Designed and built with care, filled with creative elements

Top

Adapting to unknown noise level in super-resolution

ENS Salle W

We study sparse spikes deconvolution over the space of complex-valued measures when the input measure is a finite sum of Dirac masses. We introduce a new procedure to handle the spike deconvolution when the noise level is unknown. Prediction and localization results will be presented for this approach. An insight on the probabilistic tools used in the proofs could be briefly given as well.

Covariant LEAst-Square Re-fitting for image restoration

Salle W (ENS)

We propose a new framework to remove parts of the systematic errors affecting popular restoration algorithms, with a special focus for image processing tasks. Generalizing ideas that emerged for l1 regularization, we develop an approach re-fitting the results of standard methods towards the input data. Total variation regularizations and non-local means are special cases of interest. We identify important covariant information that should be preserved by the re-fitting method, and emphasize the importance of preserving the Jacobian (w.r.t. the observed signal) of the original estimator. Then, we provide an approach […]