L’objectif de la prédiction séquentielle probabiliste est de prédire une suite d’observations révélées une à une, en leur attribuant des probabilités aussi élevées que possible. Ce problème classique en apprentissage et en théorie de l’information est étroitement lié au codage universel et, plus récemment, à la prédiction du prochain token pour les modèles de langage.
Dans cet exposé, je rappellerai d’abord des résultats classiques dus à Shtarkov et Rissanen dans les années 80–90. Une question centrale consiste à relier la complexité du problème à la « géométrie » du modèle sous-jacent. Pour l’aborder concrètement, je me restreindrai au cas de modèles gaussiens sous contrainte convexe. Je présenterai un résultat récent montrant que l’erreur optimale s’exprime alors en fonction de quantités de géométrie convexe, à savoir les volumes intrinsèques du corps considéré. Si le temps le permet, j’évoquerai aussi un lien avec la théorie des processus gaussiens.