Les modèles d’arbres plans étiquetés (c’est à dire des arbres plans finis dont les sommets portent des étiquettes entières) et plus généralement les modèles de processus de branchement spatiaux sont aujourd’hui devenus incontournables en probabilité et en combinatoire (marche aléatoires branchantes, superprocessus, modèles de particules…). Un enjeu important pour étudier ces arbres étiquetés est de comprendre le profil vertical qui correspond au processus comptant pour chaque entier k le nombre de sommets d’étiquette k. Il correspond grosso modo à la mesure d’occupation du processus branchant encodé par l’arbre. Nous nous proposons de faire un petit tour d’horizon non exhaustif de résultats anciens et nouveaux concernant les propriétés probabilistes du profil vertical (limite d’échelle, propriété de Markov, dénombrement…).