The parameterized Picard-Vessiot theory aims at studying the differential behavior of solutions of parameterized linear differential equations. It associates to such an equation a linear differential algebraic group (LDAG), that is, a group of matrices whose entries are functions satisfying a fixed set of differential equations. After giving an introduction to this theory, I will show that not all LDAGs can occur as Galois groups over k(x), the field of rational functions in x whose coefficients are functions of a parameter t and characterize those LDAGs that do occur.
La théorie classique de Picard-Vessiot fournit une correspondance galoisienne pour les extensions de corps différentiels. Nous présenterons une correspondance plus fine, sous forme d'une anti-équivalence de catégories entre algèbres de solutions associées à une équation différentielle linéaire (algèbres différentielles engendrées par un nombre fini de polynômes en les solutions fondamentales de l'équation) et variétés affines quasi-homogènes sous l'action du groupe de Galois différentiel. Une telle correspondance joue aussi dans le contexte plus général des connexions (intégrables ou non). Nous évoquerons le parti que cette correspondance permet de tirer, en algèbre […]