which L(w) ∩
Cl(Uε) = {z0}. We now replace U by Uε and thus have:

(i) f is one-to-one on U and f ′(z) 6= 0 for all z ∈ U .

(ii) There are infinitely many w ∈ LimU
z0

f for which z0 is the unique z ∈ Cl(U)
such that w ∈ LimU

z f . We call the set of these points L.

We let g be the inverse function of f on the open set W = f(U). Notice that
for z, w ∈ K we have

w ∈ LimU
z f ⇔ z ∈ LimW

w g.

Notice also that L ∩ W = ∅ and hence L ⊆ ∂W . For w ∈ L we have LimW
w g =

{z0} and therefore limw′→wg(w′) = z0. In particular, we can extend g continuously
to every w ∈ L by defining g(w) = z0.

Since g is K-differentiable on W we can apply to it 2.33(2), thus deducing that
g is constant on W . Contradiction. This ends the proof of (1).

(2). We let R̄ be as in Section 2.1 and let K̄ = R̄ × R̄.
Let Ω be the closure of the graph of f , as a subset of K̄ × K̄. By 2.2, for every

z ∈ ∂U , if U is locally definably connected at z, then Ωz is definably connected.
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By (1), Ωz ∩ K is at most finite, hence for z ∈ L, either Ωz ∩ K = ∅ (in which
case limz′→zf(z′) = ∞) or limz′→z f(z′) exists in K. We want to show that for all
but finitely many z in L the latter is true.

We may assume that for all z ∈ U , f(z) 6= 0. We now replace the function f(z)
with g(z) = 1/f(z). g(z) is again K-differentiable on U . By 2.33(2), there are at
most finitely many z0 ∈ L for which limz→z0 g(z) = 0. Hence, there are at most
finitely many z0 ∈ L for which limz→z0 f(z) = ∞. �

One corollary of the above theorem is the following: Take U ⊆ K to be a
definable open set, f : U → K definable and K-differentiable. We consider the
case where ∂U is infinite, and take z0 to be a generic point of ∂U such that U is
locally definably connected at z0. Then for all n ∈ N, limz→z0 f (n)(z) exists in K,
call it an.

Question. Does the sequence 〈an : n ∈ N〉 give an expansion for f at z0 in the
sense of 2.44? In particular, can we prove that

lim
z→z0

f(z) − f(z0)
z − z0

= a1 = lim
z→z0

f ′(z)?

(See Section C.9.6 in [R] for a treatment of similar questions in the classical setting).
The behavior of f at points z0 on ∂U that are not generic can differ. It is

possible that f(z) and all its derivatives have a limit as z approach z0, in which
case the above question makes sense there. It is possible also that only some of the
derivatives have a limit in K while others have ∞ as a limit. For example, consider
a branch of the function f(z) = z1/2 on the upper right quadrant in C. f(z) has a
limit at 0 but none of its derivatives have.

Unlike the case with isolated singularities, it is possible also to have an essential
singularity at the boundary. For example, consider the function ez, defined on the
horizontal strip R × [−1, 1] (see 2.28). The function h(z) = e−1/z is then definable
on some open subset of K, with 0 on its boundary. The function h(z)zn tends to
infinity as z tends to 0, for every n ∈ N.

3. An application to model theory and a theorem of Chow

3.1. The setting

Let us recall our setting. R is a real closed field, i =
√−1 fixed and K = R(i)

the algebraic closure of R, identified with R2. As before, we identify R with the
subset of R2 given by {(r, 0) : r ∈ R}. Every subset of Kn is identified with a
subset of R2n. This identification sends every ā in Kn to a tuple in R2n. To avoid
complications we use the same notation for a subset of Kn and its identification
with a subset of R2n. Similarly for tuples in Kn and functions from Kn into K.
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We now fix R, an o-minimal expansion of R and let K = 〈K, +, ·, . . .〉 be an
expansion of K which is defined in R. Namely, all the atomic relations of K are
definable sets in R, possibly with parameters. A subset S ⊆ Kn is called K-
definable if it is definable in K, with or without parameters. We say that S ⊆ Kn

is R-definable if its identification with a subset of R2n is definable in R, with or
without parameters.

The main theorem of this section is the following.

Theorem 3.1. Assume that K is a proper expansion of 〈K, +, ·〉 (i.e., some K-
definable set is not definable in 〈K, +, ·〉). Then the set R is definable in K. In
particular, K has the order property and hence it is not a structure of a simple
theory.

Remark 3.2.
(i) The above theorem was proved by D. Marker in [M] in the case where

R = 〈R, +, ·〉 and the same proof goes through when R is any real closed
field. We are going to make use of the first step in Marker’s proof but the
rest of his arguments rest heavily on the fact that the definable sets are
semialgebraic, so we cannot use them here.

(ii) The theorem is related to Zil’ber’s Conjecture ([Z]). This conjecture con-
sisted of two parts, both refuted by Hrushovski in their generality ([H1]
and [H2]). One part suggested that a strongly minimal structure M which
is not locally modular interprets an algebraically closed field K; the other,
that this field carries no definable structure other than the field operations.
Our theorem shows that if M is strongly minimal and definable inside an
o-minimal structure, then the second part of Zil’ber’s Conjecture holds in
it. (It is still unknown whether the first part of the conjecture holds for
such an M.)

Before proving the theorem, let us note how it can be used, together with some
earlier model theoretic analysis of compact complex manifolds by Hrushovski and
Zilber [HZ], [Z1], to yield a “model theoretic” proof of a classical theorem of Chow.
An analogous result was similarly used in [HZ] to yield the same theorem.

Chow’s Theorem. Every analytic subset of Pn(C) is algebraic.

Proof. To every compact complex manifold C one can associate a first order struc-
ture NC whose universe is C and whose atomic relations are all analytic subsets
of Cn, n ∈ N. These structures were analyzed by Zilber in [Z1], where some basic
facts about complex manifolds were shown to imply that NC is a stable structure
of finite Morley rank, so, in particular, a real closed field cannot be definable in it.

Now, it is not difficult to see that NC together with its atomic relations is
definable in the o-minimal structure Ran (see Example 2.28).

If we take C to be Pn(C), then Cn, together with all its algebraic subsets, is
definable in NC . By 3.1, every NC -definable subset of Cn is therefore algebraic.
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Since Pn(C) is a union of finitely many such copies of Cn, every NC -definable subset
of it is algebraic. In particular, every analytic subset of Pn(C) is algebraic. �

We now return to the proof of Theorem 3.1. Our starting point is a very general
lemma by Hrushovski.

Lemma 3.3 (Lemma 1 in [H1]). Assume that M is an ℵ0-saturated expansion of
an algebraically closed field 〈K, +, ·〉. If every unary function definable in M is
definable in 〈K, +, ·〉, then every relation definable in M is definable in 〈K, +, ·〉.

The assumption of saturation in the lemma is harmless in our case since, as
easily seen, it is sufficient to prove Theorem 3.1 under the assumption that R is
κ-saturated for some κ.

The next step in our proof is the first in Marker’s proof.

Lemma 3.4. If R is not definable in K, then K is strongly minimal.

Proof. See the proof of Theorem 3.1 in Marker’s paper ([M]). It works verbatim in
our context. �

Our plan is to show, assuming strong minimality, that every K-definable func-
tion from K into K is K-differentiable outside a finite set. By Theorem 2.47, every
such function is then a rational function over K and in particular definable in the
field language of K. By 3.3, it will follow that every K-definable set is definable in
the field language of K, thus proving Theorem 3.1.

We assume that R (and therefore K as well) is ℵ1-saturated. We also assume at
times that K is strongly minimal, in which case we have two notions of dimension for
tuples in Kn (R2n) and K-definable subsets of Kn (R-definable subsets of R2n).
Namely, the dimension in the strongly minimal structure K and the o-minimal
structure R. We denote these two notions by dimK and dimR, respectively. Note
(see also Lemma 3.5 in [PePiS]) that if S ⊆ Kn is a K-definable set, then dimR(S) =
2 dimK(S).

Given A ⊆ K, let A∗ ⊆ R be the set obtained from A by replacing each
a ∈ A (as an element of R2) with its two coordinates. We say that S ⊆ Kn is
R-definable over the parameter set A if S is definable in R over A∗. Similarly, we
take dimR(a/A) to mean dimR(a/A∗). It follows from the previous remarks that
if ā ∈ Kn and A ⊆ K, then dimR(ā/A) ≤ 2 dimK(ā/A).

Assuming that S is definable over A, a point a ∈ S is called R-generic (K-
generic) if dimR(a/A) = dimR(S) (dimK(a/A) = dimK(S)).

3.2. Frontier of definable sets

We fix a K-definable S ⊆ K2 with R-dimension 2 (hence K-dimension 1). We
assume that S is ∅-definable. We call a subset of K2 a K-line if it is a solution
to an equation az2 = bz1 + c for some a, b, c ∈ K. We call b/a the K-slope of L
(possibly ∞). Note that if ā is R-generic in S, then S is a 2-dimensional R-manifold
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in some neighborhood of ā, with tangent plane denoted by Tā(S), a two-dimensional
linear subspace of R4.

Definition 3.5. Let S1 and S2 be two definable R-submanifolds of Rn such that
dimR S1 + dimR S2 = n. We say that S1 and S2 intersect transversally at a ∈
S1 ∩ S2 if Ta(S1) and Ta(S2) generate together, as vector subspaces, all of Rn.

The following lemma does not make any use of the strong minimality of K.

Lemma 3.6. Assume that every K-line intersects S at most finitely many times.
Take ā = 〈a1, a2〉 ∈ K2 and s̄ ∈ S with dimR(s̄/ā) = 2. Then the K-line through ā
and s̄ intersects S at s̄ transversally.

Proof. For b̄ 6= ā in K2 we denote by Lb̄ the K-line through ā and b̄. Assume
towards contradiction that Ls̄ does not intersect S transversally at s̄.

We write s̄ = 〈s1, s2〉 and ā = 〈a1, a2〉. Since K-lines intersect S finitely many
times and since dimR(s̄/ā) = 2 the K-slope of Ls̄ is different than ∞. Since
dimR(s̄/ā) = 2 there is an open R-definable U ⊆ R4 containing s̄ such that ā 6∈ U
and, for every ū ∈ U ∩ S, the line Lū intersects S at ū not transversally and its
slope belongs to K.

We define a function F : U → K ∪ {∞} as

F ((u1, u2)) =
u2 − a2

u1 − a1

i.e. F (ū) is the K-slope of Lū. Notice that each Lū ∩ U is a level curve of F and
F is R-differentiable on U .

Let ū ∈ S ∩ U . By our assumptions, S intersects the level curve of F at ū non-
transversally, which means that the linear spaces Tū(S) and ker(dFū) intersects
nontrivially. Since s̄ is an R-generic point of S, there is an open definable V ⊆ R2

and a definable function g : V → R4 such that g(V ) ⊆ S∩U and g is an immersion.
For any v̄ ∈ V , the differential of g at v̄ gives a bijection between R2 and

Tg(v̄)(S).
Applying the chain rule to F ◦ g we see that its differential has a nontrivial

kernel at any point v̄ ∈ V . Thus the rank of d(F ◦ g)v̄ is at most 1 at any point
v̄ ∈ V and therefore dimR(F ◦ g(V )) ≤ 1.

But then there is w̄ ∈ K such that F−1(w) ∩ S is infinite, i.e., some K-line
intersects S at infinitely many points. Contradiction. �

We denote the frontier of S by fr(S).

Theorem 3.7. Assume that K is strongly minimal. Then the frontier of S is
finite.

Proof. If there is a K-line L intersecting S at infinitely many points, then either S
coincides with L up to finitely many points, in which case the theorem is obvious
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or we can replace S with S \ L. Since this can happen only finitely many times,
we may assume that every K-line intersects S at most finitely many times.

Assume that theorem fails. Since S has R-dimension 2, dimR fr(S) = 1. Let
α ∈ K be R-generic and pick a point a ∈ fr(S) with dimR(a/α) = 1.

We have dimR(α/a) = 2. Consider the family of K-lines with slope α. This
family has K-dimension 1 and is K-definable. Thus there is a number k > 0 such
that all, but maybe finitely many, K-lines with slope α intersect S at exactly k
points. Since dimR(a/α) = 1, the line L with slope α through a must intersect S
at exactly k points. Let s1, . . . , sk be the points of intersection of L and S. Since
α is interalgebraic with every si over a, dimR(si/a) = 2.

By Lemma 3.6, L intersects S transversally at each si. This implies that small
variations of L within the family of all K-lines intersect S close to si. Therefore if
b ∈ S is sufficiently close to a, then the K-line through b with slope α intersects
S at least k + 1 times: at b and, for each i, at some point close to si. Since a is
on the frontier of S, there are infinitely many points in S as close to a as we wish.
Thus we have infinitely many K-lines with slope α intersecting S at more than k
points. Contradiction. �
Corollary 3.8. Assume that K is strongly minimal. If f : K → K is a K-definable
function, then f is continuous everywhere but maybe is finitely many points.

Proof. Consider the graph Gf of f . Notice that, by o-minimality, if z is a point
of discontinuity of f , then there is w ∈ K such that either (z, w) ∈ fr(Gf ) or
(z, w) ∈ fr(G1/f ). Now apply 3.7. �

3.3. K-differentiability of definable functions

Our goal is to show the following theorem

Theorem 3.9. Assume that K is strongly minimal. If f : K → K is a K-definable
function, then it is K-differentiable at all but maybe at finitely many points.

Proof. We still use R̄ as in Section 2.1 and K̄ = R̄ × R̄. By 3.8, f is continuous on
an open set D ⊆ K whose complement in K is finite. Let D1 ⊆ D be the set of
points where f is K-differentiable, and let S = D rD1. Clearly, D1 is R-definable.
Towards getting a contradiction we assume that S is infinite. Thus dimR(S) > 0.

We assume that f , D and D1 are ∅-definable. Using standard o-minimal ar-
guments, we can find an open interval I ⊆ R and an R-differentiable injective
function h : I → S. We will also assume that h and I are ∅-definable. Let p be an
R-generic point in I and u = h(p). In order to get a contradiction it is sufficient
to show that f is K-differentiable at u.

Consider the K-definable function G from Du = D \ {u} into K defined as

G(z) =
F (z) − F (u)

z − u
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We want to show that limz→u G(z) exists.
We let Ω be the frontier of the graph of G inside K̄ × K̄ and let Ωu = {c ∈

K̄ | 〈u, c〉 ∈ Ω}.
By o-minimality, limz→u G(z) exists in K̄ and equals l if and only if Ωu consists

of a single element l. Thus we need to show that Ωu = {l} for some l ∈ K.

Lemma 3.10. Ωu ∩ K 6= ∅.

Proof. By o-minimality, it is sufficient to show that |G(h(t))| is bounded for t in
some neighborhood of p.

Since p is an R-generic point on I, the function F (h(t)) is R-differentiable at p
(as a function from the interval (p − ε, p + ε) into R2). Therefore there is c1 ∈ R
such that

|F (h(t)) − F (u)|
|t − p| < c1

for all t sufficiently close to p (the division is taking place in R).
Since h is injective and p is R-generic, h is R-differentiable at p, and its deriv-

ative at p is not zero. Thus there is c2 > 0 such that

|h(t) − u|
|t − p| > c2

for all t sufficiently close to p. Thus we have, for t sufficiently close to p,

|G(h(t))| =
|F (h(t)) − F (u)|

|h(t) − u| =
|F (h(t)) − F (u)|

|t − p|
|t − p|

|h(t) − u| <
c1

c2
.

�

Now can now finish the proof of Theorem 3.9. By 3.10 and 3.7, the set Ωu ∩ K
is finite and nonempty. Note that U \ {u} is locally definably connected at u, so,
by 2.2, Ωu is definably connected. It follows that that Ωu ∩ K contains a single
element. �

We now run again through the proof of Theorem 3.1. We showed that, under the
assumption of strong minimality, every K-definable f : K → K is K-differentiable
outside a finite set. By 2.47, every such function is definable in 〈K, +, ·〉. By 3.3,
every definable set in K is definable in 〈K, +, ·〉. We have then that if K is strongly
minimal, it has the same definable sets as in 〈K, +, ·〉. Theorem 3.1 now follows
from 3.4. �
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