Designed and built with care, filled with creative elements

Top

Corps et géométries relatives

ENS Salle W

Tout groupe constructible est algébrique (Weil - Van den Dries - Hrushovski). Pillay en 1997, puis Kowalski et Pillay en 2001, ont montré que la composante connexe de tout groupe constructible dans un corps différentiellement clos ou dans un corps avec un automorphisme générique, se plonge (à noyau fini près dans le second cas) dans un groupe algébrique. Ces démonstrations consistent à obtenir une configuration de groupe dans le pur corps algébriquement clos à partir de celle dans le corps enrichi. Pour les groupes définissables dans les corps colorés, corps […]

Fibres de Milnor réelles et séries de Puiseux.

ENS Salle W

Je parlerai d'une description des fibres de Milnor d'une fonction polynomiale réelle qui passe par l'étude d'un ensemble de séries de Puiseux. On calcule l'homologie semialgébrique de cet ensemble, que l'on compare avec les fibres de Milnor topologiques.Il s'agit d'un travail en commun avec Masahiro Shiota, de Nagoya.