THE RATIONAL POINTS OF A DEFINABLE SET

J. PILA and A.J. WILKIE

Abstract

Let X C R" be a set that is definable in an o-minimal structure over R. This article
shows that in a suitable sense, there are very few rational points of X which do not lie
on some connected semialgebraic subset of X of positive dimension.

1. Introduction

This article is concerned with the distribution of rational and integer points on certain
nonalgebraic sets in R". To contextualize the kind of results sought and, in particular,
to motivate the present setting of definable sets in o-minimal structures over R (see
Definition 1.7), we begin by describing earlier results.

The ideas pursued here grew from the article [4] of Bombieri and Pila, where a
technique using elementary real-variable methods and elementary algebraic geometry
was used to establish upper bounds for the number of integer points on the graphs
of functions y = f(x) under various natural smoothness and convexity hypotheses.
Results were obtained for f variously assumed to be (sufficiently) smooth, algebraic,
or real analytic. Several results concerned the homothetic dilation of a fixed graph

X:y= fx).

Definition 1.1

Let X € R".Forareal number¢ > 1 (which is always tacitly assumed), the homothetic
dilation of X by t is the set t X = {(txy, ..., tx,;) : (x1,...,x,) € X}. By X(Z) we
denote the subset of X comprising the points with integer coordinates.

Suppose now that X is the graph of a function f : [0, 1] — R. Trivially, one has
#(tX)(Z) < t+ 1 (with equality, e.g., for f(x) = x and positive integral #). According
to Jarnik [15], a strictly convex arc I' : y = g(x) of length ¢ contains at most
3(4m)~ 13023 4 O(£'/3) integer points. (And, moreover, the exponent and constant
are the best possible.) So if X is strictly convex, one infers that

#1t X)(Z) < c(X)t*3.
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However, Swinnerton-Dyer [32] showed that a substantially better estimate may
be obtained if f is assumed to be C* and strictly convex; namely,

#1tX)(Z) < c(X, e)t/3¢

for all positive €. (Regarding this circle of limited smoothness problems, also see
[30], [21].)

Counting integer points on ¢ X is of course the same as counting points (m /¢, n/t)
on X, and in this guise such questions arose in work of Sarnak [29] on Betti numbers
of abelian covers. He conjectured that if f is C* and strictly convex, then in fact,

#1tX)(Z) < c(X, e)t'/*+e

for all positive €. The exponent 1/2 is the best possible here in view of f(x) = x2.

This conjecture was the starting point of [4], where it is affirmed.
If f is assumed to be transcendental analytic, however, then the exponent may be
reduced to €, and this result of [4] is the prototype for the results presented here.

THEOREM 1.2 ([4, Theorem 1])
Let f : [0, 1] — R be a transcendental real-analytic function. Let X be the graph of
f,and let € > 0. There is a constant c(X, €) such that

#(tX)(Z) < c(X, e)x€.

Theorem 1.2 answers a question also raised by Sarnak [29] and has found application
in that context (see [20], [28]). It can be adapted to a result on rational points of
bounded height, which we proceed to state.

Definition 1.3

Let H : Q@ — R denote the usual height function H (a/b) = max(|a|, b), where a, b €
Z,b > 0, and gcd(a, b) = 1. Extend to H : Q" — R by setting H (a1, ..., a,) =
max(H («;)). If X C R",let X(Q) denote the subset of points with rational coordinates.
Set (for T > 1)

X(Q T)={P e X(@Q),HP)<T},
and define the density function of X to be
NX,T)=#XQ, 7).

This is not the usual projective height H,j, which is not especially natural in the
context of nonalgebraic sets, although this makes no difference to our results. The
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density function N (X, T) is a natural function to study in situations where X(Q) may
be infinite and is the primary object of study here. The aim is to establish upper bounds
for N(X, T') under natural geometric conditions on X and with the guiding idea that
transcendental sets should contain few rational points, in an appropriate sense.

THEOREM 1.4 ([21, Theorem 9])
Let f : [0, 1] — R be a transcendental analytic function with graph X and € > 0.
There is a constant c(X, €) such that

N(X, T) < (X, e)T¢.

Now if f is of special form (e.g., f(x) = e* or, say, f is a G-function), then one
may have much stronger results (or at least conjectures) on the scarcity of rational (or
even algebraic) points (see, e.g., [1]). At the other extreme, constructions going back
to Weierstrass (see, e.g., [19], [26]) show that an entire transcendental f may take
rational values at every rational argument. These constructions do not take much care
of the height density of points.

However, given any function € : [1, 00) — R, strictly decreasing with e(t) — 0
ast — 0o, it is possible (see [23, Section 7.5]) to construct a transcendental analytic
function f on [0, 1] and a (rather lacunary) sequence of positive integers 7; — 00
such that

NX, Tj) = T,
Thus the above result cannot be much improved in general (e.g., taking e(t) =
(log t)~'/? shows that for certain X, no bound of form N(X, T) < C(log T)X holds,
and so forth).

Let us now turn to higher-dimensional sets. The idea of applying the methods of
[4] to the density function of a higher-dimensional transcendental analytic set—for
example, the graph X of a transcendental analytic function f : [0, 1]*> — R—was
prompted by a question of Bourgain (see [23]). Those methods entail studying the
intersections of X with algebraic hypersurfaces of high degree. Such intersections may
be highly singular, though they are still semianalytic. One is further led to consider
images under projections, and thus one is led to the class of (bounded) subanalytic sets
(see [3]) as the natural (and more general) class of sets to consider. The fundamental
properties of subanalytic sets such as the uniformization theorem, Gabrielov’s theorem,
and Tamm’s theorem (see [3]) enabled Pila to establish analogues of Theorems 1.2
and 1.4 for compact subanalytic sets of dimension 2 in R”".

To frame this result, it is necessary to consider a new feature that arises for sets X
of dimension 2 and higher. Namely, X may contain semialgebraic subsets of positive
dimension even if X itself is not semialgebraic, and these semialgebraic subsets may
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contain many, that is, > 7T for some positive 8, rational points of height at most 7.
For example, if X = {(x, y,z) : z =x”, x, y € [1, 2]}, then each rational y gives rise
to a semialgebraic curve in X. To accommodate this feature, we make the following
definition.

Definition 1.5

Let X C R". The algebraic part of X, denoted X alg i the union of all connected
semialgebraic subsets of X of positive dimension. The transcendental part of X is the
complement X — X¢,

The algebraic part of a set may be hard to identify in general, and it may be a
complicated set. In the previous example, it consists of infinitely many connected
components (one for each y € Q N [1,2]), and so it is not subanalytic; this point
is discussed further after Theorem 1.9. However, if the algebraic part is excluded
from the count of rational points, a result of the same quality as Theorem 1.4 may be
obtained.

THEOREM 1.6 ([24, Theorem 1.1])
Let X C R" be a compact subanalytic set of dimension 2, and let ¢ > 0. There is a
constant c(X, €) such that

N(X — X¥, T) < (X, e)TC.

The corresponding result for integer points on the dilation of such a set is in [23],
where Theorems 1.2 and 1.4 are also upgraded to apply to any 1-dimensional compact
subanalytic set X C R”".

The exclusion of X¥¢, where rational points may well accumulate, is weakly
analogous to (and suggested by) the notion of the special set in diophantine geometry
and the philosophy of “geometry governs arithmetic” [14, Section F.5]. The conjecture
of Lang [17, Chapter I, Section 3] (also see [14, Section F.5]) asserts that an algebraic
variety V is Mordellic (i.e., has only finitely many rational points) outside its special
set. When V is a curve, this is the Mordell conjecture, proved by Faltings [10]. In
higher dimensions, it remains very much open. The special set is the Zariski closure
of the union of all nonconstant rational images of morphisms from projective spaces
and abelian varieties. Excluding the algebraic part from our count is much coarser but
seems to be the appropriate way of separating out the essentially transcendental part
of the problem.

For results on integer points on surfaces and higher-dimensional hypersurfaces
under hypotheses of a differential-geometric nature, see [2], [30], and [31].

The generalization of Theorem 1.6 to arbitrary compact subanalytic sets in R”
was conjectured in [23]. Such sets are globally subanalytic (meaning subanalytic as
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subsets of the compact real-analytic manifold P"(IR)). The class of globally subanalytic
sets is an example of an o-minimal structure, and this turns out to be the natural setting
for our arguments.

The notion of an o-minimal structure arose in the study of model-theoretic ques-
tions about R (“Tarski’s problem”; see [6]). Here is a definition, following [35].
(However, readers need to be familiar with the theory as developed, e.g., in [7] to
follow our proofs.)

Definition 1.7

A prestructure is a sequence < = (<, : n > 1), where each %, is a collection of

subsets of R". A prestructure . is called a structure (over the real field) if, for all

n, m > 1, the following conditions are satisfied.

(1) &, is aboolean algebra (under the usual set-theoretic operations).

(2) &, contains every semialgebraic subset of R".

3) IfAe¥,and B € &,,,then A X B € L.

4) Ifm>nand A € &, then 7[A] € &, where m : R" — R" is projection
onto the first n coordinates.

If & is a structure and X C R”", we say that X is definable in ¥ if X € &,. If Y is a
structure and, in addition,

(5)  the boundary of every set in .%; is finite,

then .% is called an o-minimal structure (over the real field).

The paradigm example of an o-minimal structure is provided by the semialgebraic
sets; closure under projections is the content of the Tarski-Seidenberg theorem (see
[7D).

The class of semianalytic sets is not closed under (proper) projections (see the
classical example due to Osgood in [3]). But, as mentioned above, the globally
subanalytic sets form an o-minimal structure, denoted R,,. It is the closure under
complementation that is hardest to establish; the aforementioned theorem of Gabrielov
is the key to his proof of this fact (see [11]).

Another example of an o-minimal structure is the structure R, generated by
e*. Here .%, is the collection of subsets of R" of the form X = 7 (f~'(0)), where,
for some m > n, f : R" — R is an exponential polynomial (i.e., f(x1, ..., Xy) =
O,y Xy, e, ..., e") for some polynomial Q € R[Xy,..., Xy,]) and 7 :
R™ — R" is the projection on the first n coordinates. The requisite finiteness property
(5) follows from Khovanskii’s theorem [16, Chapter 1, Theorem 2]. In showing that
Rexp is a structure, the major difficulty is again the “theorem of the complement,”
which was established by Wilkie in [34]. Note that R, contains (e.g., see [9]) sets
such as {(x, x"), x > 0} for positive irrational r or {(x, e~!/*), x > 0}, which do not
belong to R,,. (They are not subanalytic at the origin.)
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In fact, the structure R, cxp generated by the union of R,, and Rey,, is 0-minimal
(see [8]). However, it is known (see [27]) that there is no largest o-minimal structure
and that there are o-minimal structures containing nowhere analytic functions.

Thus o-minimal structures provide rich and flexible categories to work in and, at
the same time, a natural setting for our methods.

Let & be an o-minimal structure (over R). A definable set X C R" means a set
definable in .. Now we can state a preliminary version of our main result.

THEOREM 1.8 (First version)
Let X C R”" be a definable set, and let € > 0. There is a constant ¢(X, €) such that

N(X — XY T)<c(X,e)TC.

The proof of the theorem begins by showing that the points in question reside on few
(i.e., Ox ((T€)) hypersurfaces of suitable degree d(¢); it then proceeds by induction
on the dimension of X. Thus it is necessary to have an estimate of the same form as in
Theorem 1.8 for those hypersurface intersections but in which the constant is uniform
over all intersections of X with hypersurfaces of fixed degree, that is, a result for a
definable family of sets. The following convention is adopted. In considering subsets
Z = {{x,y)} € R" x R™, projection on the first factor is denoted m;, and on the
second, itis mp. Put Y = Yz = my(Z),andfory € Y, put Z, = {z € Z : my(2) = y},
andlet X, = X, , = m((Z,) be its image in R". A family Z C R" x R™ of sets means
the collection of fibres {X, : y € Yz}. A family Z is definable if the set Z is. The
result to be proved is then the following.

THEOREM 1.9 (Second version)
Let Z C R" x R™ be a definable family, and let € > 0. There is a constant c¢(Z, €)
with the following property. Let X be a fibre of Z. Then

N(X — X¥ T)<c(Z,e)TC.

The example X = {(x,y,z) € R} :z = x,x, y € [2,3]}, for which Xdle =
{{(x,y,z) € X : y € Q}, shows that X¥# is not, in general, semialgebraic (or even
definable; a definable set has only finitely many connected components). Nevertheless,
it might be supposed that for any X and €, there are a semialgebraic set X, C X and a
constant ¢(X, €) such that N(X — X, T) < c(X, €)T€. This is not the case; consider
X={(x,y):0<x <1, 0<y< e} Then X¢ = X, but X is not semialgebraic.
(Otherwise, its bounding graph y = e*,x € [0, 1] would be semialgebraic.) So
N(X — X., T) > T* for any semialgebraic X. C X. However, it is possible to find a
definable X, C X™¢ with the desired property; indeed, for a definable family Z, the
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sets X, may be taken to be fibres of a definable family W(Z, €¢) C Z, and this is the
final version of the result to be proved.

THEOREM 1.10 (Final version)

Let Z C R" x R™ be a definable family, and let € > 0. There is a definable family
W = W(Z,€) C Z and a constant c(Z, €) with the following property. Let y € Y.
Put X = Xz ,,and put Xc = Xw, . Then X, C X4 and

NX — X.,T) < c(Z, e)TE.

Note that this version makes a nontrivial assertion in situations, like the example
above, in which (X — X%2)(Q) is empty but X*# is not definable.

The diophantine part of the proof follows the strategy going back to [4]. The heart
of the analytic part of the proof is the possibility of a certain uniform parameterization
of the fibres X in a definable family. The uniformity required is in the number of
C" maps (0, 1)3™X) — X required to cover X and, at the same time, in bounds on
the sizes of all their partial derivatives up to some prescribed finite order r. This is
achieved in Sections 2—5 by establishing an o-minimal version of Gromov’s alge-
braic reparameterization lemma (see [12, page 232], itself a refinement of a method of
Yomdin [37]) for obtaining such parameterizations of closed semialgebraic sets. Our
o-minimal version of Gromov’s reparameterization lemma may well find other ap-
plications. (Note: Gromov’s proof is very brief; a careful proof has been given by
Burguet [5].)

In [23], a conjecture is also made about integer points on the dilation of a compact
subanalytic set. That conjecture is essentially (though not strictly) weaker than the
corresponding statement about rational points and is also affirmed here, for (bounded)
definable sets, in Section 8. Other results on integer points on definable curves are
obtained in [36].

While, as indicated, the estimate N(X — X2, T) = Oy (T¢) cannot be improved
for globally subanalytic sets, a much better estimate might be anticipated for other
o-minimal structures where we have more control over the definable sets. For example,
we have the following.

Conjecture 1.11
Let X be definable in Re,. Then there are constants ¢ (X), c2(X) such that (for 7 > e)

N(X — X T) < ¢;(X)(log T)*X.

It should be observed that the results here give, even in the original situation of 1-
dimensional sets X : y = f(x) in R, an extension of the previous results; curves
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definable in o-minimal structures may have derivatives that degenerate at an endpoint,
or they may not be analytic at any point (e.g., see the examples in [27]). The previous
results may be inapplicable in such situations, and thus the present results may well
find further application in the circle of problems (see [29], [20], [28]) which provided
their original motivation.

In this article, A C B means that A is a subset of (and is possibly equal to) B. The
cardinality of a set A is denoted #A, and N denotes the set of nonnegative integers.
The letters i, j, k, £, m, n, r, d are reserved exclusively to range over N.

2. Reparameterization (after Yomdin and Gromov)

For Sections 2 — 5, we fix an o-minimal structure .’ over areal closed field M ; definable
means definable in & (see [7]). Although we are ultimately interested only in R,
the greater generality actually simplifies the arguments here because it guarantees a
certain uniformity in parameters which would be absent if we restricted our attention
to structures over R.

Recall that an element a € M is called finite if |a| < c¢ for some ¢ € N. (We
assume that Q is identified with the prime subfield of M.) A finite element of M is
also called strongly bounded. An n-tuple of elements of M is strongly bounded if
all its coordinates are, and a definable subset of M" is strongly bounded if there is a
fixed finite bound for all the coordinates of all its elements. Furthermore, a definable
function is strongly bounded if its graph is (equivalently, if its domain and range are).

Definition 2.1

Let X C M" be definable. A definable function ¢ : (0, 1)Z — X, where £ = dim X,
is called a partial parameterization of X. A finite set S of partial parameterizations
of X is called a parameterization of X if U¢€ grange(¢) = X. (Of course, standard
notation like “(0, 1) refers to its natural interpretation in M.)

We are interested in various extra conditions on the functions in such an S. In particular,
it is not hard to show, using the C"_cell decomposition theorem (see [7, Chapter 3,
Section 2]), that every bounded set has a C”-parameterization. We are interested in
bounding the derivatives.

Definition 2.2

A parameterization S (of some definable set X) is called an r-parameterization if
every ¢ € S is of class C*” and has the property that ¢@ is strongly bounded for each
o € N9mX with || < r, where |«| is the sum of the coordinates of .

THEOREM 2.3 (Reparameterization theorem (after Gromov))
For any r € N and any strongly bounded, definable set X, there exists an
r-parameterization of X.

There is also a version for functions.
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Definition 2 .4

Suppose that S is an r-parameterization of the definable set X C M™ and that
F : X — M" is a definable function. Then we say that S is an r-reparameterization
of F if, foreach ¢ € S, F o ¢ is of class C”) and (F o ¢)@ is strongly bounded for
all o € N9 X with |o| < r.

THEOREM 2.5
For any r € N and any strongly bounded, definable function F, there exists an
r-reparameterization of F.

Sections 3 -5 are devoted to the proofs of Theorems 2.3 and 2.5. It is convenient to
assume that M is Ry-saturated, in particular, non-Archimedean, in these sections. This
can always be assumed by taking a suitable elementary extension and noting that the
statements of Theorems 2.3 and 2.5 pull back to the original structure.

3. The unary function case

There is a very simple but crucial analytic trick at the heart of the proof of Theorem 2.5
which we now state and prove. Indeed, the rest of the argument is just a case of
organizing the induction carefully.

LEMMA 3.1

Let r > 2, and suppose that f : (0,1) — M is a definable function of class C"
with fY) strongly bounded for 0 < j < r — 1. Suppose further that | | is (weakly)
decreasing. Define g : (0, 1) — M by

g(x) = f(x?).

Then g\ is strongly bounded for 0 < j < r.

Proof
By the chain rule (applied in M), g (x) = Zi:o pi j(x) - fO(x?) for each i =
0,1,...,r and x € (0, 1), where each p; ; is a polynomial with integer coefficients

(of degree j, in fact).

Now, by our hypothesis on f, all summands are strongly bounded except, possibly,
the one withi = j = r. One easily checks that this summand is 2" x” f)(x?). Letcbe a
positive integer strongly bounding the function £ =1, and suppose, for a contradiction,
that there is a some xo € (0, 1) with | f")(xo)| > 4c/xo. By the mean value theorem
(applied in M), there is some £ € [xo/2, xo] such that f"~D(xg) — f""D(xp/2) =
FO(E) - (xo — x0/2). But by our hypothesis on £, we have | f"(&)| > | f"(xo)| >
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4c/xy. Hence

4
2¢ 2 |00 = £7(D)] 5 (w0 - D) =2
2 X0 2

This contradiction shows that
4c
ror p(r) .2 ror
2 fOUN <25

for all x € (0, 1), and the right-hand side here is bounded by 2"+2¢ since r > 2. Thus
g(” is strongly bounded fori =0, 1, ..., r, and the lemma is proved. O

LEMMA 3.2

Let F : (0,1) — M be a definable, strongly bounded function. Then F has a
1-reparameterization, say, S, with the additional property that for each ¢ € S, either
¢ or F o ¢ is a polynomial (restricted to (0, 1)) with strongly bounded coefficients.

Proof
By o-minimality, choose elements ag =0 < a; < --- < a, < a4 = 10of M, such
that foreachi = 0, 1, ..., p, F is of class C(") and satisfies either | F’| < 1 throughout

(a;,ajy1) or |F'| > 1 throughout (a;, a; ).

In the first case, define ¢; : (0, 1) - M by x — (a;+1 — a;)x + a;.

In the second case (when F is certainly strictly monotone and continuous on
(a;,aiy1)), weseth; = limX_>ai+ F(x), by = limx_)a;] F(x)and define ¢; : (0, 1) —
M by x > F~'((bis1 — b)x + by).

In either case, range(¢;) = (a;, a;+1), and both ¢; and F o ¢; are of class
CY throughout (0, 1) with strongly bounded derivatives. Furthermore, at least
one of these functions is linear with coefficients in [—1, 1]. It is now clear that

S = {¢o, 1, ..., Pp,d1,...,d,} is a 1-reparameterization of F' with the required
additional property, where each d; denotes the constant function on (0, 1) with
value q;. O
LEMMA 3.3

Letr > 1, and suppose that F : (0, 1) — M is a definable, strongly bounded function.
Then F has an r-reparameterization (with the additional property that for each ¢ in
it, either ¢ or F o ¢ is a polynomial (restricted to (0, 1)) with strongly bounded
coefficients).

Proof
The proof (of the whole statement, including the parenthetical property) is by induction
on r. The case r = 1 being Lemma 3.2, suppose that » > 2, and suppose that S is
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an (r — 1)-reparameterization of F with the additional property. Let ¢ € S, and
write {¢, F o ¢} = {g, h}, where g is a polynomial (restricted to (0, 1)) with strongly
bounded coefficients. Thus, in particular, g exists and is strongly bounded for all
i. However, we know only that 4" exists, is continuous, and is strongly bounded

fori = 0,...,r — 1. In order to apply Lemma 3.1, we use o-minimality to pick
elements 0 = ap < a; < -+ <ay, <ap,+1 = 1in M (depending on ¢), so that for
eachi = 0,..., py, the function & is of class C*”) on (a;, a;11) and |h"| is (weakly)

monotonic on (a;, d;+1).
Let 6y, : (0, 1) — (0, 1) be defined by

(Gip1 — a))x + a; if |n"”)| is (weakly) decreasing,
(@i — ajy1)x +a;yy  if |h7] is (weakly) increasing.

9¢,i(x) = {

(We choose the first option, say, if || is constant.)

It is immediate from the inductive hypothesis that 4 0 64; : (0,1) — M is of
class C and that (h o 6, ;)\") is strongly bounded fori = 0, ..., r — 1. Furthermore,
|(h 0 64.:)] is (weakly) decreasing. Let p : (0,1) — (0, 1) be the C® bijection
sending x to x2. Then, by Lemma 3.1, the function 4 0 64; 0 p : (0,1) — M has
strongly bounded ith derivative fori =0, ..., r. Of course, the function g o6y ; o p is
still a polynomial with strongly bounded coefficients, and {h 06y ; 0 p, g0 6y ; 0 p} =
{¢poby i0p, Fo(¢oby ;op)}. Notice also that as i varies from O to pg, range(¢p oy ;0p)
covers range(¢) apart from finitely many points. So we have only to add finitely many
constant functions (taking values in (0, 1)) to the set {¢p 0 64 ; 0 p : ¢ € S} in order for
it to become an r-reparameterization of F' with the required additional property. This
completes the induction and the proof of the lemma. ad

COROLLARY 3.4
Let X be a strongly bounded subset of M, and let F : X — M be a strongly bounded
function. Then for all r > 1, F has an r-reparameterization.

Proof

Since X is a (finite) union of strongly bounded intervals and points, it clearly has an
r-parameterization, say, S, by linear and constant functions. Now use Lemma 3.3 to
r-reparameterize each function F o ¢ : (0, 1) — M for ¢ € S, and take the union of
these reparameterizations. O

We now proceed to the case of functions taking values in M" for n > 2. However,
there is nothing special about unary functions in this process, so we do the general
case now.
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LEMMA 3.5

Let m,r > 1, and assume that every definable, strongly bounded function with
domain a subset X of M* (for some £ < m) and range a subset of M has an
r-reparameterization. Then for any n > 1, the same is true for such functions having
range a subset of M (and domain X ).

Proof

It is clearly sufficient (by the obvious inductive argument) to show that if n > 2 and
F:X — M"' f:X — M are definable, strongly bounded functions such that F
has an r-reparameterization, then so does the function (F, f) : X — M", where we
may as well suppose that X is a definable (strongly bounded) subset of M™.

So let S be an r-reparameterization of F, and let ¢ € S. Say that ¢ : (0, 1)* — X,
where ¢ = dim(X) < m. Apply the hypothesis of the lemma to the function f o ¢ :
(0, 1)* — M to obtain an r-reparameterization of it, say, 7. Then each ¥ € T,
has domain (0, 1)¢, and it clearly follows by repeated use of the chain rule that each
function (¢ o )@ : (0, 1)* — M™ for o € N* with || < r is strongly bounded. It is
now easy to check that {¢p o : ¢ € S, ¥ € T} is an r-reparameterization of (F, f),
as required. O

COROLLARY 3.6
Letn > 1, and suppose that F : X — M" is a strongly bounded function, where X is
a (strongly bounded) subset of M. Then for any r > 1, F has an r-reparameterization.

Proof
This is immediate from Corollary 3.4 and the case m = 1 of Lemma 3.5. i

4. Some questions of convergence
In Gromov’s proof, things can be arranged, it seems, so that derivatives are a priori
bounded, and we need to be able to reduce to this situation. We achieve this by first
truncating our given function and finding the reparameterization for the truncation. We
then let the truncations converge to the original function. So we require an observation
that allows us to conclude that the reparameterizations converge as well. In fact, we
lose one level of differentiability here, but this hardly matters. The final proofs of
Theorems 2.3 and 2.5 are arranged so that we require only a theory of convergence
for unary functions, so we treat only that case here.

So suppose that N > 1, N € N, and suppose that {F; : (0,1) — (0, )N : ¢ €
(0, 1)} is a definable family of functions (meaning that the map sending (z, x) to F;(x)
is a definable function on (0, 1)%). Suppose further that » > 1, that all the functions F,
are of class C, and that their derivatives F,(i) are strongly bounded fori =0, ..., r.
Since we are assuming that M is non-Archimedean, this clearly implies a uniform finite
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bound, say, c. Using o-minimality, we may define a function Fy : (0, 1) — [0, 1]V by
Fo(x) = lim,_, o+ F;(x).

Now the fact that » > 1 implies that Fj is continuous. To see this, suppose that
x1, X3 € (0, 1) are distinct. Choose ¢t € (0, 1) such that || Fo(x;) — F,(x)| < |x1 — x3|
for i = 1,2.(Weusethesupnorm ||{uy, ..., up,)|| = max{lui|, ..., |u,|} onCartesian
products of M throughout.) By the mean value theorem (in M), we also have || F;(x;) —
Fi(x2)]l < N c|x; — x2| (as c is a bound for F/(x) for x € [x1, x2]). Thus

| Fo(x1) — Folx)ll < [[Fo(x1) — F(x)ll + [1F1(x1) — Fi(x)ll + (1 Fi(x2) — Fo(x)|
= (Nc+2)|x1 —xaf,

whence the continuity of Fj.
One can now go on to show that for eachi = 0, ...,r — 1, Fy is of class C%,
F” is strongly bounded, and, indeed, Fé’)(x) = lim,_¢+ F”(x) for each x € (0, 1).

Remark 4.1

This result properly belongs to the theory of definably Banach spaces (over o-minimal
structures) currently being developed by A. J. Wilkie and Margaret Thomas. The
simplest example is the set Q) of all M-definable functions F : (0, 1) — M with
continuous and bounded derivatives up to order r, which is naturally a normed vector
If o = {F, : t € (0, 1)} is a definable family contained in Q(, then it is ,clear what
we should mean by saying that o is Cauchy (as t — 0%), and it is routine to check
that the pointwise limit of o is indeed the | - |*”-limit and lies in Q) if o is Cauchy.
More important for us here, however, is the fact, borrowed and modified from the
classical theory, that Q) is definably compactly contained in QU =" for all > 1. In
other words, every || - ||”-bounded, definable family o in Q) is Cauchy in Q" ~V,
and hence the pointwise limit of o lies in Q~". The crucial point in the o-minimal
setting is that one knows a priori that this limit function is ( — 1)-times continuously
differentiable at all but finitely many x € (0, 1).

We now consider, for each ¢ € (0, 1), the set S, of coordinate functions of F;. Let us
suppose that it parameterizes (0, 1), so that it is an r-parameterization of (0, 1). We
define Sy to be the set of functions ¢|4-11(0,1y for ¢ a coordinate function of Fy. Then
we have the following.

(A) Uweso range(y) = (0, H\T for some finite set T C (0, 1). (Otherwise, by
o-minimality, there would be a nonempty, open subinterval of (0, 1) missed
by each ¥ € Sy and hence missed by each corresponding coordinate function
¢ of Fy. But this easily contradicts the fact that each S; parameterizes (0, 1)
and that lim;_, o+ F;(x) = Fy(x) (for x € (0, 1)), bearing in mind the fact that
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as r > 1, the derivative of each coordinate function of F; has a uniform finite
bound.)
(B) Notice also that each function ¥y € S, has domain an open subset of (0, 1)
(which may have infinite complement in (0, 1)), is of class C”~V, and is such
that 1) is strongly bounded fori =0, ...,r — 1.
‘We now apply these remarks to set up the inductive process involved in the proofs
of Theorems 2.3 and 2.5. We fix m > 1 in Notation 4.2, Lemma 4.3, and Corol-
lary 4.4.

Notation 4.2

@))] For U a definable, open subset of M m+l we write V € U to mean that V is a
definable, open subset of M™! with V ¢ U and dim(U\V) < m.

(2)  For¢:(0,1) - M adefinable function, we define /1, : (0, D™ — (0, 1) x
M by (X1, ...\ Xy Xna1) > X1y ey Xy @Xpg1)). If X € MM and f :
X — M" are definable, f, denotes f o I (having domain I¢_1[X]).

LEMMA 4.3
Suppose that n > 1, that U € (0, D"+ and that f U — M" is a definable,
strongly bounded function. Suppose further that for eachi = 1, ..., m, 0f/0x; exists,

is continuous, and is strongly bounded (on U ).

Then for each r > 2, there exists an (r — 1)-parameterization of a cofinite subset
of (0, 1), say, S, and a set V& U such that for each ¢ € S, I4[V] C U, fy is of
class CV on V, and all of its first partial derivatives 3fy/dx;,i = 1,...,m + 1, are
strongly bounded (on V).

Proof

We treat only the case n = 1. The general case follows using an argument similar to
that in the proof of Lemma 3.5. Our S is constructed from a certain limit set Sy (of
a suitable family S, : ¢ € (0, 1)), as described above. (Notice that properties (A) and
(B) are not quite the conditions for an (» — 1)-parameterization of (0, 1), though (A) is
precisely what we are asking for here, and (B) can easily be modified by composing
with linear functions, as we are to see.)

Now, by o-minimality, let W & U be such that f is of class C"’ on W, and for
each ¢,y € (0, 1), let W,(y) denote the set of those x € (0, 1)” such that the point
(x, y) is at a distance at least ¢ from the set ([0, 1] x {y})\W. It follows that the
map X — |df/0x,4+1(X, y)| is defined and continuous on W,(y) and hence achieves
its maximum value at some point s;(y) € W;(y), provided that this set is nonempty.
Since M admits definable Skolem functions, it follows that s may be taken to be a
definable function in both ¢ and y (taking the value (1/2, ..., 1/2), say, if W;(y) = 0)
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and that (in all cases)
vVt €(0,1),Yy €(0,1),Vx € W,(y), we have (s,(y), y) € W

and

af

a-merl

of
m+1

‘ax (s:), y)‘ > ’

@ ). )
Now consider the definable family {g; : (0, 1) — (0, 1) x M : ¢ € (0, 1)} given by
&:(y) == (s:(y), f(s:(y), y)) (where we give f the value 0, say, if (s;(y), y) ¢ U), and
apply Corollary 3.6 to obtain an r-reparameterization, say, S;, of g, foreachr € (0, 1).
Now since we are assuming that M is Ny-saturated, it follows easily (using the fact
that M admits definable Skolem functions) that for some N € N, §; may be taken
as the set of coordinate functions of some definable function F, : (0, 1) — (0, )V,
where the family {F; : ¢t € (0, 1)} is also definable. Let Sy be the limit of this family
ast — 07, as described at the beginning of this section. By splitting the functions
in Sp, we may suppose that they are all either constant or injective and have domains
an open subinterval of (0, 1). Now throw away the constant functions, and compose
each remaining function with a suitable injective linear function (with coefficients in
[—1, 1]), thereby arriving at an (r — 1)-parameterization, say, S, of a cofinite subset
of (0, 1).
Now set V := ((0, )"\ U5 I¢_1[(0, 1™\ W]) N U (see Notation 4.2(2)).
Then the injectivity (and continuity) of the ¢’s implies that V € U. Clearly,
1,IV] C W C U, and so, also, the function f} is of class C'V on V (for ¢ € ). It
remains only to show that if ¢ € § and (x¢, yo) € V, then dfy/0dx;(Xo, yo) is finite for
i=1,...,m+1.
Now since (xg, ¢(yo)) € W C U, this is clear (by the lemma hypothesis) for
i = 1,...,m. For the remaining case, we note that there is some linear function A
(with finite coefficients) and some function v in Sy (or, rather, a subfunction of a
function in Sp) such that ¢(y) = ¥ (A(y)) (for all y € (0, 1)), and so it is clearly
sufficient to show that if y; € dom(y), then ¥'(y) - df/0xu11(X0, ¥(y1)) is finite,
where we also know that (x¢, ¥ (y;)) € W. Since W is open, it follows that
6)) X0 € W;(¥(y1)) for all sufficiently small ¢ € (0, 1).
Now by definition of Sy, there is, for each r € (0, 1), (uniformly) a function
¢: € S; such that lim, o+ ¢;(y1) = ¥(y1), and (as r > 2) lim, o+ ¢;(y1) = ¥'(y1).
Hence
(i) 19f/0xm41(Xo, Y(y1)) = 8f/3xm+1(X0, :(y))| = 1 (and (xo, ¢:(y1)) € W) for
sufficiently small ¢ € (0, 1) (by the continuity of df/dx,,.; on W);

i) 1¢/) — W'D < 18f/3%ms1(Fo, ¥ ()]~ for sufficiently small 7 € (0, 1);
and

(iv)  xo € Wi(¢:(y1)) for all sufficiently small ¢ € (0, 1). (Since if (i) holds for some
to € (0, 1), then (iv) holds for any ¢ < #y/2 satistying | (y1) — ¢:(y1)| < t9/2.)
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Thus, if we select some ¢ € (0, 1) such that (ii) — (iv) all hold simultaneously, we
see that

YO0 5o Fo, ¥ o) | S 001 |5 o yon) |+ 1 Gy (i)

m+ m+

< 19/l |ax (Fo. 4:)| + 161001 + 1 (by (i)

AR ‘a st(¢z(y1)),¢,(y1))’+|¢§(y1)|+1 (by (iv) and (x)).
Xm+1

However, |¢/(y1)| is certainly finite (since ¢, € S;), so it suffices to show that

¢,(y1) i ——(s:(@:(y1)), P (1))

Xm+1

is finite. But since S; is an r-reparameterization of g;, it follows that
V) (s; o ¢;) (y1) is finite, and

(vi)  (d/dy)ly=y, [(s: 0 $:(¥), ¢:(y)) is finite.
Now by (vi), the quantity

a
50800 (5o LN 400) + 4100 - 52— (5. )

Xm+1

is finite. Also, the scalar product term here is finite by (v) and by the strong boundedness

of the functions df/dx; (fori = 1, ..., m), as given by the lemma hypothesis. (Note
that (s;(¢;(y1)), ¢:(y1)) € W C U by (iv) and (x).) Hence the second term is finite,
which is what we had to show. O

COROLLARY 4.4
Suppose that r,n > 1, that U € (0, 1)"*!, and that f : U — M" is a definable,

strongly bounded function. Suppose further that for eacha = (o, . . ., ttyy1) € N1
with |a| < r and o,y = 0, f@ exists, is continuous, and is strongly bounded
(onU).

Then for each k > 0, there exists a set Vy, € U and an r-parameterization of
a cofinite subset of (0, 1), say, Sk, such that for each ¢ € Sy, I4|Vi] C U, fy4 is of
class C® on Vy, and all its derivatives fqga) (for o = (aq, ..., 0put1) € Nt la| <
r, i1 < k) are strongly bounded (on Vy).

Proof

We may take V, € U such that f is a function of class C") on V; (by o-minimality),
and So = {id|(o,1)}. So suppose, inductively, that V} and S have been constructed with
the required properties.
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Let A = {a = (001, ..., 0mp1) € NPt ol <7 — 1, appy < k), setii :=
#A -#S;,and let F = (F}, ..., F;) : Vi, — M be an enumeration of all the functions
f(;a) : Vi = M for ¢ € Sy and o € A. Then the hypotheses of Lemma 4.3 obtain
(with F for f, Vi for U, 71 - n for n, and r + 1 in place of »)—note the “r — 1” in the
definition of A—so that we may choose an r-parameterization, say, S, of a cofinite
subset of (0, 1) and a set Vi1 € Vi such that for each ¢ € S, I,[Vi41] C Vi (so that,
in particular, fsoy = (fp)y = fp o Iy is of class C™) on Vj1, being the composition
of C") functions), and so that each function ( f(;a))\,, is of class CV with

0
8—((fq§“))¢) strongly bounded on V4 fori =1,...,m+ 1,0 € A,and ¢ € S;.

Xi
()

Thus we define

Siy1:=1{poy ¢ €S, ¥ €S},

and it remains to show that if @ = (a1, ..., dyme1) € N with o] < r and a4 <
k+ 1andif ¢ o € Sy1, then (fpoy)® is strongly bounded on Vi .

Now if a1 = 0, then this is clear because (fpoy)® = (fqga))¢ and ff) is
strongly bounded. If a1 > 0, then (fpoy)® = 8/0xm11(fL),) for some B € A.

poy
Furthermore, fora := {(ay, ..., aus1) € Vii1,

F3o)P@ = YD (@nr1) - (f)y@).

Thus

0
(Fpo) @@ = ¥ @ni1) - (£ @ + @D Gyy1) - l(f(;ﬂ))w(ﬁ),
m+

0x
which is finite since we have «,,1; < |¢| < r and 8 € A (see (})), and ¢ € S, so
Y @11 and @+ are strongly bounded. O

5. The proofs of Theorems 2.3 and 2.5

For each m > 1, consider the following two statements.

(I),, Forall r,n > 1 and all definable, strongly bounded functions F : (0, 1)" —
M", there exists an r-reparameterization of F.

(I),, Forall r > 1 and every definable, strongly bounded subset X C M"*!, there
exists an r-parameterization of X.

Note that (I); holds by Corollary 3.6. Also, (II),, makes sense for m = 0 and
clearly holds in this case (via linear functions). We proceed by induction to show that
the statements hold for all m > 1. So suppose that m > 1, that (I), holds for all £ < m,
and that (I), holds for all £ < m. We now show that (II),, holds and then that (I),,,4
holds.
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For (II),,, let 7 > 1 and X C M™*! be definable and strongly bounded. We may
clearly assume that X is a cell in M m+1 and we do the more difficult of the two cases,
namely, X = (f, g)y, where Y is a (strongly bounded) cell in M™, leaving the other
case, X = graph(f1Y), to the reader.

So let S be an r-parameterization of Y (using (II),,_;), and for each ¢ € §, let
T, be an r-reparameterization of the function (f o ¢, g 0 ¢) : (0, 1) — M?, where
¢ = dim(Y) (using (I),). Then for each ¥ € T}, define 6, , : (0, )*! — X by

0p.y (X):=(poP(x1, ..., xe), (1=xp11) fodoyr(xy, ..., X)+Xer18000Y (X1, ..., Xp)),

where X = (x1,...,x¢41). Thenthe set {6y 4 : ¢ € S, ¥ € Ty} is readily seen to be
an r-parameterization of X.

For (I),,.1, we need only do the case n = 1 (by Lemma 3.5), so let r > 1 and
F : (0, 1)"*! — M be a definable, strongly bounded function. By (I),,, there exists,
for each u € (0, 1), an r-reparameterization, say, S,, of the function F, : (0, 1) —
M :x — F(x,u), where X = (xy, ..., X,), and by using a saturation and Skolem
function argument (just as in the proof of Lemma 4.3), we may suppose that there
exist definable families of functions {V¢, : u € (0, 1)}, ..., {M¢, : u € (0, 1)} such
that S, = (D, ..., Ve,).

Now, for j = 1,...,N, define the function F : (0,1)"*" — M by
DFEGE, u) := F(D¢(x, u), u). Let

Fo=(Wep, ..., Mg Vp . NMEy .0, )" — MmNV,

and notice that the hypotheses of Corollary 4.4 hold with * F for f, (0, 1)"*! for U, and
mN+ N forn. (This is just arestatement of the fact that S,, is an r-reparameterization of
F,, uniformly in u.) So we apply Corollary 4.4 with k = r to obtain V, € (0, 1)"*! and
S, with the properties stated. Now if V., = (0, 1)"*! and S, were an r-parameterization
of all of (0, 1), then we could simply take our required r-reparameterization of F to
consist of the functions )¢, for j = 1,..., N and ¢ € S,. As it is, we at least know
that the union of the ranges of these functions (on (0, 1)"*!) covers (0, 1)"*! apart
from finitely many planes {x,+; = a}, and it follows that if we restrict them to the
(open) set V, (where they are all of class C” and satisfy the bounding condition for
r-reparameterizability), then they still cover a subset of (0, 1)"*! of codimension £
for some £ < m.

Using the (now-proven) (II),,, let 7} be an r-parameterization of V,, and let 7; be
an r-parameterization of the ¢-dimensional set (0, 1)"*' — [ J,_ <N Depy [V, 1.

For each 0 € T,, we may apply (I), to obtain an r-reparameterization, say, Uy,
of the function F o 6 : (0, 1) — M. The required r-reparameterization of F is now
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given by
(Ppyox:j=1....,N,¥eS,xeTi}U{fok:0e T, recU),

where the * denotes extension of the domain of a function from (0, 1)¢ to (0, 1)" (but
leaves its values independent of the last m — £ variables).

This completes the proof of (I),,, |, and the induction is complete. In particular,
Theorem 2.3 is now proven. Theorem 2.5 requires one more step, and we leave this to
the reader. O

COROLLARY 5.1

Let m,r > 1, and suppose that X C (0, 1)" is a definable set. Then there exists a
finite set S of functions, each mapping (0, 1)%™X) to X and of class C\", such that
(D) Uges range(p) = X and

Q) |¢@@)| < 1foreach ¢ € S, o € N ™D with || < r and all € (0, 1)4mX),

Proof

Let S$* be an r-parameterization of X (as given by Theorem 2.3). Then (1) holds for
S*, and (2) holds with ¢ in place of 1 for some ¢ € N. Cover (0, )4 with (2¢)3mX)
cubes of side 1/c, and for each such cube K, let Ag : (0, )¥MX) _ K be the obvious
linear bijection. Then the set of all ¢ o L ’s, as ¢ varies over S* and K varies over the
cover, is the required S. The details are left to the reader. a

As usual, the existence of definable Skolem functions and a saturation argument imply
a uniform version.

COROLLARY 5.2

Let n,m,r > 1, and suppose that X C (0, 1)" x M™ is a definable family. Then

there exists N € N and, for each’y € M™, a set Sy of N functions, each mapping

(0, UM ¢ X5 and each of class C O such that

(1) quesy range(¢) = Xy and

2)  [p9Y@)| < 1 for each ¢ € Sy,a € N™XD with |a| < r and all ¥ €
(0, 1)dim(Xs)_

Further, the functions comprising Sy depend definably on’y.

6. The main lemma
We return to the assumption that .%’ is an o-minimal structure over R.

By a hypersurface of degree d (in R" ) we mean a set of the form {x € R" : f(x) =
0}, where f is a nonzero polynomial over R of degree d in n variables. If Z C R" x R™
is a family (see Section 1), the fibre dimension of Z means the maximum dimension
of a fibre of Z (in situations where this makes sense).
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The main device in the diophantine part of the argument here, as in [4], [21], [23],
and [24], is that the rational points of height at most 7 in the image of a (sufficiently
smooth) map ¢ : [—1, 1] — R", where k < n, reside on few hypersurfaces of
prescribed degree d relative to norms of ¢ and its derivatives up to some suitable order
(depending on d). A similar result is achieved by p-adic means in the algebraic setting
in [13].

Already in [4], where k = 1, the dependence of the estimate on these norms was
eliminated by the observation that for an algebraic or compact analytic curve, the
controlled oscillation implies that intervals on which derivatives are large have to be
short and few. (Another manifestation of tameness in [4] is the compactness argument
in the proof of [4, Theorem 1].) This device has also been used to obtain bounds for
the rational points of a pfaff curve in [25].

Here we use the r-parameterization results of Sections 2 —5.

PROPOSITION 6.1
Let k,n € N with k < n. Then there are, for each d € N,d > 1, a nonnegative
integer r = r(k, n, d) and positive constants €(k,n, d), C(k, n, d) with the following
property.

Suppose that ¢ : (0, 1)¥ — R" is a function of class C" with |¢® (x)| < 1 for
all x € (0, 1)* and all « € NF with || < r.Let X = ¢((0, 1)¥), and let T > 1. Then
X(Q, T) is contained in the union of at most

Ck,n,d) T<®mD

hypersurfaces of degree at most d. Furthermore, €(k,n,d) — 0 asd — oo.

Proof

This follows from [23, Proposition 4.2], with r(k, n, d) taken to be one more than
the b(k, n, d) therein. The constant cj¢ in that result corresponding to C(k, n, d) here
depends, in addition to k, n, d, on the domain of ¢ and the size of the derivatives up
to order r. So the conditions of the hypothesis on those derivatives and fixed domain
mean that here it may be taken to depend only on &, n, d. That €(k,n,d) — 0 as
d — oo is observed just before the proof of [23, Proposition 4.2]. O

PROPOSITION 6.2 (Main lemma)

Let Z C (0, 1)" x M™ be a definable family of fibre dimension k < n. Let ¢ > 0.
There are ad = d(e, k,n) € N and a constant K (Z, €) with the following property.
Foranyy € Y and T > 1, the set X(Q, B), where X = X, is contained in the union
of at most

K(Z,e)T¢

hypersurfaces of degree at most d.
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Proof

Take d such that €(k,n,d) < €, and set r = r(k,n, d) as in Proposition 6.1. By
Corollary 5.2, there is an N € N such that for every y € Y, there is an r(k, n, d)-
parameterization, say, Sy, of X, consisting of at most N maps ¢ : (0, 1 — R”
having all derivatives up to order r(k, n, d) of absolute value bounded by 1. To each
map ¢ € S,, by Proposition 6.1, we have that ¢[(0, DX(Q, T) is contained in the
union of at most C(k, n, d)T€ hypersurfaces of degree at most d. This establishes the
result with K(Z,€) = N - C(k, n, d). O

7. Proof of Theorem 1.10
If X C R" is definable and k < n, we denote by regy(X) the subset of C L_smooth
points of X of dimension k (see [9, Section 1.8]).

7.1. Proof of Theorem 1.10

Since the rational points of height at most T are stable under the maps x > £x*!, as
are the algebraic parts of a set, we may suppose that Z C [0, 1]" x R™ and so, by a
suitable induction on n, that Z C (0, 1)" x R™.

Consider first the situation in which A, B, C C (0, 1)" x R™ are definable sets
with AUB = C.Forany y € Y, it is inmediate that X Zl’gy UX3E Cc X aCl%y. Therefore,
if the theorem holds for A and B and € with sets W(A, €), W(B, €) and constants
c(A, €), c(B, €), then it holds for C with

W(C,e)=W(A,e)U W(B,¢), c(C,e)=c(A,e)+ c(B,e€).

The proof is by induction on the fibre dimension of Z. If the fibre dimension of Z is
zero, then there is a uniform bound c for the number of points in any fibre, and the
theorem holds with ¢(Z, €) = c. Suppose then that k > 0, suppose that the theorem
holds for all families of fibre dimension at most k — 1, let Z C (0, 1) x R™ be a
definable family with fibre dimension k, and let € > 0.

Suppose that k = n. If x € regx(X) of any fibre X, then X contains an open ball
in R” containing x. Therefore x € X2, Moreover, for any k € N, the family

R(Z) = {(x, ) : x € rege(Xy)}

is definable (see [9]). Thus the fibres of A = R, (Z) are subsets of the algebraic parts of
the fibres of Z. So the conclusion for A holds with W(A, €) = A. The fibre dimension
of B =7 — A is at most k — 1, and so the theorem holds for B by induction. So it
may be assumed that k < n.

Let {xi,x2,...,x,} be the coordinate system in R". For a subset ¢ C
{1,2,...,n}, let I1, denote the linear coordinate subspace of R" with coordinates
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{x; : i € o}, and let m, be the projection of R" onto I1,. Let S = S;, = {0 C
{1,2,...,n}:#0 =k + 1}, and put g = #S5.

By Proposition 6.2, there are d € N and a constant «(Z, €) such that for any fibre
X of Z, any subset o € S, and any T > 1, (7, X)(Q, T) is contained in the union of
at most

a(Z,e)T?

intersections of 77, X with hypersurfaces of degree at most d. (So X(Q, T) is contained
in at most a(Z, €)?T¢/? intersections of X with cylinders on hypersurfaces of degree
d in each such subspace.)

Let T C RP parameterize real hypersurfaces of degree d in R¥*!. (Note that
T = P"*9(R) for suitable v and so is compact, and we can take T C [—1, 1]? C R”.)
Then

t=(t,:0eS8) e[]|T, c®)

corresponds to a choice of a hypersurface L = L(f,) of degree d in each (k + 1)-
dimensional linear coordinate subspace I, of R". We have the definable family

2 = {{x, (y,1)): 1.(x) € L(t,), allo € S} CR" x (R" x (R”)).

Consider a fibre X of X. Since any choice of k 4 1 coordinates is algebraically
dependent, X is a closed algebraic set in R” of dimension at most k.
Replace Z by

{(r 0. 0) e R R" x ®2Y) i (x, ) e 2,0 e ] T,

which has the same fibres. (And so Z C (—1, 1) x R"™*P9)
The fibre dimension of Z N X is at most k. If

A = {(x, (v, t)> eZNX:x ¢ regk(szz,<y,t>)}’

then the fibre dimension of A, is at most k — 1 and, by induction, an estimate
€
C<A1, —) Te/2
2

holds for the number of rational points of height at most 7 on a fibre of A outside
(the fibre of ) some suitable family W(A, €/2). This includes, in particular, the case
of an intersection of a fibre X of Z with cylinders on hypersurfaces of degree d when
the intersection has dimension at most k — 1.

Similarly, the fibre dimension of

A, = {(x (y, t)) €EZNX:x ¢ regk(X2,<y,t>)}
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is at most kK — 1, and an estimate of the above form holds. It is likewise for

Ay = {(x {y, t)) €eZNT:x ¢ regk(Xz,<y,t>)}~

Let B be the subset of Z N X of points that are regular (of dimension k) in their
fibres in Z, ¥, Z N X. Consider a point P = (x, (y, t)) = (x, u) € B. In some small
neighborhood A of x in R", each of the fibres

XZﬂE,uy XZ,LM XZ,M

is a C'-submanifold of R" of dimension k. Since Xzoxu C Xzu, X5 4, the sets
locally coincide. But the intersection Xy , N A is a semialgebraic set of dimension
k > 1if Ais taken to be a small ball. Therefore P € X ﬁi cX ;li. The theorem holds
for B with W(B, ¢) = B.

Nowlety € Y, X = Xz,,and T > 1. Let P € X(Q,T). So n,(P) €
(s X)(@Q, T) for any o0 € S and therefore lies on one of the hypersurfaces 7,. So
P lies in one of at most

(w(Z,0)' T
fibres of ZN X. Furthermore, either P lies in a family A, A,, Az for which an estimate
c(A;, e)T?

holds for the number of rational points of height at most 7" outside the corresponding
fibre of W(A;, €/2), or P lies in B. This completes the proof. ad

Remark 7.2

In the 1-dimensional case, application of the method to the function y = e*, for which
all intersection multiplicities can be precisely controlled, leads to natural proofs of (the
real versions of ) classical transcendence statements (see [22]). (A similar method was
found a little earlier by Laurent [18]; also see [33]). It would be interesting to make
the present argument fully quantitative, for example, for the threefold log x logy =
logwlogz, x,y,z, w > 0 associated with the four exponentials conjecture, with a
view to showing that there can be only a few solutions in some more general sense
than the six exponentials theorem (see [33]).

8. Dilation-integer points

We now take X to be a bounded definable set; otherwise, the conclusion of Theorem 8.1
may fail (e.g., X = {{x,2"), x € R}, definable in R.p). Note that for any X and ¢,
@t X)¥e = t(X%9).
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THEOREM 8.1

Let Z C R" x R™ be a bounded, definable family, and let € > 0. There are a definable
family W = W(Z,€e) C Z and a constant c¢(Z, €) with the following property. Let
X =Xz, andput X, = Xy y. Then X, C X and

#(1tX — tX)(2) < o(Z, .

Proof

Since Z is bounded, say, Z C [—C, C]"™™, where C > 1, we can assume, in fact, that
Z C [—1, 1]"*™ at the cost of replacing the dilation parameter ¢ by Cr. The proof then
follows the method of the proof of Theorem 1.10, using a result for dilation-integer
points in the image of a map ¢ : (0, 1)* — R" with suitably bounded derivatives
adapted from [23, Proposition 4.1] in the same way that Proposition 6.1 adapts [23,
Proposition 4.2] for rational points. O

Remark 8.2
In fact, only the members of the family Z need be bounded (not the parameters),
although there is no real added generality here.
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